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Abstract

The purpose of this note is to establish two continuum theories for the bending and
torsion of inextensible rods as Γ-limits of 3D atomistic models. In our derivation we study
simultaneous limits of vanishing rod thickness h and interatomic distance ε. First, we
set up a novel theory for ultrathin rods composed of finitely many atomic fibres (ε ∼ h),
which incorporates surface energy and new discrete terms in the limiting functional. This
can be thought of as a contribution to the mechanical modelling of nanowires. Second,
we treat the case where ε � h and recover a nonlinear rod model – the modern version
of Kirchhoff’s rod theory.
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1 Introduction

Since the first boom in research on carbon nanotubes in the 1990s, we have been experienc-
ing discoveries of a wide variety of 1D nanomaterials. These include nanowires, nanorods,
nanopillars, and nanowhiskers [Eva20, BJ21], which find applications in electronics, photonics
[San18, HGB18], sensor design [ML20, ASL+13] or biomedicine [Cof21, AIP+21].

As such thin structures only have tens of nanometres in diameter, they exhibit unusual de-
formation behaviour under external loads (e.g. great flexibility, anisotropy or surface effects).
Despite the fast-paced progress, loading experiments remain challenging due to the need of
specialized and highly precise measurement devices, so advances in mechanical modelling and
computational studies of nanomaterials are still very desirable.

Elastic theories for one-dimensional rods or beams witness a long history (see [Ant05,
O’R17] for an overview). An early milestone was marked in [Kir59] in 1859 and since then,
Kirchhoff’s rod theory has become the most widespread one for describing slender elastic
bodies moving in 3D space (although a reformulation in modern notation is now used). The
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elastic energy of an isotropic Kirchhoff rod with length L can be expressed as

E(y, d2, d3) := 1
2

∫ L

0
E(I2κ

2
2 + I3κ

2
3) + Jτ2dx1,

where y : (0, L)→ R3 is the deformation of the rod and d2 : (0, L)→ R3 and d3 : (0, L)→ R3

are the so-called directors, which form an orthonormal frame (∂x1y,d2,d3) moving along x1.
The scalars κ2 = ∂2

x1y · d2 and κ3 = ∂2
x1y · d3 are called curvatures and τ = ∂x1d2 · d3 is

the torsion. Young’s modulus is denoted by E and torsional rigidity by J – the latter is
calculated for the shape of the cross section S ⊂ R2 of the rod. The second moments of area
are Is =

∫
S x

2
sdx2dx3 with s = 2 or s = 3.

In [MM03], a nonlinear bending-torsion theory for inextensible rods was rigorously de-
rived from three-dimensional elasticity using Γ-convergence. This theory, which was also
independently obtained in [Pan02], embraces Kirchhoff rods as a special case. We refer to
[Bra02, Bra06] for an introduction to Γ-convergence and to [ABP91, LDR93, FJM02, MM04,
Sca06, FJM06, FPPG15, EK21] for other results on mathematical derivation of dimensionally
reduced theories in elasticity.

For the purposes of identification of Young’s modulus and Poisson’s ratio, Kirchhoff’s rod
theory has already been applied to nanowires. [dFMGa05] However, the natural question
arises whether atomistic effects should not be part of continuum theories for bodies which
only consist of a few atomic layers in their transversal direction. Bearing this in mind,
Friesecke and James proposed in [FJ00] a method for deriving continuum models of 2D and
1D nanomaterials when in-plane strain is dominant (membrane theory) and the approach was
implemented rigorously in [Sch08] for thin films. The work [Sch06] focused on the bending of
Kirchhoff’s plates and introduced a continuum theory for thin films which comprise no more
than several layers. A similar derivation of von-Kármán’s plate theory has only been achieved
recently [BS22]. To complete the survey of research on microscopic origins of elasticity theory,
we point the reader to [BLBL02, AC04, CDKM06, EM07, Sch09, BS13, BS16, BBC20, ALP21]
and the references therein.

In the present article, we treat continuum limits of discrete energies of the type

E(k)(y(k)) =
∑
x∈Λ′εk

Wcell
(
~y (k)(x)

)
+ surface terms,

where Λ′εk
is an εk-fine cubic crystalline lattice in the shape of a thin rod, y(k) its deformation

and the matrix ~y (k)(x) describes the deformation of an atomic cube around the point x.
Such cell energies Wcell cover the case of nearest neighbour and next-to-nearest neighbour
interactions and appeared previously e.g. in [FT02, CDKM06, Sch06].

Section 2 sets up basic notation and introduces model assumptions that are common for
the rest of this article. We also formulate a compactness theorem that complements theorems
on Γ-convergence in the following sections. Having appeared in [MM03], the result needs only
minor adjustments in our discrete framework.

We seek a limiting energy functional Elim for the continuum model. To get a nontrivial
limit with k →∞, we multiply the energy E(k) by the volume element ε3

k and divide it by the
fourth power of the rod thickness hk, which is the energy scaling corresponding to bending
and torsion without extending the rod, cf. [MM03].

We are interested in two possible limit processes, which yield different effective models in
the end (see Figure 1 for an illustration).
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Figure 1: An illustration of the simultaneous dimension reduction and discrete-to-continuum
limit.

1. To model an ultrathin rod composed of a small number of atomic fibres, we let the
interatomic distance εk → 0+ and keep hk/εk fixed. This is the content of Section 3,
which includes the Γ-convergence Theorem 3.1 – our main contribution. Remarkably,
even though this new bending/torsion theory for ultrathin rods thus derived can be
related to the findings in [MM03], our elastic energy functional features a so-called
ultrathin correction and surface terms, none of which would be present in a limiting
theory based on the Cauchy-Born rule. Moreover, in the limiting functional we identify
a discrete minimization formula accounting for warping the rod’s cross section – a more
complex ingredient than in plate theories from [Sch06] and [BS22]. With these traits, we
believe that our proposed effective model might describe very thin 1D nanostructures
more accurately than would conventional elasticity.

2. When the numbers of atoms in the rod in the directions x1, x2, x3 are large, we speak
of a thin rod and study the simultaneous limit with εk → 0+ and hk → 0+ in such a
way that hk

εk
→ ∞. In this regime, which we investigate in Section 4, all discreteness

fades away and we recover the continuum functional from [MM03] (see Theorem 4.1).

In our forthcoming paper [SZ22] we will extend the results about ultrathin rods to brittle
materials. Other approaches to nanowire mechanical modelling include [YE06, HTJ12, SIS15]
and [KKG16, KHH20]. Several works have also used couple-stress theories to account for size
effects in Kirchhoff rods. [ZG19]

For ease of notation, we only consider εk := 1/k in the following, but it would also be
possible to work with arbitrary interatomic distances, see [BS22].

2 Notation, common model assumptions

2.1 Basics

If S ⊂ Rn, we write |S| for the n-dimensional Lebesgue measure of S. In the whole text,
we reserve the letter C for a generic positive constant whose value may vary from line to
line, but is independent of the quantities involved in a limit passage. We use standard
notation for function spaces: namely the Lebesgue spaces Lp(Ω;Rn), p ∈ [1,∞], Sobolev
spaces Hm(Ω;Rn) = Wm,2(Ω;Rn), m ∈ N, and weak convergence (fk⇀f). Further, A•j
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denotes the j-th column vector of a matrix A ∈ Rm×n; R3×3
skew stands for the space of all 3-by-

3 skew-symmetric matrices; ei = Id•i, 1 ≤ i ≤ 3, are the standard basis vectors in R3, and |u|
and |A| =

√
TrA>A denote the Euclidean and Frobenius norms of u ∈ Rn and A ∈ Rm×n,

respectively. All vectors, unless otherwise specified, are treated as column vectors. For an
open set Ω ⊂ Rn we write Ω′ ⊂⊂ Ω if Ω̄′ ⊂ Ω and Ω̄′ is compact. Finally, V ⊥ is the orthogonal
complement of a subspace V in an inner product space X.

2.2 Discrete model

Our starting point is an atomistic interaction model for an elastic rod. We consider a cubic
atomic lattice Λk, given by

Λk =
(
[0, L]× 1

k
Sk
)
∩ 1
k
Z3,

where 1
k is the interatomic spacing and L > 0 denotes the length of the rod. Its cross section is

the polygonal set ∅ 6= Sk ⊂ R2 (possibly not simply connected) determining a cross-sectional
lattice Lk := Sk ∩ Z2 and for which there is a set L′k ⊂ (1

2 + Z)2 such that

Sk = Int
⋃

x′∈L′
k

(
x′ +

[
−1

2 ,
1
2
]2)

. (2.1)

(It is assumed that x′ ∈ L′k whenever x′ + {−1
2 ,

1
2}

2 ⊂ Lk.) If Sk = S is a fixed cross section
that does not depend on k we will speak of an ultrathin rod. The rod’s thickness is then
comparable to the typical interatomic spacing. By contrast, in a thin rod the scaled cross
section 1

kSk eventually exhausts a domain of diameter h, where 1
k � h � 1. We use the

symbol Λ′k for the lattice of midpoints of open cubes with sidelength 1/k and corners in Λk.

These set-ups may be described simultaneously by our fixing a positive null sequence
(hk) with hk ≥ 1/k that we choose as equal to 1/k in the ultrathin case and for which we
suppose khk → ∞ for merely thin rods. We then assume that there exists a fixed bounded
Lipschitz domain S ⊂ R2 such that the above Sk is the unique largest (in terms of cardinality)
connected set of the form (2.1) that is contained in khkS.

The lattice Λk corresponds to an undeformed reference configuration that is subject to a
static deformation y(k) : Λk → R3, which stores elastic energy into the rod. As the energy
originates from interactions of nearby atoms we introduce a rescaling to atomic units by
passing to a rescaled lattice with unit distances between atoms.

Points in this lattice are distinguished using the hat diacritic – here for x = (x1, x2, x3) ∈
R3 we write x̂1 := kx1, x̂′ = (x̂2, x̂3) := kx′ = k(x2, x3) and ŷ(k)(x̂1, x̂2, x̂3) := ky(k)( 1

k x̂1,
1
k x̂
′)

so that ŷ(k) : kΛk → R3. Then Λ̂k, Λ̂′k stand for the sets of all x̂ = (x̂1, x̂2, x̂3) such that the
corresponding downscaled points x lie in the lattices Λk, Λ′k, respectively. We introduce eight
direction vectors z1, . . . , z8:

z1 = 1
2(−1,−1,−1)>, z5 = 1

2(+1,−1,−1)>,
z2 = 1

2(−1,−1,+1)>, z6 = 1
2(+1,−1,+1)>,

z3 = 1
2(−1,+1,+1)>, z7 = 1

2(+1,+1,+1)>,
z4 = 1

2(−1,+1,−1)>, z8 = 1
2(+1,+1,−1)>.

This allows us to collect into a matrix the information about the deformation of a unit cell
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x̂+ {−1
2 ,

1
2}

3, x̂ ∈ Λ̂′k:

~y (k)(x̂) = (ŷ(k)(x̂+ z1)| · · · |ŷ(k)(x̂+ z8)) ∈ R3×8.

With 〈ŷ(k)(x̂)〉 = 1
8
∑8
i=1 ŷ

(k)(x̂+ zi), x̂ ∈ Λ̂′k we further define the discrete gradient

∇̄ŷ(k)(x̂) = ~y (k)(x̂)− 〈ŷ(k)(x̂)〉(1, . . . , 1) ∈ R3×8.

Then the matrix Īd = (z1| · · · |z8) ∈ R3×8 is the discrete gradient of ŷ(k) = id. Note that a
discrete gradient has the sum of columns equal to 0.

There are two more important subsets of R3×8:

S̄O(3) := {R Īd; R ∈ SO(3)}, V0 := {(c| · · · |c) ∈ R3×8; c ∈ R3}.

2.3 Rescaling, interpolation and extension

It is desirable to have the deformations defined on a common domain Ω := (0, L) × S,
independent of k, in order to handle their convergence. Given a positive null sequence (hk)
such that hk ≥ 1/k (and hk = 1/k in the ultrathin case) set ỹ(k)(x1, x2, x3) := y(k)(x1, hkx

′)
for (x1, hkx

′) ∈ Λk. Furthermore, we introduce an interpolation of ỹ(k) so that it is also
defined outside lattice points.

Let z̃i = ( 1
kz

i
1,

1
khk

zi2,
1
khk

zi3) and Λ̃′k = {ξ ∈ R3; (kξ1, khkξ
′) ∈ Λ̂′k}. We split every block

Q̃(x̄) = x̄+ [− 1
2k ,

1
2k ]× [− 1

2khk
, 1

2khk
]2, x̄ ∈ Λ̃′k, into 24 simplices as in [Sch06, BS22] and get

a piecewise affine interpolation of ỹ(k), which we denote again by ỹ(k). More precisely, set
ỹ(k)(x̄) := 1

8
∑8
i=1 ỹ

(k)(x̄ + z̃i) and for each face F̃ of the block Q̃(x̄) and the corresponding
centre xF̃ of the face F̃ , define ỹ(k)(xF̃ ) := 1

4
∑
j ỹ

(k)(x̄+z̃j), where we sum over all j such that
x̄+ z̃j is a corner of F̃ . In fact, a face can be labelled as F̃ij if it has x̄+ z̃i and x̄+ z̃j such that
|zi − zj | = 1 as vertices; the ambiguity in this notation can be resolved by using the order of
indices. Then, let ỹ(k) be interpolated in an affine way on every T̃ij = conv{x̄, x̄+z̃i, x̄+z̃j , xij}
with xij being the centre of the face F̃ij , so that ỹ(k) is everywhere continuous.

We thus obtain ỹ(k) : [0, Lk] × S̄k → R3, where we have abbreviated Lk := bkLc/k. It
satisfies

ỹ(k)(xF̃ ) = −
∫
F̃
ỹ(k)dH2, ỹ(k)(x̄) = −

∫
Q̃(x)

ỹ(k)(ξ)dξ (2.2)

for any face F̃ of Q̃(x) with face centre xF̃ .

Setting ∇kỹ(k) :=
(∂ỹ(k)

∂x1

∣∣∣h−1
k

∂ỹ(k)

∂x2

∣∣∣h−1
k

∂ỹ(k)

∂x3

)
, we proceed with an auxiliary result.

Lemma 2.1. There are c, C > 0 such that for any k ∈ N, hk > 0 and lattice block Q̃(x̄) =
x̄+ [− 1

2k ,
1
2k ]× [− 1

2khk
, 1

2khk
]2 with centre x̄ ∈ Λ̃′k and corresponding x̂ = (kx̄1, khkx̄

′) ∈ Λ̂′k,

c|∇̄ŷ(k)(x̂)|2 ≤ k3h2
k

∫
Q̃(x̄)
|∇kỹ(k)|2dξ ≤ C|∇̄ŷ(k)(x̂)|2. (2.3)

Proof. The statement is contained in [Sch09, Lemma 3.5].
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We now construct an extension to ‘ghost atoms’ in a tubular neighbourhood of the rod
whose rigidity is controlled by the original atom positions. For m ∈ N set

Lext
k = Lk + {−m, . . . ,m}2, Λext

k = {− 1
k , 0, . . . , Lk + 1

k} ×
1
kL

ext
k ,

L′,ext
k = L′k + {−m, . . . ,m}2 Λ′,ext

k = {− 1
2k ,

1
2k , . . . , Lk + 1

2k} ×
1
kL
′,ext

Sext
k = Sk + (−m,m)2, Ωext

k = (− 1
k , Lk + 1

k )× 1
khk

Sext
k .

We suppress m, which will be a fixed constant, from our notation. It will be equal to 1 for
ultrathin rods and ≥ 1 such that Sext

k ⊃ khkS for thin rods. We also consider the lattices
Λ̃ext
k and Λ̃′,ext

k that are related to their unrescaled versions Λext
k and Λ′,ext

k like we saw it for
Λ̃′k above.

Our extension follows a scheme from [Sch09, Section 3.1], see in particular [Sch09, Lem-
mas 3.1, 3.2 and 3.4] and cf. also [BS22, Lemma 3.1]. Notice that for our choice of Sk as
the largest connected set of the form (2.1) that is contained in khkS for a bounded Lipschitz
domain S ⊂ R2 in particular guarantees that there is a constant C > 0, independent of k,
such that for any two points x̂′, ŷ′ ∈ L′k

distL′
k
(x̂′, ŷ′) ≤ C|x̂′ − ŷ′|,

where

distL′
k
(x̂′, ŷ′) = min

{
N ∈ N0 : ∃ x̂′ = x̂′0, . . . , x̂

′
N = ŷ′ ∈ L′k with |x̂n+1 − x̂n| = 1∀n < N

}
denotes the lattice geodesic distance of two elements x̂′, ŷ′ ∈ L′k.

Lemma 2.2. There are extensions y(k) : Λext
k → R3 such that their interpolations ỹ(k) satisfy

ess supΩext
k

dist2(∇kỹ(k),SO(3)) ≤ C ess sup(0,Lk)× 1
khk

Sk
dist2(∇kỹ(k),SO(3))

and ∫
Ωext

k

dist2(∇kỹ(k),SO(3))dx ≤ C
∫

(0,Lk)× 1
khk

Sk

dist2(∇kỹ(k),SO(3))dx.

Proof. Let y(k) : Λk → R3 be a lattice deformation. We partition Λ′,ext
k \ Λ′k into the 8

sublattices Λ′k,i = (Λ′,ext
k \ Λ′k) ∩ 1

k (zi + 2Z3) and apply the following extension procedure
consecutively for i = 1, . . . , 8:

If x ∈ Λ′k,i we write BR(x) for the set of those z ∈ Λ′,ext
k with |z − x| ≤ R/k for which

y(k)(z+ 1
kz

j) is defined already for all 1 ≤ j ≤ 8. Now if B1(x) 6= ∅, extend y(k) to all z+ 1
kz

j ,
1 ≤ j ≤ 8, by choosing an extension such that dist2(∇̄ŷ(k)(x̂),SO(3)Īd) is minimal.

Due to [Sch09, Lemma 3.1] and the property of lattice geodesics within L′k, this distance
will then be controlled by

C
∑

z∈BR(x)
dist2(∇̄ŷ(k)(ẑ), S̄O(3)),

for some uniformly bounded R. We repeat this extension step 8m times.

Remark 2.1. The construction implies that for ultrathin rods, the following local estimate
holds: For any x ∈ Λ′,ext

k , defining U(x) =
(
{x1 − 1

k , x1, x1 + 1
k} ×

1
kL
′) ∩ Λ′k we have

dist2(∇̄ŷ(k)(x̂), S̄O(3)) ≤ C
∑

ξ∈kU(x)
dist2(∇̄ŷ(k)(ξ), S̄O(3)).
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2.4 Elastic energy

In the expression for total elastic energy, we group contributions from individual atomic cells
(cf. [CDKM06, Sch06]).

Definition 2.1. We say that W : R3×8 → [0,∞) is a full cell energy function if the following
assertions hold true:

(E1) Frame-indifference: W (R~y + (c| · · · |c)) = W (~y), R ∈ SO(3), ~y ∈ R3×8, c ∈ R3,

(E2) W attains its minimum (equal to 0) at and only at all rigid deformations, i.e. defor-
mations ~y = (ŷ1| · · · |ŷ8) with ŷi = Rzi + c for all i ∈ {1, . . . , 8} and some R ∈ SO(3),
c ∈ R3,

(E3) W is everywhere Borel measurable and of class C2 in a neighbourhood of S̄O(3) and the
quadratic form associated with ∇2W (Īd) is positive definite when restricted to span{V0∪
R3×3

skewĪd}⊥,

(E4) lim inf |~y|→∞,
~y∈V ⊥0

W (~y)
|~y|2 > 0.

We say that W : R3×8 → [0,∞) is a partial cell energy function if it fulfils (E1) together with

(E2’) W equals zero for all rigid deformations,

(E3’) W is everywhere Borel measurable and of class C2 in a neighbourhood of S̄O(3).

Trivially, we see that W ≡ 0 is a partial cell energy function.

To model surface energy, let T be the power set of {1, . . . , 8}. We classify the cells
centred at Λ̂′,ext

k = kΛ′,ext
k by the set of corners they share with Λ̂k, i.e. tk(x̂) =

{
i ∈

{1, . . . , 8} : x̂ + zi ∈ Λ̂k
}

for x̂ ∈ Λ̂′,ext
k . (Obviously, tk(x̂) = {1, . . . , 8} iff x̂ ∈ Λ̂′k and

tk(x̂) 6= ∅ iff x̂ ∈ Λ̂′,ext
k for the specific choice m = 1.) Also note that on the lateral boundary,

i.e. for x̂1 /∈ {−1
2 , kLk + 1

2}, we have i ∈ tk(x̂) iff i + 4 ∈ tk(x̂) for i = 1, 2, 3, 4 and so
tk(x̂) = tk(x̂′) :=

{
i ∈ {1, . . . , 8} : x̂′+(zi)′ ∈ Lk

}
. Let Λ̂′,surf

k = {1
2 , . . . , kLk−

1
2}×(L′,ext

k \L′k)
and Λ̂′,end

k = {−1
2 , kLk + 1

2} × L
′,ext
k . Our total elastic interaction energy reads

E(k)(y(k)) =
∑
x̂∈Λ̂′

k

Wcell
(
~y (k)(x̂)

)
+

∑
x̂∈Λ̂′,surf

k

Wsurf
(
tk(x̂′), ~y (k)(x̂)

)
+

∑
x̂∈Λ̂′,end

k

Wend
(
tk(x̂), ~y (k)(x̂)

)
,

(2.4)

where Wcell is a full cell energy and Wsurf(t, ·), Wend(t, ·) with t ∈ T are partial cell energy
functions according to Definition 2.1. In order to avoid artificial contributions we assume
that the values of Wsurf(t, ~y) and Wend(t, ~y), ~y = (ŷ1| · · · |ŷ8), may depend on ŷi only if i ∈ t.

We remark that the terms involving Wend for cells near the rod’s endpoints vanish as
k → ∞ for both ultrathin and thin rods. While for thin rods also the lateral boundary
contributions vanish, this is no longer the case for ultrathin rods. Our set-up allows us to
model extra-cross-sectional interactions of atoms which lie in different atomic cells but which
are, in fact, their mutual neighbours due to the cross section’s potentially jagged shape.
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We write Qcell and Qsurf(t, ·) for the quadratic forms generated by ∇2Wcell(Īd) and
∇2Wsurf(t, Īd), t ∈ T, respectively.
Example 2.1. To explain the motivation behind Wsurf and Wend, let us consider a simple
mass-spring model with harmonic springs for a rod with its cross section determined by
L′k ≡ L′ = {−1

2 ,
1
2 ,

3
2}

2 ∪ {(1
2 ,−

3
2), (1

2 ,
5
2)} (m := 1). The aim is to rewrite

E(k)(y) = 1
2

∑
x̂∗,x̂∗∗∈Λ̂k
|x̂∗−x̂∗∗|=1

K1
2 (|ŷ(x̂∗)− ŷ(x̂∗∗)| − 1)2 + 1

2
∑

x̂∗,x̂∗∗∈Λ̂k

|x̂∗−x̂∗∗|=
√

2

K2
2 (|ŷ(x̂∗)− ŷ(x̂∗∗)| −

√
2)2

using Wcell, Wsurf , and Wend (K1 > 0 and K2 > 0 are constant stiffnesses). While in the
bulk, we set

Wcell(~y) = 1
8

∑
|zi−zj |=1

K1
2 (|ŷi − ŷj | − 1)2 + 1

4
∑

|zi−zj |=
√

2

K2
2 (|ŷi − ŷj | −

√
2)2,

the functions Wsurf(tk(5
2 ,

3
2), ·), Wsurf(tk(−3

2 ,
3
2), ·) etc., and Wend in turn include surface

terms, e.g.

Wsurf
(
tk
(5

2 ,
1
2
)
, ~y
)

= Wsurf
(
{3, 4, 7, 8}, ~y

)
=

∑
i∈{3,7}

K1
8 (|ŷi+1 − ŷi| − 1)2

+
4∑
i=3

K1
8 (|ŷi+4 − ŷi| − 1)2 + K2

4 (|ŷ7 − ŷ4| −
√

2)2 + K2
4 (|ŷ8 − ŷ3| −

√
2)2,

Wend
(
tk
(
−1

2 ,
1
2 ,

1
2
)
, ~y
)

= Wend
(
{1, 2, 3, 4}, ~y

)
=

3∑
i=1

K1
8 (|ŷi+1 − ŷi| − 1)2

+K1
8 (|ŷ4 − ŷ1| − 1)2 +

2∑
i=1

K2
4 (|ŷi+2 − ŷi| −

√
2)2.

The auxiliary square Q′(x′e) = x′e + (−1
2 ,

1
2)2 centred at x′e := (3

2 ,
5
2) is adjacent to two

physically relevant cross-sectional squares, so in particular, the atoms with x′-coordinates
(2, 2) and (1, 3), belonging to different ‘real’ atomic squares Q′(1

2 ,
3
2) and Q′(3

2 ,
3
2), can still

interact – this interaction should be comprised in Wsurf(tk(x′e), ·). Like this, E(k) is expressible
by (2.4). After adding a suitable penalty term positive in a neighbourhood of O(3)Īd\ S̄O(3),
such Wcell, Wsurf , and Wend fulfil all the assumptions for our results to apply.

Lemma 2.3. Under the assumptions of Lemma 2.1, let W be a full cell energy function.
Then

k3h2
k

∫
Q̃(x̄)

dist2(∇kỹ(k)(ξ),SO(3))dξ ≤ CW
(
∇̄ŷ(k)(x̂)

)
. (2.5)

Proof. See [Sch06, Lemma 3.2]; the claim is only restated in our notation.

2.5 Compactness of low-energy sequences

We provide a compactness theorem that complements our Γ-convergence results in the fol-
lowing sections and is also the first step towards their proofs. It is based on a now well-known
result about geometric rigidity from [FJM02] and is essentially contained in [MM03].
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We fix a null sequence (hk) with 1
k ≤ hk and abbreviate h′k = 1

kbkhkc. Set Ωk = (0, Lk)×
1
khk

Sk.

Theorem 2.4. Let (ỹ(k))∞k=1 be a sequence with y(k) : Λext
k → R3 such that their interpolations

ỹ(k) constructed in Section 2.3 satisfy the estimate

lim sup
k→∞

1
h2
k

∫
Ωk

dist2(∇kỹ(k),SO(3))dx <∞. (2.6)

Then, there exist a (not relabelled) subsequence (ỹ(k)) and a sequence of piecewise constant
mappings R(k) : R→ SO(3) whose discontinuity set is contained in {h′k, 2h′k, . . . , (bLk/h′kc −
1)h′k} such that

R(k) → R in L2([0, L];R3×3), (2.7)

where R ∈ SO(3) a.e. and R(x1) =
(
∂ỹ
∂x1

(x)
∣∣ d2(x)

∣∣ d3(x)
)

for ỹ ∈ H2(Ω;R3), d2, d3 ∈
H1(Ω;R3) that are independent of x2 and x3. Moreover, we have∫

Ωext
k

|∇kỹ(k) −R(k)|2dx ≤ Ch2
k. (2.8)

and

|R(k)(ih′k + 3
2h
′
k)−R(k)(ih′k + 1

2h
′
k)|2 ≤

C

hk
‖dist(∇kỹ(k),SO(3))‖2

L2((u(k)
i ,v

(k)
i )×Sext

k
)
, (2.9)

where u(k)
i = ih′k, v(k)

i = u
(k)
i + 2hk for i = 1, . . . , bLk/h′kc − 3, u(k)

0 = − 1
k , v(k)

0 = − 1
k + 3hk

and u(k)
i = min{(bLk/h′kc − 2)h′k, Lk + 1

k − 3hk}, v
(k)
i = Lk + 1

k for i = bLk/h′kc − 2.

Note that in the ultrathin case one has hk = 1/k and so h′k = 1
k , (bLk/h′kc−1)h′k = Lk− 1

k .

Proof. By Lemma 2.2, property (2.6) is equivalent to

lim sup
k→∞

1
h2
k

∫
Ωext

k

dist2(∇kỹ(k),SO(3))dx <∞,

hence also to the same inequality with Ωext
k replaced by (− 1

k , Lk+ 1
k )×S or (0, L)×S. Except

for the specific choice of the discontinuity set, these statements are thus proven in [MM03] by
applying the geometric rigidity theorem of [FJM02] to sets of the form (a, a + bhk) × hkS.1
If we do this here for b = 1 and the special choices a = ih′k, i = 1, . . . , bLk/h′kc − 2 as well
as b = 3 and a ∈ {− 1

k , Lk + 1
k − 3hk}, we see that R(k) can be arranged to jump only in

{h′k, 2h′k, . . . , (bLk/h′kc − 1)h′k}.

We remark that, for a suitable choice of translation vectors ck (which does not change
the energy), ỹ(k) − ck → ỹ in H1(Ω;R3).

1Because of lattice squares that only share one corner, in the ultrathin case Sk might not be Lipschitz, but
as a finite union of squares the domain is still very regular so that all necessary claims hold. Thus we can
choose S = Sk for ultrathin rods.
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3 Resulting theory for ultrathin rods

We now specialize to ultrathin rods for which the cross sectional lattice Lk = L is assumed to
be fixed. We set hk = 1/k and fix m = 1. Since also Lext

k , L′,ext
k , Sk (which equals S without

loss of generality) and Sext
k are independent of k, we drop the subscript.

3.1 Difference operators

In addition to ∇̄, we define several other difference operators, applicable to any f : [− 1
k , Lk +

1
k ] × Lext → R`, ` ∈ N. If x ∈ Ωext

k , we denote by x̄ an element of Λ̃′,ext
k that is closest to x.

For x ∈ Ωext
k we set

∇̄2d
k f(x) = k

[
f(x1, (x̄+ z̃i)′)− 1

4

4∑
j=1

f(x1, (x̄+ z̃j)′)
]4

i=1
,

∇̄2d f(x) =
[
f(x1, (x̄+ zi)′)− 1

4

4∑
j=1

f(x1, (x̄+ zj)′)
]4

i=1
,

∇̄k f(x) = k

[
f(x̄+ z̃i)− 1

8

8∑
j=1

f(x̄+ z̃j)
]8

i=1

=
(
∇̄left

k f(x)| ∇̄right
k f(x)

)
, ∇̄left

k f(x), ∇̄right
k f(x) ∈ R3×4,

∆1f(x) = k

[1
4

8∑
j=5

f(x̄+ z̃j)− 1
4

4∑
j=1

f(x̄+ z̃j)
]
,

whose interpretations are ‘2D-differences in the x2x3-plane’ (divided by 1/k or not), ‘3D-
differences’ and ‘averaged difference in the x1-direction’, respectively. Note that the functions
∇̄2d

k f(x1, ·) and ∇̄2d f(x1, ·) are piecewise constant on lattice squares of the form x′+(−1
2 ,

1
2)2,

where x′ ∈ L′, and ∇̄2d f(x) is independent of k. The functions ∇̄k f and ∆1f are piecewise
constant on lattice blocks that are centred in points of Λ̃′,ext

k .

Set ỹ(k)
i = ỹ(k)(x̄+ z̃i), i = 1, 2, . . . , 8, then property (2.2) yields

∆1ỹ
(k)(x) = k

(
ỹ

(k)
5 + ỹ

(k)
6 + ỹ

(k)
7 + ỹ

(k)
8

4 − ỹ
(k)
1 + ỹ

(k)
2 + ỹ

(k)
3 + ỹ

(k)
4

4

)
= k−

∫
x̄′+(− 1

2 ,
1
2 )2

ỹ(k)(x̄1 + 1
2k , ξ

′)− ỹ(k)(x̄1 − 1
2k , ξ

′)dξ′

= k−
∫
x̄′+(− 1

2 ,
1
2 )2

∫ x̄1+ 1
2k

x̄1− 1
2k

∂ỹ(k)

∂x1
(ξ1, ξ

′)dξ1dξ′ = −
∫
Q̃(x)

∂ỹ(k)

∂x1
dξ.

(3.1)

Direct computation shows:

∇̄left
k f(x) = ∇̄2d

k f(x̄1 − 1
2k , x

′)− 1
2∆1f(x)(1, 1, 1, 1),

∇̄right
k f(x) = ∇̄2d

k f(x̄1 + 1
2k , x

′) + 1
2∆1f(x)(1, 1, 1, 1)

and so, with all columns grouped together,

∇̄k f(x) =
(
∇̄2d

k f(x̄1 − 1
2k , x

′)| ∇̄2d
k f(x̄1 + 1

2k , x
′)
)

+ 1
2∆1f(x)(−1,−1,−1,−1, 1, 1, 1, 1).

(3.2)
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3.2 Gamma-convergence

Recall that Ω = (0, L) × S. In order to specify an appropriate limit space we first note
that in view of Theorem 2.4 and (2.5) it suffices to consider limiting configurations ỹ ∈
H1(Ω;R3) and d2, d3 ∈ L2(Ω;R3) that do not depend on (x2, x3). We will then simply write
ỹ ∈ H1((0, L);R3) and d2, d3 ∈ L2((0, L);R3). The following observation shows that the
convergence in L2(Ω,R3) to such ỹ and d2, d3 is naturally described in terms of asymptotic
atomic positions and independent of our interpolation scheme, cf. also Remark 3.3.

For a sequence (y(k))∞k=1 of (extended) lattice deformations and ỹ ∈ H1((0, L);R3) the
convergence ỹ(k) → ỹ in L2(Ω;R3) is equivalent to

ỹ(k)(·, x′)→ ỹ in L2((0, L);R3) for every x′ ∈ L.

We note here that for x′ ∈ L the map ỹ(k)(·, x′) is nothing but the piecewise affine interpolation
of ỹ(k)(·, x′) on {− 1

k , 0, . . . , Lk + 1
k}. If moreover d2, d3 ∈ L2((0, L);R3), then ∇kỹ(k) L2

→ R =
( ∂ỹ∂x1

| d2 | d3) is equivalent to

∇̄kỹ(k) → R Īd in L2(Ω;R3×8)

by Lemma 2.1 (recall that ∇̄kỹ(k) is a function in L2(Ω;R3×8) constant on each cell x̄ +
(− 1

2k ,
1
2k )× (−1

2 ,
1
2)2, x̄ ∈ Λ̃′,ext

k ).

Theorem 3.1. If k → ∞, the functionals kE(k) Γ-converge to the functional Eult defined
below, in the following sense:

(i) (liminf inequality) Let (y(k))∞k=1 be a sequence of (extended) lattice deformations such
that their piecewise affine interpolations (ỹ(k))∞k=1, defined in Section 2, converge to
ỹ ∈ H1((0, L);R3) in L2(Ω;R3). Let us also assume that k∂xs ỹ

(k) → ds ∈ L2((0, L);R3)
in L2(Ω;R3), s = 2, 3. Then

Eult(ỹ, d2, d3) ≤ lim inf
k→∞

kE(k)(y(k)).

(ii) (existence of a recovery sequence) For every ỹ ∈ H1((0, L);R3), d2, d3 ∈ L2((0, L);R3)
there is a sequence of (extended) lattice deformations (y(k))∞k=1 such that their inter-
polations (ỹ(k)), defined in Section 2, satisfy ỹ(k) → ỹ in L2(Ω;R3), k ∂ỹ

(k)

∂xs
→ ds in

L2(Ω;R3) for s = 2, 3, and

lim
k→∞

kE(k)(y(k)) = Eult(ỹ, d2, d3).

The limit energy functional is given by

Eult(ỹ, d2, d3) =
{1

2
∫ L
0 Qrel

cell(R>∂x1R)dx1 if (ỹ, d2, d3) ∈ A,
+∞ otherwise,

where R := (∂x1 ỹ|d2|d3) and the class of admissible deformations is

A :=
{
(ỹ, d2, d3) ∈ H2(Ω;R3)×H1(Ω;R3)×H1(Ω;R3);

ỹ, d2, d3 do not depend on x2, x3,
( ∂ỹ
∂x1
| d2 | d3

)
∈ SO(3) a.e. in (0, L)

}
.
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The relaxed quadratic form Qrel
cell : R

3×3
skew → [0,+∞) is defined as

Qrel
cell(A) := min

α : Lext→R3

g∈R3

∑
x′∈L′,ext

Qtot

(
x′,

1
2
(
A(0, x′)> + g

)
(−1,−1,−1,−1, 1, 1, 1, 1)

+ 1
4A
(

0 0 0 0 0 0 0 0
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

)
+
(
∇̄2d α| ∇̄2d α

))
(3.3)

with Qtot(x′, ·) = Qcell if x′ ∈ L′ and Qtot(x′, ·) = Qsurf(t(x′), ·) if x′ ∈ L′,ext \ L′.

Remark 3.1. In comparison with the rod theory in [MM03], the functional Eult takes into
account the fewer degrees of freedom of the cross section leading to the discrete minimization
in (3.3) and it also features an ultrathin correction term C, explicitly given in (3.4) below,
which captures effects in our very thin atomic structures that could not be described by a
Cauchy–Born continuum approximation.
Remark 3.2. Let us comment on the existence of a minimizer in (3.3). Fix A ∈ R3×3

skew and let

CA(x′) = 1
2A(0, x′)>(−1,−1,−1,−1, 1, 1, 1, 1) + 1

4A
(

0 0 0 0 0 0 0 0
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

)
.

The mapping J : (R3)Lext × R3 → R given by

J(α, g) =
∑

x′∈L′,ext

Qtot
(
x′, CA(x′) +

(
∇̄2d α(x′)| ∇̄2d α(x′)

)
+ 1

2(−g| · · · | − g|g| · · · |g)
)

is, in fact, a real-valued function of 3 · ]Lext + 3 variables. Since Qtot(x′, ·) is positive semidef-
inite on R3×8 for any x′ ∈ L′,ext, the function J is a positive semidefinite quadratic form. It
thus attains a minimum and a minimizer (α, g) of J can be chosen in linear dependence on
A, so Qrel

cell is a quadratic form as well. Besides, since the components of A := R>∂x1R are
L2 in x1, we obtain (α, g) ∈ L2([0, L]; (R3)Lext × R3).
Remark 3.3. One could also consider limiting configurations with an explicit dependence on
x′. Due to the discrete nature of L, however, only a subspace of H1(Ω;R3) can be realized
as limits of interpolated deformations ỹ(k). That is, ỹ(k) can converge to ỹ in L2(Ω;R3) if
and only if ỹ is piecewise affine in x′, more precisely, if for a. e. x1 ∈ (0, L) and x′ ∈ L′ one
has ỹ(x1, x

′) = 1
4
∑4
i=1 ỹ(x1, x

′ + (zi)′) and ỹ(x1, ·) is affine on conv{x′, x′ + (zi)′, x′ + (zj)′}
if i, j ∈ {1, 2, 3, 4}, |i − j| = 1. Similarly, limiting directors (d2, d3) are restricted to be
gradients with respect to x′ of such functions. By Theorem 2.4, (2.4) and (2.5) one still has
Γ-convergence with such a class of limiting configurations if Eult is extended by the value
+∞ outside of H1((0, L);R3)× L2((0, L);R3)× L2((0, L);R3).
Remark 3.4. Standard arguments show that forcing terms of the form −k−3h−2

k

∑
x∈Λk

f(x1) ·
y(k)(x), f ∈ L2((0, L);R3), could be added to k−3h−4

k E(k) and Γ-convergence as well as
compactness claims would still hold (see e.g. [Sch07, Corollary 3.4] or [BS22] for more details).

3.3 Proof of the lower bound

In this section, we prove Theorem 3.1(i). We may assume that kE(k)(y(k)) ≤ C and so (2.6)
holds true by (2.4) and (2.5). We set Ωext = (0, L) × Sext. Let R(k) be as in Theorem 2.4.
By (2.8) and in analogy with [MM03], for

G(k)(x) := (R(k))>(x1)∇kỹ(k)(x)− Id
1/k , x ∈ Ωext

k ,
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we have G(k)⇀G ∈ L2(Ωext;R3×3) in L2(Ωext;R3×3), up to a subsequence. In our discrete
setting we instead need to study

Ḡ(k)(x) := (R(k))>(x1) ∇̄k ỹ
(k) − Īd

1/k , x ∈ Ωext
k .

The L2-boundedness of {G(k)} implies the boundedness of {Ḡ(k)} in L2(Ωext;R3×8) by (2.3).
Hence Ḡ(k)⇀Ḡ for a subsequence, which we do not relabel. We state a proposition about
the structure of Ḡ.

Proposition 3.2. Ḡ(k)⇀Ḡ in L2(Ωext;R3×8) for

Ḡ(x) = 1
2
[
G1(x1) +R>(x1) ∂R

∂x1
(x1)(0, x̄′)>

]
(−1,−1,−1,−1, 1, 1, 1, 1)

+ C(x1) +
(
∇̄2d α(x)| ∇̄2d α(x)

)
,

where G1 ∈ L2((0, L);R3), α ∈ L2((0, L)×Lext;R3) ∼= L2((0, L); (R3)Lext) and C is explicitly
given by

C = 1
4

(
−κ2−κ3 κ3−κ2 κ2+κ3 κ2−κ3 κ2+κ3 κ2−κ3 −κ2−κ3 κ3−κ2
−τ τ τ −τ τ −τ −τ τ

τ τ −τ −τ −τ −τ τ τ

)
(3.4)

with κ2(x1) = ∂2ỹ
∂x2

1
· d2, κ3(x1) = ∂2ỹ

∂x2
1
· d3, τ(x1) = ∂d2

∂x1
· d3, and R from Theorem 3.1.

Proof. Formula (3.2) enables us to find the longitudinal and transversal contributions sepa-
rately.

1. Longitudinal contributions. We consider the piecewise constant function

Ḡ
(k)
long := k

2
[
(R(k))>∆1ỹ

(k)(−1,−1,−1,−1, 1, 1, 1, 1)− e1e
>
1 Īd

]
and observe that for each x ∈ Ωext

k with Q̃(x) := Q̃(x̄) = x̄ + (− 1
2k ,

1
2k ) × (−1

2 ,
1
2)2 property

(3.1) of the piecewise affine interpolation ỹ(k) yields

Ḡ
(k)
long = k

2
(
(R(k))>−

∫
Q̃

∂ỹ(k)

∂x1
dξ − e1

)
(−1,−1,−1,−1, 1, 1, 1, 1)

= 1
2−
∫
Q̃
G(k)e1dξ(−1,−1,−1,−1, 1, 1, 1, 1).

This converges weakly to

1
2−
∫
Q̃′(x′)

G(x1, ξ
′)e1dξ′(−1,−1,−1,−1, 1, 1, 1, 1),

where Q̃′(x′) = (x̄2 − 1
2 , x̄2 + 1

2)× (x̄3 − 1
2 , x̄3 + 1

2), since for any ϕ ∈ C∞c (Ωext)∫
Ωext
−
∫
Q̃(x̄)

G(k)(ξ)dξϕ(x)dx =
∫

Ωext
G(k)(ξ)−

∫
Q̃(ξ̄)

ϕ(x)dxdξ

→
∫

Ωext
G(ξ)

∫
Q̃′(ξ′)

ϕ(ξ1, x
′)dx′dξ

=
∫

Ωext

∫
Q̃′(x′)

G(x1, ξ
′)dξ′ϕ(x)dx.
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(A similar property is also used in [BS22, Proposition 4.6].) In view of [MM03, equa-
tion (3.10)], the first column of G reads

Ge1 = G1(x1) +R>(x1) ∂R
∂x1

(x1)(0, x′)>

for some G1 ∈ L2((0, L);R3) and hence

−
∫
Q̃′(x′)

G(x1, ξ
′)e1dξ′ = G1(x1) +R>(x1) ∂R

∂x1
(x1)(0, x̄)>.

It follows that in L2(Ωext;R3×8),

Ḡ
(k)
long⇀

1
2
(
G1(x1) +R>(x1) ∂R

∂x1
(x1)(0, x̄)>

)
(−1,−1,−1,−1, 1, 1, 1, 1).

2. Transversal contributions. Here the left 3 × 4 submatrix of some Ā ∈ R3×8 is referred to
as the left part of Ā, whereas the other 3× 4 submatrix as the right part of Ā.

First let us look at the left part

Ḡ
(k)
left(x) := k

[
(R(k))>(x1) ∇̄2d

k ỹ(k)(x̄1 − 1
2k , x̄

′)−
(

0 0 0 0
(z1)′ (z2)′ (z3)′ (z4)′

)]
.

We define the auxiliary function

α
(k)
left(x) := k

[
kR(k)(x1)>ỹ(k)(x̄1 − 1

2k , x
′)− (0, x′)>

]
, x ∈ Ωext

k ,

whose average over the cross-sectional lattice is

α
(k)
left,0(x1) := 1

]Lext

∑
x′∈Lext

α
(k)
left(x1, x

′)

and its two-dimensional discrete gradient is equal to Ḡ(k)
left, since

∇̄2d α
(k)
left(x) = k

[
(R(k)(x1)> ∇̄2d

k ỹ(k)(x̄1 − 1
2k , x̄

′)− 1
2

(
0 0 0 0
−1 −1 1 1
−1 1 1 −1

)]
.

Since Sext is a polygonal domain, setting ∇′f = (∂x2f | ∂x3f) and bounding the maxSext

with a successive maximization over L′,ext and over the interpolation tetrahedra, we have

|α(k)
left(x)− α(k)

left,0(x1)|2 ≤ C max
ζ′∈Sext

|∇′α(k)
left(x1, ζ

′)|2

= C max
ζ′∈Sext

k2
∣∣∣∣R(k)(x1)>

[
k∇′ỹ(k)(x̄1 − 1

2k , ζ
′)
]
−
(

0 0
1 0
0 1

)∣∣∣∣2
≤ 24 max

ζ′∈L′,ext
C−
∫
Q̃(x̄1,ζ′)

k2∣∣R(k)(ξ1)>∇kỹ(k)(ξ)− Id
∣∣2dξ

≤ C−
∫ x̄1+ 1

2k

x̄1− 1
2k

∫
Sext

∣∣G(k)(ξ)
∣∣2dξ.

Integrating over Ωext
k shows that α(k)

left − α
(k)
left,0 and ∂xs(α(k)

left − α
(k)
left,0) = ∂xsα

(k)
left, s = 2, 3, are

bounded in L2(Ωext
k ;R3). We thus find αleft ∈ L2(Ωext;R3) with ∇′αleft ∈ L2(Ωext;R3×2) such

that, passing to a subsequence,

α
(k)
left − α

(k)
left,0⇀αleft and ∂xs

(
α

(k)
left − α

(k)
left,0

)
⇀∂xsαleft, s = 2, 3,

14



in L2(Ωext;R3). In particular, for any x̄′ ∈ L′,ext and i, j ∈ {1, 2, 3, 4} with |zi − zj | = 1
considering the triangle T = conv{x̄′, x̄′ + (zi)′, x̄′ + (zj)′} ⊂ Sext we still have

∇′
(
α

(k)
left − α

(k)
left,0

)
⇀∇′αleft in L2((0, L)× T ;R3×2).

Our piecewise affine interpolation scheme and the definition of α(k)
left guarantee that ∇′α(k)

left(x)
is independent of x′ and piecewise constant in x1 for x ∈ (0, L) × T . Therefore ∇′αleft(x)
does not depend on x′ ∈ T either and we may conclude that[

∇̄2d (α(k)
left − α

(k)
left,0

)]
•i = ∇′

(
α

(k)
left − α

(k)
left,0

)
(zi)′⇀∇′αleft(zi)′ =

[
∇̄2d αleft

]
•i

in L2((0, L) × T ;R3). As both ∇̄2d(α(k)
left − α

(k)
left,0) and ∇̄2d αleft are in fact independent of

x′ ∈ Q̃′ = x̄′+(−1
2 ,

1
2)2, we even have [∇̄2d(α(k)

left−α
(k)
left,0)]•i⇀ [∇̄2d αleft

]
•i in L2((0, L)×Q̃′;R3)

and so, since x̄′ and i were arbitrary,

∇̄2d(α(k)
left − α

(k)
left,0) = Ḡ

(k)
left⇀ ∇̄

2d αleft in L2(Ωext;R3×4)

and the restriction of αleft to (0, L) × Lext is well defined. Similarly we find αright ∈
L2(Ωext;R3), the weak limit of α(k)

right − α
(k)
right,0, so that

Ḡ
(k)
right = k

[
(R(k))> ∇̄2d

k ỹ(k)( ·̄+ 1
2ke1)−

(
0 0 0 0

(z5)′ (z6)′ (z7)′ (z8)′
)]
⇀ ∇̄2d αright.

It would be nice to express αright in terms of αleft and R. We see that

α
(k)
right(x−

1
ke1) = k

[
k(R(k)(x1 − 1

k )>ỹ(k)(x̄1 − 1
2k , x

′)− (0, x′)>
]

and so

α
(k)
right(x−

1
ke1)− α(k)

left(x) = k2[(R(k))(x1 − 1
k )− (R(k))(x1)]>ỹ(k)(x̄1 − 1

2k , x
′).

For the discrete gradient of the above expression, we have

∇̄2d(α(k)
right(x−

1
ke1)− α(k)

left(x)
)

=
(R(k))>(x1 − 1

k )− (R(k))>(x1)
1/k ∇̄2d

k ỹ(k)(x̄1 − 1
2k , x

′).
(3.5)

From (2.9) and (2.6), we see that
(
k(R(k)(·− 1

k )−R(k))
)
k∈N is bounded in L2 and therefore has

a subsequence weakly converging to, say, F . Moreover, convergence (2.7) gives F = − ∂R
∂x1

,
thus

k
(
R(k)(· − 1

k )−R(k))⇀ − ∂R

∂x1
in L2(Ωext;R3×3). (3.6)

Now we notice that

∇̄2d
k ỹ(k)(x̄1 − 1

2k , x
′)→ R(x1)

(
0 0 0 0

(z1)′ (z2)′ (z3)′ (z4)′
)

in L2(Ωext;R3×4). (3.7)

Indeed, for x̄′ ∈ L′,ext and i, j ∈ {1, 2, 3, 4} with |zi − zj | = 1 we let T` = ( `k + 1
2k , x̄

′) +
conv{0,− 1

2ke1, z̃
i, z̃j}, ` = −1, 0, . . . , kLk, so that ỹ(k) is affine on every T`. Also set T =

⋃
` T`
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and let χk be the characteristic function of T . Since ∇̄2d
k ỹ(k)(x̄1 − 1

2k , ·) is constant on each
Q̃′(x̄′) = x̄′ + (−1

2 ,
1
2)2 and R(k) is independent of x′, we have∫

(− 1
k
,Lk+ 1

k
)×Q̃′(x̄′)

∣∣[ ∇̄2d
k ỹ(k)(x̄1 − 1

2k , ξ
′)
]
•i −R

(k)(x1)(0, (zi)′)>
∣∣2dx1dξ′

= 24
∫

Ωext
k

χk
∣∣(∇kỹ(k)(x)−R(k)(x1)

)
(0, (zi)′)>

∣∣2dx→ 0

as k →∞ by (2.8). Since x̄′ and i were arbitrary, (3.7) now follows from (2.7).

Thus in (3.5), we combine (3.6) with (3.7) to obtain the limit

∇̄2d αright − ∇̄2d αleft = R>
∂R

∂x1

(
0 0 0 0

(z1)′ (z2)′ (z3)′ (z4)′
)
, (3.8)

as −(∂x1R
>)R = R>∂x1R.

3. Finally we bring all contributions together:

Ḡ(k) = Ḡ
(k)
long +

(
Ḡ

(k)
left | Ḡ

(k)
right

)
⇀

1
2
(
G1(x1) +R>(x1) ∂R

∂x1
(x1)(0, x̄′)>

)
(−1,−1,−1,−1, 1, 1, 1, 1)

+
(
∇̄2d αleft | ∇̄2d αright

)
.

To finish the proof, we set α := (αleft + αright)/2 (restricted to (0, L) × Lext), and use (3.8)
as well as

R>
∂R

∂x1
=
(

0 −κ2 −κ3
κ2 0 −τ
κ3 τ 0

)
.

With the help of Proposition 3.2, the proof of Theorem 3.1(i) can now be completed
following [FJM02] (see also [MM03, Sch06]). We include the details for convenience of the
reader. For ~y ∈ R3×8 we set Wtot(x′, ~y) = Wcell(~y) if x′ ∈ S and Wtot(x′, ~y) = Wsurf(t(x′), ~y)
if x′ ∈ Sext \ S so that Qtot(x′, ·) is the quadratic form generated by ∇2Wtot(x′, Īd). Using
(2.4), the non-negativity of Wend and the frame-indifference of Wtot, we can write

E(k)(y(k)) ≥
∑

x̂∈Λ̂′
k
∪Λ̂′,surf

k

Wtot
(
x̂′, ~y (k)(x̂)

)
= k

∫
(0,Lk)×Sext

Wtot
(
x′, R(k)(x1)>∇̄kỹ(k)(x)

)
dx

= k

∫
(0,Lk)×Sext

Wtot
(
x′, Īd + 1

k Ḡ
(k)(x)

)
dx

(3.9)

We let χk be the characteristic function of {|Ḡ(k)| ≤
√
k} ∩ [(0, Lk)× Sext] and note that

χk → 1 boundedly in measure on Ωext. As both Wtot(x′, ·) and ∇Wtot(x′, ·) vanish at Īd, a
Taylor expansion yields

χkWtot
(
x′, Īd + 1

k Ḡ
(k)) ≥ 1

2k2χkQtot(x′, Ḡ(k))− χkω
( 1
k |Ḡ

(k)|
)
,

where ω(t) = o(t2), t→ 0. We deduce that

kE(k)(y(k)) ≥ 1
2

∫
Ωext

χkQtot(x′, Ḡ(k))dx− k
∫

Ωext
χk|Ḡ(k)|2

ω( 1
k |Ḡ

(k)|)
( 1
k |Ḡ(k)|)2 dx (3.10)
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We can move χk inside the second argument of Qtot. As Qtot(x′, ·) is positive semidefinite,
the convergence χkḠ(k)⇀Ḡ thus yields

lim inf
k→∞

kE(k)(y(k)) ≥ 1
2

∫
Ωext

Qtot(x′, Ḡ)dx

if the second term in (3.10) goes to zero. But that follows from the boundedness of Ḡ(k) in
L2(Ωext;R3×8) and the cut-off by χk forcing L∞-convergence of the fraction involving ω.

We substitute in Qtot the representation of Ḡ. By Proposition 3.2,∫
Sext

Qtot(x′, Ḡ)dx′ =
∫
Sext

Qtot
(
x′,

1
2
[
G1 +R>

∂R

∂x1
(0, x̄2, x̄3)>

]
(−1,−1,−1,−1, 1, 1, 1, 1)

+ 1
4R
> ∂R

∂x1

(
0 0 0 0 0 0 0 0
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

)
︸ ︷︷ ︸

C

+(∇̄2d α| ∇̄2d α)
)
dx′.

The definition of Qrel
cell lets us eliminate G1, which only depends on x1, and conclude that

lim inf
k→∞

kE(k)(y(k)) ≥ 1
2

∫
Ω�

Qtot(x′, Ḡ)dx ≥ 1
2

∫ L

0
Qrel

cell

(
R>

∂R

∂x1

)
dx1.

Remark 3.5. Although in continuum theories with homogeneous materials, it can be proved
that (an analogue of) the minimizing x1-stretch g in (3.3) is 0 [Sca06], here in ultrathin rods
it does not seem so clear how to investigate this question.

3.4 Proof of the upper bound

Proof of Theorem 3.1(ii). Thanks to the Γ-liminf inequality, it is enough to show

lim sup
k→∞

kE(k)(y(k)) ≤ Eult(ỹ, d2, d3).

This trivially holds if (ỹ, d2, d3) 6∈ A. By contrast, if (ỹ, d2, d3) ∈ A, we first additionally
suppose that ỹ ∈ C3([0, L];R3), d2, d3 ∈ C2([0, L];R3). Define the sequence of lattice defor-
mations

ỹ(k)(x) := ỹ(x1) + 1
k
x2d2(x1) + 1

k
x3d3(x1) + 1

k
q(x1) + 1

k2β(x), x ∈ {0, 1
k , . . . , Lk} × L

ext,

where β(·, x′) ∈ C1([0, L];R3) for each x′ ∈ Lext and q ∈ C2([0, L];R3) are arbitrary for the
time being. We interpolate and extend the sequence ỹ(k) to a piecewise affine mapping on
Ωext
k as in Section 2.3 (by now applying Lemma 2.2 to Sext

k instead of Sk and then restricting
ỹ(k) to Ωext

k , as no new external atomic layers are needed) so that

ess supΩext
k

dist2(∇kỹ(k),SO(3)) ≤ C ess sup(0,Lk)× 1
khk

Sext
k

dist2(∇kỹ(k),SO(3)). (3.11)

The rescaled discrete gradient of ỹ(k) is

[∇̄kỹ(k)(x)]•i = k
[
ỹ(x̄1 + 1

kz
i
1)− 1

2
(
ỹ(x̄1 − 1

2k ) + ỹ(x̄1 + 1
2k )
)]

+
3∑
s=2

[
(x̄s + zis)ds(x̄1 + 1

kz
i
1)− 1

2 x̄s
(
ds(x̄1 − 1

2k ) + ds(x̄1 + 1
2k )
)]

+ q(x̄1 + 1
kz

i
1)− 1

2
(
q(x̄1 − 1

2k ) + q(x̄1 + 1
2k )
)

+ 1
k

(
β̃(x̄+ z̃i)− β̃(x̄)

)
,
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where β̃ denotes the usual piecewise affine interpolation of β. Let R = ( ∂ỹ∂x1
| d2 | d3). As in

(3.9), frame-indifference for the energy defined in (2.4) yields

E(k)(y(k)) = k

∫
(0,Lk)×Sext

Wtot
(
x′, Īd + 1

k F̄
(k)(x)

)
dx

+
∑

x∈{− 1
2k
,Lk+ 1

2k
}×L′,ext

Wend
(
tk(kx1, x

′), ∇̄kỹ(k)(x)
)
,

(3.12)

where
F̄ (k)(x) = R(x̄1)>∇̄kỹ(k)(x)− Īd

1/k .

We would like to find the limits of F̄ (k) and 1
k F̄

(k) so that we can let k → ∞ in (3.12).
Fix i ∈ {1, 2, . . . , 8}. For x′ ∈ Sext we denote by x̄′ an element of L′,ext that is closest to x.
Taylor expanding the functions d2, d3, q ∈ C2([0, L];R3) about x̄1 we deduce that

k
[
(x̄s + zis)ds(x̄1 + 1

kz
i
1)− x̄s

2
(
ds(x̄1 − 1

2k ) + ds(x̄1 + 1
2k )
)
− ds(x̄1)zis

]
→ (x̄s + zis)

∂ds
∂x1

(x1)zi1,

k
[
q(x̄1 + 1

kz
i
1)− 1

2
(
q(x̄1 − 1

2k ) + q(x̄1 + 1
2k )
)]
→ zi1

∂q

∂x1
(x1),

s = 2, 3, uniformly in x ∈ Ωext. Similarly, we get by the C3-regularity of ỹ

k2
[
ỹ(x̄1 + 1

kz
i
1)− 1

2(ỹ(x̄1 − 1
2k ) + ỹ(x̄1 + 1

2k ))
]
− k ∂ỹ

∂x1
(x̄1)zi1 →

(1
2(zi1)2 − 1

8
)∂2ỹ

∂x2
1
(x1) = 0

uniformly in x ∈ Ωext. Finally, the function β, being uniformly continuous, satisfies

β̃(x̄+ z̃i)− β̃(x̄)→
[
∇̄2d β(x) | ∇̄2d β(x)

]
•i,

uniformly in x ∈ Ωext. Summing up gives

k
[[
∇̄kỹ(k)(x)

]
•i −

( ∂ỹ
∂x1

∣∣ d2
∣∣ d3
)
(x̄1)zi

]
→

3∑
s=2

(x̄s + zis)
∂ds
∂x1

zi1 + ∂q

∂x1
zi1 + [∇̄2d β(x) | ∇̄2d β(x)]•i

(3.13)

for any i ∈ {1, 2, . . . , 8} and so

F̄ (k)(x)→ R>(x1)
( ∂R
∂x1

(x1)(0, x̄2, x̄3)> + ∂q

∂x1
(x1)

)
e>1 Īd

+R>(x1) ∂R
∂x1

(x1)
[
zi1(0, zi2, zi3)>

]8
i=1

+R>(x1)
(
∇̄2d β(x)| ∇̄2d β(x)

)
uniformly in x ∈ Ωext.

We first note that by Wend(t, ·) ≤ Cdist2(·, S̄O(3)), (3.13) and (3.11),

∑
x∈{− 1

2k
,Lk+ 1

2k
}×L′,ext

Wend
(
tk(kx1, x

′), ∇̄kỹ(k)(x)
)
≤ C

k2 ,
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so that this term can be neglected in what follows. Now Taylor’s approximation in (3.12)
gives

kE(k)(y(k))→ 1
2

∫
Ωext

Qtot

(
x′, R>(x1)

( ∂R
∂x1

(x1)(0, x̄2, x̄3)> + ∂q

∂x1
(x1)

)
e>1 Īd

+R>(x1) ∂R
∂x1

(x1)
[
zi1(0, zi2, zi3)>

]8
i=1 +R>(x1)

(
∇̄2d β(x)| ∇̄2d β(x)

))
dx.

(3.14)

Next we turn to the case that (ỹ, d2, d3) ∈ A, but R = (∂x1 ỹ|d2|d3) only belongs to
H1((0, L);R3×3). Approximation will allow us to build upon the already finished part of the
proof. As this can be done in analogy to [MM03] we only indicate the main steps.

Let (α(x1, ·), g(x1)) be a solution of the minimizing problem in the definition of Qrel
cell.

Recall that α ∈ L2((0, L) × Lext;R3), g ∈ L2((0, L);R3). Find approximating sequences
(α(j)) ⊂ C1([0, L] × Lext;R3), (R(j)) ⊂ C2([0, L]; SO(3)), (g(j)) ⊂ C2([0, L];R3) such that
α(j) → α in L2((0, L)×Lext;R3), g(j) → g in L2((0, L);R3) and R(j) → R in H1([0, L];R3×3).
Further, write R(j) = (∂x1 ỹ

(j)|d(j)
2 |d

(j)
3 ) with d

(j)
2 , d

(j)
3 ∈ C2([0, L];R3) and ỹ(j) belonging to

C3([0, L];R3) such that ỹ(j)(0) = ỹ(0); this gives (ỹ(j)|d(j)
2 |d

(j)
3 ) ∈ A.

For every j ∈ N, β := R(j)α(j) and ∂x1q := R(j)g(j) we can construct, by the first part of
the proof, (ỹ(k,j))∞k=1 such that ỹ(k,j) → ỹ(j) in L2(Ωext;R3) and k ∂ỹ

(k,j)

∂xs
→ d

(j)
s in L2(Ωext;R3),

s = 2, 3 as k → ∞, so that (3.14) holds with y(k), d2, d3, β and ∂x1q replaced with y(k,j),
d

(j)
2 , d(j)

3 , R(j)α(j) and R(j)g(j), respectively. Finally, diagonalize (take ỹ(k,jk) for a suitable
sequence (jk)∞k=1) and the proof is finished, since the integral in (3.14) behaves continuously
in R, β and ∂x1q with respect to the required topologies.

4 Resulting theory for thin rods

We now consider the situation of ‘thin rods’ when the cross section of the rod is not given
by a fixed 2D lattice L but rather by a macroscopic set hS ⊂ R2 whose diameter h = hk
satisfies 1

k � h � 1 so that Ω = (0, L) × hS is eventually filled with atoms. Again, L > 0
stands for the rod’s length and the cross section is defined in terms of S and Sk as described
in Section 2.2. For convenience we also assume that |S| = 1 and that the axes are oriented
in such a way that ∫

S
x2x3dx′ =

∫
S
x2dx′ =

∫
S
x3dx′ = 0. (4.1)

Since S has a Lipschitz boundary, we can fix m ≥ 1 such that Sext
k ⊃ khkS for all k.

4.1 Gamma-convergence

As in Section 3.2 in view of Theorem 2.4 and (2.5) the convergence in Theorem 4.1 is stated
in terms of the piecewise affine interpolations ỹ(k) and their rescaled gradients ∇kỹ(k) on
Ω = (0, L) × S and it suffices to consider limiting configurations ỹ ∈ H1((0, L);R3) and
d2, d3 ∈ L2((0, L);R3). We remark that, by Theorem 2.4, one could equivalently consider
the Γ-limit in the L2

loc(Ω) topology. Also, the convergence could be alternatively formulated
in terms of L2 convergence of piecewise constant interpolations of ỹ(k)|Λ̃k

and the piecewise
constant ∇̄kỹ(k) to ỹ and R Īd, respectively; see [BS22].
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Theorem 4.1. If k →∞ and hk → 0+ with khk →∞, the functionals 1
k3h4

k
E(k) Γ-converge

to the functional Eth defined below, in the following sense:

(i) Let (y(k))∞k=1 be a sequence of lattice deformations such that their piecewise affine in-
terpolated extensions (ỹ(k))∞k=1, defined in Section 2, converge to ỹ ∈ H1((0, L);R3)
in L2(Ω;R3). Let us also assume that 1

hk
∂xs ỹ

(k) → ds ∈ L2((0, L);R3) in L2(Ω;R3),
s = 2, 3. Then

Eth(ỹ, d2, d3) ≤ lim inf
k→∞

1
k3h4

k

E(k)(y(k)).

(ii) For every ỹ ∈ H1((0, L);R3), d2, d3 ∈ L2((0, L);R3) there is a sequence of lattice de-
formations (y(k))∞k=1 such that their piecewise affine interpolated extensions (ỹ(k))∞k=1,
defined in Section 2, satisfy ỹ(k) → ỹ in L2(Ω;R3), 1

hk

∂ỹ(k)

∂xs
→ ds in L2

loc(Ω;R3) for
s = 2, 3, and

lim
k→∞

1
k3h4

k

E(k)(y(k)) = Eth(ỹ, d2, d3).

The limit energy functional is given by

Eth(ỹ, d2, d3) =
{1

2
∫ L

0 Qrel
cell(R>∂x1R)dx1 if (ỹ, d2, d3) ∈ A,

+∞ otherwise,

where R := (∂x1 ỹ|d2|d3) and the class A of admissible deformations is as in Theorem 3.1.
The relaxed quadratic form Qrel

cell : R3×3
skew → [0,+∞) is defined as

Qrel
cell(A) := min

α∈H1(S;R3)

∫
S
Qcell

((
A(0, x2, x3)>

∣∣ ∂α
∂x2

∣∣ ∂α
∂x3

)
Īd
)
dx′. (4.2)

Remark 4.1. Theorem 4.1 is in direct correspondence with the Γ-limit in [MM03]. In fact,
the work [CDKM06] shows that for Wcell admissible as full in Definition 2.1 and boundary
conditions close to a rigid motion, defining the 3D continuum stored energy density W as
W(F ) = Wcell(F Īd), F ∈ R3×3, is justified (the Cauchy–Born rule is valid). If W is defined
this way, then A : ∂2

FW(Id) : A = Qcell(AĪd) := Q3(A) and with Q2 derived from Q3 by the
auxiliary minimization (3.1) in [MM03], we get the bending-torsion functional from [MM03],
since Qrel

cell(A) = Q2(A).
Remark 4.2. Like in [MM03], it can be proved that a solution to the minimum problem in
(4.2) exists. Since all skew-symmetric matrices are in the kernel of F 7→ ∇2Wcell(Īd) : F Īd,
we can replace the components of ∇α by the components of 1

2(∇α+∇>α) on the right-hand
side of (4.2) and get H1-bounds by a version of Korn’s inequality [OSY92, Theorem 2.5] if
we require that α belong to the class

V = {β ∈ H1(S;R3);
∫
S
βdx′ = 0,

∫
S
∇βdx′ = 0}.

Since Qcell is convex, we obtain the existence of a minimizer α by the direct method of the
calculus of variations. Strict convexity of Qcell on R3×3

sym Īd implies that the minimizer is unique
in V. Further, by analyzing the Euler-Lagrange equations as in [MM08] we see that α depends
linearly on the entries of A so that Qrel

cell is a quadratic form and if α(x1, ·) is the solution
of (4.2) in V and A := [R>R′](x1), x1 ∈ [0, L], we get α ∈ L2(Ω;R3) and ∂xsα ∈ L2(Ω;R3),
s = 2, 3, thanks to R>R′ ∈ L2([0, L];R3×3).
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Remark 4.3. As mentioned in Example 2.1, cell energies given by a sum of pairwise inter-
actions may not satisfy assumption (E2) if they do not include an additional penalty term
which prevents them from being minimized on improper rotations. Besides, a deficiency of
our approach in terms of physical modelling is that interatomic potentials from molecular
dynamics are typically bounded near infinity, so the growth assumption (E4) does not apply.
However, even energies that are O(3)-invariant and do not grow quadratically away from
S̄O(3) can be treated in case of ‘sufficiently thin’ rods. Following [BS22, Section 2.4], let us
suppose that Wcell only fulfils (E1), (E3), but also the following alternative assumptions:

(E1.1) Wcell(~y) = Wcell(−~y) for all ~y ∈ V ⊥0 ,

(E2.1) min~y∈R3×8 Wcell(~y) = 0 and Wcell(~y) = minWcell if and only if ~y = OĪd + ~c for some
O ∈ O(3) and ~c ∈ V0,

(E4.1) there is a constant η > 0 such that Wcell(~y) ≥ η for every ~y ∈ V ⊥0 \ U±, where U is
the neighbourhood of S̄O(3) from (E3) and U± := U ∪ (−U).

Since reflections may lead to unnatural folded configurations with zero energy, we also add
a nonlocal term to E(k) to avoid colliding atoms, see [BS22]. Moreover, if we assume that
k3h4

k → 0+ (in particular, this also holds in the ultrathin case), then due to our energy
scaling, Wcell(~y(k)) must be small on every atomic cell. As a result, Wcell is never evaluated
at points for which a growth assumption would manifest itself. In this setting, Theorem 4.1
holds with R(k), R ∈ O(3) (analogously in Theorem 3.1 and up to replacing ỹ(k) with −ỹ(k)

in Theorem 2.4).

4.2 Proof of the lower bound

To prove Theorem 4.1(i), let us assume that k−3h−4
k E(k)(y(k)) ≤ C, whence (2.6) holds due

to (2.4) and (2.5). Without loss of generality passing to a suitable subsequence, we obtain
the piecewise constant R(k) converging to R(x1) = ( ∂ỹ∂x1

(x) | d2(x) | d3(x)) as in Theorem 2.4.
From (2.8), for

G(k)(x) := (R(k))>(x1)∇kỹ(k)(x)− Id
hk

, x ∈ Ωext
k ,

we have G(k)⇀G ∈ L2(Ω;R3×3) in L2(Ω;R3×3), up to a subsequence. Its discrete version

Ḡ(k)(x) := k(R(k))>(x1)(ỹ(k)(x̄+ z̃i)− ỹ(k)(x̄))8
i=1 − Īd

hk
, x ∈ Ωext

k .

is again bounded in L2(Ω;R3×8) (cf. (2.3)). Thus Ḡ(k)⇀Ḡ in L2(Ω;R3×8) for a (not rela-
belled) subsequence.

The following proposition is contained in [MM03].

Proposition 4.2. Suppose G(k)⇀G ∈ L2(Ω;R3×3) in L2(Ω;R3×3). Then there are G1 ∈
L2((0, L);R3) and α ∈ L2(Ω;R3) with ∇′α ∈ L2(Ω;R3×2) such that

G(x) =
(
G1(x1) +R>

∂R

∂x1
(0, x2, x3)>

∣∣∇′α(x)
)
.
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Proof. See [MM03, (3.10) and (3.13)].

Now we explore how the limits G and Ḡ are connected. Recall the notation Ḡ•i for the
i-th column of Ḡ.

Proposition 4.3. The representation Ḡ•i = Gzi holds for every i ∈ {1, 2, . . . , 8}.

Proof. Our method is, loosely speaking, to shift everything to a neighbouring lattice block
by a direction vector a and handle the resulting remainder. The approach is inspired by
[Sch06]. Recall that for x ∈ Ωext

k , we denote by x̄ an element of Λ̃′,ext
k that is closest to x.

Take x̄, x̄+ = x̄+ a ∈ Λ̃′,ext
k , where a := z̃i − z̃j , and compute

k(R(k))>
(
ỹ(k)(x̄+ z̃i)− ỹ(k)(x̄)

)
− zi = k(R(k))>

(
ỹ(k)(x̄+ + z̃j)− ỹ(k)(x̄+)

)
− zj

+ k(R(k))>
(
ỹ(k)(x̄+)− ỹ(k)(x̄)

)
+ (zj − zi)

(4.3)

(note that x̄+ z̃i = x̄+ + z̃j). Let Q̃ = Q̃(x̄) = x̄+ (− 1
2k ,

1
2k )× (− 1

2khk
, 1

2khk
)2. Property (2.2)

of the piecewise affine interpolation gives

k(ỹ(k)(x̄+)− ỹ(k)(x̄)) = k−
∫
Q̃
ỹ(k)(ξ+)− ỹ(k)(ξ)dξ

= −
∫
Q̃

∫ 1

0
k

d
dt(ỹ

(k)(ξ + ta))dtdξ = −
∫
Q̃

∫ 1

0
k∇ỹ(k)(ξ + ta)adtdξ.

(4.4)

Dividing (4.3) by the rod thickness hk and using (4.4), we derive

Ḡ
(k)
•i = [Ḡ(k)

+ ]•j + 1
hk

[
(R(k))>−

∫
Q̃

∫ 1

0
∇kỹ(k)(ξ + ta)dtdξ(zi − zj)− (zi − zj)

]
, (4.5)

where we have set

[Ḡ(k)
+ (x)]•j := 1

hk
[k(R(k)(x1))>

(
ỹ(k)(x̄+ + z̃j)− ỹ(k)(x̄+)

)
− zj ].

Fix Ω′ ⊂⊂ Ω. Let us prove that

Ḡ
(k)
+ ⇀Ḡ in L1(Ω′;R3×8). (4.6)

In the first place, shifts by a preserve weak convergence so that in L2(Ω′;R3×8),

1
hk

[
k
(
R(k)(·+ a1)

)>(
ỹ(k)(·+ a+ z̃i)− ỹ(k)(·+ a)

)8
i=1 − Īd

]
⇀Ḡ. (4.7)

In the second place, due to our construction of R(k) as constant on intervals of length h′k, the
difference R(k)(·+a1)−R(k) can only be nonzero on interfaces of those intervals of constancy.
Estimate (2.9) then implies that

∫
Ω′
|R(k)(x1 + a1)−R(k)(x1)|2dx ≤ |S|

k

bLk/h
′
kc−2∑

i=0

∣∣R(k)(ih′k + 3
2h
′
k)−R(k)(ih′k + 1

2h
′
k)
∣∣2

≤ C

khk

∫
Ωext

k

dist2(∇kỹ(k),SO(3)
)
dx ≤ Chk

k
,
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where the last step followed from (2.6). Thus 1
hk

(R(k)(· + a1) − R(k)) tends to 0 in L2. As
(k(ỹ(k)(· + a + z̃`) − ỹ(k)(· + a))8

`=1) is L2-bounded for an analogous reason as (Ḡ(k)), the
convergence

1
hk

(
R(k)(·+ a1)> − (R(k))>

)
k
(
ỹ(k)(·+ a+ z̃`)− ỹ(k)(·+ a)

)8
`=1

L1
→ 0

combined with (4.7) establishes (4.6).

By definition, R(k) is constant on Q̃, so the remainder term in (4.5) equals∫ 1

0
−
∫
Q̃

1
hk

[
(R(k)(ξ1))>∇kỹ(k)(ξ + ta)(zi − zj)− (zi − zj)

]
dξdt

= −
∫
Q̃

∫ 1

0
G(k)(ξ + ta)(zi − zj)dtdξ (4.8)

+
∫ 1

0
−
∫
Q̃

[ 1
hk

((
R(k)(ξ1)−R(k)(ξ1 + ta1)

)>∇kỹ(k)(ξ + ta)(zi − zj)
)]

dt. (4.9)

Term (4.8) weakly converges to G(zi − zj) since for any ϕ ∈ C∞c (Ω)∫
Ω
−
∫
Q̃(x̄)

∫ 1

0
G(k)(ξ + ta)dtdξϕ(x)dx =

∫
Ω

∫ 1

0
G(k)(ξ + ta)dt−

∫
Q̃(ξ̄)

ϕ(x)dxdξ

→
∫

Ω
G(ξ)ϕ(ξ)dξ.

In (4.9), ∇kỹ(k)(· + ta) is L2-bounded uniformly in t by (2.8) and as above we see that
1
hk

(R(k)(· + ta1) − R(k)) converges to 0 in L2(Ω′;R3×3) uniformly in t, so the whole term
vanishes in the limit.

Thus, passing to the limit in (4.5), we conclude that

Ḡ•i − Ḡ•j = G(zi − zj).

The assertion now follows by summing over j and using that
∑8
j=1 Ḡ•j =

∑8
j=1 z

j = 0.

We can now finish the proof of Theorem 4.1(i).

By (2.4), the non-negativity of Wsurf and Wend, and the frame-indifference of Wcell, we
estimate as in (3.9)

E(k)(y(k)) ≥
∑
x̂∈Λ̂′

k

Wcell
(
~y (k)(x̂)

)
= k3h2

k

∫
Ω
χk(x)Wcell

(
Īd + hkḠ

(k)(x)
)
dx,

where now χk is the characteristic function of {|Ḡ(k)| ≤
√

1/hk} ∩ [(0, Lk) × 1
khk

Sk]. The
same arguments as in the ultrathin case, cf. also [FJM02, MM03, Sch06], lead to

lim inf
k→∞

1
k3h4

k

E(k)(y(k)) ≥
∫

Ω

1
2Qcell(Ḡ)dx.

By Proposition 4.3, Qcell(Ḡ) = Qcell(GĪd). The proof can be completed as in [MM03]:
Setting cs(x1) =

∫
S
∂α
∂xs

dx′, s = 2, 3, and invoking Proposition 4.2 and (4.1) we find∫
S
Qcell(Ḡ)dx′ =

∫
S
Qcell

(
(G1(x1)

∣∣ c2(x1)
∣∣c3(x1))Īd

)
dx′

+
∫
S
Qcell

((
R>

∂R

∂x1
(0, x2, x3)>

∣∣∣ ∂ᾱ
∂x2

∣∣∣ ∂ᾱ
∂x3

)
Īd
)
dx′,
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where ᾱ(x) := α(x)− x2c2(x1)− x3c3(x1). Thus the definition of Qrel
cell lets us conclude that

lim inf
k→∞

1
k3h4

k

E(k)(y(k)) ≥
∫

Ω

1
2Qcell(Ḡ)dx ≥ 0 + 1

2

∫ L

0
Qrel

cell

(
R>

∂R

∂x1

)
dx1.

4.3 Proof of the upper bound

Proof of Theorem 4.1(ii). In the nontrivial case that (ỹ, d2, d3) ∈ A, we first additionally
suppose that ỹ ∈ C3([0, L];R3), d2, d3 ∈ C2([0, L];R3). For β ∈ C1(R3;R3) to be fixed later,
define the sequence

ỹ(k)(x) := ỹ(x1) + hkx2d2(x1) + hkx3d3(x1) + h2
kβ(x), x ∈ {0, 1

k , . . . , Lk} ×
1
khk
Lext
k .

We extend and interpolate the sequence ỹ(k) on Ωext
k in the same way as in Section 3.4

so that, in particular, (3.11) holds true again. The rescaled discrete gradient ∇̄kỹ(k)(x) =
k[ỹ(k)(x̄+ z̃i)− 1

8
∑8
j=1 ỹ

(k)(x̄+ z̃j)]8i=1 of ỹ(k) reads

[∇̄kỹ(k)(x)]•i = k
[
ỹ(x̄1 + 1

kz
i
1)− 1

2
(
ỹ(x̄1 − 1

2k ) + ỹ(x̄1 + 1
2k )
)]

+
3∑
s=2

khk
[
(x̄s + z̃is)ds(x̄1 + 1

kz
i
1)− 1

2 x̄s
(
ds(x̄1 − 1

2k ) + ds(x̄1 + 1
2k )
)]

+ kh2
k

(
β̃(x̄+ z̃i)− β̃(x̄)

)
,

where β̃ denotes the piecewise affine discretization of β|Λ̃ext
k

described in Section 2.

As in (3.12) we obtain

E(k)(y(k)) = k3h2
k

∫
(0,Lk)×Sk

Wcell
(
x′, Īd + hkF̄

(k)(x)
)
dx+

∑
x̂∈Λ̂′,surf

k

Wsurf
(
tk(x̂′), ∇̄ŷ(k)(x̂)

)
+

∑
x∈{− 1

2k
,Lk+ 1

2k
}×L′,ext

k

Wend
(
tk(kx1, x

′), ∇̄kỹ(k)(x)
)
,

(4.10)

where
F̄ (k)(x) = R>(x̄1)∇̄kỹ(k)(x)− Īd

hk
.

Fixing i ∈ {1, 2, . . . , 8}, we deduce the following convergences, analogous to their coun-
terparts in ultrathin rods, uniformly in x ∈ [0, L]× S′ for each bounded domain S′ ⊃⊃ S:

khk
(
β̃(x̄+ z̃i)− β̃(x̄)

)
→ ∂β

∂x2
(x)zi2 + ∂β

∂x3
(x)zi3

and

k
[
(x̄s + z̃is)ds(x̄1 + 1

kz
i
1)− 1

2 x̄s
(
ds(x̄1 − 1

2k ) + ds(x̄1 + 1
2k )
)]
− 1
hk
ds(x̄1)zis → xs

∂ds
∂x1

(x1)zi1

for s = 2, 3, as well as

k

hk

[
ỹ(x̄1 + 1

kz
i
1)− 1

2
(
ỹ(x̄1 − 1

2k ) + ỹ(x̄1 + 1
2k )
)]
− 1
hk

∂ỹ

∂x1
(x̄1)zi1 → 0.
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Summing them up leads to

1
hk

[[
∇̄kỹ(k)(x)

]
•i −

( ∂ỹ
∂x1

∣∣ d2
∣∣ d3
)
(x̄1)zi

]
→

3∑
s=2

xs
∂ds
∂x1

zi1 + ∂β

∂xs
zis (4.11)

for any i ∈ {1, 2, . . . , 8}.

Now we first notice that maxt∈T
(
Wsurf(t, ·)+Wend(t, ·)

)
≤ Cdist2(·, S̄O(3)), (4.11), (3.11),

and the estimate ](Λext
k \ Λk) ≤ C(k2hk + k2h2

k) ≤ Ck2hk give∑
x̂∈Λ̂′,surf

k

Wsurf
(
tk(x̂′), ∇̄y(k)(x̂)

)
+

∑
x̂∈{− 1

2 ,kLk+ 1
2}×L

′,ext
k

Wend
(
tk(x̂), ∇̄y(k)(x̂)

)
≤ Ck2h3

k.

Hence, Taylor’s approximation in (4.10) yields

1
k3h4

k

E(k)(y(k))→ 1
2

∫
Ω
Qcell

(
R>
(
x2

∂d2
∂x1

+ x3
∂d3
∂x1

∣∣ ∂β
∂x2

∣∣ ∂β
∂x3

)
Īd
)
dx.

For general (ỹ, d2, d3) ∈ A with R = (∂x1 ỹ|d2|d3) ∈ H1((0, L);R3×3) we may proceed by
approximation exactly as in Section 3.4, now using that the solution α(x1, ·) of the minimizing
problem in the definition of Qrel

cell is such that α ∈ L2(Ω;R3) and ∂xsα ∈ L2(Ω;R3), s =
2, 3.
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