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Abstract: Pancreatic beta (β) cell dysfunction results in compromised insulin release and, thus, failed
regulation of blood glucose levels. This forms the backbone of the development of diabetes mellitus
(DM), a disease that affects a significant portion of the global adult population. Physiological calcium
(Ca2+) signaling has been found to be vital for the proper insulin-releasing function of β-cells. Calcium
dysregulation events can have a dramatic effect on the proper functioning of the pancreatic β-cells.
The current review discusses the role of calcium signaling in health and disease in pancreatic β-cells
and provides an in-depth look into the potential role of alterations in β-cell Ca2+ homeostasis and
signaling in the development of diabetes and highlights recent work that introduced the current
theories on the connection between calcium and the onset of diabetes.
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1. Introduction

Under physiological conditions, blood glucose levels only transiently increase following intake of
food [1]. The observed rise in blood glucose is controlled through the body’s employment of insulin,
a hormone generated by the beta (β) cells of the pancreatic islets of Langerhans. Insulin’s primary
function is to regulate the body’s metabolism of carbohydrates, protein, and fats. It does so by fostering
the absorption of carbohydrates (primarily glucose) out of the blood into skeletal muscle, adipose
tissue and the liver [2].

The islets of Langerhans are structures found throughout the exocrine pancreas, and together they
form the endocrine part of this gland. They contain primarilyβ, alpha (α), gamma (γ), and delta (δ) cells.
Each of these cell types secretes a separate hormonal product (insulin, glucagon, pancreatic polypeptide,
and somatostatin) and they are evident in different proportions across species [3]. These cell types
are all able to communicate with each other through paracrine signals, integral to the intricate web of
signaling and maintenance of β-cell health [4].

Key to the role of insulin in maintaining homeostatic blood glucose levels is the sensitivity of
β-cells to the glucose itself [5]. For example, when blood glucose increases following food intake,
β-cells sense this change in concentration and subsequently secrete insulin into the blood [6]. On the
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other hand, when blood glucose levels are low, such as following a prolonged fasting period, the release
of insulin from β-cells is inhibited [7]. Importantly, insulin’s effect on glucose metabolism directly
counteracts those of multiple hormones, such as glucagon [8]. The interplay between the activity of
hormones like insulin and glucagon, therefore, regulates overall glucose homeostasis in the body.

Pathophysiological conditions arise with insulin dysregulation; declines in either insulin’s release
or its actual production byβ-cells characterizes the main features of diabetes mellitus (DM) development.
Diabetes is a significant health problem: according to the International Diabetes Federation close to 10%
of the worldwide adult population is affected by this disease [9]. Type 1 diabetes (T1DM) is the result
of decreased insulin production by the pancreas due to destroyed β-cells. This typically occurs as a
result of an autoimmune reaction in the body and results in insulin not being able to be synthesized or
subsequently secreted into the blood [10]. Type 2 (T2DM), in comparison, is characterized by less β-cell
destruction than its type 1 counterpart, as cells are not destroyed through an autoimmune response [11].
This form of diabetes is observed when remaining functional β-cells are unable to produce insulin in
sufficient amounts to compensate for the body’s insulin resistance [12].

Calcium (Ca2+) has a significant role to play in physiological insulin release from islet β-cells.
Glucose, acting as the main stimulus of these cells, actually serves to control Ca2+ concentrations
across many compartments of the cell, including the endoplasmic reticulum (ER), mitochondria,
nucleus, and cytosol, among others. Ca2+ dysregulation in β-cells also has been observed in disease
states, including type 2 diabetes. The present review discusses previously known, as well as recently
emerged aspects of Ca2 dynamics in pancreatic β-cells, and how this new information may relate to
the pathophysiological development of T2DM.

2. The Role of Ca2+ Signaling in Pancreatic β-cells: The Basics

The movement of Ca2+ is vital to the function of any cell type but has a special role to play
in pancreatic β-cells due to its importance in the process of insulin release. Insulin production
and subsequent release from these cells is controlled by multiple players, including glucose,
neurotransmitters, peptide hormones, and other compounds [13,14]. Briefly, the elevation in blood
glucose levels that follows food intake is sensed by these cells, which subsequently take glucose up
from the blood and metabolize it to more fuel for the mitochondria to shunt towards ATP production,
increased levels of which result in the inhibition of the cell’s KATP channels. This ultimately leads to
depolarization at the plasma membrane (PM), an electrical change that functions to activate L-type
Ca2+ channels, which allows an influx of Ca2+ into the cell. Finally, this wave of Ca2+ triggers the
release of secretory granules containing insulin, to be released from the cell by exocytosis (Figure 1).

Previous work has also put forth that glucose may directly affect the activity of voltage-dependent
Ca2+ and K+ channels [15]. Recent investigation has also shown that cellular insulin secretion stimulated
by glucose is tied to mitochondrial Ca2+ dynamics. Namely, the proper functioning of mitochondrial
Ca2+ uptake 1 (MICU1) and mitochondrial calcium uniporter (MCU) proteins is necessary for the
physiological function of β-cells [16].

The well-established insulin release-triggering pathway outlined above is not the only mechanism
wherein glucose stimulates insulin release. Another, as yet not completely understood pathway is
also evident, though it depends on the KATP-dependent mechanism due to the need for high cytosolic
Ca2+ levels. Therefore, it is poignant to consider the fact that any of β-cells’ channels that may
affect membrane potential could also have an effect on Ca2+ movement into the cytosol and thus
insulin secretion.
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Figure 1. Schematic representation of glucose stimulated insulin secretion (GSIS) and subcellular Ca2+ 
dynamics in pancreatic β-cells. Ca2+ transporters within a pancreatic β-cell responsible for balancing 
Ca2+ homeostasis are the following: in the plasma membrane: PMCA: plasma membrane Ca2+-ATPase, 
NCX: Na+/Ca2+ exchanger; within the endoplasmic reticulum: SERCA: sarco/endoplasmic reticulum 
Ca2+-ATPase, RyR: ryanodine receptor, IP3R: inositol 1,4,5-trisphsphate receptor, VDAC: voltage 
dependent anion-selective channel; within mitochondria: NCLX: mitochondrial Na+/Ca2+ exchanger, 
PTP: permeability transition pore, MCUC: mitochondrial Ca2+ uniporter complex. Red arrows depict 
the process of glucose-stimulated insulin secretion. After uptake of glucose via GLUT2/1 
mitochondrial ATP production is boosted leading to a closing of plasma membrane located ATP-
sensitive K+ channels (KATP). The resulting shift in membrane potential activates PM voltage-
dependent Ca2+ channels (VDCC) stimulating Ca2+-induced Ca2+ release which ultimately leads to 
exocytosis of insulin-containing granules. 
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Figure 1. Schematic representation of glucose stimulated insulin secretion (GSIS) and subcellular Ca2+

dynamics in pancreatic β-cells. Ca2+ transporters within a pancreatic β-cell responsible for balancing
Ca2+ homeostasis are the following: in the plasma membrane: PMCA: plasma membrane Ca2+-ATPase,
NCX: Na+/Ca2+ exchanger; within the endoplasmic reticulum: SERCA: sarco/endoplasmic reticulum
Ca2+-ATPase, RyR: ryanodine receptor, IP3R: inositol 1,4,5-trisphsphate receptor, VDAC: voltage
dependent anion-selective channel; within mitochondria: NCLX: mitochondrial Na+/Ca2+ exchanger,
PTP: permeability transition pore, MCUC: mitochondrial Ca2+ uniporter complex. Red arrows depict
the process of glucose-stimulated insulin secretion. After uptake of glucose via GLUT2/1 mitochondrial
ATP production is boosted leading to a closing of plasma membrane located ATP-sensitive K+

channels (KATP). The resulting shift in membrane potential activates PM voltage-dependent Ca2+

channels (VDCC) stimulating Ca2+-induced Ca2+ release which ultimately leads to exocytosis of
insulin-containing granules.

Importantly, β-cells have a wide array of channels involved in Ca2+ influx across their plasma
membranes. The placement of these excitable cells’ voltage-dependent channels has been observed
to be erratically distributed across the PM, allowing for micro-domains containing high levels of
Ca2+ to form [17]. In certain species, the electrical activity of the β-cells contained within an islet as
a whole is synchronized due to coupling through the presence of gap junctions [18]. This leads to
synchronized Ca2+ oscillations between the cells as well, which subsequently induce insulin secretion
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waves observable at the level of a single islet. This does not apply fully to human islets, because while
there is some coupling apparent between adjacent β-cells, there is a more heterogeneous spread of the
many cell types present in each islet, thus affecting the ability of β-cells separated by other cell types to
behave synchronously [18].

The extrusion of Ca2+ from β-cells does not differ significantly from the majority of other cell
types. Ca2+ in the cytosol is removed through a combination of Na+/Ca2+ exchanger(s) (NCX) and
plasma membrane Ca2+–ATPase(s) (PMCA) activity [19–22]. As each of these transporters have
complementary characteristics (PMCA has a high affinity for Ca2+ and a low extrusion capacity,
while NCX displays exactly the opposite traits [23]), each exhibits different levels of activity under
cellular conditions. Namely, NCX acts as the main Ca2+ extrusion pathway at high cytosolic Ca2+

concentrations, while PMCA takes over most extrusion activity when low levels are observed [24].
ER Ca2+ homeostasis is vital to proper function in most cell types [25]. In the case of β-cells, Ca2+

is taken up by the ER through SERCA activity, specifically isoforms SERCA2b and SERCA3, which are
expressed ubiquitously and only in β-cells found within pancreatic islets, respectively [26]. Insofar as
Ca2+ release from the ER goes, this organelle is known to exhibit considerable Ca2+ leakage into the
cytosol, which must ultimately be corrected for by SERCA pump activity [27]. A likely mechanism for
the ER Ca2+ leak in β-cells was recently outlined to involve presenilin-1 (PS 1) [28].

As in various other cell types, ER Ca2+ release in β-cells is mediated by inositol 1,4,5-triphosphate
(IP3R) and ryanodine receptors (RyR) [29]. The latter can be activated by (local) Ca2+ elevations
representing the so-called “calcium-induced calcium release” (CICR) processes [30,31]. In regard to the
Ca2+ release from the ER in pancreatic β-cells, it is unclear whether they exhibit CICR as triggered
by RyRs on the ER membrane. These cells show expression of all three of IP3R isoforms, but their
expression and the overall function of RyR is reported as being underwhelming [32,33]. It has been
discussed that RyR expression in β-cells is much lower than in most other tissues. Nevertheless, it is
possible that lower expression of RyR may be sufficient to allow β-cells’ to accomplish CICR, because
of their large-conductance capacity [34].

Another very important aspect of pancreatic β-cell Ca2+ signaling is the great role of stromal
interaction molecules 1 (STIM1/2) and its pairing with Orai1/2/3. Generally speaking, Orais are ion
channels that are selective for Ca2+, and are activated following this ion’s depletion from intracellular
Ca2+ stores [35,36]. The depletion of ER Ca2+ is first sensed by the ER STIM1 protein, which is then
induced to oligomerize at ER/plasma membrane junctions. STIM1 subsequently activates the Orai1
Ca2+-release-activated channel (CRAC) through direct protein interaction, thus inducing store-operated
Ca2+ entry (SOCE) [37]. STIM has been observed to have two highly homologous isoforms, STIM1 and
STIM2. Despite their degree of similarity, the two isoforms have differing functions. Namely, STIM1
serves as the main activator of SOCE channels, while STIM2 serves as a feedback regulator maintaining
ER and cytosolic Ca2+ concentrations within a narrow range [38,39]. The Orai protein also exists in
various forms: Orai1, Orai2, and Orai3. Orai2 and 3 are not as thoroughly characterized as Orai1,
but they have been shown to have similar roles in modifying SOCE across different cell types [40–42].

Since the discovery of its mechanism in the early 2000s, the STIM/Orai Ca2+-signaling pair has
been found to play a distinct role in pancreatic β-cell insulin secretion. It has been demonstrated in
rat β-cells that a complex is formed by Orai1, STIM1, and TRPC1 proteins in response to ER Ca2+

depletion [43]. Blocking the activity of Orai1 or TRPC1 was shown to impair GSIS in these cells [44],
indicating that Orai1 and TRCP1 are vital to the formation of store-operated Ca2+ channels (SOCs),
which, combined with their activation by STIM1, are necessary for the physiological response of cells to
acetylcholine (Ach) in insulin secretion. Furthermore, the group postulated that the effective activation
of these SOCs may be reduced in T2DM, thus confirming the importance of Orai1 to the pancreatic cell’s
optimal functionality [44]. Notably, the importance of basal mitochondrial Ca2+ entry, possibly via a
TRPC-mediated mechanism has been postulated to be fundamental for the responsiveness to increased
glucose [28].
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Beyond the basic mechanisms involved in β-cell Ca2+ signaling, the bigger picture must of course
also be considered. What kind of signals are these channels and pumps propagating? What effects
can they exert on the cell? Ca2+ sparks, the creation of Ca2+ microdomains, the potential effect of
Ca2+ on processes ranging from channel activity to gene expression are but a few of the many ways
that this ion exerts its effect on β-cell function. Oscillations are also observable in β-cells, as well
as almost universally across cell types, including cells performing substantially varied functions,
such as fibroblasts and astrocytes [45–47]. Importantly, glucose-stimulated insulin release has been
associated with transient changes to these cells’ cytosolic Ca2+ concentration. This increase in Ca2+

levels, and the subsequently observed oscillations are induced by cellular glucose metabolism [48].
It has been determined that in primary mouse islets, for example, the addition of glucose to cells can
induce the generation of IP3. Every time that cytoplasmic Ca2+ increased, so did IP3, indicating clearly
that these processes are related [45].

Cellular Ca2+ oscillations have also been linked to effects on gene expression. For example,
Dolmetsch and colleagues [49], demonstrated that cytoplasmic Ca2+ oscillations effectively reduced
the Ca2+ threshold required for the activation of a specific set of transcription factors. Whether this
holds true in β-cells is as yet unclear, though other breakthroughs in the role of Ca2+ in β-cell gene
expression are evident in the literature. It was discussed that the signals resulting from glucose flux
into the cells are transmitted through the insulin enhancer, activation of which could result from direct
protein modification along the lines of phosphorylation or similar processes, or through changes in
local co-factor concentrations through Ca2+ signals [50]. Others have shown that extended exposure
of β-cells to glibenclamide, an ATP-sensitive K+-channel inhibitor, which depolarizes the β-cells and
thereby stimulates the cells to secrete insulin (often enlisted as a treatment tool for diabetes) [51], causes a
prolonged increase in the cells’ basal insulin production, and showed that this was a Ca2+-dependent
effect [52]. Ultimately, it was determined that extended exposure of the cells to this insulin secretagogue
activated protein translation through Ca2+-regulated signaling pathways mTOR, MEK, and PKA [52].

The important role of Ca2+ in β-cells’ general function, indicates that dysregulation of this cation
likely contributes strongly to the development of pathophysiological conditions.

3. The Role of Ca2+ Signaling in Pancreatic β-Cells: A Closer Look

3.1. Ca2+ in β-Cell Proliferation

β-cells can adapt to increased metabolic demands to ensure balanced euglycemia by boosting
their proliferation rates. Several studies demonstrate that besides elevated glucose levels also Ca2+

signaling is a prerequisite for inducing augmented β-cell replication [53–55]. Porat et al. could show
that Ca2+ influx is essentially contributing to β-cell replication since blocking membrane depolarization
with diazoxide drastically reduced β-cell proliferation rates [56]. Moreover, treating rat β-cells with
the L-VGCC agonist BayB8644, thus, augmenting intracellular Ca2+ concentrations, stimulates β-cell
proliferation [57,58].

Intracellular Ca2+ elevations promote β-cell proliferation amongst others by Ca2+/calmodulin
dependent kinase 4 (CaMK4) and calcineurin/nuclear factor of activated T-cells (NFAT)-dependent
mechanisms. In β-cells CaMK4 is activated by elevated glucose levels and increased intracellular Ca2+

levels [59]. Inhibition of CaMK activity or alterations in its expression influences glucose-mediated
increase in β-cell proliferation. Liu et al. [60] demonstrated that CaMK inhibition or expression of a
dominant-negative CaMK result in abolished β-cell proliferation rates whereas overexpression of a
constitutive active version of CaMK leads to the opposite effect. The calcineurin/NFAT axis controls
islet responses by promoting the expression of cell cycle regulators and increased β-cell proliferation
rates and mass. NFAT family members control cell cycle regulators on the transcriptional level in
β-cell which play a role in β-cell proliferation. Blocking NFAT inhibitory kinases such as DYRK1A
and GSK3β supports and boosts β-cell proliferation [57,58]. Overexpression of NFATC2 in mice leads
to 2-fold increased proliferation rates [61], an effect that has also been detected when the expression
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of NFATC1, NFATC3, and NFATC4 is increased [62]. β-cell-specific deletions of the Ca2+-activated
calcineurin phosphatase regulatory subunit, calcineurin b1 (Cnb1), in mice results in the development
of age-dependent diabetes characterized by reduced β-cell proliferation and mass, reduced pancreatic
insulin content and hypoinsulinaemia [61]. Recent human data show that the ability of β-cells to
replicate is highest in infancy, with their ability to regeneration declining substantially soon after this
period of life [63]. This age-related decrease in proliferation of β-cells has also been corroborated in
rodent models [64,65]. This, of course, begs the question: what is the expected life span of human
β-cells? In vitro work has demonstrated that in culture, these cells are capable of releasing insulin for
more than 9 months at a time [66].

3.2. Ca2+ in β-cell Survival

Ca2+ signals play a vital role in the induction of cellular apoptosis, a trigger event that occurs in
response to a wide range of cellular conditions or particular intracellular agents. On the other hand, it is
also possible for Ca2+ signals to function as a cell’s saving grace by ensuring cell survival [67]. Isolated
mouse isletβ-cells and MIN6 insulinoma cells exhibit 3-fold reduced apoptosis rates when cultured with
high glucose medium (15 mM or 25 mM) compared to low-glucose medium (2 mM or 5 mM, respectively).
The high glucose concentration increases survival-required depolarization and subsequent Ca2+ influx.
These pro-survival effects get lost when depolarization is inhibited with diazoxide or Ca2+ influx
with nifedipine [68]. As for β-cell proliferation, also β-cell survival is mediated by calcineurin and
CaMK-pathways. Calcineurin inhibition has toxic effects on β-cells and promotes β-cell failure
after transplantation by blunting β-cell replication [69] and apoptosis induction [70]. Simultaneous
calcineurin inhibition and treatment with the mTOR inhibitor rapamycin impair β-cell regeneration
during recovery from diphtheria toxin-induced β-cell death [71]. Conversely, calcineurin inhibition has
been shown to be beneficial after treatment with cytokines [72] and corticosteroids [73]. These conflicting
data prove that effected down-stream pathways are diverse, but the crucial involvement of Ca2+ in
β-cell survival stays unchallenged. Furthermore, the ER Ca2+ homeostasis has been shown to impact
β-cell survival. Several groups provide evidence that ER Ca2+ depletion results in ER stress and β-cell
apoptosis [74–76]. This ER Ca2+ depletion occurs due to inhibition of the sarco/endoplasmic reticulum
Ca2+ ATPase (SERCA) and the resultant reduced ER Ca2+ uptake in the situation when low glucose
exposure is paralleled with low intracellular Ca2+ levels [77].

3.3. Ca2+ Oscillations for Proper β-Cell Function

The cycling variations of circulating insulin are reflected by the pulsatile release of the hormone
from the pancreas [78].These insulin pulses occur over 4–13 min [79,80] whereas the rise of plasma
glucose levels is preceding the rise in plasma insulin levels in average two minutes [81]. Loss of these
regular insulin oscillations is an early phenomenon in the development of insulin [82] and non-insulin
dependent [83] diabetes mellitus. Glucose stimulates an increase in cytosolic Ca2+ concentration
in β-cells due to cellular depolarization mediated by closure of the ATP-sensitive K+-channels and
subsequent opening of VDCC. This rise in [Ca2+]i is not a steady-state increase of the ion, but rather
consists of periodic Ca2+ oscillations [84,85]. These Ca2+ waves are synchronized with β-cell bursting
electrical activity [86]. The basis for a proper insulin secretion upon increased glucose levels is a
tightly controlled inter-islet regulation, which are coupled by gap junctions. Islet β-cells are comprised
of functionally heterogeneous cell populations, whereas a special subpopulation termed “hubs” is
crucial for mediating the islets response to high glucose levels. Inhibition of these hubs abolished
the coordinated and tightly regulated Ca2+ oscillations necessary for driving insulin secretion [87].
Controlled by these hubs, the islets behave as functional syncytium in response to glucose and therefore
homogenizing the actual heterogeneous cell population [88]. Diverse oscillation patterns are existing:
the fast, the slow (approx. 5 min) and the mixed oscillations [48]. Slow activated Ca2+-sensitive
K+-channels and cyclic cytoplasmic Na+ changes are responsible for the fast and the slow oscillations,
respectively. The ATP/ADP ratio and the ER Ca2+ levels are supposed to serve as pacemakers for fast
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bursts and cytosolic Ca2+ oscillations [89]. The total secretory activity is determined by the number of
β-cells recruited into the active phases [90]. Several physiologic advantages of the glucose-induced
Ca2+ oscillations within β-cells should be mentioned. As these Ca2+ oscillations are the basis for the
fluctuating plasma insulin signals, a down-regulation of peripheral receptors is prevented. This is
substantiated by the finding that the recycling time for these receptors is shorter than the periods for
plasma insulin pulses [91]. Furthermore, the intracellular Ca2+ pulses prevent the desensitization
of the secretory machinery of the β-cells. Jones et al. [92] could show that prolonged exposure to
high Ca2+ concentrations in permeabilized β-cells makes the machinery refractory to Ca2+ signals.
A steady-state rise of cytosolic Ca2+ concentrations in stimulated β-cells could be responsible for the
loss of the pulsatile insulin signals, a process occurring at the onset of diabetes [82,83]. Sustained Ca2+

rise may activate autolytic processes by stimulating phospholipases, proteases and endonucleases [93]
deteriorating primary lesions of a diabetic β-cell [90].

3.4. Ca2+ in Biphasic Insulin Secretion

Nowadays, it is well established that insulin secretion follows a biphasic pattern which was clearly
described for the first time in perfused rat pancreas in 1968 [94] and one year later in humans [95].
The early peak is starting 3–5 min after glucose stimulation lasting for approximately ten minutes.
This rapid insulin peak is followed by a sustained period of slowly increasing insulin levels lasting as
long as the glucose level is elevated [96]. In patients diagnosed with T2DM this initial peak is absent
and the second phase reduced or delayed [97–100]. The early phase is pivotal for human physiology
due to several processes initiated by this first rise in insulin such as suppression of hepatic glucose
production [101,102], suppression of lipolysis [102] and preparation of target cells i.e., liver, muscle, and
adipocytes—to the action of insulin [103]. The reduction of the first-phase of insulin secretion occurs
early in disease. The involvement of Ca2+ in the process of (biphasic) insulin secretion is unchallenged
but early studies on its contribution showed a great extent of controversy: Wollheim et al. [104] stated
that the first phase insulin response is independent of glucose-stimulated uptake of extracellular
Ca2+ but crucially depends on intracellular Ca2+ handling. Contrary findings were presented by
Henquin et al. [105] showing that withdrawal of extracellular Ca2+ or inhibition of Ca2+ influx abolishes
glucose-stimulated insulin secretion postulating that extracellular Ca2+ influx plays an essential role
for insulin secretion. The current model of Ca2+ signaling in insulin secretion attributes important
functions to both theories. Ca2+ influx through voltage-dependent Ca2+ channels is a prerequisite for
proper insulin exocytosis [106] but also intracellular Ca2+ flux is necessary for physiological insulin
secretion. The latter recently has been outlined by our group as we demonstrated a pivotal engagement
of a β-cell-specific permanent presenilin-1-mediated ER-Ca2+ leak in the initiation of first-phase insulin
secretion. Inhibition of presenilin-1 activity or reduction of its expression or in other words a reduction
of the ER Ca2+ leak leads to abrogation of the first phase of insulin release [107].

4. Ca2+ on Subcellular Level

Cytoplasmic Ca2+ homeostasis in β-cells is tightly regulated by a complex interplay between Ca2+

uptake and extrusion across the plasma membrane as well as uptake and release into/from internal
Ca2+ stores. Since alterations in this equilibrium result in drastic changes of Ca2+ signaling in β-cells
ultimately affecting insulin secretion, it is of crucial importance to keep cellular Ca2+ fluxes balanced.
In the next paragraph, the most important contributors to β-cell Ca2+ homeostasis are discussed.

4.1. Plasma Membrane

As described above, Ca2+ transporters regulating Ca2+ extrusion from the cell—such as NCX
and PMCA—located within the plasma membrane, function as essential players in maintaining a
balanced Ca2+ homeostasis in β-cells. Notably, the activity of the forward-mode (i.e., 1Ca2+ out/3Na+

in) of the NCX in the pancreatic β-beta-cell is sensitive to long-chain acyl-coenzyme and alterations
in intracellular acyl-CoA levels may cause negatively control Ca2+-mediated exocytosis and insulin
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secretion [108]. Moreover, the forward mode of the NCX1 splice variants of that is expressed in
the pancreatic β-cells (NCX1.3 and NCX1.7) exhibit an unusually high sensitivity to KB-R7943 [109]
that rather selectively inhibits the reversed mode of the NCX (i.e., 1Ca2+ in/3Na+ out) in most other
cell types. Consequently, the pharmacological inhibition of the NCX1 with KB-R7943 results in a
considerable augmentation in glucose-stimulated increases in cytosolic Ca2+ concentrations and insulin
secretion in mouse and human β-cell islets, while KB-R7943 was without effect under non-stimulated
conditions. [109]. Heterozygous inactivation of PMCA isoform 2 (PMCA2) in mice also leads to
cytosolic Ca2+ accumulation and to a 1.5-fold increase in glucose-induced insulin release. Furthermore,
PMCA2 inhibition results in increased β-cell mass, proliferation, and viability [110].

4.2. Mitochondria

Cellular energy demand and mitochondrial activation are tightly linked especially in states of
energy-consuming processes. Increased energy demand especially observed during stimulation of
a cell—comes along with enhanced ATP hydrolysis which must be compensated for by accelerated
ATP synthesis. Examples for such an increased energy demand where mitochondria are involved in
balancing the energetic homeostasis are increased workload of the heart [111], activation of specific
brain areas [112] and insulin production in pancreatic β-cells after glucose stimulus. Upon glucose
stimulation, β-cell mitochondria augment oxidative metabolism [113], respiration [114,115] and
mitochondrial ATP synthesis rate [116] to match the increased energy need. Hormones and extracellular
messengers that stimulate ATP-requiring processes through rises of cytosolic Ca2+ concentrations
regulate oxidative metabolism whereas the Ca2+ concentration needed for proper stimulation of the
downstream processes ranges from 0.1–10 µM. The citric acid cycle (i.e., the Krebs cycle) is the major
energy-producing metabolic pathway in mitochondria and generally in cells, providing enormous
amounts of reduction-equivalents which subsequently are oxidized in the electron transport chain
to yield ATP. Ca2+ was shown to regulate three key dehydrogenases of the citric acid cycle i.e.,
NAD+-isocitrate dehydrogenase (NAD-ICDH), 2-oxoglutarate dehydrogenase (OGDH) and pyruvate
dehydrogenase (PDH) [117–119]. Notably, because of its stimulatory effect on the dehydrogenases of
the citric acid cycle [120], mitochondrial Ca2+ increase is known to serve as a key trigger for insulin
release in β-cells [121]. This offers some contradiction to the current concept of at exactly what point
in the process of GSIS mitochondrial Ca2+ is involved. In fact, the current concept suggests that
mitochondrial Ca2+ increase occurs upon Ca2+ entry due to the opening of the L-type Ca2+ channels,
thus, already downstream from mitochondrial activation by glycolysis-derived pyruvate and ATP
production. However, increases in mitochondrial Ca2+ are thought to be essential for stimulation of
Ca2+-dependent dehydrogenases of the citric acid cycle in order to establish suitable enzyme activity to
handle the substrate overflow upon elevated blood D-glucose [122]. In particular, the responsiveness
and proper D-glucose sensing of β-cells to elevated blood D-glucose is determined by the cells’ pace of
producing ATP when exposed to elevated glucose [123]. Data of our group show strongly enhanced
basal respiratory activity and elevated mitochondrial ATP levels in mitochondria of clonal β-cell lines
in comparison to non-β-cell lines pointing to such pre-stimulation of mitochondria in β-cells [28].
These data are in line with the new perspective of GSIS that involves a continuous priming of β-cells
based on a weak stimulation of β-cell mitochondria to ensure proper responsiveness to elevated blood
D-glucose sensing [124].

4.3. Endoplasmic Reticulum

The endoplasmic reticulum as preserver of Ca2+ homeostasis in β-cells plays an important role
in β-cell physiology and insulin secretion. ER stress caused by ER Ca2+ depletion, has been shown
to contribute to β-cell dysfunction and the development of type 2 diabetes [125]. The Ca2+-sensor
protein sorcin, which is a 22 kDa protein of the penta EF-hand family, is involved in maintaining ER
Ca2+ stores by inhibiting RyR-activity and playing a role in the termination of CICR [126]. Sorcin is
strongly expressed in primary mouse islets [127]. Knock-down in MIN6 insulinoma β-cells reduces
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ER Ca2+ stores and inhibits GSIS [128]. Elevated Ca2+ levels lead to a conformational change of the
sorcin protein, a subsequent translocation from the cytoplasm to membranes (amongst others to the
ER) where it interacts with target proteins including RYR [126], thereby, inhibiting RYR [126,129] and
activating SERCA pumps [130].

Binding of insulin to the insulin receptor at the cell surface leads to autophosphorylation of tyrosyl
residues of the IR-β-subunit and the phosphorylation of insulin receptor substrates 1 and 2 (IRS1 and 2).
The subsequent cascade initiates the translocation of the insulin-responsive glucose transporter GLUT4
in muscle cells and adipocytes [131]. In β-cells IRS-1 is able to translocate to several intracellular
locations dependent on upstream signals, which is also true for intracellular membranes, in particular,
the ER [132]. The β-cell-selective insulin receptor (IR) knockout and IRS-1 knockout result in reduced
glucose-induced insulin secretion while overexpression of IR and IRS-1 result in augmented insulin
secretion and increased cytosolic Ca2+ levels due to inhibition of the ER-located SERCA. In β-cells the
SERCA2 and SERCA3 are expressed [26]. Loss of SERCA activity and reduced SERCA3b expression
in β-cells are associated with diabetes development in db/db mice [20]. SERCA3 gene mutations
(Gln108→His, Val648→Met, Arg674→Cys and Ile753→Leu) in type 2 diabetes patients provide a link
to a genetic susceptibility to T2DM development [133].

The above-mentioned ER Ca2+ depletion and subsequent ER Ca2+ stress can be explained—at
least partially—by the existence of ER Ca2+ leak channels. Cassel and Ducreux [27] could show that
translocon-mediated ER Ca2+ leak in murine MIN6 insulinoma β-cells and human islets is influencing
lipotoxicity. Furthermore, translocon inhibition resulted in reduced ER stress and a restoration of
insulin secretion [27]. Two recent studies of our group demonstrated that a presenilin-1-mediated ER
Ca2+ leak crucially contributes to β-cell physiology and insulin secretion. The presenilin-1-mediated
ER Ca2+ leak is directly sequestered by mitochondria, leading to increased basal matrix Ca2+ levels
that yield enhanced resting activity of mitochondria in the pancreatic β-cells due to pre-stimulation the
Ca2+-dependent dehydrogenases of the citric acid cycle. Upon elevation of glucose, glucose is
metabolized and the pre-activated citric cycle in the mitochondria efficiently converts glucose
metabolism to activation of the respiratory chain (OXPHOS) and, subsequently, fast ATP production,
thus, ensuring a fast, initial insulin secretion within 10 min of exposure to elevated glucose [28,107].

4.4. The Golgi-Apparatus

Another intracellular Ca2+ storage important for a balanced Ca2+ homeostasis in mammalian cells
and also in β-cells is the golgi apparatus. IP3 receptors are expressed at the surface of the golgi apparatus,
mediating Ca2+ release from these IP3-sensitive pools [134]. Early measurements of intracellular Ca2+

demonstrate that upon cellular stimulation with IP3-generating agonists such as histamine, the golgi
Ca2+ concentration rapidly decreases, presenting the golgi apparatus as IP3-sensitive Ca2+ pool [135].
However, in cell types that exhibit a high expression of RyR (such as cardiac myocytes), the Ca2+ extrusion
of the golgi apparatus is mediated by these receptors [136]. The ATP-sensitive Ca2+ pump responsible for
fueling the golgi apparatus with Ca2+ from the cytoplasm is the secretory pathway Ca2+-ATPase Ca2+

pump (SPCA1) [134]. Two main isoforms of this Ca2+ pump exist i.e., SPCA1 and SPCA2, whereas they
show a tissue-specific expression. In mammals, SPCA1 is expressed in all tissues [137] whereas SPCA2 is
expressed only in a limited set of tissues [138]. SPCA1 has been identified as being the main regulator of
golgi Ca2+ homeostasis [139], which is also true for pancreatic β-cells [140]. Bone et al. [140] demonstrated
a crucial role of SPCA1 in β-cell physiology. On the one hand, SPCA1 expression is reduced in patients
suffering from T1DM and T2DM and on the other hand SPCA1 knock-out β-cells show increased rates
of apoptosis, augmented cytosolic Ca2+ levels and significantly reduced GSIS (bone), highlighting the
importance of the Ca2+ homeostatic function of the golgi apparatus.

5. Ca2+ in the Development of T2DM

As described in parts three and four of this review, Ca2+ is a crucial factor for β-cell survival,
proliferation and function as well as for a proper insulin secretion on the one hand and is tightly regulated
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among diverse intracellular compartments within β-cells on the other hand. Therefore, an association
with the development and progression of diabetes is obvious. Furthermore, deregulated Ca2+

signaling has been associated with the development of one of the key characteristics of T2DM i.e.,
insulin resistance [141–143]. Deregulated Ca2+ homeostasis has been implicated in a vast range of
disease conditions. The case is not different when considering T2DM. In fact, it seems likely that
there can be multiple degrees of separation between an original Ca2+ dysregulation and the eventual
development of T2DM. In this section some issues of how Ca2+ deregulation can contribute to diabetes
pathophysiology by highlighting some Ca2+-associated aspects on the cellular level but also in the
human body.

Problems with pancreatic β-cell function and a loss of sensitivity to insulin are often significant
factors in the development of T2DM [144]. Whether patients deal with T1 or T2DM has little
consequence on the host of complications that they are likely to encounter as a result of this cellular
dysfunction, including cardiomyopathy, hypertension, cataracts, and more [145,146]. It has been
discussed whether the significant variability in the severity of these clinical outcomes of diabetes could
be due to Ca2+ dysregulation. Decades ago, Levy and colleagues [147] stated that in the majority
of tissues observed (i.e., heart, erythrocytes, platelets, skeletal muscle, kidney, hepatocytes, aorta,
adipocytes, liver and osteoblasts), whether involving human diabetes patients or animal models for
the disease, exhibited increased intracellular Ca2+ concentrations often accompanied by decreased
Ca2+-ATPase activity. These findings highlight that deregulated Ca2+ homeostasis is a fundamental
disorder in the diabetic state.

Much of the literature investigating a potential role for the ion in diabetes focuses on dietary Ca2+,
taken either alone or in consideration with other important components of a healthy diet, such as
magnesium (Mg2+) or vitamin D [148–150]. Increased dietary Mg2+ intake, for example, was found to
correlate with a decreased risk of T2DM in subjects, while increased consumption of Ca2+ appeared
not to show any association with risk [148]. It is well-outlined, for example, that vitamin D functions
in the maintenance of phosphorus and Ca2+ homeostasis, thus promoting the healthy mineralization
of bone. Recently, however, vitamin D and Ca2+ together have begun to be considered as factors
affecting an individual’s risk of diabetes [149]. Namely, the existence of a link between vitamin D
deficiency and downstream irregularities in glucose-induced release of insulin, a Ca2+-dependent
process [151], appear to be connected by the ion itself. Similarly, a project investigating the regulation
of blood sugar control in T2DM patients demonstrated that the addition of vitamin D, with or without
supplemental Ca2+, improved glycemic status [150]. Vitamin D deficiency is causing β-cell death and,
thus, is contributing to the development of β-cell dysfunction and β-cell death as onset and progression
of diabetes. This vitamin not only maintains normal resting levels of Ca2+ and reactive oxygen species
(ROS) [152]—both factors which are deregulated in diabetes [147,153,154]—but also prevents DNA
hypermethylation of gene promoter regions regulating the expression of diabetes related genes [155].

Such research implies, therefore, that if Ca2+ is involved in the pathophysiology of T2DM, then
it is not a matter of maintaining a certain level of dietary intake of the mineral, but rather has to do
with an ingrained physiological signaling role of the ion. Indeed, it has been determined that normal
Ca2+ homeostasis is impaired in patients with T2DM. Irregularities have been observed in a range of
cell types, including platelets, cardiomyocytes, and pancreatic β-cells, among many others [156–158].
The widespread observance of altered steady-state Ca2+ levels indicates that this serves as a consistent
factor in diabetic conditions.

Ca2+’s proper functioning across multiple signaling pathways is vital in all cells but is
also important in some circumstances due to a tissue-specific role. Also important is the tight
interconnectivity of Ca2+ signals across different cellular pathways and mechanisms, wherein a
disturbance in one could affect a host of others. A dysregulation in such a signaling web oftentimes
makes diagnoses of the original problem difficult, if not impossible. Undeniably, multiple changes
to normal Ca2+ signals and regulation have been described in diabetes patients and animal models,
hitting all of the main players in Ca2+ movement, such as SERCA and NCX, across tissues [147,156].
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Thus far, the most agreed-upon abnormality in Ca2+ homeostasis in diabetes appears to be an increase
in steady-state cytosolic Ca2+ levels across different cell types [147].

More specifically, in β-cells, the Ca2+ dysregulation evident in diabetes is so far better
characterized in animal and cell-level models of the disease. Changes to normal Ca2+ homeostasis
include increased voltage-dependent Ca2+ channel activity in diabetic rodents as well as decreased
SERCA activity [157,159]. Considering the bigger picture, it is known that glucose homeostasis is
achieved predominantly through many pathways that are regulated by Ca2+, including glycolysis,
gluconeogenesis, and others [160]. These vital processes are thus derailed if some form of Ca2+

dysregulation event occurs, which could be the end result of changes to normal Ca2+ channel or pump
activity. For example, as mentioned, an increased intracellular Ca2+ concentration is evident in diabetes
which results in the inhibition of glycogen synthase, ultimately causing, through a disrupted series of
activations and phosphorylation events, glucose resistance [147].

As the vigilant reader of the manuscript might have already realized, a new and for some maybe
pugnacious finding concerning β-cell responsiveness and regulation of insulin secretion is presented
in several sections of the manuscript—namely, the crucial role of a presenilin-1-mediated ER Ca2+ leak
for proper β-cell function [28,107], data which are graphically summarized in Figure 2.
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leak. Ca2+ leaking out of the ER is directly sequestered to mitochondria, leading to increased basal
matrix Ca2+ levels, where it pre-stimulates the Ca2+-dependent dehydrogenases of the citric acid cycle,
augmenting resting organelle ATP levels. ATP-sensitive K+-channels are inhibited leading to cellular
depolarization. This electrochemical shift triggers Ca2+ uptake via L-type Ca2+ channels. As a result,
Ca2+-induced Ca2+ release is initiated, promoting insulin exocytosis into the extracellular space.
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Our work demonstrates that this leak is regulating many steps in the cascade ultimately leading
to insulin secretion. Reducing the ER-Ca2+ leak by either knocking down presenilin-1 or inhibiting
its activity by blocking the PS1-regulatory kinase GSK3β causes several important effects in β-cells:
i. reduction of mitochondrial respiration; ii. decreased mitochondrial ATP levels; iii. reduction of
glucose-stimulated Ca2+ oscillation and delayed onset of these oscillations; iv. abrogation of the
first-phase of insulin secretion. Several studies have already demonstrated that a loss of the first phase
insulin response [95] which is resulting in delayed insulin secretion [161–164] is an irregularity occurring
in the early stages of T2DM. The loss of this first phase is worsening post-prandial hyperglycemia
yielding a progression of the pathologic condition and ultimately leading to clinically relevant
hyperglycemia [165]. Therefore, this loss of first-phase insulin secretion is a predictive marker for
the risk of developing T2DM [166,167], highlighting the importance of a regulated biphasic insulin
response. The results of our study demonstrate that a functional ER-mitochondrial Ca2+ transfer
mediated by presenilin-1 is pivotal for an adequate insulin response [28,107].

6. Presenilin-1, the Missing Link between Diabetes and Alzheimer’s Disease?: Excursus

In this section, we would like to draw the attention to a circumstantiated but sometimes
underestimated correlation of two diseases where both presenilin-1 and Ca2+ are known contributors
to disease development namely T2DM and Alzheimer’s disease (AD). Interestingly, there is a profound
epidemiologic and experimental correlation between these two devastating diseases. Several studies
show that T2DM may lead to cognitive impairment [168,169]. Until recently the amyloid theory
which states that β-amyloid plaques cause apoptotic cell death of neuronal cells was the most
supported theory as a causative trigger for AD development [170–172]. This theory finds support by
several studies demonstrating the occurrence of increased Aβ42/Aβ40 ratios in the early stages of
AD development [173]. At this point the presenilin-1 comes into play: together with PEN-2, APH1
and nicastrin, presenilin-1 forms the y-secretase complex [174,175] responsible for the production of
β-amyloids. Since β-amyloid plaque formation is considered a hallmark of AD, y-secretase function is
implicated in the pathogenesis of AD [176]. New discoveries challenge this hypothesis [176–178] by
demonstrating that mutations of presenilin-1—which is pivotal to Aβ production—do not increase the
activity of the protein but rather decrease it. A phenomenon observed in vitro and in cells [179–183]
and also enzymatic inhibition fails to reduce symptoms of AD patients [184]. Moreover, as β-amyloid
plaques are also found in healthy individuals [185,186] and patients suffering from front temporal
dementia (FTD), a disease with similar functional defects but a lack of plaque formation [187–189],
the correlation between the occurrence of plaques with the emergence and severity of AD is only weak.
All these studies indicate that the y-secretase/amyloid theory is not the only causative factor for AD
development. At this point the Ca2+ comes into play: the more than 219 AD-associated mutations in
the presenilin-1 gene [190] are the most common cause of the inherited form of AD, namely familial
AD (FAD) that can onset already early in life. In contrast, the more common form of AD, from those a
possible influence of presenilin mutations has not established so far, develop later in life. Notably, all
so far tested presenilin-1 mutations also influence in some aspect intracellular Ca2+ handling [191–193].
Depending on the mutation(s) present both possible functions of presenilin-1 can be altered i.e.,
y-secretase activity and Ca2+ handling. Examples, therefore, are the following: ∆E9 affects y-secretase
function, M146V disturbs ER Ca2+ handling, L166P affects both [194]. Accordingly, deranged Ca2+

homeostasis andβ-amyloid toxicity due to mutations of presenilin-1 might act as independent causative
factors for developing FAD. Importantly, the known crucial involvement of presenilin-1 in physiological
amyloid degradation [195] and its essential function for β-cell responsiveness [28,107] might explain
the high incidence of T2DM in AD patients. This possible link could connect the high incidence of the
non-inherited version of AD and T2DM. Concluding this paragraph, changes in Ca2+ homeostasis due
to alterations in presenilin-1 function could be the missing link for the causative factors of diabetes
and AD development and could shed some light into the correlation of these two diseases. The exact
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regulation as well as additional mechanisms still need to be further elucidated but these data justify
more intensive studies on this topic.

7. Discussion and Conclusions

Considering the implications of the intracellular changes discussed here, it is clear that further
investigation into the Ca2+ signaling and other machinery of β-cells is required to truly gain insight
into how they relate to the pathophysiology of diabetes. Researchers are constantly innovating new
techniques to accomplish exactly this. For example, the concept of synthetic cells has been around
for decades [196,197], but recent work has made significant strides. Groups have so far reported
using vesicles seeded with integrated proteins for various purposes, and nanoparticles covered in
cell-membrane materials, among other creative cell facsimiles [198,199] to mimic vital and cell-specific
processes. The development of synthetic β-cells, in particular, could prove to be a promising technique
for gaining an in-depth understanding of the dynamics of insulin secretion and other physiological
processes. The concept, as is it has so far been developed, involves using synthetic materials in
order to mimic glucose-dependent secretion of insulin, an application that could prove important for
making strides in diabetes research. Chen and colleagues [200] have recently made headway with
this notion, using the structure of ‘vesicles-inside-a-vesicle’ with additional features that allow for
glucose metabolism and the ability of membranes to fuse. These artificial cells have so far been shown
to differentiate between varied experimental glucose conditions. When glucose is high, the artificial
β-cells exhibit high glucose uptake and increased oxidation, resulting in a decreased pH within the
compartment. Low pH subsequently induces mechanical changes within the cells’ that result in a
fusion of inner and outer vesicle membranes, thus simulating insulin release through exocytosis. While
still a rudimentary system, such work could ultimately contribute to the emergence of cell therapy as a
potential course of action in diabetes; countering the worst of the limitations of the current practice of
islet donation.

While promising concepts are constantly emerging, it is vital to continue diabetes investigation
with the tried and tested cellular and animal models available to all. As we have outlined here,
recent work has helped identify specific mechanisms of intra- and inter-cellular communication that
allow for the complicated insulin-secreting function of β-cells, particularly considering the importance
of Ca2+ to such processes. Despite now knowing of the intricate roles that this ion plays in pancreatic
cell-specific function, there is a significant knowledge gap between early questions posed on Ca2+’s
importance to the development of diabetes and current understanding of the same query.

The research discussed here reveals a significant phenomenon in pancreatic β-cells that sheds
further light on the mechanism by which these cells exhibit a response to increased glucose levels.
Dysregulation of this mechanism could therefore potentially contribute to the pathophysiological
development of T2DM or could be the missing link to other diseases.
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Abbreviations

AD Alzheimer’s Disease
ATP Adenosine triphosphate
CaMK Ca2+/calmodulin dependent kinase
CICR Calcium induced calcium release
DM Diabetes mellitus
ER Endoplasmic reticulum
GLUT Glucose transporter
GSIS Glucose stimulated insulin secretion
GSK3β Glycogen synthase kinase 3 β

IP3 Inositol trisphosphate
IP3R IP3 receptor
IR Insulin receptor
IRS Insulin receptor substrate
MCU Mitochondrial calcium uniporter
MICU Mitochondrial calcium uptake 1
NCX Na+/Ca2+ exchanger
NCLX Mitochondrial Na+/Ca2+ exchanger
NFAT Nuclear factor of activated T-cells
PM Plasma membrane
PMCA Plamsa membrane Ca2+-ATPase
PTP Permeability transition pore
RyR Ryanodine receptor
SERCA Sarco/endoplasmic reticulum Ca2+-ATPase
T1/2DM Type 1 or type 2 diabetes mellitus
VDCC Voltage dependent calcium channels
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