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Implicit Equations Involving the p-Laplace
Operator

Greta Marino and Andrea Paratore

Abstract. In this work we study the existence of solutions u ∈ W 1,p
0 (Ω)

to the implicit elliptic problem f(x, u, ∇u, Δpu) = 0 in Ω, where Ω is a
bounded domain in R

N , N ≥ 2, with smooth boundary ∂Ω, 1 < p < ∞,
and f : Ω × R × R

N × R → R. We choose the particular case when the
function f can be expressed in the form f(x, z, w, y) = ϕ(x, z, w)−ψ(y),
where the function ψ depends only on the p-Laplacian Δpu. We also
present some applications of our results.
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1. Introduction and Main Results

Let Ω ⊂ R
N , N ≥ 2, be a bounded domain with smooth boundary ∂Ω, let

1 < p < ∞, let Y ⊆ R be a nonempty interval possibly coinciding with R,
and let f : Ω×R×R

N ×R → R. In this paper, we shall consider the following
implicit elliptic problem

u ∈ W 1,p
0 (Ω), f(x, u,∇u,Δpu) = 0 in Ω, (1.1)

where Δp denotes the p-Laplace operator, namely

Δpu := div(|∇u|p−2∇u) ∀u ∈ W 1,p(Ω).

We consider the special case f(x, z, w, y) = ϕ(x, z, w)−ψ(y), with ϕ : Ω×R×
R

N → R and ψ : Y → R. We require that ψ depends only on Δpu. We further
distinguish among the case when ϕ is a Carathéodory function depending on
x, u, and ∇u, and the case when ϕ is allowed to be highly discontinuous in
each variable. In this last case, the dependence on the gradient is no more
allowed.

In both situations we first reduce problem (1.1) to an elliptic differential
inclusion, but methods used are different and depend on the regularity of the
function ϕ and on the structure of the problem.
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More precisely, in the first case we make use of a result in [19] to obtain
the inclusion

− Δpu ∈ F (x, u,∇u), (1.2)

where F is a lower semicontinuous selection of the multifunction

(x, z, w) 
→ {y ∈ Y : ϕ(x, z, w) − ψ(y) = 0}.

A function u ∈ W 1,p
0 (Ω) is called a (weak) solution to (1.2) if there ex-

ists v ∈ Lp′
(Ω), p′ being the conjugate exponent of p, such that v(x) ∈

F (x, u(x),∇u(x)) for almost every x ∈ Ω and∫
Ω

|∇u|p−2∇u · ∇wdx =
∫

Ω

vwdx ∀w ∈ W 1,p
0 (Ω).

We start with the general case Y = R and then we deduce, as a byproduct,
the existence result when Y is a closed interval of R.

Existence of solutions to (1.2) is obtained by means of the following
result, which is based on a selection theorem for decomposable-valued multi-
functions, see [2,13].

Theorem 1.1 (Theorem 3.1 of [17]). Let F : Ω × R × R
N → 2R be a closed-

valued multifunction. Suppose that

(h1) F is L(Ω) ⊗ B(R × R
N )-measurable;

(h2) for almost every x ∈ Ω, the multifunction (z, w) 
→ F (x, z, w) turns out
to be lower semicontinuous;

(h3) there exist a ∈ Lp′
(Ω,R+

0 ), b, c ≥ 0, with b
λ1,p

+ c

λ
1/p
1,p

< 1, such that

inf
y∈F (x,z,w)

|y| < a(x) + b|z|p−1 + c|w|p−1 in Ω × R × R
N .

Then, (1.2) has a solution u ∈ W 1,p
0 (Ω).

Here, λ1,p is the first eigenvalue of the p-Laplacian in the space W 1,p
0 (Ω).

The following is our main result, which extends [13, Theorem 3.2] to
the case p �= 2.

Theorem 1.2. Let ϕ : Ω × R × R
N → R be a Carathéodory function and let

ψ : R → R be continuous. Suppose that

(i) ψ is non-constant on intervals;
(ii) for all (x, z, w) ∈ Ω×R×R

N , the function y 
→ ϕ(x, z, w)−ψ(y) changes
sign;

(iii) there exist a ∈ Lp′
(Ω,R+

0 ), b, c ≥ 0, with b
λ1,p

+ c

λ
1/p
1,p

< 1, such that

sup{|y| : y ∈ ψ−1(ϕ(x, z, w))} < a(x) + b|z|p−1 + c|w|p−1,

for all (x, z, w) ∈ Ω × R × R
N .

Then, there exists u ∈ W 1,p
0 (Ω) such that

ψ(−Δpu) = ϕ(x, u,∇u) in Ω. (1.3)
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When ϕ is discontinuous we essentially follow [16, Theorem 3.1] to con-
struct an appropriate upper semicontinuous multifunction F related with ψ−1

and ϕ, and then we solve the elliptic differential inclusion −Δpu ∈ F (x, u)
using the following

Theorem 1.3 (Theorem 2.2 of [14]). Let U be a nonempty set, let Φ: U →
W 1,p

0 (Ω) and Ψ: U → Lp′
(Ω) be two operators, and let F : Ω × R → 2R be a

convex closed-valued multifunction. Suppose that
(i1) Ψ is bijective and vh ⇀ v in Lp′

(Ω) implies, up to subsequences, Φ(Ψ−1

(vh)) → Φ(Ψ−1(v)) a.e. in Ω. Furthermore, a non-decreasing function
g : R+

0 → R
+
0 ∪ {+∞} can be defined in such a way that

‖Φ(u)‖∞ ≤ g(‖Ψ(u)‖p′) ∀u ∈ U ;

(i2) F (· , z) is measurable for all z ∈ R;
(i3) F (x, ·) has a closed graph for almost every x ∈ Ω;
(i4) There exists r > 0 such that the function

ρ(x) := sup
|z|≤g(r)

d(0, F (x, z)), x ∈ Ω,

belongs to Lp′
(Ω) and ‖ρ‖p′ ≤ r.

Then, the problem Ψ(u) ∈ F (x,Φ(u)) has at least one solution u ∈ U
satisfying |Ψ(u)(x)| ≤ ρ(x) for almost every x ∈ Ω.

Extending [16, Theorem 3.1] to the case p �= 2, we obtain the follow-
ing result. We denote by π0 and π1 the projections of Ω × R on Ω and R,
respectively.

Theorem 1.4. Let F = {A ⊂ Ω × R : A is measurable and there exists i ∈
{0, 1} such that m(πi(A)) = 0}, let (α, β) ⊂ R be an interval which does not
contain 0, let ψ : (α, β) → R be continuous, let ϕ : Ω×R → R, and let p > N .
Suppose that

(i) ϕ is L(Ω × R)-measurable and essentially bounded;
(ii) the set Dϕ = {(x, z) ∈ Ω × R : ϕ is discontinuous at (x, z)} belongs to

F ;
(iii) ϕ−1(r)\ int(ϕ−1(r)) ∈ F for every r ∈ ψ((α, β));
(iv) ϕ(S\Dϕ) ⊆ ψ((α, β)).

Then, there exists u ∈ W 1,p
0 (Ω) such that

ψ(−Δpu) = ϕ(x, u) in Ω.

We finally point out that existence results for implicit equations in-
volving such operators have been obtained with very different techniques by
[1,5,8,21].

1.1. Structure of the Paper

In Sect. 2 we will introduce the functional analytic setting we will use through-
out the work. In Sect. 3 we will suppose ϕ(x, · , ·) to be continuous. Here we
will consider some cases, according to the growth conditions on ϕ or to the
choice of the set Y . We will also give examples where these situations apply.
In Sect. 4 we will consider the discontinuous framework.
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2. Preliminaries

Let X be a topological space and let V ⊂ X. We denote by int(V ) the interior
of V and by V the closure of V . The symbol B(X) is used to denote the Borel
σ-algebra of X.

If (X, d) is a metric space, for every x ∈ X, r ≥ 0 and every nonempty
set V ⊂ X, we define

B(x, r) = {z ∈ X : d(x, z) ≤ r} and d(x, V ) = inf
z∈V

d(x, z).

Let X and Z be two nonempty sets. A multifunction Φ from X into Z
(symbolically Φ: X → 2Z) is a function from X into the family of all subsets
of Z. A function ϕ : X → Z is said to be a selection of Φ if ϕ(x) ∈ Φ(x) for all
x ∈ X. For every set W ⊂ Z we define Φ−(W ) = {x ∈ X : Φ(x) ∩ W �= ∅}.

Suppose that (X,A) is a measurable space and Z is a topological space.
We say that the multifunction Φ is measurable if for every open set W ⊂ Z we
have Φ−(W ) ∈ A. Suppose now that X and Z are two topological spaces. We
say that Φ is lower semicontinuous (resp. upper semicontinuous) if for every
open (resp. closed) set W ⊂ Z the set Φ−(W ) is open (resp. closed) in X.
When (Z, δ) is a metric space, the multifunction Φ is lower semicontinuous
if and only if, for every z ∈ Z, the real-valued function x 
→ δ(z,Φ(x)),
x ∈ X, is upper semicontinuous (see [20, Theorem 1.1]). If, moreover, X is
first countable, then Φ is lower semicontinuous if and only if, for every x ∈ X,
every sequence {xk} in X converging to x and every z ∈ Φ(x), there exists a
sequence {zk} in Z converging to z and such that zk ∈ Φ(xk), for all k ∈ N

(see [10, Theorem 7.1.7]).
A general result on the lower semicontinuity of a multifunction is the

following

Theorem 2.1 (Theorem 1.1 of [19]). Let C,D be two topological spaces, with
D connected and locally connected, and let f : C × D → R. For all x ∈ C we
set

V (x) := {y ∈ D : f(x, y) = 0},

M(x) := {y ∈ D : y is a local extremum point for f(x, ·)},

and Q(x) := V (x)\M(x).

Suppose that

(a) for all x ∈ C, f(x, ·) is continuous, and 0 ∈ int(f(x,D));
(b) for all x ∈ C and for all A open subset of D, there exists ȳ ∈ A such

that f(x, ȳ) �= 0;
(c) the set

{(y′, y′′) ∈ D × D : {x ∈ C : f(x, y′) < 0 < f(x, y′′)} is open}
is dense in D × D.

Then, the multifunction Q is lower semicontinuous, with nonempty closed
values.
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From now on, Ω is a bounded domain in R
N , N ≥ 2, with a smooth

boundary ∂Ω. The symbol L(Ω) denotes the Lebesgue σ-algebra of Ω, while
m(Ω) stands for the measure of Ω.

Let 1 ≤ r < ∞. We denote by Lr(Ω), Lr(Ω,RN ), and W 1,r(Ω) the usual
Lebesgue and Sobolev spaces equipped with the norms ‖ ·‖r and ‖ ·‖1,r given
by

‖u‖r =
(∫

Ω

|u|rdx

)1/r

, ‖∇u‖r =
(∫

Ω

|∇u|rdx

)1/r

,

‖u‖1,r =
(∫

Ω

|u|rdx

)1/r

+
(∫

Ω

|∇u|rdx

)1/r

.

For r = ∞ we recall that the norm of L∞(Ω) is given by

‖u‖∞ = ess supΩ|u|.
Furthermore, we denote by W 1,p

0 (Ω) the closure of C∞
0 (Ω) in W 1,p(Ω) and

endow it with the norm

‖u‖ :=
(∫

Ω

|∇u(x)|pdx

)1/p

, u ∈ W 1,p
0 (Ω).

It is well known that the Sobolev embedding theorem guarantees the existence
of a linear, continuous map i : W 1,p

0 (Ω) → Lp∗
(Ω), with the critical exponent

given by

p∗ =

{
Np

N−p if p < N,

+∞ otherwise.

In particular, the embedding W 1,p
0 (Ω) ↪→ Lr(Ω) is compact provided 1 ≤ r <

p∗.
If p �= N , then to each r ∈ [1, p∗] there corresponds a constant crp > 0

satisfying

‖u‖r ≤ crp‖u‖, ∀u ∈ W 1,p
0 (Ω).

On the other hand, when p = N , for every r ∈ [1,∞) we have

‖u‖r ≤ crN‖u‖, ∀u ∈ W 1,N
0 (Ω).

When p > N , the embedding W 1,p
0 (Ω) ↪→ L∞(Ω) implies the existence of a

suitable a > 0 such that

‖u‖∞ ≤ a‖u‖, ∀u ∈ W 1,p
0 (Ω), (2.1)

see [3, Ch. IX].
Given p ∈ (1,∞), the symbol p′ denotes the conjugate exponent of

p while W−1,p′
(Ω) stands for the dual space of W 1,p(Ω), with correspond-

ing norm ‖ · ‖−1,p′ . From [3, Theorem 6.4] we have the compact embedding
Lp′

(Ω) ↪→ W−1,p′
(Ω), and therefore there exists b > 0 such that

‖v‖−1,p′ ≤ b‖v‖p′ , ∀ v ∈ Lp′
(Ω). (2.2)
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Let Ap : W 1,p
0 (Ω) → W−1,p′

(Ω) be the nonlinear operator stemming from the
negative p-Laplacian, that is

〈Ap(u), v〉 :=
∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx, u, v ∈ W 1,p
0 (Ω), (2.3)

and let λ1,p be its first eigenvalue in W 1,p
0 (Ω). The following facts are well

known (see, e.g., [18, Appendix A] or [11]):
(p1) Ap is bijective and uniformly continuous on bounded sets;
(p2) the inverse operator A−1

p is (W−1,p′
(Ω),W 1,p

0 (Ω))-continuous;
(p3) ‖Ap(u)‖−1,p′ = ‖u‖p−1

p in W 1,p
0 (Ω);

(p4) ‖u‖p
p ≤ 1

λ1,p
‖u‖p, for all u ∈ W 1,p

0 (Ω).

3. The Case When ϕ is a Carathéodory Function

In this section we consider the following problem: find u ∈ W 1,p
0 (Ω) such that

Δpu ∈ Lp′
(Ω) and

ψ(−Δpu) = ϕ(x, u,∇u). (3.1)

We first suppose that Y = R and state the following assumptions
(i) ψ is non-constant on intervals;
(ii) for all (x, z, w) ∈ Ω×R×R

N , the function y 
→ ϕ(x, z, w)−ψ(y) changes
sign.

Theorem 3.1. Let ϕ : Ω × R × R
N → R be a Carathéodory function and let

ψ : R → R be continuous. Suppose that (i)–(ii) hold true and, moreover,

(iii) there exist a ∈ Lp′
(Ω,R+

0 ), b, c ≥ 0, with
b

λ1,p
+

c

λ
1/p
1,p

< 1, such that

sup{|y| : y ∈ ψ−1(ϕ(x, z, w))} < a(x) + b|z|p−1 + c|w|p−1,

for all (x, z, w) ∈ Ω × R × R
N .

Then, there exists a solution u ∈ W 1,p
0 (Ω) to Eq. (3.1).

Proof. Fix x ∈ Ω. We want to apply Theorem 2.1. To this end, we choose
C = R × R

N , D = R, f(z, w, y) = ϕ(x, z, w) − ψ(y), and for every (z, w) ∈
R × R

N we set
F (x, z, w) := {y ∈ R : ϕ(x, z,w) − ψ(y) = 0,

y is not a local extremum point of ψ(·)}.

Hypothesis (ii) directly yields (a). Moreover, in order to verify (b), we need to
check that for all (z, w) ∈ R×R

N the set U := {y ∈ R : ϕ(x, z, w)−ψ(y) �= 0}
is dense in R. Assumption (i) implies that R\U has empty interior, therefore
U is dense in R, as desired.

Let us next consider the set
A :=

{
(y′, y′′) ∈ R × R : {(z, w) ∈ R × R

N : ϕ(x, z, w) − ψ(y′) < 0

< ϕ(x, z, w) − ψ(y′′)} is open
}
.
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We want to show that A is dense in R×R. Suppose that there exist y′, y′′ ∈ R

such that

ϕ(x, z, w) − ψ(y′) < 0 < ϕ(x, z, w) − ψ(y′′), (3.2)

that is, ϕ(x, z, w) ∈ (ψ(y′′), ψ(y′)). Then the continuity of the function
ϕ(x, · , ·) implies that the set

B := {(z, w) ∈ R × R
N : ϕ(x, z, w) − ψ(y′) < 0 < ϕ(x, z, w) − ψ(y′′)},

is open. If it is not possible to find such y′, y′′ that realize (3.2), then the set
B is empty. This implies that A = R × R, and then (c) follows.

Thanks to Theorem 2.1, the multifunction F (x, · , ·) is lower semicon-
tinuous, with nonempty closed values.

Moreover, thanks to [6, Lemma III.14], for all y′, y′′ ∈ R we have

{(x, z, w) ∈ Ω × R × R
N : ϕ(x, z, w) − ψ(y′) < 0 < ϕ(x, z, w) − ψ(y′′)}

= {(x, z, w) ∈ Ω × R × R
N : ϕ(x, z, w) ∈ (ψ(y′′), ψ(y′))}

∈ L(Ω) ⊗ B(R × R
N ).

(3.3)

Therefore, setting Λ∗ = R×R we see that condition (iii) of [13, Theorem 3.2]
is satisfied. Fix now an open set A ⊂ R. Arguing again as in [13, Theorem 3.2]
we see that

F−(A) =
⋃

(y′,y′′)∈A×A

{
(x, z, w) ∈ Ω × R × R

N :

ϕ(x, z, w) − ψ(y′) < 0 < ϕ(x, z, w) − ψ(y′′)
}
.

Then (3.3) implies that F−(A) ∈ L(Ω) ⊗ B(R × R
N ) and therefore F is

measurable.
Finally, fix any y ∈ F (x, z, w). By hypothesis (iii) we have

inf
y∈F (x,z,w)

|y| < a(x) + b|z|p−1 + c|w|p−1 in Ω × R × R
N .

Therefore, all the hypotheses of Theorem 1.1 are satisfied, and there exists
u ∈ W 1,p

0 (Ω) such that −Δpu = F (x, u,∇u). By definition of F we then have
the result. �

Remark 3.2. We now discuss a very simple situation when hypothesis (iii)
applies.

Suppose that ϕ(Ω × R × R
N ) ⊂ [α, β] and ψ is such that ψ−1(B) is

bounded, for every bounded B ⊂ R. If (x, z, w) ∈ Ω × R × R
N , we get

ϕ(x, z, w) ∈ [α, β], and so ψ−1(ϕ(x, z, w)) ⊂ ψ−1([α, β]). Then, if we choose
a ∈ Lp′

(Ω,R+
0 ) such that a(x) > sup{|y| : y ∈ ψ−1([α, β])} for all x ∈ Ω, we

have

|ψ−1(ϕ(x, z, w))| < a(x) in Ω × R × R
N ,

that is hypothesis (iii) with b = c = 0.

As an application of the previous result, we consider the following
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Corollary 3.3. Let g ∈ L2(Ω) and γ ∈ (0, 1). Then, for every λ �= 0 and
μ ∈ R there exists a solution u ∈ W 1,2

0 (Ω) to the equation

− Δu = g(x) + μ(|u| + |∇u|)γ + λ sin(−Δu). (3.4)

Proof. Fix λ �= 0 and μ ∈ R. For every (x, z, w) ∈ Ω × R × R
N and every

y ∈ R we set

ϕ(x, z, w) := g(x) + μ(|z| + |w|)γ as well as ψ(y) := y − λ sin y.

Since limy→±∞(y−λ sin y) = ±∞, the function y 
→ ϕ(x, z, w)−ψ(y) changes
sign, and then hypothesis (ii) follows. Moreover, ψ vanishes only at points of
R and not in intervals, which implies that also hypothesis (i) is satisfied.

Fix now (x, z, w) ∈ Ω × R × R
N . In order to verify hypothesis (iii), we

want to find b, c ≥ 0, with
b

λ1,2
+

c

λ
1/2
1,2

< 1, and a ∈ L2(Ω,R+
0 ) such that

max
{|y| : y ∈ ψ−1(ϕ(x, z, w))

}
< a(x) + b|z| + c|w|, (3.5)

or equivalently |y| < a(x) + b|z| + c|w| for every y solution to the equation

ψ(y) = ϕ(x, z, w). (3.6)

We point out that in (3.5) the maximum replaces the supremum because the
set ψ−1(ϕ(x, z, w)) is compact. Let ỹ be a solution to (3.6). Then Young’s
inequality with exponents 1/γ and 1/(1 − γ) gives

|ψ(ỹ)| = |ϕ(x, z, w)| = |g(x) + μ(|z| + |w|)γ |
≤ |g(x)| + |μ||z|γ + |μ||w|γ
≤ |g(x)| + ε|z| + ε|w| + Cγ,ε,μ

≤ g̃(x) + ε|z| + ε|w|,

(3.7)

where g̃(x) := |g(x)| + Cγ,ε,μ for every x ∈ Ω. On the other hand, by the
definition of ψ we have

|ψ(ỹ)| = |ỹ − λ sin ỹ| ≥ |ỹ| − |λ|,
and then (3.7) gives

|ỹ| ≤ |ψ(ỹ)| + |λ|
≤ g̃(x) + |λ| + ε|z| + ε|w|
< ḡ(x) + ε|z| + ε|w|,

where ḡ(x) := g̃(x) + 2|λ|, for every x ∈ Ω. Observe that ḡ ∈ L2(Ω,R+
0 ). If

we choose ε in such a way that
ε

λ1,2
+

ε

λ
1/2
1,2

< 1,

then hypothesis (iii) is satisfied with a := ḡ and b := c := ε. Thanks to
Theorem 3.1, there exists a solution u ∈ W 1,2

0 (Ω) to Eq. (3.4). �

In the following situation the function ψ exhibits a very different be-
havior.
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Corollary 3.4. Let p ∈ [2,+∞), f ∈ Lp′
(Ω), and γ ∈ (0, p − 1). Then, for

every μ ∈ R and λ > 0, there exists a solution u ∈ W 1,p
0 (Ω) to the equation

− Δpu = f(x) + μ(|u| + |∇u|)γ − λe−Δpu. (3.8)

Proof. Fix μ ∈ R and λ > 0. As before, for every (x, z, w) ∈ Ω ×R×R
N and

every y ∈ R we set

ϕ(x, z, w) := f(x) + μ(|z| + |w|)γ as well as ψ(y) := y + λey.

Since limy→±∞(y + λey) = ±∞, then hypotheses (i) and (ii) are fulfilled.
In order to verify hypothesis (iii), we argue as in Corollary 3.3. Let ỹ be a
solution to ϕ(x, z, w) − ψ(y) = 0, then Young’s inequality with exponents
p − 1

γ
,

p − 1
p − 1 − γ

> 1 gives

|ψ(ỹ)| = |ϕ(x, z, w)| = |f(x) + μ(|z| + |w|)γ |
≤ |f(x)| + 2γ(|μ||z|γ + |μ||w|γ)

≤ |f(x)| + ε|z|p−1 + ε|w|p−1 + Cγ,ε,μ

= f̃(x) + ε|z|p−1 + ε|w|p−1,

where f̃(x) := |f(x)| + Cγ,ε,μ for every x ∈ Ω.
On the other hand we have

|ψ(ỹ)| = |ỹ + λeỹ| ≥ |ỹ| − |ξ|, (3.9)

ξ �≡ 0 being the unique solution to the equation y + λey = 0. Let us show
(3.9) for a general y ∈ R. If y ≥ ξ we have

|y + λey| = |y + λey − ξ − λeξ|
= |y − ξ + λ(ey − eξ)|
≥ |y − ξ| ≥ |y| − |ξ|.

Suppose now that y < ξ, then

|y + λey| = |y − ξ + λ(ey − eξ)|
= |ξ − y + λ(eξ − ey)|
≥ |ξ − y| ≥ |y| − |ξ|.

From (3.9) we then have

|ỹ| ≤ |ψ(ỹ)| + |ξ|
≤ f̃(x) + ε|z|p−1 + ε|w|p−1 + |ξ|
< f̄(x) + ε|z|p−1 + ε|w|p−1,

with f̄(x) := f̃(x)+2|ξ| for every x ∈ Ω. Observe that f̄ ∈ Lp′
(Ω,R+

0 ). Then,
if we choose ε in such a way that

ε

λ1,p
+

ε

λ
1/p
1,p

< 1,

hypothesis (iii) is satisfied with a := f̄ and b := c := ε. Therefore, Theo-
rem 3.1 gives the existence of a solution u ∈ W 1,p

0 (Ω) to Eq. (3.8). �
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In order to state our next theorem, we need some preliminary results.
The following is an a priori estimate on ‖∇u‖L∞(Ω;RN ), see [17, Proposition
3.3] or [7, Theorem 1.3].

Proposition 3.5. Suppose q > N . Then, there exists a constant Ĉ > 0, de-
pending on p, q, and Ω, such that

‖∇u‖L∞(Ω,RN ) ≤ Ĉ‖Δpu‖1/(p−1)
Lq(Ω) .

Proposition 3.5 is used in the proof of the following

Theorem 3.6. Let p ∈ (1,∞), q > N , and let F : Ω × R × R
N → 2R be a

closed-valued multifunction. Suppose that
(h1) F is L(Ω) ⊗ B(R × R

N )-measurable;
(h2) for almost every x ∈ Ω the multifunction (z, w) 
→ F (x, z, w) turns out

to be lower semicontinuous;
(h3) for appropriate a ∈ Lq(Ω,R+

0 ) and ξ : R+
0 × R

+
0 → R

+
0 nondecreasing

with respect to each variable separately one has

inf
y∈F (x,z,w)

|y| < a(x) + ξ(|z|, |w|) in Ω × R × R
N ;

(h4) there exists R > 0 such that

‖a‖q + m(Ω)1/qξ(δΩĈR1/(p−1), ĈR1/(p−1)) ≤ R,

where δΩ := diam(Ω) and Ĉ is given by Proposition 3.5.

Then, there exists at least one solution u ∈ W 1,p
0 (Ω) to problem

−Δpu ∈ F (x, u,∇u) in Ω,

u = 0 on ∂Ω.

Finally, we state our result.

Theorem 3.7. Let ϕ and ψ as in Theorem 3.1. Suppose that hypotheses (i)–(ii)
hold true and, moreover,
(iii)′ there exist a ∈ Lq(Ω,R+

0 ), q > N , g : R+
0 × R

+
0 → R

+
0 nondecreasing

with respect to each variable separately, such that

sup{|y| : y ∈ ψ−1(ϕ(x, z, w))} < a(x) + g(|z|, |w|),
for all (x, z, w) ∈ Ω × R × R

N ;
(iv) there exists R > 0 such that

‖a‖Lq(Ω) + m(Ω)1/qg(δΩĈR1/(p−1), ĈR1/(p−1)) ≤ R,

where Ĉ comes from Proposition 3.5.
Then, Eq. (3.1) has a solution u ∈ W 1,p

0 (Ω).

Proof. We aim to apply Theorem 3.6. As before, fix x ∈ Ω and for all (z, w) ∈
R × R

N define
F (x, z, w) := {y ∈ R : ϕ(x, z, w) − ψ(y) = 0,

y is not a local extremum point of ψ(·)}.
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Reasoning as in Theorem 3.1 ensures that F has nonempty closed values, is
lower semicontinuous w.r.t. (z, w), and L(Ω) ⊗ B(R × R

N )-measurable.
Fix now y ∈ F (x, z, w), that is y ∈ ψ−1(ϕ(x, z, w)). Then hypothesis

(iii)′ implies that

inf
y∈F (x,z,w)

|y| < a(x) + g(|z|, |w|) in Ω × R × R
N .

Taking into account (iv), we see that all the hypotheses of Theorem 3.6 are
fulfilled. Therefore, there exists u ∈ W 1,p

0 (Ω) such that −Δpu ∈ F (x, u,∇u).
According to the definition of F , it turns out that u is a solution to Eq. (3.1).

�
The following result is an application of the previous theorem and has

been inspired by [9, Corollary 1]. Observe that, unlike [9], here we consider
a function ϕ which is not necessarily continuous w.r.t. the variable x, but
only lies in a suitable Lq(Ω). Moreover, here we deal with partial differential
equations.

Corollary 3.8. Let h ∈ Lq(Ω), with q > N . Then, for every k �= 0 and every
sufficiently small ‖h‖q there exists a solution u ∈ W 1,2

0 (Ω) to the equation

−Δu = h(x) + u3 + |∇u|2 + k sin(−Δu).

Proof. Fix k ∈ R and for all (x, z, w) ∈ Ω × R × R
N and all y ∈ R define

ϕ(x, z, w) := h(x) + z3 + |w|2 as well as ψ(y) := y − k sin y.

Reasoning like in Corollary 3.3 gives that hypotheses (i)-(ii) are fulfilled.
In order to verify hypothesis (iii)′, let g(|z|, |w|) := |z|3 + |w|2 for all

(z, w) ∈ R × R
N . It turns out that g : R+

0 × R
+
0 → R

+
0 is nondecreasing

w.r.t. each variable, separately. Let ỹ be a solution to the equation ψ(y) =
ϕ(x, z, w). It follows that

|ψ(ỹ)| = |ϕ(x, z, w)|
≤ |h(x)| + |z|3 + |w|2
= |h(x)| + g(|z|, |w|).

On the other hand, since |ψ(ỹ)| = |ỹ − k sin ỹ| ≥ |ỹ| − |k|, then we have
|ỹ| ≤ |ψ(ỹ)| + |k|

≤ |h(x)| + g(|z|, |w|) + |k|
< h̄(x) + g(|z|, |w|),

where h̄(x) := |h(x)| + 2|k| for every x ∈ Ω and h̄ ∈ Lq(Ω,R+
0 ). Hence

hypothesis (iii)′ follows.
In order to verify hypothesis (iv), we have to check the existence of

R > 0 such that

‖h̄‖Lq(Ω) + m(Ω)1/qδ3
ΩĈ3R3 + m(Ω)1/qĈ2R2 ≤ R. (3.10)

If 0 < R << 1, then choosing h̄ in such a way that ‖h̄‖Lq(Ω) < R
2 gives

immediately (3.10), since the terms containing R2 and R3 are negligible with
respect to R. Therefore, all the hypotheses of Theorem 3.7 are fulfilled, and
we have the thesis. �
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The next result provides solutions to Eq. (3.1) when the function ψ is
of the form y 
→ y − h(y), with h continuous and bounded. Note that here a
specific growth condition on ϕ is required.

Theorem 3.9. Let ϕ : Ω × R × R
N → R be a Carathéodory function and let

h ∈ L∞(R) be continuous. Suppose that (i)–(ii) hold true and, moreover,
(iii)′′ there exist f ∈ Lp′

(Ω,R+
0 ), with f(x) ≥ ‖h‖∞ for all x ∈ Ω, μ > 0, and

γ ∈ (0, p − 1) such that

sup
(x,z,w)∈Ω×R×RN

|ϕ(x, z, w)| < f(x) + μ(|z| + |w|)γ .

Then, there exists a solution u ∈ W 1,p
0 (Ω) to the equation

− Δpu − h(−Δpu) = ϕ(x, u,∇u). (3.11)

Proof. We fix x ∈ Ω and for all (z, w) ∈ R × R
N define

F (x, z, w) := {y ∈ R : ϕ(x, z, w) − (y − h(y)) = 0,

y is not a local extremum point of y 
→ y − h(y)}.

Reasoning as in the above proofs ensures that F is lower semicontinuous w.r.t.
(z, w), L(Ω) ⊗ B(R × R

N )-measurable, and has nonempty, closed values.
Fix (x, z, w) ∈ Ω×R×R

N . If y ∈ F (x, z, w), then it solves the equation
ϕ(x, z, w) = y − h(y). We first suppose that γ ∈ [1, p − 1). Then Young’s
inequality with exponents p−1

γ , p−1
p−1−γ > 1 gives

|y| ≤ |y − h(y)| + |h(y)|
≤ |ϕ(x, z, w)| + ‖h‖∞
< f(x) + μ(|z| + |w|)γ + ‖h‖∞

≤ 2f(x) + 2γ−1μ(|z|γ + |w|γ)

≤ 2f(x) + 2γ−1μ(ε|z|p−1 + ε|w|p−1 + Kε)

≤ 2f(x) + Cε + 2γ−1με(|z|p−1 + |w|p−1),

where Cε := 2γ−1μKε. Hence

inf
y∈F (x,z,w)

|y| < 2f(x) + Cε + 2γ−1με(|z|p−1 + |w|p−1).

If we choose ε in such a way that

2γ−1με

λ1,p
+

2γ−1με

λ
1/p
1,p

< 1,

hypothesis (h3) of Theorem 1.1 is fulfilled with a := 2f + Cε ∈ Lp′
(Ω,R+

0 )
and b := c := 2γ−1με.

Suppose now γ ∈ (0, 1). Since (a + b)γ ≤ aγ + bγ for every a, b ≥ 0,
reasoning as before yields

|y| < 2f(x) + C̃ε + με(|z|p−1 + |w|p−1),

where C̃ε := μKε. If we now choose ε in such a way that
με

λ1,p
+

με

λ
1/p
1,p

< 1,



MJOM Implicit Equations Involving the 𝑝-Laplace Operator Page 13 of 20 74

hypothesis (h3) of Theorem 1.1 is again fulfilled with a := 2f + C̃ε ∈
Lp′

(Ω,R+
0 ) and b := c := με.

In both cases, there exists u ∈ W 1,p
0 (Ω) such that −Δpu ∈ F (x, u,∇u),

which gives a solution to Eq. (3.11). �
We conclude this section considering the case when Y is a closed interval

of R. Observe that here no growth conditions on ϕ are required.

Theorem 3.10. Let ϕ : Ω × R × R
N → R be a Carathéodory function and let

ψ : [α, β] → R be continuous. Suppose that
(1) ψ is non-constant on intervals;
(2) for every (x, z, w) ∈ Ω × R × R

N , the function y 
→ ϕ(x, z, w) − ψ(y)
changes sign in [α, β].
Then, there exists a solution u ∈ W 1,p

0 (Ω) to Eq. (3.1).

Proof. As before, fix x ∈ Ω and for all (z, w) ∈ R × R
N define

F (x, z, w) := {y ∈ [α, β] : ϕ(x, z, w) − ψ(y) = 0,

y is not a local extremum point of ψ(·)}.

A familiar argument ensures that F takes nonempty closed values, is lower
semicontinuous w.r.t. (z, w) and L(Ω) ⊗ B(R × R

N )-measurable.
If now y ∈ F (x, z, w), then |y| ≤ max{|α|, |β|}, and so hypothesis (h3) of

Theorem 1.1 is immediately satisfied with a(x) := 2max{|α|, |β|} for every
x ∈ Ω and b := c := 0. Therefore, there exists u ∈ W 1,p

0 (Ω) such that
−Δpu ∈ F (x, u,∇u), i.e., u is a solution to (3.1). �

We now consider two applications of the previous result, which differ by
the behavior of the function ψ. In both cases, the boundedness of ϕ will play
a central role.

Corollary 3.11. Let f ∈ L∞(Ω), k ∈ N, k even and such that kπ > ‖f‖∞,
and let ψ : [−kπ, kπ] → R be defined by ψ(y) = y cos y. Then, there exists a
solution u ∈ W 1,p

0 (Ω) to the equation

ψ(−Δpu) = f(x) in Ω. (3.12)

Proof. Assumption (1) is clearly satisfied. Moreover, for every x ∈ Ω, we
have

f(x) − ψ(kπ) = f(x) − kπ cos(kπ) = f(x) − kπ (−1)k = f(x) − kπ < 0

and f(x) − ψ(−kπ) = f(x) + kπ cos(−kπ) = f(x) + kπ > 0,

which gives hypothesis (2). Thanks to Theorem 3.10, there exists at least a
solution u ∈ W 1,p

0 (Ω) to Eq. (3.12). �
Note that the interval [α, β] could be unbounded, as the following ex-

ample shows.

Corollary 3.12. Let p ∈ (1,∞), f ∈ Lp′
(Ω), and ϕ : Ω×R×R

N → R. Suppose
that there exists λ > 0 such that

sup
(x,z,w)∈Ω×R×RN

|ϕ(x, z, w)| < λ. (3.13)
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Then, there exists a solution u ∈ W 1,p
0 (Ω) to the equation

ϕ(x, u,∇u) − λeΔpu + Δpu = 0.

Proof. Define ψ(y) := λe−y − y for every y ∈ [0,+∞). Observe that hy-
pothesis (1) is immediately satisfied. Moreover, thanks to (3.13), for every
(x, z, w) ∈ Ω × R × R

N we have

ϕ(x, z, w) − ψ(0) = ϕ(x, z, w) − λ < 0

and lim
y→+∞(ϕ(x, z, w) − ψ(y)) = +∞,

that is hypothesis (2), and hence the conclusion follows from Theorem 3.10.
�

4. The Discontinuous Framework

This section is devoted to the proof of Theorem 1.4, which we rewrite here,
for the reader’s convenience. Given (x, z) ∈ S := Ω ×R, set π0(x, z) = x and
π1(x, z) = z. Moreover, fix p > N and define

F = {A ⊂ S : A is measurable and there exists i ∈ {0, 1} such that
m(πi(A)) = 0}.

Theorem 4.1. Let (α, β) ⊂ R be such that 0 /∈ (α, β), let ψ : (α, β) → R be
continuous, and ϕ : Ω × R → R. Suppose that

(i) ϕ is L(Ω × R)-measurable and essentially bounded;
(ii) the set Dϕ = {(x, z) ∈ S : ϕ is discontinuous at (x, z)} belongs to F ;
(iii) ϕ−1(r) \ int(ϕ−1(r)) ∈ F for every r ∈ ψ((α, β));
(iv) ϕ(S\Dϕ) ⊂ ψ((α, β)).

Then, there exists u ∈ W 1,p
0 (Ω) such that

ψ(−Δpu) = ϕ(x, u) in Ω. (4.1)

Proof. The first part essentially follows the proof of [16, Theorem 3.1]. Thanks
to assumption (i), there exists a constant c > 0 such that

S\Dϕ ⊂ {(x, z) ∈ S : |ϕ(x, z)| ≤ c}.

Set

â := minϕ(S\Dϕ) and b̂ := max ϕ(S\Dϕ).

Thanks to hypothesis (iv) there exist y′, y′′ ∈ (α, β) such that ψ(y′) = â

and ψ(y′′) = b̂. Let λ : [0, 1] → (α, β) be a continuous function such that
λ(0) = y′, λ(1) = y′′. Moreover, let ψ̃ : [0, 1] → R be defined by

ψ̃(t) := ψ(λ(t)), t ∈ [0, 1].

We distinguish among two cases.
Suppose that ψ̃ is constant. Then â = b̂ and consequently ϕ(S\Dϕ) =

{â}. Let u ∈ W 1,p
0 (Ω) be such that −Δpu = y′. Since ψ(−Δpu) = ψ(y′) = â,

the conclusion will be achieved by showing that the set

Ωϕ := {x ∈ Ω : (x, u(x)) ∈ Dϕ}
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has measure zero.
First of all observe that an elementary computation gives

Ωϕ ⊂ π0(Dϕ) ∩ u−1(π1(Dϕ)) (4.2)

and, due to (ii), m(πi(Dϕ)) = 0 for some i ∈ {0, 1}. Suppose i = 0. From
(4.2) we obtain

m(Ωϕ) ≤ m(π0(Dϕ) ∩ u−1(π1(Dϕ))) ≤ m(π0(Dϕ)) = 0,

which implies m(Ωϕ) = 0. Let now i = 1. From [4, Lemma 1] we have
∇u(x) = 0 a.e. in u−1(π1(Dϕ)) which in other words is

u−1(π1(Dϕ)) ⊂ {x ∈ Ω : ∇u(x) = 0}. (4.3)

Thanks to [12, Theorem 1.1], we have y′ = 0 on {x ∈ Ω : ∇u(x) = 0},
which in particular holds on u−1(π1(Dϕ)), taking into account (4.3). Since
y′ ∈ (α, β) �� 0, this is possible if and only if m(u−1(π1(Dϕ))) = 0. From
(4.2) we then have

m(Ωϕ) ≤ m(π0(Dϕ) ∩ u−1(π1(Dϕ))) ≤ m(u−1(π1(Dϕ))),

which implies m(Ωϕ) = 0. Hence the thesis follows.
Suppose now that ψ̃ is non constant and choose t1, t2 ∈ [0, 1] such that

ψ̃(t1) = min
t∈[0,1]

ψ̃(t) as well as ψ̃(t2) = max
t∈[0,1]

ψ̃(t).

Obviously, t1 �= t2 and there is no loss of generality in assuming t1 < t2. Let
h : ψ̃([0, 1]) → [0, 1] be defined by

h(r) = min (ψ̃−1(r) ∩ [t1, t2]), ∀ r ∈ ψ̃([0, 1]).

We claim that h is strictly increasing. Indeed, let r1, r2 ∈ ψ̃([0, 1]) be such
that r1 < r2. Then, h(r1) �= h(r2) and t1 < h(r2). Taking into account that
ψ̃(h(r2)) = r2 > r1, ψ̃(t1) ≤ r1, and the continuity of ψ̃, we immediately
infer h(r1) < h(r2).

Therefore, the family Dk of all discontinuity points of the function
k : R → (α, β) given by

k(r) =

⎧⎪⎨
⎪⎩

λ(h(ψ̃(t1))) if r ∈ (−∞, ψ̃(t1))
λ(h(r)) if r ∈ ψ̃([0, 1])
λ(h(ψ̃(t2))) if r ∈ (ψ̃(t2),+∞)

is at most countable. Owing to hypotheses (ii) and (iii), this implies that the
set

D = Dϕ ∪
{ ⋃

r∈Dk

[
ϕ−1(r)\int(ϕ−1(r))

]}
(4.4)

has measure zero.
Define now f : S → R by f(x, z) := k(ϕ(x, z)). Since f(S) ⊂ λ([0, 1]) it

follows that f is bounded. Moreover, arguing as in [16, Theorem 3.1] gives
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that f is continuous. Set now

F (x, z) := co

(⋂
δ>0

⋂
E∈E

f(Bδ(x, z)\E)

)
,

where
E = {E ⊂ S : m(E) = 0}

and Bδ(x, z) = {(x′, z′) ∈ S : |x − x′| + |z − z′| ≤ δ}.

A standard argument (see, e.g, [16, Theorem 3.1]), ensures that F is up-
per semicontinuous, with nonempty, convex, and closed values. Furthermore,
F (· , z) is measurable for every z ∈ R, F (x, ·) has a closed graph for almost
all x ∈ Ω, and it holds

F (x, z) = {f(x, z)} as soon as (x, z) ∈ S\D.

Consider now the problem

− Δpu ∈ F (x, u) in Ω, u ∈ W 1,p
0 (Ω). (4.5)

We want to show existence of solutions to (4.5) by means of Theorem 1.3.
To this end, let us verify hypotheses (i1)–(i4). If Ap is the operator given in
(2.3), we choose

U := A−1
p (Lp′

(Ω)), Φ(u) := u and Ψ(u) := Ap(u),

for every u ∈ U . Observe in particular that Ap : U → Lp′
(Ω) is bijective.

Let vh ⇀ v in Lp′
(Ω). Since {vh} is bounded in Lp′

(Ω), and Lp′
(Ω)

compactly embeds in W−1,p′
(Ω), there exists a subsequence, still denoted

by {vh}, such that vh → v in W−1,p′
(Ω). Property (p2) implies that A−1

p is
strongly continuous, and therefore A−1

p (vh) → A−1
p (v) almost everywhere in

Ω.
Let now g : R+

0 → R
+
0 be defined by

g(t) := a(bt)1/(p−1) ∀ t ∈ R
+
0 ,

where the constants a and b come from inequalities (2.1)–(2.2). Note in partic-
ular that (2.1) holds true, since by assumption p > N . Clearly, g is monotone
increasing in R

+
0 . Moreover, fix u ∈ U . Then property (p3) gives

‖u‖∞ ≤ a‖u‖ = a‖Ap(u)‖1/(p−1)

W −1,p′ (Ω)
≤ a(b‖Ap(u)‖p′)1/(p−1) = g(‖Ap(u)‖p′).

This shows (i1). Since hypotheses (i2) and (i3) are already satisfied, we have
only to check (i4). Define, for every x ∈ Ω,

ρ(x) := sup
|z|≤g(r)

d(0, F (x, z)).

Reasoning as in [15, Theorem 3.1], we see that ‖ρ‖p′ ≤ r once the same
property holds true for the function x 
→ j(x) := sup|z|≤g(r) |f(x, z)|.

If |z| ≤ g(r), then∫
Ω

|f(x, z)|p′
dx ≤ m(Ω)‖f(· , z)‖p′

∞ ,
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whence
∫

Ω

|j(x)|p′
dx =

∫
Ω

(
sup

|z|≤g(r)

|f(x, z)|
)p′

dx ≤ m(Ω)‖f(· , z)‖p′
∞.

Choosing r ≥ m(Ω)1/p′‖f(· , z)‖∞ gives j ∈ Lp′
(Ω) and ‖j‖p′ ≤ r, and hence

hypothesis (i4) is satisfied.
Thanks to Theorem 1.3 there exists u ∈ U ⊂ W 1,p

0 (Ω) such that

− Δpu(x) ∈ F (x, u(x)) a.e. in Ω (4.6)

and |Δpu(x)| ≤ ρ(x) for almost every x ∈ Ω. Define Ωf := {x ∈ Ω :
(x, u(x)) ∈ D}. From (4.4) it follows that

Ωf ⊂{
π0(Dϕ) ∩ u−1(π1(Dϕ))

}

∪
{ ⋃

r∈Dk

[
π0(ϕ−1(r)\int(ϕ−1(r))) ∩ u−1(π1(ϕ−1(r)\int(ϕ−1(r))))

]}
,

which, in particular, implies that

m(Ωf ) ≤ m
(
π0(Dϕ) ∩ u−1(π1(Dϕ))

)

+ m

( ⋃
r∈Dk

[π0(ϕ−1(r)\int(ϕ−1(r)))∩u−1(π1(ϕ−1(r)\int(ϕ−1(r))))]

)

≤ m
(
π0(Dϕ) ∩ u−1(π1(Dϕ))

)
+

⋃
r∈Dk

m
(
[π0(ϕ−1(r)\int(ϕ−1(r)))∩u−1(π1(ϕ−1(r)\int(ϕ−1(r))))]

)
.

Assumption (ii) entails m(πi(Dϕ)) = 0 for some i ∈ {0, 1}. Likewise, due
to (iii), for each r ∈ Dk, there exists ir ∈ {0, 1} such that m(πir (ϕ

−1(r)\
int(ϕ−1(r)))) = 0. Reasoning like in the case when ψ̃ is constant gives
m(Ωf ) = 0. This implies F (x, u(x)) = {f(x, u(x))} and on account of (4.6)
it follows that

−Δpu(x) = f(x, u(x)) a.e. in Ω.

We then have

ψ(−Δpu(x)) = ψ(f(x, u(x))) = ψ(k(ϕ(x, u(x)))) = ϕ(x, u(x)),

which completes the proof. �

Remark 4.2. Hypothesis (iv) and the assumption 0 /∈ (α, β) are essential to
obtain the existence of a solution for equations as in (4.1). Below we consider
two situations: apparently they are very similar, but one of them admits a
solution while the other one doesn’t.

Example 4.3. Let ϕ : R → R be defined by

ϕ(z) =

{
0 if z �= 0
1 if z = 0.
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and let ψ : [1,+∞) → R be such that ψ(y) = y. Consider the following
equation

− Δpu = ϕ(u). (4.7)

Equation (4.7) doesn’t have any solution in W 1,p
0 (Ω). Suppose on the contrary

that u is such a solution. Since ϕ(u) ≥ 0, then from (4.7) we have −Δpu ≥ 0,
and the Strong Maximum Principle implies that u ≡ 0 or u > 0. If u ≡ 0, then
this would imply that −Δpu ≡ 0, which is in contrast with (4.7). Suppose
now that u > 0. Then, the definition of ϕ implies −Δpu = 0. This fact,
together with the boundary condition u|∂Ω = 0, implies u ≡ 0 which is again
impossible.

Observe also that such ϕ is incompatible with the hypotheses of The-
orem 4.1, because in this case hypothesis (iv) and the condition 0 /∈ (α, β)
cannot be verified simultaneously.

Fix now λ ∈ (0, 1) and consider the function ϕ̃ : R → R defined by

ϕ̃(z) =

{
1 if z �= 0
λ if z = 0.

In this case both hypothesis (iv) and 0 /∈ [1,+∞) are verified, since

{1} = ϕ̃(R\{0}) ⊂ ψ([1,+∞)) = [1,+∞).

Therefore, Theorem 4.1 gives the existence of a solution u ∈ W 1,p
0 (Ω) to (4.7).
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