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Abstract: There is a growing interest of estimating the inherent uncertainty of photovoltaic (PV)
power forecasts with probability forecasting methods to mitigate accompanying risks for system
operators. This study aims to advance the field of probabilistic PV power forecast by introducing and
extending deep Gaussian mixture density networks (MDNs). Using the sum of the weighted negative
log likelihood of multiple Gaussian distributions as a minimizing objective, MDNs can estimate
flexible uncertainty distributions with nearly all neural network structures. Thus, the advantages
of advances in machine learning, in this case deep neural networks, can be exploited. To account
for the epistemic (e.g., model) uncertainty as well, this study applies two ensemble approaches to
MDNs. This is particularly relevant for industrial applications, as there is often no extensive (manual)
adjustment of the forecast model structure for each site, and only a limited amount of training data
are available during commissioning. The results of this study suggest that already seven days of
training data are sufficient to generate significant improvements of 23.9% in forecasting quality
measured by normalized continuous ranked probability score (NCRPS) compared to the reference
case. Furthermore, the use of multiple Gaussian distributions and ensembles increases the forecast
quality relatively by up to 20.5% and 19.5%, respectively.

Keywords: PV power; probabilistic forecast; MDN; Monte Carlo dropout; deep ensemble

1. Introduction
1.1. Motivation and Background

Forecasting is becoming paramount for incorporating the increasing number of vari-
able renewable energy (VRE) technologies into power systems. In particular, forecasts for
photovoltaics (PV) systems are attracting increasing attention, after being declared the most
immature area of energy forecasting by world-renowned energy forecasters as recently
as 2016 [1]. This is primarily driven by the projected strong increase in grid penetration
of PV systems. According to the current grid expansion plan of the German Federal Net-
work Agency, for instance, the PV capacity in Germany is expected to increase 5.8 times
(+268 GW) over the next 15 years [2]. Moreover, under the EU-wide European Solar Roof
Initiative, all new residential, public and commercial buildings will be required to install
PV roof systems by 2029 [3].

However, the inherent uncertainty of forecasting results in prediction errors, which in
turn may lead to suboptimal operational schedules and unnecessarily high opportunity
costs. A feasible solution is to estimate and quantify the prevailing uncertainty through
probabilistic forecasts, allowing for improved market bidding strategies [4] and better
operational planning [5]. Consequently, probabilistic forecasts can be beneficial for both
grid operators and market participants. For instance, stochastic, scenario-based or robust
model predictive controls [6,7] can be used to improve the robustness of operational
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schedules by, e.g., forming adaptive reserve algorithms [8] or better economic dispatch
models [9].

Forecasts for PV power are usually generated either directly or in a two-step approach
by initially creating a forecast of the global horizontal irradiance (GHI) based on numerical
weather prediction (NWP), followed by a conversion to PV power using static models [10].
This conversion is mostly achieved by first transforming the GHI with separation and
transposition models into the solar irradiance on the plane of array and subsequently deter-
mining the PV power using a physical motivated model of the PV panel [10]. However,
especially for the increasing number of local systems (e.g., rooftop or building-integrated
systems with mixed orientation), the commissioning engineer often may not know all tech-
nical PV parameters (e.g., orientation, angle) required for the indirect approach. Moreover,
measuring devices for local irradiance (e.g., pyranometers) need to be installed to calibrate
the models, and shading issues have to be modelled separately. Given the mentioned draw-
backs and the fact that potential users of the forecasts are grid operators and plant owners,
this paper focuses on the direct prediction of PV power and its probability distribution.

1.2. Aleatoric and Epistemic Uncertainty

The inherent uncertainty of forecasts can be divided into epistemic and aleatoric
uncertainty [11]. The latter denotes the stochastic component of the modelled process,
such as noise in the data, which prevents a complete deterministic relation between the
chosen model in- and outputs [12]. Epistemic uncertainty, in turn, is caused by the lack
of knowledge about the perfect predictor and therefore encompasses e.g., the uncertainty
caused by suboptimal model structures and suboptimal estimated parameters [12]. In terms
of PV power forecasting, sources of aleatoric uncertainty may be inaccuracies in the input
signals, such as NWP, and the omission of possible relevant information, such as wind
speed and wind direction, in the model inputs. Epistemic uncertainty, meanwhile, can be
caused by an insufficient amount of available training data, a (too) high model complexity,
or the inability to find the global minimum during training, due to nonlinear models with
respect to their parameters (e.g., neural networks). Correspondingly, epistemic uncertainty
declines with more training data, whereas this has no effect on the aleatoric uncertainty [12].
Consequently, the former is modeled by placing a probability distribution over the model
parameters, while the aleatoric uncertainty is modeled by placing a distribution over
the model output [11]. The distinction between these two uncertainties is important as
neglecting one of them will likely lead to an underestimation or misrepresentation of the
overall uncertainty. For instance, in practice, a detailed manual adjustment of the forecast
model is not always feasible and therefore a standard approach (e.g., a model with default
structure and hyperparameters based on previous locations) is used instead. This, in turn,
may considerably increase epistemic uncertainty and, therefore, if not taken into account,
results in prediction intervals that are too narrow. However, several current studies do not
consider a combined assessment of both uncertainties [13].

1.3. Probabilistic Forecasts

Three different basic concepts (see Figure 1) are widely used for the representation and
generation of probabilistic forecasts: (1) creation of ensemble forecasts, (2) identifying a
discrete cumulative distribution function by e.g., quantiles, or (3) determining a continuous
probability function via a parametric distribution or non-parametric depiction (e.g., kernels).
In the following, these different approaches are discussed in detail using several examples.

Ensemble forecasts consist of different ensemble members—typically point forecasts—
which are generated by e.g., bootstrapping [14], multi-model approaches [15,16], determin-
ing possible input deviations [17] or by selecting outputs from comparable situations in
the past [18]. They can therefore assume any occurring distribution function. However,
ensembles may require a post-processing to calibrate the prediction interval, and are often
in comparison computationally more demanding [17]. Furthermore, they commonly only
model one type of uncertainty. Training data bootstrapping, for instance, only depicts



Energies 2023, 16, 646 3 of 17

epistemic uncertainty [19]. In addition to their standalone use, ensemble concepts can also
be combined with other probabilistic approaches (e.g., an ensemble of quantile forecasts) to
enable the modelling of all types of uncertainty.

Probability forecasts

I) Ensemble II) Quantiles/intervals III) Continuous probability distribution

Semi- / Nonparametric Parametric

Bootstrapping & sampling
(e.g., training data, forecasts,
forecast error)

MC-dropout

Different model inputs /
scenario analysis

Multi model approaches

Scaling and transforming other
ensemble forecasts (e.g., NWP)

Softmax regression networks

Pinball loss function
(e.g., quantile regression,
quantile neural networks)

Lower and upper bound estimation
(e.g., coverage width based criterion)

Probability neural network
(e.g., using negativ likelihood
as loss function)

Volatility models (e.g., GARCH)

Estimating distribution via
standard deviation of residuals

Gaussian process

Mixture density networks
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Figure 1. Overview of different representation types for probabilistic forecasts and exemplary
methods to generate them. While continuous probability distributions can be both parametric and
non-parametric, ensembles and quantile representations never assume a parametric distribution.
A combination of several approaches and the conversion of the different representation forms into
each other is possible. The approaches explored in this paper are highlighted.

Estimating the cumulative distribution function (CDF) of probabilistic prediction
discretely using, e.g., quantiles, is the most common approach for probabilistic forecasts [20].
In doing so, for each quantile τ ∈ [0, 1], a forecast ŷτ(t) is estimated for the signal y(t),
where the probability of y(t) to be lower than ŷτ(t) is exactly τ:

P(y(t) < ŷτ(t)) = τ. (1)

While in classical deterministic forecasts, the parameters are estimated by minimizing
the mean squared error (MSE) of the residuals; in quantile regression, an asymmetrically
weighted error is used for the loss function, e.g., the so-called pinball loss. Hence, this
approach can be applied to several algorithms and is consequently often used to easily
transform an existing deterministic forecast model into a probabilistic one [21]. For example,
Refs. [19,20] provide a comparison and an overview of different linear prediction models
based on quantile regression. The authors in [22], in turn, applied quantile regression to an
encoder–decoder architecture that uses long short-term memory (LSTM) neural networks
in combination with a multilayer perceptron. However, quantile regression only depicts the
aleatoric uncertainty and therefore the uncertainty in the data, as the adjusted loss function
only characterizes a distribution over the model output. In addition, for each to be a
determined quantile, a separate model training is usually performed and some subsequent
application methods (e.g., stochastic optimization) require a continuous representation of
the CDF [7].

Alternatively, the complete probability distribution can also be estimated directly.
In parametric approaches, a set distribution (e.g., a Gaussian distribution) is assumed
a priori for the uncertainty and its parameters are subsequently estimated. This can be
accomplished with additive volatility models such as generalized autoregressive condi-
tional heteroscedasticity (GARCH) models, which provide a probabilistic extension for
any deterministic prediction but require minimal computational effort [23]. Another ap-
proach is to estimate a normal distribution using the standard deviation of the residuals,
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which has been implemented in many publicly available R (e.g., tsibble) and Python (e.g.,
pmdarima) forecasting packages thanks to its simplicity. However, this approach only
considers the deviation and therefore uncertainty of the random error term and assumes
homoscedasticity, which can lead to an underestimation of prediction intervals of up to
25% [24]. Analogous to quantile regression, the cost function of the prediction model can
also be adapted in order to apply a parametric approach to different model structures
(e.g., distributional neural networks). By using the negative log likelihood of a Gaussian
distribution as the cost function, for example, the mean and the standard deviation can be
estimated directly. Another prominent method is the Gaussian process, which has been
used in [25] for the probabilistic prediction of PV power. Although this is a non-parametric
forecasting method and does not assume a fixed number of model parameters, the resulting
distribution is Gaussian and therefore parametric. However, parametric approaches have a
disadvantage. Previous studies on irradiation forecasts have shown that the assumption of
a fixed Gaussian distribution of the error terms is not always supported by the data due to,
e.g., a lack of symmetry, resulting in lower forecast quality [26].

Flexible density estimation, e.g., via kernel functions, can solve this challenge. The au-
thors of [27] used Bayesian Model Averaging as a post-processing method to generate
a probabilistic mixture model out of NWP ensembles, combining a discrete component
for power clipped at the inverter rating and a continuous portion for the lower output.
The authors of [28], in turn, used a coupled input and forget gate network in combination
with quantile regression to initially generate individual quantiles and afterwards converted
them into a continuous probability distribution using kernel density estimation.

Another promising approach, which has been successfully applied to other forecasting
domains [29], are mixture density networks (MDNs). They can be seen as extensions of
distributional neural networks, as they combine different distributions using the sum of
weighted negative log likelihoods of kernel functions as minimizing objectives. Conse-
quently, they can estimate flexible uncertainty distributions with almost all neural network
structures and thereby benefit from the advances in machine learning, e.g., deep neural
networks. Moreover, with a sufficiently high number of Gaussian distributions, it is theo-
retically possible to represent any other distribution form [30]. Ref. [29] implemented it,
for instance, for the probabilistic forecast for regional wind power. Furthermore, in [31], an
MDN with four distributions was able to achieve a significantly better deterministic forecast
than a linear transformation model for solar irradiation. Analogous to quantile regression,
MDNs only depict the aleatoric uncertainty by changing the minimizing objective.

There are various possibilities to consider both aleatoric and epistemic uncertainty
in neural networks. Nevertheless, the inclusion of the epistemic counterpart in MDNs
is overall still largely unexplored [32] and, to the authors’ knowledge, has not yet been
applied to PV power forecasts. For instance, Ref. [32] addressed the epistemic uncertainty
of MDNs only for short-term load forecasting through a Bayesian approach of estimating
weight distributions over the model parameters instead of specific values. A disadvantage
of this approach, however, is the relatively high computational effort.

A computationally less demanding alternative is Monte Carlo (MC) Dropout [33].
Here, dropout is not only activated during training, but also during testing of the network.
By randomly dropping various units during forecasting, different results are generated.
These can even be interpreted overall as a deep Gaussian process approximation when
dropout is applied to each hidden layer [33]. Another epistemic extension is the repeated
model training with different parameter initializations. In combination with the limitation
to only one single Gaussian distribution, this approach is often termed a deep ensemble.
Using a deep ensemble, Ref. [13] has achieved better results in probabilistic load forecasting
for one and 24 h ahead than with a linear quantile regression model or even a deep
Gaussian process. The effectiveness of the ensemble methods can be illustrated by the
popular bagging [34] approach. It reduces the epistemic uncertainty by aggregating the
ensemble members, which, in turn, improves the deterministic accuracy.
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1.4. Contributions and Scope

To the best of the authors’ knowledge, a comprehensive study of probabilistic PV
power, forecasts with MDN has not been conducted before. This study aims to close this
gap and advance the field of probabilistic PV power forecasting, in particular by:

• Analyzing the probabilistic forecast quality of MDN PV power forecasts and extending
them with different approaches to encompass the epistemic uncertainty;

• Examining the influence of different architectural configurations (e.g., number of
mixture components/distributions and ensemble members);

• Assessing the significance of the different uncertainty types for industrial applications
by varying the number of available past data for training and validation (7 and
182 days/half a year);

In the analysis, emphasis is placed on ensuring that practical conditions are met.
Frequently, only a simple division between training and test set or a low (e.g., 4-fold)
cross-validation is carried out. A variation of the number of training data, for instance to be
able to estimate the performance during commissioning, does not take place. In industrial
applications, however, the model structure and hyperparameters are rarely adapted over
time or for different locations due to capacity reasons. Therefore, a solution that also
takes into account the additional uncertainties involved should be preferred. For this
purpose, 24 different commissionings of the forecast per location are simulated for 7 and
182 training days.

The investigations are performed with data from three PV systems from different
locations in Germany and Austria.

The forecast horizon is six hours, as this time span is needed to also include the
planning of the thermal side (e.g., storages, heat pumps) in the optimal dispatch calculation
of on-site energy systems [5]. A time resolution of 15 min is chosen, which corresponds
to the imbalance settlement period and therefore predominantly billing resolution in the
European Union [35].

1.5. Organization

The remainder of this paper is organized as follows: Section 2 briefly presents an
overview of the used data. Subsequently, Section 3 introduces the generation of ensemble
MDNs in detail. In Section 4, the metrics and benchmark used to evaluate the probabilistic
forecasts are discussed. Afterwards, a detailed analysis of the achieved probabilistic
forecasts with a critical discussion of their behavior is carried out in Section 5. Finally,
Section 6 summarizes the findings of this study and presents possible next steps.

2. Data

An overview of the studied PV systems is shown in Table 1. As all three of them
are rooftop systems, their generated PV power is more volatile compared with ground-
mounted systems due to the relatively small local spread (missing low pass effect). Along-
side the measured PV power, GHI and outside temperature predicted by an external
provider on the previous day serve as input signals for the forecasts. To achieve realistic
practical conditions, the forecasts of the provider Meteonorm were continuously recorded
at midnight of the respective previous day over the entire study period.

During preprocessing, gaps of less than 30 min were linearly interpolated and days
with gaps larger than 30 min or days with snow on the panel were excluded from the
analysis. Subsequently, 24 evenly distributed instances were selected and, for each of
them, a forecast initialization was simulated for the next seven days using both 7 and 182
available days of training data, respectively (see also Figure 2).
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Table 1. Main information concerning the data used in this work.

North Bavaria
(Germany)

South Bavaria
(Germany)

Vienna
(Austria)

Elevation [m] 280 725 150
Annual GHI [MWh/m2] 1.77 1.88 1.79
Study period 08/19–02/21 01/19–09/21 05/17–04/19
Sample rate [min] 15 15 15
Ratio of missing days [%] 1.3 4.9 12.2
Number of samples 50,112 89,280 55,559
Solar variability (σ∆kt) 0.188 0.186 0.195
Ppeak, daily of PV panel [kW] 1.29 14.584 14.95
Installed capacity [kW] 2.2 24 27
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Figure 2. Schematic illustration of the performed forecast approach. For each of the 24 different
simulated forecast initializations, the past data (7 or 182 days) are used to train the model 1©.
To estimate the epistemic uncertainty, MC dropout and multiple training initializations with different
samples of training and validation data are used 2©. Subsequently, the ensembles of Gaussian
distributions estimated by the Deep Mixture Density Networks are combined according to their
mixture coefficients to estimate the overall forecast uncertainty 3©. With a sufficient number of hidden
units and a sufficient number of mixture distributions, this approach can theoretically approximate
any probability distribution [30].
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3. Methodology

First, the basic principle of MDN is presented in this chapter, followed by a detailed
description of the extensions applied to also encompass the epistemic uncertainty. Figure 2
summarizes the entire concept of this study graphically for a clearer overall understanding.

3.1. Mixture Density Networks

MDNs were initially introduced by Bishop in [30] to estimate general distribution
functions. For this purpose, the conditional probability distribution p(y|x) of the target
variable y given the input features x is represented as a linear combination of kernel
functions φk(y|x):

p(y|x) =
K

∑
k=1

αk(x)φk(y|x), with:
K

∑
k=1

αk(x) = 1, (2)

where K ∈ Z+ is the amount, and k ∈ Z+ is the respective number of the considered
components in the mixture model. Furthermore, αk(x) ∈ R+ constitutes the weighting of
the respective mixture component also called a mixing coefficient. In the present study,
Gaussian kernels are used, since a neural network with a sufficient number of hidden
units and a mixture model with a sufficient number of kernel functions can theoretically
approximate any conditional density function [30]. Consequently, φk(y|x) is formulated
as follows:

φk(y|x) =
1√

2πσ2
k (x)

exp

(
−‖y− µk(x)‖2

2σ2
k (x)

)
, (3)

with µk(x) ∈ R as the mean and σ2
k (x) ∈ R

+ as the variance of the kth mixture compo-
nent. To estimate the neural network parameter, the negative log likelihood is used as a
minimization objective L. Given (2) and (3), this results in:

L = − log(p(y|x))

= − log

 K

∑
k=1

αk(x)√
2πσ2

k (x)
exp

(
−‖y− µk(x)‖2

2σ2
k (x)

).
(4)

However, in practice, several measures must be implemented to guarantee that the
Gaussian parameters comply with their mathematical constraints and that no numerical
underflow occurs. As the logarithm of the product of exponential functions leads to an
underflow issue for low values, the so-called log-sum-exp trick

log
w

∑
i=1

eζi = max
j

ζ j + log
w

∑
i=1

eζi−maxj ζ j , ∀ w, i, j ∈ Z+ (5)

is adopted, where ζ ∈ Rn denotes arbitrary values. For this purpose, the exponential
function in (4) is reformulated:

L = − log

(
K

∑
k=1

exp
(

log(αk(x)) −

constant︷ ︸︸ ︷
1
2

log(2π)−1
2

log
(

σ2
k (x)

)
− ‖y− µk(x)‖2

2σ2
k (x)

))
. (6)

For the mixing coefficients αk(x), a softmax activation function is used, since they must
be positive and sum to unity (see (2)). In addition, clipping

(
αk ∈ [1× 10−12, 1], ∀k ∈ K

)
is

performed beforehand to guarantee that the mixing coefficients are for numerical stability
purposes not too low. To ensure a positive variance, Bishop [30] initially suggested an
exponential activation function. However, as such a function becomes unstable for large
values, a softplus function with an additional constant minimum variance term was added
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instead. This approach was also used in [36] for multiple regression tasks with a deep
ensemble and only a single Gaussian distribution.

Consequently, the output layer of the neural network corresponds to a parameter
vector [h[µk ]

, h[σ2
k ]

, h[αk ]
]T , ∀k ∈ [1, K], which must be post-processed to get the parameters of

the Gaussian mixture model (GMM) for both the loss function and the forecast, as follows:

µk = h[µk ]
(7a)

σ2
k = log

(
1 + exp

(
h[σ2

k ]

))
+ 1× 10−6 (7b)

αk =
exp

(
h∗[αk ]

)
∑K

j=1 exp
(

h∗
[αj]

) , ∀j ∈ Z+ with: (7c)

h∗[αk ]
=


1× 10−12, if h[αk ]

≤ 1× 10−12

1, if h[αk ]
≥ 1

h[αk ]
, otherwise

. (7d)

3.2. Epistemic Extension of Mixture Density Networks

As already outlined, MDNs only depict aleatoric uncertainty, as the uncertainty of
the estimated model parameters is not considered. These uncertainties can be taken
into account by determining multiple conditional distributions pθm(y|x, θm), also called
ensemble members, based on different estimated model parameters θm ∈ R. Analogous
to bagging, these ensemble members can subsequently be averaged. This means for the
present approach that the conditional distributions are combined in a higher-level mixture
model. Considering (2) and (3), the overall distribution for the approach can thus be
defined as:

p(y|x) = 1
M

M

∑
m=1

pθm(y|x, θm)

=
M

∑
m=1

K

∑
k=1

αk,m(x)

M
√

2πσ2
k,m(x)

exp

(
−
∥∥y− µk,m(x)

∥∥2

2σk,m(x)2

)
,

(8)

where M ∈ Z+ is the overall quantity of ensemble members, and m ∈ Z+ indicates the
respective ensemble member number. According to (8), the ensembles also influence the
shape of the distribution function. Since the overall number of distribution is K times M,
the density flexibility increases. For instance, even with only one distribution used at the
output (K = 1) and multiple ensembles (M > 1), the result is a GMM. However, with well-
chosen hyperparameters, the distributions between the generated ensemble members are
expected to differ less than the generated output distributions within a single forecast.

For the generation of ensemble members, two different approaches are compared in
this study. First, MC dropout is applied. In principle, dropout is used in neural networks
only during training as a regularization method to avoid overfitting [37]. For this purpose,
each unit or neuron i in a hidden layer is randomly switched off with the dropout probability
pi ∈ [0, 1] during each training sample. Consequently, it can be interpreted as if numerous
thinned networks with shared weights are implicitly trained [37]. In the case of MC dropout,
dropout is also applied during testing. Consequently, it can be expected that the network
structure is different for each prediction leading to varying forecasts. Applied to each layer,
this approximates a deep Gaussian process [33]. The primary advantage is that multiple
ensemble members can be created despite a single model training.

In the second approach, multiple ensemble members are generated by repeated model
training with different initial model parameters. This captures the deviation from the
different local minima of the objective function (6) reached during model training. When
compared to MC dropout, better results were achieved with this approach in [36] for
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different regression tasks. Moreover, this approach often performs better in practice than
Bayesian neural networks [38]. To account for the uncertainty caused by limited training
data, the allocation to the training and evaluation dataset is carried out randomly before
each training.

3.3. Training and Network Parameter

The implemented Gaussian MDN is a multilayer perceptron consisting of four hidden
layers with 75 neurons in each layer. As recommended in [37], dropout is combined with a
max-norm regularization of two at each layer to prevent the network weights from growing
too large. Furthermore, different neural networks were trained for each sample of the
forecast horizon as the number of network outputs already increases to k(c + 2) for each
forecast horizon sample c ∈ Z+ in comparison to the deterministic forecast. An overview
of the used model and training hyperparameters is shown in Table 2. Due to the relatively
long computing times, they were based on sample investigations using grid search of one
location and, as is common in practice, adopted for all sites. Accordingly, marginally better
results could be expected, if the model structure was individually tailored for each location.

Table 2. Summarized information of training- and MDN hyperparameters.

Architecture hyperparameters

Number of hidden layers 4
Number of units per hidden layer 75
Activation function ReLU

Input feature information [number of samples]

PV power ∼last day [97]

Predicted temperature (NWP) forecast horizon [24]
last 3 h [12]

Predicted GHI (NWP) forecast horizon [24]
∼last day [97]

Regularization techniques

Dropout rate (in each hidden layer) 0.35
Weigh constraint of max norm 2
Early stopping with patience level 150

Training hyperparameters

Minibatch size 32
Number of epochs 500
Optimizer Adam
Validation split 0.3

4. Evaluation Framework

The quality of a probabilistic forecast should be assessed both on reliability and
on sharpness [39]. The latter refers to the width of the probability distribution or the
distance between ensemble members and is a measure of information density. Reliability,
in turn, characterizes whether the predicted distribution corresponds to the observed
distribution. This study follows the common approach from [26,39], which both recommend
a quantitative evaluation based on an error metric and a qualitative graphical evaluation
based on, e.g., a rank histogram. For this purpose, a normalization of the continuous ranked
probability score (CRPS) is used, which is proper and can be denoted as:

NCRPS =
1

Ppeak, daily

1
N

N

∑
l=1

∫ ∞

−∞

[
F̂l(ỹ)− 1(yl − ỹ)

]2dỹ, (9)

where F̂i represents the predicted CDF of the variable of interest ỹ (PV power) for the lth
forecast and observation pair. 1 is the Heaviside step function, which changes from 0
to 1, when the observation yi > ỹ and N ∈ Z+ is the number of respective forecast and
observation pairs of the analysis. The normalization is performed by dividing the CRPS
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with the mean maximum daily produced power Ppeak, daily (see Table 1) of the PV panels.
The CRPS has the same dimension as the predicted variable, and a lower value indicates a
higher forecasting quality.

To assess the performance of the respective probabilistic methods against a reference,
this study uses, inter alia, the complete-history persistence ensemble (CH-PeEn) (see
Algorithm 1). The authors in [40] recommend it based on a comparative study against
other benchmark methods for solar irradiation.

Algorithm 1: Complete-history persistence ensemble

1 Calculate the clear sky index κ for the PV power, PPV at time t: κ(t) = PPV(t)/PPV, csp(t),
where the clear sky profile PPV, csp is determined by a moving horizon of the maximum
values in the past seven days of the same time of day

2 Generate a forecast ensemble by using all past values of κ in the same hour
3 Multiply the ensembles of clear sky indices with PPV, csp to obtain the complete-history

persistence ensemble

In addition, the influence of the number of mixture distributions is also evaluated.
Consequently, the solution with only one Gaussian output distribution, often referred to
as deep ensemble, automatically serves as an additional, more advanced, state-of-the-art
benchmark. For instance, in [13], this approach had achieved better results than, e.g., a
deep Gaussian process for load prediction.

For a clear evaluation of the improvement related to different hyperparameters (e.g.,
number of distributions, ensemble generation method) and a better comparison to the
benchmark methods, this study also uses the skill score, which is calculated as follows:

SS =

(
1− NCRPSforecast

NCRPSref

)
· 100%. (10)

A higher value of the SS signifies a relatively greater improvement of the prediction
accuracy with regard to the respective used reference case NCRPSforecast, with the threshold
of one indicating a perfect forecast. Conversely, negative values indicate a worse forecast
performance than the benchmark.

Time instances with marginal PV power generation (PV power < 3% of the respective
Ppeak, daily) are neglected for the evaluation, since they would disproportionately impact
the relative error metrics [10]. Nevertheless, the remaining considered time points possess
more than 97% of the generated electric energy.

5. Results

First, the influence of the number of mixture distributions is analyzed in detail, fol-
lowed by the comparison of the different approaches to capture the epistemic uncertainty
in MDN models. The temporal behavior of the forecasts are shown in Figure 3 for a better
comprehension of the probabilistic results.

5.1. Influence of Training Data and Mixture Distributions

Figure 4 illustrates both the probabilistic accuracy and the relative improvement of
the MDN compared to the reference forecast, each depending on the amount of training
data and the number of mixture distributions. A significant improvement of 16.6% to 27.6%
compared to the benchmark can already be observed with seven days of training data
and a single Gaussian output distribution. MDNs can therefore be used with relatively
limited available training data, e.g., during commissioning. Prediction accuracy increases
considerably with half a year of training data, as can be seen by the reduced interquartile
range and median in the box plots. The median NCRPS for ten mixture distributions,
for instance, decreases from 8.8% to 7.0%, corresponding to a relative improvement of
20.5% and an improvement over the CH-PeEn benchmark of 53.7%.
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Figure 3. Probabilistic forecast of the MDN for a day with varying and constant solar exposure.
For better illustration, the estimated probability distributions of the mixture distributions are con-
verted into intervals, and only the next step ahead forecast (forecast horizon corresponds to 15 min)
is shown. The width of the intervals depends on both the level and the volatility of the PV power.
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Figure 4. Accuracy of the probabilistic forecast for the different location and overall—for differ-
ent amounts of available training data and different numbers of mixture distributions (top row).
The comparison to the benchmark forecast CH-PeEn is also illustrated by the skill scores (bottom row).
The results are based on a forecast horizon of 6 h and MDN ensembles with 15 training initializations,
which in turn have 15 dropout ensembles each. The number after the abbreviation MDN in the
legend indicates the respective distribution quantity, e.g., MDN-1 means one output distribution.
The whiskers in the box plot span 1.5 times the interquartile range, which extends from the 25th to
the 75th percentile.

The use of additional output distributions in the mixture model also enhances the
prediction quality. Accordingly, an improvement of the MDN to the deep ensemble refer-
ence forecast with only one Gaussian output distribution can also be observed. This effect
is more distinct with half a year of training data, resulting in a relative improvement of
e.g., 20.4% from one to five mixture distributions. Hence, firstly, the more complex model
structure is better at utilizing the additional information provided by the extra data and,
secondly, a certain amount of training data are required to exploit the potential of the more
flexible distribution mixture. From five to ten distributions, no significant additional im-
provement occurred, indicating that the underlying uncertainty distribution of the forecast
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can already be estimated relatively accurately with five output distributions. Moreover, it
should not be forgotten that slightly different Gaussian distributions are already included
in the mixture model due to the ensemble members.

The increase in forecast quality due to additional distributions is further illustrated by
the more detailed analysis regarding the forecast horizon in Figure 5. For shorter forecast
horizons, both five and ten output mixture distributions provide even better improvements
of up to 30.5% compared with a single Gaussian distribution, which suggests that the
added value of MDNs is even greater at short forecast horizons. However, with increasing
forecast horizon, the improvement by the additional mixture distributions and also the
difference from five to ten distributions decreases. This is probably caused by the fact
that the determination of uncertainty becomes more difficult at distant time horizons.
The accompanying lower forecast quality makes a significant distinction harder.
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17.8 19.0
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e
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Figure 5. Forecast quality of the MDN depending on the forecast horizon for different numbers
of mixture distributions of 182 days of training data. The forecast quality of the MDN with a
single output distribution serves in each case as a reference value for the skill score. Consequently,
the values represent the percentage improvement of the forecast quality caused by the additional
used mixture distributions.

The rank diagrams in Figure 6 show a good reliability in comparison to the benchmark
method and a slight improvement with the added mixture distributions. Since the under-
lying uncertainty at the output does not exactly resemble a normal distribution, a slight
bias occurs at the output with only one distribution. Consequently, the sixth percentile is
slightly overestimated. This context is demonstrated further by Figure 7, which shows the
parameters (standard deviation, mean value, weighting factor) of the individual output
distributions normalized by the measured PV power for different numbers of mixture
distributions. In the case of a single distribution, the mean is slightly overestimated,
and the standard deviation is comparatively higher, in order to include and represent also
extreme values in the uncertainty estimation. With multiple mixture models, these extreme
values can, in turn, be modeled by the additional distributions with higher normalized
mean values and lower standard deviations and weighting factors. Thus, instead of one
broad distribution, multiple narrower distributions are combined with each other. Thereby,
the distributions with the smallest distance to the true value, which is in the normalized
representation the value one, have the largest weighting factors. As the number of mixture
distributions increases, their weighting factors decrease significantly. This also leads to
the conclusion that additional distributions probably do not improve the forecast quality,
and at the same time may cause numerical problems considering a possible underflow
in (6).
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Figure 6. The rank histogram for different numbers of distributions at the output in comparison to
the benchmark method. The predictions are reliable if the observed quantiles occur with a frequency
equal to their nominal probabilities, which is illustrated by the dashed line. Deviations from the
nominal distribution entail an under- or overestimation of the specific quantile. Hence, a ∩-shape
denotes overdispersed while a ∪-shape denotes underdispersed predictions.
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Figure 7. Representation of the parameters of the different mixture distributions depending on
their number in the model output. The size of the markers reflects their respective weighting
factor in the mixture model. In order to enable comparability for varying power levels, both the
standard deviation and the mean of the distributions were normalized by dividing the values with
the respective measured PV power.

5.2. Benefit of Epistemic Estimation in MDNs

The influence of the extensions to estimate epistemic uncertainty are summarized
in Figure 8. Both the network initializations and MC dropout have a significant positive
effect on the forecast performance. For example, the use of dropout ensemble members
alone improves the forecast quality by up to 10.05% and additional network initializations
by up to 18.41% for seven days of training data. The impact of MC dropout is therefore
slightly lower, probably because dropout ensemble members tend to focus on a single mode
of the loss landscape, whereas different network initializations tend to explore diverse
modes in the function space [38]. Moreover, since the training and validation data are also
sampled, the variety and information in the training data are also higher for the multiple
network initializations. Nevertheless, MC dropout needs less computational resources and
is faster, as the model training does not have to be performed multiple times. For both
methods, the added value decreases significantly as the number of ensemble members
increases. At least a few ensemble members should therefore be considered in practice,
since considerable great advances can already be achieved with relatively little effort.

The improvement of the forecast quality by the two approaches is larger for 7 days of
training data than for 182 days, since the epistemic uncertainty decreases with increasing
number of training data. Accordingly, the epistemic extensions to the MDN are particularly
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recommended for applications in practice, when the number of training data may be
limited during commissioning, and no corresponding individual adjustment of the network
structure is made.
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Figure 8. Influence of the number of MC dropout members and network initializations during
training on the forecast quality depending on the amount of available training data. The data include
all forecasts over the entire horizon (six hours) with ten mixed distributions. To enable a clearer
analysis of the benefits of the epistemic extensions, the prediction with one dropout member and one
initialization member was used as a reference value for the skill score.

6. Conclusions and Outlook

This paper broadens the field of probabilistic PV power forecasting by introducing
MDNs and extending them with two epistemic estimation approaches. To emulate practical
conditions, the investigations were carried out using 24 simulated forecast initializations at
three different locations, each with a limited (7 days) and more extensive (182 days/half a
year) amount of available training data. The analyzed forecast horizon was six hours with
a sample rate of 15 min. For the estimation of the epistemic uncertainty, on the one hand,
MC dropout and, on the other hand, multiple trainings initialization with a sampling of
the training and validation data were used. Given those conditions, the major findings of
this study are:

• By using multiple Gaussian distributions in a mixture model, the uncertainty dis-
tribution can be estimated more accurately. For example, when using ten Gaussian
distributions instead of one, the NCRPS on average increases by 30.5% for a one step
ahead prediction and by 20.5% averaged for the predictions over six hours. Con-
sequently, the MDN can be seen as an improvement to a deep ensemble reference
forecast with only one Gaussian output distribution;

• MDN forecasts achieve relatively good results even with a limited amount of training
data. Already with 7 days, the MDN was 23.9% better than the CH-PeEn benchmark;

• Epistemic uncertainty has a major impact of up to 19.5% on the overall accuracy of
MDN forecasts, especially when the amount of training data are limited. Therefore,
compensation methods should always be considered in practice;

• Already a few ensemble members are capable of achieving significant forecast im-
provements. For example, five model initialization may result in a quality increase of
up to 15.72%;
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• Ensemble members generated by model initialization in combination with training
data sampling improved the forecast quality relatively up to 83% more than ensemble
members generated by MC dropout.

In the future, further investigations should be carried out by using more advanced
model architectures. Particularly, temporal convolutional neural networks (TCNN) and
models based on neural basis expansion analysis for time series (N-BEATS) could be
combined with the MDN approach and different ensemble generating methods. These
forecasts could then be compared to the feedforward model outlined in this paper.
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