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Abstract

Starting from a particle system with short-range interactions, we derive a contin-
uum model for the bending, torsion, and brittle fracture of inextensible rods moving
in three-dimensional space. As the number of particles tends to infinity, it is assumed
that the rod’s thickness is of the same order as the interatomic distance. Fracture energy
in the Γ-limit is expressed by an implicit cell formula, which covers different modes of
fracture, including (complete) cracks, folds, and torsional cracks. In special cases, the
cell formula can be significantly simplified. Our approach applies e.g. to atomistic sys-
tems with Lennard-Jones-type potentials and is motivated by the research of ceramic
nanowires.

Keywords. Discrete-to-continuum limits, dimension reduction, atomistic models, na-
nowires, elastic rod theory, brittle materials, variational fracture, Γ-convergence.
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1 Introduction

Ceramic and semiconductor nanowires (composed of Si, SiC, Si3N4, TiO2, or ZnO etc.) un-
der loading exhibit large deflections, but also brittle or ductile fracture. [CL16] Their me-
chanical behaviour is often very different from that of bulk materials, size- and structure-
dependent, and influenced by surface energy. Laboratory testing at the nanoscale still poses
various challenges, so modelling and simulation play an important role in the advancement
of nanotechnology. [Eva20]

To set off on a path towards elastic-fractural modelling of nanowires, in this article
we derive from three-dimensional atomistic models a continuum theory for ultrathin rods
whose elastic energy is of the order corresponding to bending or torsion. After treating the
purely elastic case in [SZ22], here we extend our model considerably by adding liability of
the material to develop brittle cracks.
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Our work stands at the crossroads of three paths of research in applied analysis which
are:

(DR) rigorous derivation of elasticity theories for thin structures (often referred to as di-
mension reduction);

(D-C) discrete-to-continuum limits;

(F) fracture mechanics.

An important tool in all these three branches is Γ-convergence. [Bra02, Bra06]

In (DR) the aim is to understand the relation between three-dimensional elasticity theory
and effective theories for lower-dimensional bodies, such as plates, rods or beams. [Cia97,
Ant05, O’R17] With the pioneering contributions of L. Euler and D. Bernoulli, the jour-
ney started more than two centuries before the first nanowires were manufactured. Yet,
most mathematically rigorous derivations of such theories first appeared no sooner than in
the 1990s. [ABP91, LDR93, ABP94] A decade later, the famous discovery of a quantita-
tive rigidity estimate in [FJM02] brought forth an abundance of works on bending theories.
[FJM02, FJM06, MM03]

As for (D-C), ‘establishing the status of elasticity theory with respect to atomistic mod-
els’ was listed by Ball among outstanding open problems in elasticity. [Bal02] Research has
been devoted to studying the Cauchy–Born rule [FT02, EM07], pointwise limits of interac-
tion energies [BLBL02] and their Γ-limits [AC04, Sch09, BS13], or to finding atomistic defor-
mations approximating a given solution of the equations of elasticity [OT13, BS16, Bra17].
See also [BBL07] for a survey.

The interest of mathematicians in (F) was particularly ignited after Francfort and Marigo
[FM98] elaborated on the influential model by Griffith, using modern variational methods
(see e.g. [Fra21, BFM08] for further references). In variational models of fracture, be it brittle
or cohesive [Bar62], we typically find functionals involving the sum of elastic and fracture
energy: ∫

Ω

W (∇y(x))dx +
∫
Jy

κ(y+(x)− y−(x),ν(x))dHd−1(x). (1.1)

In the above, W : R3×3 → [0,∞) stands for the stored energy density of a material body
Ω ⊂ Rd , d ∈ {2,3}, y+ − y− is the jump of the deformation y : Ω→ Rd across the crack set Jy ,
ν denotes the normal vector field to Jy , and κ : (Rd )2→ [0,∞] is the fracture toughness.

Given the myriads of physical situations that emerge in modern materials science, it
seems natural that researchers have made efforts to bridge some of the gaps between (DR),
(D-C) and (F).

Combining (DR) and (D-C) is motivated by the need of accurate models for thin struc-
tures in nanoengineering, such as thin films or nanotubes. [FJ00, Sch08a, Sch08b, ABC08]
Interestingly, when the thickness h of the reference crystalline body is very small (i.e. com-
parable to the interatomic distance ε), the simultaneous Γ-limit as ε → 0+, h → 0+ gives
rise to new ultrathin plate or rod theories which could not be obtained by (DR) in the purely
continuum setting. [Sch06, BS22, SZ22]

Atomistic effects also lie at the core of crack formation and propagation. [BHO20,
BKG15] However, up to now combinations of (D-C) and (F) have only been explored in
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specific situations such as one-dimensional chains of atoms [BC07, SSZ11, JKST21], scalar-
valued models [BG02], or cleavage in crystals [FS14, FS15a, FS15b].

Similarly, despite the recent progress, theories uniting (DR) and (F) are still under devel-
opment. In linearized elasticity, models for brittle plates [BH16, AT20, FPZ10, LBBB+14],
beams [GG21] or shells [ABMP20] have been derived mostly using a weak formulation in
SBD or GSBD function spaces [ACDM97, DM13]. The nonlinear setting of membranes
[BF01, Bab06, ARS22], on the other hand, employs the more regular spaces SBV and GSBV .
[AFP00] As for nonlinear bending theories, the lack of a piecewise quantitative rigidity es-
timate in 3D presents an obstacle, so the result of [Sch17] with a dimension reduction from
2D to 1D seems rather isolated; we also refer to [FKZ21, SS22] for materials with voids.

Figure 1: Fracture of a thin rod composed of atoms.

In this article, we treat a problem that falls into all three branches (DR), (D-C) and (F).
Our main Theorem 4.1 provides the Γ-limit of atomic interaction energies defined on cubic
crystalline lattices in the shape of a slender rod. Unlike in the purely elastic model from
[SZ22], we now replace the interaction potentials (expressed by a cell energy function Wcell

like in e.g. [FT02, CDKM06, Sch06]) with a sequence (W (k)
cell)

∞
k=1 of cell energies to ensure that

elastic deformations (bending and torsion) are comparably favourable in terms of energy as
cracks (see Figure 1 for an illustration). This is specifically expressed in condition (W5) for

the constants (c̄(k)
1 )∞k=1, which give a lower bound on the cost of placing atoms far away from

each other (see Subsection 2.3). Physically we can interpret this as considering a sequence
of materials that are mutually similar but are characterized by different values of material
parameters. The limiting strain energy has, just like in (1.1):

1. A bulk part that coincides with its counterpart in [SZ22] and features an ultrathin
correction and atomic surface layer terms, neither of which appears in the corresponding
rod theory [MM03] derived by (DR) without (D-C). These traits might make a model
better-suited for the description of nanostructures.

2. A fracture part which turns out to be a weighted sum over the singular set of a lim-
iting deformation. The weights are given by an implicit cell formula ϕ = ϕ(y+ −
y−, (R−)−1R+), where y+ − y− ∈ R3 denotes the jump of the deformation mapping at
a specified crack point and (R−)−1R+ ∈ SO(3) is related to kinks/folds or torsional rup-
ture.

Implicit cell formulas arise in Γ-convergence problems in homogenization [Bra06] or
phase transitions [CS06, KLR17, CFL02].

To comment on some important aspects of the proofs, in the liminf inequality we first
derive a preliminary cell formula by a blowup technique reminiscent of [FM92, AFP00] and
then relate it to a more simple asymptotic formula which uses rigid boundary values (cf.
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[FKS21]). The atomistic setting allows us to circumvent the unavailability of a 3D piece-
wise rigidity theorem in SBV (in fact, it is enough to work with piecewise Sobolev functions
here). The main challenge of our analysis is, however, to provide a matching limsup in-
equality. Due to the k-dependency of the interaction potential W (k)

cell, it is a priori not clear
how to construct a global recovery sequence (y(k)) that not only works for a specific sub-
sequence. We resolve this difficulty by establishing a localization of cracks on the atomic
length scale, which appears to be of some independent interest. More precisely, we argue
that an approximative minimizing sequence (y(k)) for ϕ can be chosen with cracks con-
fined to a fixed number of atomic slices (Lemma 6.1), which lets us transfer y(k) to a lattice
with different interatomic distances (Proposition 6.2) and thus define (y(k)) for every k ∈ N.
Γ-convergence problems involving brittle fracture often have to deal with pieces of the de-
formed body escaping to ∞. As our limiting theory is one-dimensional we can sidestep
working on GSBV -type spaces and instead obtain a limiting functional on piecewise H2

functions. By an explicit construction using assumption (W9) in Lemma 6.3 we show that
L∞ (or weaker) bounds could be imposed energetically so as to ensure matching compact-
ness properties of low-energy sequences.

After describing our discrete model in Section 2, we prove a compactness theorem for
sequences of bounded energy in Section 3. The lower bound in the Γ-convergence result
from Section 4 is shown in Section 5 and then followed in Section 6 by an analysis of the cell
formula and the construction of recovery sequences for Theorem 4.1(ii). Section 7 provides
examples of interatomic potentials to which our approach applies. In Section 8, we show
that for full cracks and a class of mass-spring models there is an explicit expression for the
cell formula. Moreover, it is proved that in such models, the energy needed to produce a
full crack is strictly greater than the energy of a mere kink. The last short discussion section
gives some hints on possible future research.

Notation. We write dist(B1,B2) := inf{|x(1) − x(2)|; x(1) ∈ B1, x
(2) ∈ B2} for B1,B2 ⊂ R3.

Whenever the symbol ± appears in an equation, we mean that the equation holds both in the
version with + in all occurrences and in the version with −. The letter C denotes a positive
generic constant, whose value may be different in different instances. One-sided limits are
written as f (σ±) = limx→σ± f (x). Further, R3×3

skew = {A ∈ R3×3; A = −A>}. The symbol A·i
denotes the i-th column of a matrix A andHn is the n-dimensional Hausdorff measure. The
restriction µ

¬
K of a measure µ to the measurable set K is defined by µ

¬
K(U ) = µ(U ∩K).

2 Model assumptions and preliminaries

2.1 Atomic lattice and discrete gradients

In our particle interaction model, Λk = ([0,L] × 1
k S̄) ∩ 1

kZ
3, k ∈ N, is a cubic atomic lattice

– the reference configuration of a thin rod of length L > 0. The interatomic distance 1/k is
directly proportional to the thickness of the rod.

The rod’s cross section is represented with a bounded domain ∅ , S ⊂ R2. We assume
that there is a set L′ ⊂ (1

2 +Z)2 such that

S = Int
⋃
x′∈L′

(
x′ +

[
−1

2
,
1
2

]2)
.

Moreover, should it happen that x′ + {−1
2 ,

1
2 } ⊂ L := S̄ ∩ Z2, it is assumed that x′ ∈ L′. The
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symbol Λ′k is used for the lattice of midpoints of open lattice cubes with sidelength 1/k and
corners in Λk .

Our latticeΛk undergoes a static deformation y(k) : Λk → R3. The main aim of this paper
is to investigate the asymptotic behaviour as k becomes large and to establish an effective
continuum model as k→ +∞.

Sometimes it will be advantageous to work with a rescaled lattice that has unit distances
between neighbouring atoms. The points of this lattice are written with hats over their
coordinates, i.e. if x = (x1,x2,x3) ∈ Λk we introduce x̂1 := kx1, x̂′ = (x̂2, x̂3) := kx′ = k(x2,x3)
and ŷ(k)(x̂1, x̂2, x̂3) := ky(k)(1

k x̂1,
1
k x̂
′) so that ŷ(k) : kΛk → R3. Then Λ̂k and Λ̂′k denote the sets

of all x̂ = (x̂1, x̂2, x̂3) such that the corresponding downscaled points x are elements of the
sets Λk and Λ′k , respectively. We will frequently use these eight direction vectors z1, . . . ,z8:

z1 = 1
2 (−1,−1,−1)>, z5 = 1

2 (+1,−1,−1)>,
z2 = 1

2 (−1,−1,+1)>, z6 = 1
2 (+1,−1,+1)>,

z3 = 1
2 (−1,+1,+1)>, z7 = 1

2 (+1,+1,+1)>,
z4 = 1

2 (−1,+1,−1)>, z8 = 1
2 (+1,+1,−1)>.

With these vectors we can describe the deformation of a unit cell x̂ + {−1
2 ,

1
2 }

3 centred
at x̂ ∈ Λ̂′k – let ~y (k)(x̂) = (ŷ(k)(x̂ + z1)| · · · |ŷ(k)(x̂ + z8)) ∈ R3×8. Further we introduce 〈ŷ(k)(x̂)〉 =
1
8
∑8
i=1 ŷ

(k)(x̂ + zi ) and the discrete gradient ∇̄ŷ(k)(x̂) = (ŷ(k)(x̂ + z1) − 〈ŷ(k)(x̂)〉| · · · |ŷ(k)(x̂ + z8) −
〈ŷ(k)(x̂)〉) ∈ R3×8. A discrete gradient has the sum of columns equal to 0 and an important
special case is the matrix Īd := (z1| · · · |z8) ∈ R3×8, which satisfies Īd = ∇̄id. Further we define
two noteworthy subsets of R3×8, later used for characterizing rigid motions:

¯SO(3) := {R Īd; R ∈ SO(3)}, V0 := {(c| · · · |c) ∈ R3×8; c ∈ R3}.

2.2 Rescaling, interpolation and extension of deformations

To handle sequences of deformations defined on a common domain Ω = (0,L) × S , we set
ỹ(k)(x1,x2,x3) := y(k)(x1,

1
k x
′) for (x1,

1
k x
′) ∈ Λk and interpolate ỹ(k) as follows so that it is

defined even outside lattice points.

Write z̃i := (1
k z
i
1,z

i
2,z

i
3) and Q̃(x̄) = x̄ + (− 1

2k ,
1

2k ) × (−1
2 ,

1
2 )2 for x̄ ∈ Λ̃′k = {ξ ∈ Ω; (kξ1,ξ

′) ∈
Λ̂′k}. First, we set ỹ(k)(x̄) := 1

8
∑8
i=1 ỹ

(k)(x̄ + z̃i ) and for each face F̃ of the block Q̃(x̄) and the
corresponding centre xF̃ of the face F̃, define ỹ(k)(xF̃) := 1

4
∑
j ỹ

(k)(x̄+ z̃j ), where the sum runs
over all j such that x̄ + z̃j is a corner of F̃. Now we interpolate ỹ(k) in an affine way on every
simplex T̃ = conv{x̄, x̄ + z̃i , x̄ + z̃j ,xF̃}, where |zi − zj | = 1 and x̄ + z̃i , x̄ + z̃j ∈ F̃ (there are 24
simplices within Q̃(x̄)). Like this, ỹ(k) is differentiable almost everywhere, so we can define

∇k ỹ(k) :=
(
∂ỹ(k)

∂x1
|k ∂ỹ

(k)

∂x2
|k ∂ỹ

(k)

∂x3

)
. For any face F̃ of Q̃(x̄) with face centre xF̃ , the piecewise affine

interpolation satisfies

ỹ(k)(xF̃) = −
∫
F̃
ỹ(k)dH2 and ỹ(k)(x̄) = −

∫
Q̃(x̄)

ỹ(k)(ξ)dξ. (2.1)

We also set ∇̄k ỹ(k)(x̄) := k(ỹ(k)(x̄1 + 1
k z
i
1, x̄
′ + (zi )′)−

∑8
j=1 ỹ

(k)(x̄1 + 1
k z
j
1, x̄
′ + (zj )′))8

i=1.

For the following reasons we now extend deformations to certain auxiliary surface lat-
tices:
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• surface energy needs to be modelled;

• in part we would like to apply Γ-convergence results from [SZ22];

• a fixed domain on which the convergence of (ỹ(k)) is formulated sometimes does not
match with its inscribed crystalline lattice (specifically in the x1-direction).

We present here the necessary tools, without too much emphasis on this technical issue
later, referring to [SZ22, Subsection 2.3] for more details and a proof, adapted from [Sch09].
Consider a portion (a,b)× S ⊂ (0,L)× S of the rod. Let ak = 1

k dkae, bk = 1
k bkbc, and

Lext = L+ {−1,0,1}2, Λext
k = {ak − 1

k , ak , . . . , bk + 1
k } ×

1
kL

ext,

L′,ext = L′ + {−1,0,1}2, Λ
′,ext
k = {ak − 1

2k , ak + 1
2k , . . . , bk + 1

2k } ×
1
kL
′,ext,

Sext = S + (−1,1)2, Ωext
k = (ak − 1

k , bk + 1
k )× Sext,

Λ̃ext
k = {ak − 1

k , ak , . . . , bk + 1
k } ×L

ext, Λ̃
′,ext
k = {ak − 1

2k , ak + 1
2k , . . . , bk + 1

2k } ×L
′,ext.

Lemma 2.1. There are extensions y(k) : Λext
k → R3 such that their interpolations ỹ(k) satisfy

esssup
Ωext
k

dist2(∇k ỹ(k),SO(3)) ≤ C esssup
(ak ,bk )×S

dist2(∇k ỹ(k),SO(3))

and ∫
Ωext
k

dist2(∇k ỹ(k),SO(3))dx ≤ C
∫

(ak ,bk )×S
dist2(∇k ỹ(k),SO(3))dx.

For x ∈ Ωext
k , we denote by x̄ an element of Λ̃′,ext

k that is closest to x. In what follows
we always understand the symbols Λext

k , Λ′,ext
k etc. with a := 0 and b := L, unless stated

otherwise. We also set Ωext := (0,L)× Sext.

2.3 Energy

Let Lk = 1
k bkLc, Λ̂

′,surf
k = {12 , . . . , kLk −

1
2 }× (L′,ext \L′), and Λ̂′,end

k = {−1
2 , kLk + 1

2 }×L
′,ext. We give

this definition of strain energy E(k):

E(k)(y(k)) =
∑
x̂∈Λ̂′k

W
(k)
cell

(
~y (k)(x̂)

)
+

∑
x̂∈Λ̂′,surf

k

W
(k)
surf

(
x̂′ , ~y (k)(x̂)

)
+

∑
x̂∈Λ̂′,end

k

W
(k)
end

(1
k
x̂1, x̂

′ , ~y (k)(x̂)
) (2.2)

with W (k)
cell : R3×8→ [0,∞], W (k)

surf : (L′,ext \L′)×R3×8→ [0,∞] and W (k)
end : {− 1

2k ,Lk + 1
2k }×L

′,ext×
R3×8 → [0,∞]. The terms with W (k)

surf and W (k)
end are useful for incorporating surface energy

(see [SZ22] for further clarification). For convenience we assume that for every ~y ∈ R3×8,

W
(k)
surf(·, ~y) is extended to a piecewise constant function on Sext\S̄ which is equal toW (k)

surf(x̂
′ , ~y)

on x̂′ + (−1
2 ,

1
2 )2. Sometimes it will be useful to group the terms, so for ~y ∈ R3×8 we set

W
(k)
tot (x̂′ , ~y) =

W (k)
cell(~y) x̂′ ∈ S̄,

W
(k)
surf(x̂

′ , ~y) x̂′ ∈ (Sext \ S̄).
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In our Γ-convergence statement, we consider the rescaled energy 1/k3

1/k4E
(k) = kE(k), where k3

is the order of the number of particles per unit volume in a bulk system and 1/k4 is the
appropriate power of a rod’s thickness for studying the bending/torsion energy regime (see
e.g. [MM04] for more context).

Assumptions on the cell energy functions W (k)
cell, W

(k)
surf, and W (k)

end.

Hereafter W(k) stands forW (k)
cell,W

(k)
surf(x̂

′ , ·) with x̂′ ∈ L′,ext\L′, and forW (k)
end(1

k x̂1, x̂
′ , ·) with

x̂ ∈ Λ̂′,end
k .

(W1) Frame-indifference: W(k)(R~y + (c| · · · |c)) = W(k)(~y) for all R ∈ SO(3), ~y ∈ R3×8, c ∈ R3,
and k ∈ N.

(W2) Energy well: For every k ∈ N, W(k) attains a minimum (equal to 0) at rigid deforma-
tions, i.e. deformations ~y = (ŷ1| · · · |ŷ8) with ŷi = Rzi + c for all i ∈ {1, . . . ,8} and some
R ∈ SO(3), c ∈ R3.

(W3) Independence of k in the elastic regime: There are parameters c(k)
frac ↘ 0 such that

limk→∞ k(c(k)
frac)2 ∈ (0,∞) and an elastic stored energy functionW0 : L′,ext×R3×8→ [0,∞]

such that we have ∀k ∈ N ∀~y ∈ R3×8 ∀x′ ∈ L′,ext:

W
(k)
tot (x′ , ~y) =W0(x′ , ~y) if dist(∇̄ŷ, ¯SO(3)) ≤ c(k)

frac.

Further, there exists a C > 0 independent of k ∈ N such that

W
(k)
end(1

k x̂1, x̂
′ , ~y) ≤ Cdist2(∇̄ŷ, ¯SO(3)) for any x̂ ∈ Λ̂′,end

k ,

~y = (ŷ1| · · · |ŷ8) ∈ R3×8, and ∇̄ŷ = ~y − (
∑8
j=1 ŷj )(1, . . . ,1) with dist(∇̄ŷ, ¯SO(3)) ≤ c(k)

frac.

(W4) Regularity in k: W (k+1)
tot (x′ , ~y) ≥ k

k+1W
(k)
tot (x′ , ~y) for all k ∈ N ∀~y ∈ R3×8 ∀x′ ∈ L′,ext.

(W5) Non-degeneracy in the elastic and the fracture regime: The function W0|L′×R3×8 is in-
dependent of x′ (hence we omit it from the notation in this region) and satisfies

W0(~y) ≥ cWdist2(∇̄ŷ, ¯SO(3)) ∀~y ∈ R3×8

for a constant cW > 0. Writing W (k)
cell(~y) = W̄ (k)(~y) if dist(∇̄ŷ, ¯SO(3)) > c(k)

frac, we assume
that the mappings W̄ (k) can be chosen such that

W̄ (k)(~y) ≥ c̄(k)
1 ∀k ∈ N ∀~y ∈ R3×8

for a sequence (c̄(k)
1 )∞k=1 of positive numbers with limk→∞ kc̄

(k)
1 ∈ (0,∞).

(W6) W(k) is everywhere Borel measurable and W0(x̂′ , ·), x̂′ ∈ L′ ,ext, is of class C2 in a neigh-
bourhood of ¯SO(3).

(W7) If i ∈ {1,2, . . . ,8}, x̂′ ∈ L′,ext \ L′, and ~y = (ŷ1| · · · |ŷ8), then ~y 7→ W
(k)
surf(x̂

′ , ~y) may depend

on ŷi only if x̂′ + (zi )′ ∈ L. If x1 ∈ {− 1
2k ,Lk + 1

2k }, then ~y 7→W
(k)
end(x1, x̂

′ , ~y) may depend on
ŷi only if (x1, x̂

′) + z̃i ∈ Λ̃k .
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The quadratic form associated with ∇2W
(k)
surf(Īd) is denoted by Qsurf.

Throughout we will assume that Assumptions (W1)–(W7) are satisfied. We also intro-
duce conditions which imply that long-range interactions of atoms are bounded or even are
negligible.

(W8) We say that inelastic interactions are bounded if

W(k)(~y) ≤ C̄(k)
1 ∀k ∈ N ∀~y ∈ R3×8

for a sequence (C̄(k)
1 )∞k=1 of positive numbers with limk→∞ kC̄

(k)
1 ∈ (0,∞).

(W9) We say that the cell energies have maximum interaction range scaling with (Mk)∞k=1,
where Mk → 0, Mkk→∞, if the following holds true: If there is a partition {1, . . . ,8} =
J1∪̇J2∪̇ · · · ∪̇JnC

such that for some ~y,~y ′ ∈ R3×8 one has

min
1≤`<m≤nC

dist({ŷi` }i`∈J` , {ŷim}im∈Jm) ≥Mkk and min
1≤`<m≤nC

dist({ŷ′i` }i`∈J` , {ŷ
′
im
}im∈Jm) ≥Mkk

and there are rigid motions given by Rm ∈ SO(3) and cm ∈ R3 such that

ŷ′im = Rmŷim + cm ∀ im ∈ Jm, m = 1, . . . ,nC,

then
|W(k)(~y ′)−W(k)(~y)| ≤ Cfar

Mkk2

for a uniform constant Cfar > 0.

Remark 2.1. We remark that the assumption in (W4) is a monotonicity assumption only for

kW
(k)
tot (x′ , ·) but not for W (k)

tot (x′ , ·) itself. It is in line with our assuming that the elastic energy
is independent of k in (W3) and the fracture toughness scales with 1

k , cf. (W5).
Remark 2.2. By (W2), (W3), and (W6) we have

W(k)(~y) ≤ cwdist2(∇̄ŷ, ¯SO(3))

for a constant cw and all ~y ∈ R3×8 such that dist(∇̄ŷ, ¯SO(3)) ≤ c(k)
frac. Moreover, by (W2), (W5)

and (W6) the quadratic form Q3 associated with ∇2W0(Īd), is positive definite on span{V0 ∪
R3×3

skewĪd}⊥.

2.4 Piecewise Sobolev functions

We work with the linear spaces P-Hm(0,L;R`),m = 1,2, ` ∈ N, of functions that are piecewise
Sobolev in the following sense:

P-Hm(0,L;R`) :=
{
ỹ ∈ L1((0,L);R`); ∃ partition (σ i )n+1

i=0 of [0,L]

∀i ∈ {1,2, . . . ,n+ 1} : ỹ|(σi−1,σi ) ∈H
m((σi−1,σi );R`)

}
. (2.3)

Here we say that (σ i )n+1
i=0 is a partition of [0,L] if 0 = σ0 < σ1 < · · · < σn+1 = L. Suppose

ỹ ∈ P-Hm(0,L;R`) and {σ i}n+1
i=0 is the minimal set with property (2.3). For m = 1 one has

Sỹ := {σ ∈ (0,L); ỹ(σ−) , ỹ(σ+)} = {σ i}n+1
i=0 .

For m = 2 we have

Sỹ′ := {σ ∈ {σ i}ni=1; ỹ(σ−) = ỹ(σ+)}, Sỹ := {σ i}ni=1 \ Sỹ′ ,

where the set Sỹ is the jump set of ỹ and Sỹ′ the jump set of the derivative ∂x1
ỹ.
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3 Compactness

Theorem 3.1. Suppose the sequence (y(k))∞k=1 of lattice deformations fulfils

limsup
k→∞

(
kE(k)(y(k)) + ||y(k)||`∞(Λk ;R3)

)
< +∞ (3.1)

Then after applying the extension scheme from Subsection 2.2 we can find an increasing sequence
(kj )∞j=1 ⊂ N, functions ỹ ∈ P-H2(0,L;R3), d2,d3 ∈ P-H1(0,L;R3) with R = (∂x1

ỹ|d2|d3) ∈ SO(3)

a.e., and a partition (σ i )n̄f+1
i=0 of [0,L] such that for any η ∈ (0, 1

2 min0≤i≤n̄f |σ
i+1 − σ i |) and every

0 ≤ i ≤ n̄f we have:

(i) ỹ(kj )→ ỹ in L2(Ωext;R3×3);

(ii) ∇kj ỹ
(kj )→ R = (∂x1

ỹ|d2|d3) in L2((σ i + η,σ i+1 − η)× Sext;R3×3);

(iii) dist(∇̄kj ỹ
(kj ), ¯SO(3)) ≤ c(k)

frac on (σ i + η,σ i+1 − η)× Sext, for j sufficiently large;

(iv) if we define the measures µk on [0,L] by

µk(A) =
∑

x̂∈Λ̂′,ext
k ,

x̂1∈kA

kW
(k)
tot

(
x̂′ , ~y (k)(x̂)

)
,

for Borel sets A, then µkj ⇀
∗ µ for a Radon measure µ.

Proof. By properties of the extension scheme from Subsection 2.2 (see [SZ22, Remark 2.1])
there is a constant Ĉe ≥ 1 such that for any x ∈ Λ̃′,ext

k , setting U (x) =
(
{x1− 1

k ,x1,x1+ 1
k }×L

′
)
∩Λ̃′k

we have
dist2(∇̄k ỹ(k)(x), ¯SO(3)) ≤ Ĉ2

e

∑
ξ∈U (x)

dist2(∇̄k ỹ(k)(ξ), ¯SO(3)). (3.2)

Let Sk(x1) denote a slice of the rod at the point x1:

Sk(x1) =
(1
k
bkx1c,

1
k
bkx1c+

1
k

)
× Sext, x1 ∈ [0,L].

A slice Sk(x1) is regarded as broken if there is an x′ ∈ S such that

dist
(
∇̄ŷ(k)(kx1,x

′), ¯SO(3)
)
>

c
(k)
frac√

3]L′Ĉe

.

Like this, for any x such that the slice Sk(x1) and, if existent, the neighbouring slices Sk(x1±1
k )

are not broken, ∇̄k ỹ(k)(x) is at most c(k)
frac-far from ¯SO(3) even if x ∈Ωext

k \ (0,Lk)× Sext. Write

X
(k)
1 for the set of all midpoints of the x1-projections of broken slices:

X
(k)
1 =

{
x1 ∈

( 1
2k

+
1
k
Z
)
∩ [0,L); Sk(x1) is broken

}
.

We have ]X(k)
1 ≤ Cf with Cf > 0 independent of k, since by Assumptions (W3) and (W5)

min
{
W

(k)
cell(~y); ~y ∈ R3×8, dist(∇̄ŷ, ¯SO(3)) ≥

c
(k)
frac√

3]L′Ĉe

}
≥min

{cW (c(k)
frac)2

3]L′Ĉ2
e
, c̄

(k)
1

}
≥ c
k

9



for a constant c > 0 and so

C ≥ kE(k)(y(k)) ≥
∑

x̂∈Λ̂′,ext
k

kW
(k)
tot

(
x̂′ , ~y (k)(x̂)

)
(3.3)

≥ c]X (k)
1 + k

∑
x̂∈Λ̂′,ext

k , x̂1<kX
(k)
1

W
(k)
tot

(
x̂′ , ~y (k)(x̂)

)
︸                                   ︷︷                                   ︸

elastic part (≥0)

. (3.4)

If we pass to a subsequence {kj }∞j=1 ⊂ N, we find nf ∈ N, 0 ≤ nf ≤ C/c, such that for every

j ∈ N, there are always precisely nf broken slices, i.e. ∀j ∈ N : ]X
(kj )
1 = nf, and

X
(kj )
1 = {s1j , s

2
j , . . . , s

nf
j }, s1j < s

2
j < · · · < s

nf
j .

We observe that the location sij of the i-th broken slice, 1 ≤ i ≤ nf, remains in the compact
interval [0,L], so we construct a further subsequence, which we still denote by (kj )∞j=1, so
that

∀i ∈ {1,2, . . . ,nf} : lim
j→∞

sij = si ∈ [0,L].

Naturally it can be that some of the limiting positions of cracks si , i = 1,2, . . .nf, coincide or
appear at the endpoints of the rod, hence we rewrite

X1 := {si ; 0 < si < L, 1 ≤ i ≤ nf} = {σ i}
n̄f
i=1,

where the number n̄f ≤ nf. Further, σ0 := 0 and σ n̄f+1 := L.

Suppose 0 < η < 1
2 min0≤i≤n̄f |σ

i+1 −σ i |. If j is large enough, then for all i, 0 ≤ i ≤ n̄f,

[σ i + η,σ i+1 − η]∩
(
x1 −

3
2kj

,x1 +
3

2kj

)
= ∅.

Thus the regions [σ i + η,σ i+1 − η] × S are intact, so we can replace W (k)
cell by W0 and safely

apply our results about purely elastic rods here (see [SZ22, Theorem 2.4]). Specifically,
ỹ(kj ) → ỹ in L2((σ i + η,σ i+1 − η) × Sext;R3), ∇kj ỹ

(kj ) → R = (∂x1
ỹ|d2|d3) in L2((σ i + η,σ i+1 −

η) × Sext;R3×3), and the x′-independent limit satisfies ỹ ∈ H2((σ i + η,σ i+1 − η);R3), d2,d3 ∈
H1((σ i + η,σ i+1 − η);R3), and R ∈ SO(3) a.e. (We extracted another subsequence without
changing the subindices.) By passing to a diagonal sequence we find a single sequence
that satisfies convergence properties (i)–(ii) for any choice of η. Moreover, the L∞ bound
in (3.1) and the uniform energy bound in (3.4) show that indeed ỹ ∈ P-H2(0,L;R3) and
R ∈ P-H1(0,L;R3×3). Finally passing to yet another subsequence (not relabelled), we find
µkj ⇀

∗ µ for some Radon measure µ since (3.3) implies supk µk([0,L]) <∞.

4 Main result

Theorem 4.1. If k→∞, we have E(k) Γ→ Elim, more precisely:

10



(i) (liminf inequality) Let (y(k))∞k=1 be a sequence of lattice deformations such that their piece-
wise affine interpolations and extensions (ỹ(k))∞k=1 ⊂ H

1(Ωext
k ;R3), defined in Subsection

2.2, converge in L2(Ωext;R3) to ỹ ∈ L2((0,L);R3) for which there is a partition (ςi )ñf+1
i=0 of

[0,L] such that ỹ|(ςi ,ςi+1) ∈H1((ςi ,ςi+1)× Sext;R3), 0 ≤ i ≤ ñf.

Assume further that for any η > 0 sufficiently small, we have k∂xs ỹ
(k)→ ds ∈ L2((0,L);R3)

in L2((ςi + η,ςi+1 − η)× Sext;R3), s = 2,3, 0 ≤ i ≤ ñf (L2
loc-convergence). Then

Elim(ỹ,d2,d3) ≤ liminf
k→∞

kE(k)(y(k)).

(ii) (existence of a recovery sequence) Let ỹ ∈ L2((0,L);R3) be such there is a partition (ςi )ñf+1
i=0

of [0,L] for which ỹ|(ςi ,ςi+1) ∈ H1((ςi ,ςi+1);R3), and let d2,d3 ∈ L2((0,L);R3). Then there
exists a sequence of lattice deformations (y(k))∞k=1 such that their piecewise affine interpola-

tions and extensions (ỹ(k))∞k=1 ⊂ H
1(Ωext

k ;R3) satisfy ỹ(k) → ỹ in L2(Ωext;R3), k ∂ỹ
(k)

∂xs
→ ds

in L2
loc((ςi ,ςi+1)× Sext;R3) for s = 2,3, 0 ≤ i ≤ ñf, and

lim
k→∞

kE(k)(y(k)) = Elim(ỹ,d2,d3).

Moreover, if ||ỹ||L∞((0,L);R3) ≤M and the cell energies satisfy the maximum interaction range
property (W9), then for any (ζk)∞k=1 ⊂ (0,1) with ζk ↘ 0 and ζk/Mk →∞ one can choose
y(k) such that ||y(k)||`∞(Λk ;R3) ≤M + ζk .

The limit energy functional is given by

Elim(ỹ,d2,d3) =



1
2

∫ L

0
Qrel

3 (R>∂x1
R)dx1

+
∑

σ∈Sỹ∪SR

ϕ
(
ỹ(σ+)− ỹ(σ−), (R(σ−))−1R(σ+)

) if (ỹ,d2,d3) ∈ A,

+∞ otherwise,

where R := (∂x1
ỹ|d2|d3), SR := Sỹ′ ∪ Sd2

∪ Sd3
, and the class of admissible deformations

A :=
{
(ỹ,d2,d3) ∈ (L1(Ω;R3))3; ỹ,d2,d3 do not depend on x2,x3,

(ỹ,d2,d3) ∈ P-H2(0,L;R3)× (P-H1(0,L;R3))2 as functions of x1 only,( ∂ỹ
∂x1

∣∣∣∣d2

∣∣∣∣d3

)
∈ SO(3) a.e. in (0,L)

}
.

The relaxed quadratic form Qrel
3 : R3×3

skew→ [0,+∞) is defined as

Qrel
3 (A) := min

α : Lext→R3

g∈R3

∑
x′∈L′,ext

Qtot

(
x′ ,

1
2

(
A


0
x2
x3

+ g
)
(−1,−1,−1,−1,1,1,1,1)

+
1
4
A


0 0 0 0 0 0 0 0
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

+ (∇̄2dα| ∇̄2dα)
)

(4.1)

with Qtot(x′ , ·) =Q3 +Qsurf(x′ , ·), and ϕ : R3 × SO(3)→ [0,∞] is introduced in (5.3).
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Remark 4.1. It follows from the positive semidefiniteness of Qtot that the minimum in (4.1)
is attained.

Remark 4.2. The elastic part of our limiting functional includes a matrix expressing what
we call an ultrathin correction – it is the first term on the second line of (4.1). The term is
responsible for atomic effects that a continuum theory merely based on the Cauchy–Born
rule would not capture.

Remark 4.3. Assumptions (W3), (W5) and the compactness result [SZ22, Theorem 2.4] in
the elastic case imply that ϕ ≥ c̄1 for some constant c̄1 > 0 on R3 × SO(3) \ {(0, Id)} (and
ϕ(0, Id) = 0). If (W8) holds true, then we also have ϕ ≤ C̄1 for a constant C̄1 <∞.

Remark 4.4. The universality of the sequence ζk obtained in (ii) would allow to impose an
L∞ constraint energetically by simply setting E(k)(y(k)) = +∞ if ||y(k)||∞ > M + ζk . One then
has a directly matching compactness result in Theorem 3.1.

Remark 4.5. The convergence of deformations used in Theorem 4.1 is equivalent to

ỹ(k)(·,x′)→ ỹ in L2((0,L);R3) for every x′ ∈ L and

∇̄k ỹ(k)→ R Īd in L2
loc((ςi ,ςi+1)× S ;R3×8) for 0 ≤ i ≤ ñf,

which shows the limit’s independence of our interpolation scheme.

5 Proof of the lower bound

The proof is divided into four parts.

5.1 First step – elastic part

Since the conclusion is immediate if the liminf is infinite, let us assume the contrary; ỹ(k)→ ỹ
in L2(Ω;R3) and after extracting a subsequence,

lim
k→∞

kE(k)(y(k)) = liminf
k→∞

kE(k)(y(k)) <∞. (5.1)

Let (σ i )n̄f+1
i=0 , ∇kj ỹ

(kj ), µk , µ be as in Theorem 3.1 and fix η > 0 small. Then by the results about
purely elastic rods ([SZ22, Theorem 3.1]), the bound

liminf
k→∞

∑
x̂∈Λ̂′,ext

k

x̂1∈k[σ i+η,σ i+1−η]

kW
(k)
tot

(
x̂′ , ~y (k)(x̂)

)
≥ 1

2

∫ σ i+1−η

σ i+η
Qrel

3 (R>∂x1
R)dx1, i = 0,1, . . . , n̄f,

holds true. Since this is fulfilled for any η, we can let η→ 0+ and use the monotone conver-
gence theorem, as we will see later.

5.2 Second step – w∗-limit in measures

For the crack contribution to the strain energy, we use the blow-up method of Fonseca and
Müller [FM92]. We will not make a notational distinction between (ỹ(k)) and its hitherto
constructed subsequence (ỹ(kj )) any more, as this is not relevant for our Γ-convergence proof.
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Now note that Sỹ ∪ SR ⊂ X1, where X1 = {σ i}n̄f
i=1 is from the proof of Theorem 3.1. Write

H̃ :=H0 ¬Sỹ ∪SR. Decomposing µ into an absolutely continuous part and a singular part, we
have

µ =
dµ

dH̃
H̃+µs

with µs ≥ 0. The w∗-convergence then gives (cf. [EG15, Th. 1.40])

liminf
k→∞

n̄f∑
i=1

∑
x̂∈Λ̂

′ ,ext
k

x̂1∈k(σ i−η,σ i+η)

kW
(k)
tot

(
x̂′ , ~y (k)(x̂)

)
≥ µ

( n̄f⋃
i=1

(σ i − η,σ i + η)
)
≥

∑
σ∈Sỹ∪SR

dµ

dH̃
(σ).

The goal now is to find the asymptotic minimal energy ϕ = ϕ(ỹ+ − ỹ−, (R−)−1R+) necessary to
produce a crack or kink and for every 1 ≤ i ≤ nf, show that

dµ

dH̃
(σ i ) ≥ ϕ

(
ỹ(σ i+)− ỹ(σ i−), (R(σ i−))−1R(σ i+)

)
.

Let us expand the definition of the derivative of µ:

dµ

dH̃
(σ i ) def= lim

r→0+

µ([σ i − r,σ i + r])

H̃([σ i − r,σ i + r])
= lim
r→0+

µ([σ i − r,σ i + r])
1

.

By [FL07, Prop. 1.15] and [EG15, Th. 1.40], we can find rn↘ 0 such that

dµ

dH̃
(σ i ) = lim

n→∞
lim
k→∞

µk((σ
i − rn,σ i + rn))

= lim
n→∞

lim
k→∞

∑
x̂∈Λ̂′,ext

k

x̂1∈k(σ i−rn,σ i+rn)

kW
(k)
tot

(
x̂′ , ~y (k)(x̂)

)
.

5.3 Third step – preliminary cell formula obtained by blowup

First we shall find a preliminary lower bound ψ by rescaling (σ i−rn,σ i+rn) to a fixed interval
(cf. [AFP00, proof of Theorem 5.14, Step 3]). There is a sequence (kn)∞n=1 such that kn ≥ n,
rnkn→∞,

dµ

dH̃
(σ i ) = lim

n→∞

∑
x̂∈Λ̂′,ext

kn

x̂1∈kn(σ i−rn,σ i+rn)

knW
(kn)
tot

(
x̂′ , ~y (kn)(x̂)

)
,

as well as∫
(σ i−2rn,σ i+2rn)×Sext

|ỹ(kn) − ỹ|2dx1dx′ +
∫
{σ i+[(−2rn,− 1

4 rn)∪( 1
4 rn,2rn)]}×Sext

|∇kn ỹ
(kn) −R|2dx ≤ r2

n (5.2)

and σ i − rn
2 + 2

kn
< s

j
kn
< σ i + rn

2 −
2
kn

for every n ∈ N and each of the (finitely many) sequences

(sjkn)
∞
n=1 of midpoints of broken slices satisfying limn→∞ s

j
kn

= σ i . Since the restrictions of ỹ

and R to left and right neighbourhoods of σ i are H1, we get for the rescaled functions

y‡,n(w1) := ỹ(σ i + rnw1),

R‡,n(w1) := R(σ i + rnw1), w1 ∈ [−1,1],
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the convergences y‡,n→ yPC in L2([−1,1];R3) and R‡,n→ RPC in L2([−1,1];R3×3) for n→∞,
where the piecewise constant functions yPC, RPC are defined through

yPC(w1) :=

ỹ(σ i−) = ỹ− w1 < 0,

ỹ(σ i+) = ỹ+ w1 ≥ 0,
and RPC(w1) :=

R(σ i−) = R− w1 < 0,

R(σ i+) = R+ w1 ≥ 0.

We also set, for w1 ∈ [−1,1],

y(kn)(w1,x
′) := ỹ(kn)(σ ikn + rnw1,x

′),

∇rn,kny
(kn)(w1,x

′) :=
( 1
rn
∂w1

y(kn)|kn∂x2
y(kn)|kn∂x3

y(kn)
)

= ∇kn ỹ
(kn)(σ ikn + rnw1,x

′),

where σ ikn = 1
kn
bknσ ic. Then using (5.2), we get y(kn) → yPC in L2([−1,1] × Sext;R3) and

∇rn,kny
(kn)→ RPC in L2([I−ψ ∪ I

+
ψ]× Sext];R3×3), where I−ψ = [−1,−1

2 ] and I+
ψ = [1

2 ,1]. This gives
the preliminary estimate with ‘converging boundary conditions’:

dµ

dH̃
(σ i ) ≥min

{
limsup
n→∞

∑
(w1,x′)∈Λ′rn,kn

knW
(kn)
tot

(
x′ , ~y(kn)(w1,x

′)
)
;

y(kn) ∈ PAff(Λrn,kn), rn↘ 0, rnkn→∞,

||y(kn) − yPC||L2(I±ψ×Sext)→ 0, ||∇rn,kny
(kn) −RPC||L2(I±ψ×Sext)→ 0

}
=: ψ̃(ỹ−, ỹ+,R−,R+),

where

~y(kn)(w1,x
′) := kn

(
y(kn)

(
w1 +

1
rnkn

zi1,x
′ + (zi )′

))8

i=1
,

Λrn,kn :=
( 1
rnkn

Z∩
(
−1− 1

rnkn
,1 +

1
rnkn

))
×Lext,

Λ′rn,kn :=
(( 1

2rnkn
+

1
rnkn

Z
)
∩

(
−1− 1

2rnkn
,1 +

1
2rnkn

))
×L′,ext,

and PAff(Λrn,kn) denotes the class of piecewise affine mappings v : [−1− 1
rnkn

,1+ 1
rnkn

]×Sext→
R3 which are generated by interpolating their values from Λrn,kn by the scheme from Sub-
section 2.2. The minimum in ψ̃ runs over all sequences {rn} ⊂ (0,∞), {kn} ⊂ N and (y(kn))
with the above properties.

It can be shown by a diagonalization argument that the minimum is attained; this is

also the case in (5.3). From the translation and rotation invariance of W (k)
cell we see that

ψ̃(ỹ−, ỹ+,R−,R+) = ψ(ỹ+ − ỹ−, (R−)−1R+) for a function ψ : R3 × SO(3)→ [0,∞].

5.4 Fourth step – rigid boundary conditions in the cell formula

At last, we relate the preliminary cell formula ψ to the final cell formula which uses rigid
boundary conditions instead of L2-converging ones:

ϕ
(
ỹ+ − ỹ−, (R−)−1R+

)
= min

{
limsup
n→∞

∑
(w1,x′)∈Λ′rn,kn

knW
(kn)
tot

(
x′ , ~y(kn)(w1,x

′)
)
;

(
(rn)∞n=1, (kn)∞n=1, (y

(kn))∞n=1

)
∈ Vỹ+−ỹ−,(R−)−1R+

} (5.3)
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with

Vỹ+−ỹ−,(R−)−1R+ =
{(

(rn)∞n=1, (kn)∞n=1, (y
(kn))∞n=1

)
∈ (0,∞)N ×NN ×PAff(Λrn,kn)

N;

y(kn)(w1,x
′) = R(kn)

±
(
rnw1,

1
kn
x′
)>

+ y(kn)
± on I± × Sext, rn↘ 0,

rnkn→∞, y
(kn)
± ∈ R3, R

(kn)
± ∈ SO(3), y(kn)

± → ỹ±, R
(kn)
± → R±

}
,

I− = [−1,−3
4 ] and I+ = [3

4 ,1].

Remark 5.1. The particular choice

y(kn)(w1,x
′) =

R(kn)
− (rnw1,

1
kn
x′)> + y(kn)

− if w1 ≤ 0,

R
(kn)
+ (rnw1,

1
kn
x′)> + y(kn)

+ if w1 > 0

for given ỹ+, ỹ− ∈ R3 and R−,R+ ∈ SO(3) shows that, in case (W8) holds true, one has ϕ ≤ C̄1
for some C̄1 <∞.

We now show that we have ψ ≥ ϕ. Suppose ε > 0 and that (y(kn))∞n=1 is a sequence
PAff(Λrn,kn) such that

||y(kn) − yPC||L2(I±ψ×Sext)→ 0, ||∇rn,kny
(kn) −RPC||L2(I±ψ×Sext)→ 0 (5.4)

and
limsup
n→∞

Ekn(y
(kn), [−1,1]) ≤ ψ(ỹ+ − ỹ−, (R−)−1R+) + ε,

where for any I ⊂ [−1,1] we set

Ekn(y
(kn), I ) :=

∑
w1∈L′n(I )
x′∈L′,ext

knW
(kn)
tot

(
x′ , ~y(kn)(w1,x

′)
)

and L′n(I ) = ( 1
2rnkn

+ 1
rnkn

Z)∩ I . The definition of a rod slice in this section reads

Skn(w1) =
[
w̄1 −

1
2rnkn

, w̄1 +
1

2rnkn

)
× Sext, where w̄1 =

1
rnkn
brnknw1c+

1
2rnkn

.

Our goal now is to find a sequence v(kn) which is admissible as a competitor in the def-
inition of ϕ and has asymptotically lower energy than y(kn). We provide the construc-
tion only for v(kn)|[−1,0]×Sext , as for v(kn)|(0,1]×Sext we could proceed analogously. Writing

I−0,n := 1
rnkn

(b−3
4rnknc + 1,b−1

2rnknc) for a discrete approximation of I−ψ \ I
− from inside and

N−n = b−1
2rnknc − b−

3
4rnknc − 3 = ]L′(I−0,n) − 2 for the number of (interior) slices intersecting
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I−0,n × Sext, we introduce the sets

W
(n)
1 =

{
w1 ∈L′(I−0,n); w1 ± i

rnkn
∈L′(I−0,n),∑

i∈{−1,0,1}

∑
x′∈L′,ext

knW
(kn)
tot

(
x′ , ∇̄rn,kny

(kn)(w1 + i
rnkn

,x′)
)
≤ 12
N−n
Ekn(y

(kn), I−0,n)
}
,

(5.5a)

W
(n)
2 =

{
w1 ∈L′(I−0,n); w1 ± i

rnkn
∈L′(I−0,n),∫

Skn (w1)
|∇rn,kny

(kn) −R−|2dw1dx′ ≤ 4
N−n
||∇rn,kny

(kn) −R−||2L2(I−0,n×Sext;R3×3)

}
,

(5.5b)

W
(n)
3 =

{
w1 ∈L′(I−0,n); w1 ± i

rnkn
∈L′(I−0,n),∫

Skn (w1)
|y(kn) − ỹ−|2dw1dx′ ≤ 4

N−n
||y(kn) − ỹ−||2L2(I−0,n×Sext;R3)

}
,

(5.5c)

where ∇̄rn,kny
(kn)(w1,x

′) = kn(y(kn)(w̄1 + 1
rnkn

zi1, x̄
′ + (zi )′)−

∑8
j=1 y

(kn)(w̄1 + 1
rnkn

z
j
1, x̄
′ + (zj )′))8

i=1.

The sets W (n)
i , i = 1,2,3, are comprised of the midpoints of the w1-projections of slices on

which, loosely speaking, a certain quantity is below four times its average. By Lemma 5.2

with p = 4 we see that for every i ∈ {1,2,3} and n ∈ N, the set W (n)
i contains at least b(3/4)N−n c

elements. The pigeonhole principle then implies that for every n large enough there is

w(n)
− ∈W

(n)
1 ∩W

(n)
2 ∩W

(n)
3 . Since N−n ≥ 1

4rnkn −4, the inequality in (5.5a) and the finiteness in
(5.1) imply an estimate in integral form:∑

i∈{−1,0,1}
rnkn

∫
Skn (w(n)

− + i
rnkn

)
knW

(kn)
tot

(
x′ , ∇̄rn,kny

(kn)
)
dw1dx′ ≤ 48

rnkn − 16
Ekn(y

(kn), I−0,n) ≤ Ce

rnkn

(5.6)
for a constant Ce > 0. Hence we can employ the growth assumption on the elastic cell energy
W0, properties of the extension scheme (cf. (3.2)), and [FJM02, Theorem 3.1] (in unrescaled
variables) to get R(kn)

− ∈ SO(3) such that

1
C
||∇rn,kny

(kn) −R(kn)
− ||2L2(Skn (w(n)

− );R3×3)
≤

∑
i∈{−1,0,1}

∫
Skn (w(n)

− + i
rnkn

)
W

(kn)
tot

(
x′ , ∇̄rn,kny

(kn)
)
dw1dx′

for a constant C > 0. Combining the previous inequality with (5.6) we deduce that

||∇rn,kny
(kn) −R(kn)

− ||L2(Skn (w(n)
− );R3×3) =O

( 1

rnk
3/2
n

)
. (5.7)

Setting

y(kn)
− = −

∫
Skn (w(n)

− )
y(kn)(w1,x

′)−R(kn)
−

(
rnw1,

1
kn
x′
)>

dw1dx′ ,

we achieve that a Poincaré inequality is satisfied, with a C > 0:√∫
Skn (w(n)

− )
|y(kn)(w1,x′)−R(kn)

−
(
rnw1,

1
kn
x′
)>
− y(kn)
− |2dw1dx′

≤ C 1
kn
||∇rn,kny

(kn) −R(kn)
− ||L2(Skn (w(n)

− );R3×3).

(5.8)
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Define v(kn) : [−1,0]× Sext→ R3 as follows:

v(kn)(w1,x
′) =


R(kn)
− (rnw1,

1
kn
x′)> + y(kn)

− −1 ≤ w1 ≤ w(n)
− − 1

2rnkn

pcw. affine (24 simplices/cell) w(n)
− − 1

2rnkn
< w1 < w

(n)
− + 1

2rnkn
y(kn)(w1,x

′) 0 ≥ w1 ≥ w(n)
− + 1

2rnkn
.

We claim that

limsup
n→∞

Ekn
(
v(kn), [−1,0)

)
≤ limsup

n→∞
Ekn

(
y(kn), [−1,0)

)
, (5.9)

lim
n→∞

y(kn)
− = ỹ−, lim

n→∞
R(kn)
− = R−. (5.10)

Concerning (5.9), we notice that for all n ∈ N,

Ekn
(
y(kn),

(
w(n)
− +

1
2rnkn

,0
))

= Ekn
(
v(kn),

(
w(n)
− +

1
2rnkn

,0
))

and that Ekn(v
(kn), (−1,w(n)

− − 1
2rnkn

)) = 0 since ∇̄rn,knv
(kn) = R(kn)

− Īd ∈ ¯SO(3) on (−1,w(n)
− − 1

2rnkn
)×

Sext. Hence it remains to show that the energy on the transition slice Skn(w
(n)
− ) vanishes in

the limit.

Lemma 5.1. The following is true:

lim
n→∞
Ekn

(
y(kn),w(n)

− +
1

2rnkn

(
−1,1

))
+ Ekn

(
v(kn),w(n)

− +
1

2rnkn

(
−1,1

))
= 0.

Proof. The proof is divided into several steps. Let Q = [w(n)
− − 1

2rnkn
,w(n)
− + 1

2rnkn
] ×Q′, where

Q′ = x′ + [−1
2 ,

1
2 ]2 for some x′ ∈ L′,ext, be any atomic cell contained in the slice Skn(w

(n)
− ).

Step 1. Using [Sch09, Lemma 3.5] and (5.7), we can obtain the relation

c|∇̄rn,kny
(kn)(w(n)

− ,x
′)−R(kn)

− Īd|2 ≤ rnkn
∫
Q
|∇rn,kny

(kn) −R(kn)
− |2dw1dw′ =O

( 1

rnk
2
n

)
(5.11)

with a constant c > 0.

Step 2. We now compare ~y(kn)(w1,x
′) and ~v(kn)(w1,x

′). By construction we have [~y(kn)]·i =
[~v(kn)]·i for i = 5,6,7,8 and from Step 1 we get, for i = 1,2,3,4,

[~y(kn)(w1,x
′)]·i − [~v(kn)(w1,x

′)]·i

=
∣∣∣∣kn(y(kn)

(
w(n)
− +

1
rnkn

zi1,x
′ + (zi )′

)
−R(kn)
−

(
rnw

(n)
− +

1
kn
zi1,

1
kn

(x + zi )′
)>
− y(kn)
−

)∣∣∣∣
≤

∣∣∣[∇̄rn,kny(kn)(w(n)
− ,x

′)]·i −R(kn)
− zi

∣∣∣︸                                  ︷︷                                  ︸
=O(r−1/2

n k−1
n )

+kn
∣∣∣〈y(kn)〉 −R(kn)

−
(
rnw

(n)
− ,

1
kn
x′
)>
− y(kn)
−

∣∣∣.
Property (2.1) of our piecewise affine interpolation, Hölder’s inequality, (5.8) and (5.7) give

kn
∣∣∣〈y(kn)〉 −R(kn)

−
(
rnw

(n)
− ,

1
kn
x′
)>
− y(kn)
−

∣∣∣
= rnk

2
n

∣∣∣∣∫
Q

y(kn)(w)−R(kn)
−

(
rnw1,

1
kn
w′

)>
− y(kn)
− dw1dw′

∣∣∣∣
≤ C

√
|Q|rnk2

n
1
kn
||∇rn,kny

(kn) −R(kn)
− ||L2(Skn (w(n)

− );R3×3) =O
( 1
√
rnkn

)
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so that |~y(kn)(w1,x
′)− ~v(kn)(w1,x

′)| =O(r−1/2
n k−1

n ) and, in particular,

|∇̄rn,kny
(kn)(w(n)

− ,x
′)− ∇̄rn,knv

(kn)(w(n)
− ,x

′)| =O
( 1
√
rnkn

)
since ∇̄rn,kny

(kn)(w(n)
− ,x

′) = ~y(kn)(w1,x
′)− 1

8
∑8
i=1[~y(kn)(w1,x

′)]·i(1, . . . ,1) and likewise for v(kn).
Together with (5.11) this shows that also v(kn) satisfies

|∇̄rn,knv
(kn)(w(n)

− ,x
′)−R(kn)

− Īd| =O
( 1
√
rnkn

)
. (5.12)

Step 3. Now we use that W (kn)
tot is independent of kn on a tubular neighbourhood of

SO(3) of size O(k−1
n ) and, by Taylor expansion, satisfies an estimate of the form W

(kn)
tot ≤

Cdist2(·,SO(3)) there. Thus, (5.11) and (5.12) give

knW
(kn)
tot

(
x′ , ∇̄rn,kny

(kn)
)

+ knW
(kn)
tot

(
x′ , ∇̄rn,knv

(kn)
)

=O
( 1
rnkn

)
.

This implies the assertion.

The second convergence in (5.10) is a consequence of (5.5b), (5.4), and (5.7):

|R(kn)
− −R−|2 =

rnkn
|Sext|

∫
Skn (w(n)

− )
|R(kn)
− −R−|2dw1dx′

≤ 2rnkn
|Sext|

(∫
Skn (w(n)

− )
|R− −∇rn,kny

(kn)|2dw1dx′ +
∫
Skn (w(n)

− )
|R(kn)
− −∇rn,kny

(kn)|2dw1dx′
)

≤ 2rnkn
|Sext|

· 4
1
4rnkn − 4

||∇rn,kny
(kn) −R−||2L2(I−0,n×S ;R3×3) +O

( 1

rnk
2
n

)
−→ 0.

The first convergence in (5.10) follows similarly from (5.5c) and (5.4) if we use (5.8) and
(5.7) to show that

2rnkn
|Sext|

∫
Skn (w(n)

− )

|y(kn)
− − y(kn)|2dw1dx′

≤ C
[
rn||∇rn,kny

(kn) −R(kn)
− ||2L2(Skn (w(n)

− );R3×3)
+ |R(kn)

− |2rnkn
1

|Sext|rnkn

∣∣∣(rn, 1
kn
,

1
kn

)∣∣∣2] −→ 0,

with a constant C > 0.

In the same way, we could construct (R(kn)
+ )∞n=1, (y(kn)

+ )∞n=1, and v(kn)|(0,1]×Sext and prove a
version of (5.9)–(5.10) on (0,1]. Thus, as

ϕ
(
ỹ+ − ỹ−, (R−)−1R+

)
≤ limsup

n→∞
Ekn

(
v(kn), [−1,1]

)
≤ limsup

n→∞
Ekn

(
y(kn), [−1,1]

)
≤ ψ

(
ỹ+ − ỹ−, (R−)−1R+

)
+ ε

and ε > 0 was arbitrary, the claim that ϕ ≤ ψ is proved.

Lemma 5.2. Let c1, c2, . . . , cN be nonnegative reals and p ≥ 1. Then

]
{
i ∈ {1, . . . ,N }; ci ≤

p

N

N∑
j=1

cj

}
>
⌊(

1− 1
p

)
N

⌋
.
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Proof. We denote by c̄ the average N−1 ∑
j cj . If the statement were not true, the number of

cj ’s such that cj > pc̄ would be greater than or equal to N/p. Hence

c̄ ≥ 1
N

∑
j ; cj>pc̄

cj >
1
N
pc̄
N
p

= c̄,

but that is a contradiction.

Summing up the elastic and crack energy contributions, we get

lim
k→∞

kE(k)(y(k)) ≥ liminf
k→∞

k
[ n̄f∑
i=0

∑
x̂∈Λ̂′,ext

k

x̂1∈k[σ i+η,σ i+1−η]

W
(k)
tot

(
x̂′ , ~y (k)(x̂)

)

+
n̄f∑
i=1

∑
x̂∈Λ̂′,ext

k

x̂1∈k(σ i−η,σ i+η)

W
(k)
tot

(
x̂′ , ~y (k)(x̂)

)]

≥
n̄f∑
i=0

1
2

σ i+1−η∫
σ i+η

Qrel
3 (R>∂x1

R)dx1 +
∑

σ∈Sỹ∪SR

ϕ
(
ỹ(σ+)− ỹ(σ−), (R(σ−))−1R(σ+)

)
.

To obtain the Γ-liminf inequality, we apply the monotone convergence theorem with η →
0+.

6 Proof of the upper bound

For a construction of recovery sequences it is crucial to first analyze the cell formula more
precisely. In particular, we will need to prove that the crack set is essentially localized on
the atomic scale.

6.1 Analysis of the cell formula

Lemma 6.1 (localization of crack). Let ỹ−, ỹ+ ∈ R3 and R−,R+ ∈ SO(3). Then for any ε∗ > 0,
there is an N∗ ∈ N, sequences {kn}∞n=1 ⊂ N, {rn} ⊂ (0,∞) and mappings

+
y(kn) ∈ PAff(Λrn,kn), n ∈ N,

with the following properties:

limsup
n→∞

Ekn(
+
y(kn), [−1,1]) ≤ ϕ

(
ỹ+ − ỹ−, (R−)−1R+

)
+ ε∗, (6.1)

rn↘ 0, rnkn→∞, and, for suitable
+
y

(kn)
± ∈ R3,

+
R

(kn)
± ∈ SO(3) with

+
y

(kn)
± → ỹ±,

+
R

(kn)
± → R±,

+
y(kn)(w1,x

′) =


+
R(kn)
−

(
rnw1,

x′

kn

)>
+

+
y(kn)
− on

(
[−1,0] \ I (n)

c
)
× Sext,

+
R

(kn)
+

(
rnw1,

x′

kn

)>
+

+
y

(kn)
+ on

(
(0,1] \ I (n)

c
)
× Sext,

where I (n)
c = 1

rnkn
[−N∗,N∗].
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Proof. Find (kn)∞n=1 ⊂ N, (rn)∞n=1 ⊂ (0,∞) with rn ↘ 0 and limn→∞ rnkn =∞, and (y(kn))∞n=1 ⊂
PAff(Λrn,kn) such that

lim
n→∞
Ekn(y

(kn), [−1,1]) = ϕ
(
ỹ+ − ỹ−, (R−)−1R+

)
and, for some y(kn)

± ∈ R3, R(kn)
± ∈ SO(3) with y(kn)

± → ỹ±, R(kn)
± → R±,

y(kn)(w1,x
′) = R(kn)

±
(
rnw1,

1
kn
x′
)>

+ y(kn)
± on I± × Sext.

Recalling assumption (W5) on W (kn)
cell and passing to a subsequence (without relabelling it),

we can assert that there is an Nf ∈ N0, Nf ≤ Cϕ(ỹ+− ỹ−, (R−)−1R+), such that for every n, only
the slices

Skn(s
j
n) :=

[
s
j
n −

1
2rnkn

, s
j
n +

1
2rnkn

)
× Sext, j ∈ {1, . . . ,Nf},

are broken in the sense from the proof of Theorem 3.1, where s1n < · · · < s
Nf
n are the midpoints

of the w1-projections of the broken slices and limn→∞ s
j
n = sj ∈ [−3/4,3/4]. This means that

∇̄rn,kny
(kn) on the remaining ‘intact’ slices is c(kn)

frac-close to ¯SO(3). Then

Ĩ
(n)
1 =

[
−
b3

4rnknc
rnkn

+
1
rnkn

, s1n −
1

2rnkn

]
,

Ĩ
(n)
2 =

[
s1n +

1
2rnkn

, s2n −
1

2rnkn

]
, . . . , Ĩ

(n)
Nf+1 =

[
sNf
n +

1
2rnkn

,
b3

4rnknc
rnkn

]
are the w1-projections of elastically deformed parts of the region surrounding the crack. We

fix a number N ′∗ ∈ N (to be determined below) and denote by {Ĩ (n)
ji
}NU
i=1 ⊂ {Ĩ

(n)
j }

Nf+1
j=1 those inter-

vals Ĩ (n)
ji

for which rnkn|Ĩ
(n)
ji
| ≥ 2N ′∗ + 4. On extracting a further subsequence, NU = NU(N ′∗ ) is

independent of n. We assume NU > 0, since otherwise the next ‘rigidification’ procedure is
redundant and it is enough to construct

+
y(kn) directly from y(kn) later. To shorten notation,

we set Ĩ (n)
ji

=: I (n)
i = [a(n)

i −
1
rnkn

, b
(n)
i + 1

rnkn
].

As an intermediate step, we now construct mappings
↼
y(kn) (illustrated in Figure 2(b))

which have the property that middle parts of the segments I (n)
i × Sext are only subject to

a rigid motion, instead of an elastic deformation. The complements of these middle parts
contain no more than 2N ′∗ +2 slices, where N ′∗ := b2NfCE/ε∗c+1 and CE is a positive constant
(independent of n and ε∗) that will be introduced in (6.5). The rigidifying procedure below
is presented for an arbitrary but fixed i ∈ {1, . . . ,NU}.

Procedure (R). As in [SZ22, Theorem 2.4] (which is a reformulation of the compactness

theorem in [MM03]), we get piecewise constant mappings R(kn) : I (n)
i → SO(3) with disconti-

nuity set contained in 1
rnkn

Z, fulfilling

rn

∫
Skn (w̄1)

|∇rn,kny
(kn) −R(kn)|2dw1dx′

≤
1∑

m=−1

Crn

∫
S

∫ w̄1+ m+1
rnkn

w̄1+ m
rnkn

dist2(∇rn,kny
(kn),SO(3))dw1dx′ ≤ 3Crn|Skn(w̄1)|(c(k)

frac)2 ≤ C

k2
n

(6.2)
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Figure 2: Main steps in the proof of Lemma 6.1. Rigid parts of the rod are drawn in grey.
(a) The original mapping y(kn). (b) Rigidification of rod segments to construct

↼
y(kn). (c)

Subsequent shortening of the rigid parts to obtain
+
y(kn).

for all w1 ∈ [a(n)
i , b

(n)
i ) by [FJM02, Theorem 3.1], growth assumptions on W0, and bounds

related to our extension scheme (cf. (3.2)). Moreover, [SZ22, Theorem 2.4] implies

1
rnkn

∣∣∣∣R(kn)(w1)−R(kn)
(
w1 ±

1
rnkn

)∣∣∣∣2 ≤ C∫
1⋃

m=−1
Skn (w̄1+ m

rnkn
)
dist2(∇rn,kny

(kn),SO(3))dw1dx′ (6.3)

for all w1 ∈ [a(n)
i , b

(n)
i ).

We now define points that delimit the middle part of I (n)
i × Sext (where y(kn) has to be

‘rigidified’) and the sets W (n)
− , W (n)

+ containing the w1-coordinates of cell midpoints left of
or right of this middle part:

a
(n)
0,i = a(n)

i +
N ′∗
rnkn

, b
(n)
0,i = b(n)

i −
N ′∗
rnkn

W (n)
− =

( 1
2rnkn

+
1
rnkn

Z
)
∩ (a(n)

i , a
(n)
0,i )

W
(n)
+ =

( 1
2rnkn

+
1
rnkn

Z
)
∩ (b(n)

0,i , b
(n)
i ).

The next few steps, till (6.5), are similar to the proof of the inequality ϕ ≤ ψ (cf. Subsection

5.4), so not all computations will be described in full here. We find w(n)
− ∈W (n)

− and w(n)
+ ∈
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W
(n)
+ such that

1∑
`=−1

∑
x′∈L′,ext

knW
(kn)
tot

(
x′ , ∇̄rn,kny

(kn)(w(n)
− + `

rnkn
,x′)

)
≤ 3
N ′∗
Ekn

(
y(kn), (a(n)

i , a
(n)
0,i )

)
,

1∑
`=−1

∑
x′∈L′,ext

knW
(kn)
tot

(
x′ , ∇̄rn,kny

(kn)(w(n)
+ + `

rnkn
,x′)

)
≤ 3
N ′∗
Ekn

(
y(kn), (b(n)

0,i , b
(n)
i )

)
.

Writing R(i,kn)
± in place of R(kn)(w(n)

± ) for short and using that all the slices centred in W (n)
± are

intact, from the first inequality in (6.2) we get

||∇rn,kny
(kn) −R(i,kn)

± ||
L2(Skn (w(n)

± );R3×3)
=O

( 1
√
N ′∗ rnkn

)
.

Choosing vectors c(n)
− , c(n)

+ as

c
(n)
± = −

∫
Skn (w(n)

± )
y(kn)(w1,x

′)−R(i,kn)
±

(
rn(w1 −w

(n)
± ),

1
kn
x′
)>

dw1dx′ ,

we get Poincaré inequalities√∫
Skn (w(n)

± )
|y(kn)(w1,x′)−R

(i,kn)
±

(
rn(w1 −w

(n)
± ),

1
kn
x′
)>
− c(n)
± |2dw1dx′

≤ C 1
kn
||∇rn,kny

(kn) −R(i,kn)
± ||

L2(Skn (w(n)
± );R3×3)

with a constant C > 0.

With the rotated and shifted version of y(kn), given by

y
(kn)
r (w1,x

′) := R(i,kn)
−

[(
R

(i,kn)
+

)>
(y(kn)(w1,x

′)− c(n)
+ ) +

(
rn(w(n)

+ −w(n)
− )

0

)]
+ c(n)
− , (6.4)

set

↼
y(kn)(w1,x

′) =



y(kn)(w1,x
′) a

(n)
i −

1
rnkn
≤ w1 ≤ w(n)

− − 1
2rnkn

pcw. affine (24 simplices/cell) w(n)
− − 1

2rnkn
< w1 < w

(n)
− + 1

2rnkn

R(i,kn)
− (rn(w1 −w(n)

− ), 1
kn
x′)> + c(n)

− w(n)
− + 1

2rnkn
≤ w1 ≤ w

(n)
+ − 1

2rnkn

pcw. affine (24 simplices/cell) w
(n)
+ − 1

2rnkn
< w1 < w

(n)
+ + 1

2rnkn

y
(kn)
r (w1,x

′) w
(n)
+ + 1

2rnkn
< w1 ≤ b

(n)
i + 1

rnkn

so that
↼
y(kn) is defined on I

(n)
i × Sext. Besides, to prepare future rigidification on possible

next intervals, we redefine y(kn) by y(kn) := y
(kn)
r on [b(n)

i + 1
rnkn

,1]× Sext.

After some calculations we deduce that on any atomic cell Q such that IntQ ⊂ Skn(w
(kn)
− ),∣∣∣∇̄rn,kny(kn)|Q −R(i,kn)

− Īd
∣∣∣ =O

( 1√
N ′∗kn

)
and consequently,

∣∣∣∇̄rn,kn↼y(kn)|Q −R(i,kn)
− Īd

∣∣∣ =O
( 1√
N ′∗kn

)
,
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which implies that for all n sufficiently large, the energetic error occurring on the transition
slice Skn(w

(kn)
− ) is controlled by our choice of N ′∗ :∣∣∣Ekn(y(kn),w(n)

− +
1

2rnkn
(−1,1)

)
−Ekn

(↼
y(kn),w(n)

− +
1

2rnkn
(−1,1)

)∣∣∣ ≤ CE

N ′∗
. (6.5)

It should be stressed that the constant CE above does not depend on n or ε∗. Due to the

definition of y(kn)
r , an analogous computation reveals that (6.5) also holds if w(n)

− is replaced

with w(n)
+ .

Later we will have to check that (
↼
y(kn))∞n=1 is an admissible competitor of (y(kn))∞n=1 in the

cell formula. Therefore we now show that the error incurred by the boundary condition due
to the previous steps of Procedure (R) tends to zero.

By our interpolation scheme, on any atomic cell Q contained in I
(n)
i × Sext we have (cf.

[Sch09, Lemma 3.5])∥∥∥∇rn,kny(kn)|Q
∥∥∥∞ ≤ 24−

∫
Q
|∇rn,kny

(kn)|dw1dx′ ≤ C
∣∣∣ ∇̄rn,kny(kn)|Q

∣∣∣ ≤ C
since dist2(∇̄rn,kny

(kn), ¯SO(3)) ≤ (c(kn)
frac)2. This proves that the mappings y(kn)|

I
(n)
i ×Sext are Lips-

chitz with the uniform constant Crn. In particular,

lim
n→∞
|c(n)

+ − c(n)
− | = 0.

Since by iterating (6.3) we derive a ‘pointwise curvature estimate’ (as in [MM03, FJM02])

|R(i,kn)
+ −R(i,kn)

− |2 ≤ Cr2
nk

2
n

∫
I

(n)
i ×S

dist2(∇rn,kny
(kn),SO(3))dw1dx′ =O(rn)

we obtain for y
(kn)
r from (6.4) that |y(kn)

r − y(kn)| → 0 uniformly.

This finishes Procedure (R) for the chosen i.

We construct
↼
y(kn) by letting

↼
y(kn)(w1,x

′) := y(kn)(w1,x
′) for every −1 ≤ w1 ≤ a

(n)
1 −

1
rnkn

and

x′ ∈ Sext and then by successively applying Procedure (R) for i = 1,2, . . .NU (it should be kept

in mind that after each invocation of Procedure (R), y(kn) is redefined on [b(n)
i + 1

rnkn
,1]× Sext

so that in step i + 1 we get the modified mapping y(kn) from step i as input).

On ( 1
rnkn
b3

4rnknc,1]×Sext, we define
↼
y(kn) as

↼
y(kn) := y(kn), where y(kn) is understood as the

transformed mapping after the NU-th step of rigidification.

As we have seen above, the affine transformations given by (6.4) at each step vanish in
the limit. Hence, ((rn)∞n=1, (kn)∞n=1, (

↼
y(kn))∞n=1) ∈ Vỹ+−ỹ−,(R−)−1R+ .

To summarize, the sequence (
↼
y(kn))∞n=1 satisfies

ϕ
(
ỹ+ − ỹ−, (R−)−1R+

)
≤ limsup

n→∞
Ekn

(↼
y(kn), [−1,1]

)
≤ ϕ

(
ỹ+ − ỹ−, (R−)−1R+

)
+ 2NU

CE

N ′∗
≤ ϕ

(
ỹ+ − ỹ−, (R−)−1R+

)
+ ε∗.
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Now we proceed to construct the modifications
+
y(kn) of

↼
y(kn) which will have more local-

ized non-rigid parts (as depicted in Figure 2(c)).

Since no confusion arises, we again use R(kn)
± and y(kn)

± to denote the rigid deformations
near the interval boundaries, i.e.

↼
y((kn))(w1,x

′) = R(kn)
±

(
rnw1,

1
kn
x′
)>

+ y(kn)
± on I± × Sext.

Now we first extend
↼
y(kn) rigidly to a function on R× Sext by requiring this formula to hold

true on (−∞,−3
4 )× Sext and (3

4 ,∞)× Sext, with the obvious interpretation of the ± sign.

If j = ji for some i ∈ {1,2, . . . ,NU}, then we write w(i,n)
− , w(i,n)

+ in place of w(n)
− , w(n)

+ from

Procedure (R), respectively, to stress the dependence on i. We set d(i,n) = w(i,n)
+ −w(i,n)

− − 1
rnkn

and also recall the definition of R(i,kn)
− on this interval. Now consecutively do the following

steps for i ∈ {1,2, . . . ,NU}, in reverse order starting with i =NU:

+
y(kn)(w1,x

′) :=


↼
y(kn)(w1,x

′) w1 ≤ w(i,n)
− + 1

2rnkn
,

↼
y(kn)(w1 + d(i,n),x′)− rnd(i,n)R(i,kn)

− e1 w1 > w
(i,n)
− + 1

2rnkn
,

↼
y(kn)(w1,x

′) :=
+
y(kn)(w1,x

′), w1 ≥ w(i,n)
− + 1

2rnkn
, x′ ∈ Sext.

This finally results in a configuration with

+
y(kn)(w1,x

′) =
↼
y(kn)(w1,x

′) = R(kn)
−

(
rnw1,

1
kn
x′
)>

+ y(kn)
−

if w1 ≤ −3
4 , x′ ∈ Sext, and

+
y(kn)(w1,x

′) =
↼
y(kn)(w1 + d(n),x′)− rnc(n) = R(kn)

+

(
rnw1,

1
kn
x′
)>

+ rnd
(n)R

(kn)
+ e1 + y(kn)

+ − rnc(n)

where d(n) =
∑NU
i=1 d

(i,n) and c(n) =
∑NU
i=1 d

(i,n)R(i,kn)
− e1, if w1 ≥ 3

4 − d
(n) and x′ ∈ Sext.

Observe that Ekn(
+
y(kn), [−1,1]) = Ekn(

↼
y(kn), [−1,1]) for every n ∈ N as we have only short-

ened the intermediate rigid parts. Also, the length of the non-rigid part now satisfies

1
rnkn

⌊3
4

⌋
− d(n) − 1

rnkn

(
−
⌊3

4

⌋
+ 1

)
≤ 1
rnkn

(
(2N ′∗+4)(Nf + 1) +Nf

)
.

Setting N∗ = (2N∗+4)(Nf + 1) +Nf and shifting we finally obtain
+
y(kn) as claimed.

Remark 6.1. Lemma 6.1 shows that the choice of I± in the definition of ϕ was arbitrary
and that a different positive length of I± which still leaves a nonempty middle interval for
fracture would give the same value of ϕ.

Our next task is to prove that the passages to subsequences (kn) can be avoided when
approximating the value of the cell formula.

Proposition 6.2. Suppose that ỹ−, ỹ+ ∈ R3 and R−,R+ ∈ SO(3). Then for any ε∗ > 0 and any
nonincreasing sequence {ρk}∞k=1 ⊂ (0,∞) with limk→∞ρk = 0 and limk→∞ρkk = ∞ there exist
deformations ȳ(k) : ([−1,1]×Sext)→ R3 such that ((ρk)∞k=1, (k)∞k=1, (ȳ

(k))∞k=1) ∈ Vỹ+−ỹ−,(R−)−1R+ and

limsup
k→∞

Ek(ȳ(k), [−1,1]) ≤ ϕ
(
ỹ+ − ỹ−, (R−)−1R+

)
+ ε∗.

24



Proof. For a given ε∗ > 0 we choose N∗ ∈ N, a (without loss of generality nondecreasing)
sequence (kn)∞n=1, and mappings

+
y(kn) ∈ PAff(Λrn,kn) as in Lemma 6.1 so that

limsup
n→∞

Ekn(
+
y(kn), [−1,1]) ≤ϕ

(
ỹ+ − ỹ−, (R−)−1R+

)
+ ε∗,

and, for suitable
+
y

(kn)
± ∈ R3,

+
R

(kn)
± ∈ SO(3) with

+
y

(kn)
± → ỹ±,

+
R

(kn)
± → R±, after a rigid extension

to the left and to the right,

+
y(kn)(w1,x

′) =
+
R

(kn)
±

(
rnw1,

x′

kn

)>
+

+
y

(kn)
± on

(
R \ I (n)

c
)
× Sext

where I (n)
c = 1

rnkn
[−N∗,N∗].

For each k ∈ N find nk ∈ N such that k−1
nk ≤ k

−1 ≤ k−1
nk−1. Set

ȳ(k)(w1,x
′) :=

knk
k

+
y(knk )

( ρkk

rnkknk
w1,x

′
)
, (w1,x

′) ∈ [−1,1]× Sext.

Like this, ȳ(k) is well-defined (as far as the boundary condition on I± ×Sext is concerned), at
worst for all k larger than a certain k̄ ∈ N. If it is the case that k̄ > 1, we define y(1), . . . ,y(k̄−1)

as we like, e.g. by extending the boundary rigid motions to all of [−1,1] × Sext. Then for
k ≥ k̄,

∇̄ρk ,ky
(k)(w1,x

′) = ∇̄rnk ,knk
+
y(knk )

( ρkk

rnkknk
w1,x

′
)

and

kW
(k)
tot

(
x′ , ∇̄ρk ,ky

(k)(w1,x
′)
)
≤ knkW

(knk )
tot

(
x′ ,∇̄rnk ,knk

+
y(knk )

( ρkk

rnkknk
w1,x

′
))

by assumption (W4) on the cell energy. This yields

ϕ
(
ỹ+ − ỹ−, (R−)−1R+

)
≤ limsup

k→∞
Ek(ȳ(k), [−1,1])

≤ limsup
k→∞

Eknk (
+
y(knk ), [−1,1]) ≤ ϕ

(
ỹ+ − ỹ−, (R−)−1R+

)
+ ε∗.

The approximating sequence (y(k)) around crack points can be chosen to be bounded in
L∞ in a universal way – this is the content of

Proposition 6.3. Suppose that ỹ−, ỹ+ ∈ R3, R−,R+ ∈ SO(3) and (rk)∞k=1 ⊂ (0,∞) is a nonincreas-
ing sequence with limk→∞ rk = 0 and limk→∞ rkk =∞. Assume that y(k) : ([−1,1] × Sext)→ R3

is such that ((rk)∞k=1, (k)∞k=1, (y
(k))∞k=1) ∈ Vỹ+−ỹ−,(R−)−1R+ with

y(k)(w1,x
′) = R(k)

±
(
rnw1,

1
k
x′
)>

+ y(k)
± on I± × Sext

for R(k)
± → R±, y(k)

± → ỹ±. If the maximum interaction range property (W9) with rate (Mk)∞k=1
holds true, then there exists a modification ȳ(k) with ((rk)∞k=1, (k)∞k=1, (ȳ

(k))∞k=1) ∈ Vỹ+−ỹ−,(R−)−1R+

such that
|Ek(ȳ(k), [−1,1])−Ek(y(k), [−1,1])| ≤ C

kMk
Ek(y(k), [−1,1]),

ȳ(k) = y(k) on (I− ∪ I+)× Sext and

||dist(ȳ(k), {y(k)
− , y

(k)
+ })||∞ ≤ CrkMkkEk(y(k), [−1,1]).
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Proof. We write D(x̄) = x̄+ {( 1
rkk
zi1, (z

i )′); i = 1, . . . ,8} for the corners of the cell with midpoint

x̄ ∈ Λ′rk ,k . Our strategy is to move back all pieces of the rod that are too far from {y(k)
− , y

(k)
+ }.

Fix k ∈ N and consider the undirected graph G = (V,E), where V =Λrk ,k and

{x,x†} ∈ E⇔ (∃ x̄ ∈Λ′rk ,k : x,x† ∈D(x̄)∧ |y(k)(x)− y(k)(x†)| <Mk).

Let G1,G2, . . . ,GnG
be the connected components of G, numbered in such a way that (I− ×

Sext) ∩ Λrk ,k ∈ G1 and (I+ × Sext) ∩ Λrk ,k ∈ GnG
. Accordingly we partition {z1,z2, . . . ,z8} =

Z1(x̄)∪̇Z2(x̄)∪̇ · · · ∪̇Znx̄ (x̄) for every x̄ ∈ Λ′rk ,k , where Zi(x̄) , ∅, so that zj ,zm ∈ Z`(x̄) for some

` ∈ {1,2, . . . ,nx̄} if and only if there is iV ∈ {1,2, . . . ,nG} such that x̄ + 1
k z
j , x̄ + 1

k z
m ∈ ViV , the

set of vertices of GiV . Then the induced components of atomic cells are far apart: for any
x̄ ∈Λ′rk ,k and 1 ≤ i < j ≤ nx̄, we have dist(y(k)(x̄ +Zi(x̄)), y(k)(x̄ +Zj (x̄))) ≥Mk .

Similarly as before we observe that the number of atomic cells ‘broken’ by y(k) is con-
trolled by the energy so that the number nG of connected components of G satisfies a bound
of the form

nG ≤ C1Ek(y(k), [−1,1])

with a constant C1 > 0. The construction further implies that the diameter of each compo-
nent after deformation is bounded by

diamy(k)(Vi ) ≤ C2Mkrkk, i = 1, . . . ,nG,

with another constant C2 > 0.

For the first and last component we have

dist(y(k)(V1), {y(k)
− }) ≤ C3Mkrkk and dist(y(k)(VnG

), {y(k)
+ }) ≤ C3Mkrkk.

If nG ≥ 3, we can shift graph components Gi , i = 2, . . . ,nG−1, without considerably changing
the total energy, provided we do not put the components at a distance less than Mk . Specif-

ically, for γ = 2Mk + (C2 +C3)Mkrkk ≤ (2 +C2 +C3)Mkrkk and |e| = 1 with e ⊥ y(k)
+ − y(k)

− the

points y(k)
− +(i − 1)γe, i = 2, . . . ,nG−1, have a distance ≥ γ from each other and from {y(k)

+ , y(k)
− }.

We then define ȳ(k) by shifting Gi rigidly in such a way that y(k)
− + (i − 1)γe ∈ ȳ(k)(Vi ),

i = 2, . . . ,nG − 1.

Then indeed the shifted components have the required minimal distances and moreover

dist(y(k)(Vi ), {y(k)
− }) ≤ nGγ ≤ C1Ek(y(k), [−1,1])(2 +C2 +C3)Mkrkk,

i = 2, . . . ,nG − 1. The assertion follows now by noting that ȳ(k) = y(k) on V1 ∪VnG
and

|Ek(ȳ(k), [−1,1])−Ek(y(k), [−1,1])| ≤ CEk(y(k), [−1,1])
Cfar

kMk
,

as only broken cells have been altered.

6.2 Construction of recovery sequences

Proof of Theorem 4.1(ii). It is known from the theory of Γ-convergence that for any ε > 0 it
suffices to find a recovery sequence with limsupk→∞ kE

(k)(y(k)) ≤ Elim(ỹ,d2,d3) + ε, which is
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trivial if (ỹ,d2,d3) < A. In the case that (ỹ,d2,d3) ∈ A, let (σ i )n̄f+1
i=0 be the partition of [0,L]

such that {σ i}n̄f
i=1 = Sỹ ∪ SR, where SR := Sỹ′ ∪ Sd2

∪ Sd3
. Depending on the assumptions on ỹ,

d2, d3, we treat two different cases separately.

First additionally suppose that ỹ|(σ i−1,σ i ) ∈ C3((σ i−1,σ i );R3), ds |(σ i−1,σ i ) ∈ C2((σ i−1,σ i );R3),
s = 2,3, for all i ∈ {1,2, . . . , n̄f + 1} and that R = (∂1ỹ|d2|d3) is constant on the sets (σ0,σ0 + η),
(σ i − η,σ i ), (σ i ,σ i + η), i ∈ {1,2, . . . , n̄f}, and (σ n̄f − η,σ n̄f) for some η > 0. If k ∈ N, write Ik0 :=
[−1

k ,
1
k bkσ

1c], Iki := [1
k bkσ

ic+ 1
k ,

1
k bkσ

i+1c] for i = 1,2, . . . , n̄f − 1 and Ikn̄f
:= [1

k bkσ
n̄fc+ 1

k ,Lk + 1
k ].

Our analysis of elastic rods in [SZ22, Section 3.4] shows that for a suitable choice of
β(·,x′) ∈ C1([0,L];R3) for each x′ ∈ Lext and of q ∈ C2([0,L];R3), by setting

ỹ(k)(x) := ỹ(x1) +
1
k
x2d2(x1) +

1
k
x3d3(x1) +

1
k
q(x1) +

1
k2β(x), x ∈ {0, 1

k , . . . ,Lk} ×L
ext, (6.6)

appropriately extended and interpolated on [−1
k , . . . ,Lk + 1

k ]× Sext, one has ỹ(k)→ ỹ in L2 on
(0,L)× Sext as well as ∑

x∈{− 1
2k ,Lk+

1
2k }×L′,ext

kW
(k)
end

(
x1,x

′ , ∇̄k ỹ(k)(x)
)
→ 0

and

k

∫
Iki ×Sext

W
(k)
tot (x′ , ∇̄k ỹ(k))dx

→ 1
2

∫ σ i+1

σ i

∫
Sext

Qtot

(
x′ ,R>(x1)

( ∂R
∂x1

(x1)(0, x̄2, x̄3)> +
∂q

∂x1
(x1)

)
e>1 Īd

+R>(x1)
∂R
∂x1

(x1)
[
zi1(0,zi2,z

i
3)>

]8
i=1

+R>(x1)
(
∇̄2dβ(x)| ∇̄2dβ(x)

))
dx

(6.7)

≤ 1
2

∫ σ i+1

σ i

∫
Sext

Qrel
3

(
R>(x1)

∂R
∂x1

(x1)
)
dx1 + ε. (6.8)

Indeed one can choose β ≡ 0 and q ≡ 0 on (σ i ,σ i + η
2 )∪ (σ i+1 − η2 ,σ

i+1) as R by assumption is
constant on a neighbourhood of these sets. So we have

ỹ(k)(x) =

ỹ(σ i+) +R(σ i+)(x1 −σ i ,x′)> for x1 ∈ (σ i ,σ i + η
2 ),

ỹ(σ i+1−) +R(σ i+1−)(x1 −σ i+1,x′)> for x1 ∈ (σ i+1 − η2 ,σ
i+1).

We now update ỹ(k) by replacing portions near the jumps σ i (and matching all parts
by applying suitable rigid motions). Fix a sequence (rk)∞k=1 such that rk → 0 and rkk →∞.

By Proposition 6.2 for each i = 1, . . . , n̄f we can choose y
(k)
i : ([−1,1] × Sext)→ R3 such that

((rk)∞k=1, (k)∞k=1, (y
(k))∞k=1) ∈ Vỹ(σ i+)−ỹ(σ i−),(R(σ i−))−1R(σ i+) with

y(k)(w1,x
′) = R(k,i)

±
(
rnw1,

1
k
x′
)>

+ y(k,i)
± on I± × Sext

for R(k,i)
± → R(σ i±), y(k,i)

± → ỹ± which satisfies the energy estimate

limsup
k→∞

Ek
(
y

(k)
i , [−1,1]

)
≤ ϕ(ỹ(σ i+)− ỹ(σ i−),R(σ i−)−1R(σ i+)) + ε. (6.9)
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Let Hσ,r(x) := (1
r (x1−σ),x′) for any r > 0. Noticing that ỹ(k) is rigid near a jump as are the

y
(k)
i near ±1, we can now define a modification ỹ(k)

tot of ỹ(k) by setting

ỹ
(k)
tot(x) =


ỹ(k)(x) −1

k ≤ x1 ≤ σ1
k − rk ,

O(k,i)
− y

(k)
i ◦Hσ ik ,rk (x) + c(k,i)

− σ ik − rk < x1 ≤ σ ik + rk , i = 1, . . . , n̄f,

O
(k,i)
+ ỹ(k)(x) + c(k,i)

+ σ ik + rk < x1 ≤ σ i+1
k − rk , i = 1, . . . , n̄f − 1,

O
(k,n̄f)
+ ỹ(k)(x) + c(k,n̄f)

+ σ n̄f
k + rk < x1 ≤ Lk + 1

k ,

where O(k,i)
± ∈ SO(3) and c(k,i)

± ∈ R3 are such that

O(k,i)
− y

(k)
i ◦Hσ ik ,rk + c(k,i)

− =

O(k,i−1)
+ ỹ(k) + c(k,i−1)

+ on (σ ik − rk ,σ
i
k −

3
4rk)× S

ext,

O
(k,i)
+ ỹ(k) + c(k,i)

+ on (σ ik + 3
4rk ,σ

i
k + rk)× Sext

for i = 1, . . . , n̄f (and we have set O(k,0)
+ := Id, c(k,0)

+ := 0). Since R(k,i)
± → R(σ i±), y(k,i)

± → ỹ± we

getO(k,i)
± → Id and c(k,i)

± → 0 as k→∞. Thus we still have ỹ(k)
tot→ ỹ in L2((0,L)×Sext). By (6.8)

and (6.9) the sequence ỹ(k)
tot satisfies the envisioned energy estimate

limsup
k→∞

kE(k)(ỹ(k)
tot) ≤ Elim(ỹ,d2,d3) +Cε.

It remains to observe that in case (W9) holds true with some sequence of rate functions
(Mk)∞k=1 and ||ỹ||∞ ≤ M , then for any (ζk)∞k=1 ⊂ (0,1) with ζk ↘ 0 and ζk/Mk → ∞ one can

choose ỹ(k)
tot such that ||ỹ(k)

tot ||∞ ≤M+ζk . This is clear by construction for ỹ(k) in (6.6) instead of

ỹ
(k)
tot since ζk � 1

k . The bound is indeed preserved by the passage to ỹ(k)
tot due to Proposition 6.3

once we have rkMkk � ζk . As Proposition 6.2 allows us to choose rk ↘ 0 as fast as we wish
as long as rkk→∞, the claim follows.

Now let us assume that ỹ, d2, d3 are general as in Theorem 4.1(ii). Interestingly, a related
approximation problem was treated recently by P. Hornung. [Hor21] However, a more ele-
mentary construction is sufficient in our case. By a density argument, it is enough to show

that there are sequences (ỹ(j)
tot)
∞
j=1, (d(j)

s )∞j=1, s = 2,3, such that:

(i) for every j and all i ∈ {1,2, . . . , n̄f +1}, the functions satisfy ỹ(j)
tot|(σ i−1,σ i ) ∈ C3((σ i−1,σ i );R3),

d
(j)
2 |(σ i−1,σ i ),d

(j)
3 |(σ i−1,σ i ) ∈ C2((σ i−1,σ i );R3) with R(j)

tot = (∂x1
ỹ

(j)
tot|d

(j)
2 |d

(j)
3 ) constant on (σ i −

ηj ,σ
i ) and on (σ i ,σ i + ηj ), ηj > 0, and (ỹ(j)

tot,d
(j)
2 ,d

(j)
3 ) ∈ A;

(ii) ỹ(j)
tot → ỹ in L2((0,L);R3), R(j)

tot → R = (∂x1
ỹ|d2|d3) in H1((σ i−1,σ i );R3×3) for any i ∈

{1, . . . , n̄f + 1};

(iii) Elim(ỹ(j)
tot,d

(j)
2 ,d

(j)
3 )→ Elim(ỹ,d2,d3), j→∞.

Let (ηj ) be a positive null sequence. For each i ∈ {1,2, . . . , n̄f +1}we find an approximating
sequence (R̃(j)|(σ i−1,σ i )) ⊂ C2([σ i−1,σ i ];R3×3), such that R̃(j) is constant on (σ i−1,σ i−1 + ηj ) and
(σ i − ηj ,σ i ) and R̃(j) → R in H1((σ i−1,σ i );R3×3) so that R̃(j) → R uniformly in (σ i−1,σ i ) by
the Sobolev embedding theorem. Then we project R̃(j)(x1) for every x1 ∈ (σ i−1,σ i ) smoothly
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onto SO(3) and get a sequence {R(j)} ⊂ C1([σ i−1,σ i ];R3×3) of mappings with values in SO(3).
This implies that R(j)→ R in H1((σ i−1,σ i );R3×3) for i = 1,2, . . . , n̄f + 1.

We write R(j) = (∂x1
ỹ(j)|d̄(j)

2 |d̄
(j)
3 ) for d̄(j)

2 , d̄
(j)
3 ∈ C2([σ i−1,σ i ];R3) and ỹ(j) ∈ C3([σ i−1,σ i ];R3)

such that ỹ(j)(σ i−1+) = ỹ(σ i−1+); thus we have (ỹ(j)|d̄(j)
2 |d̄

(j)
3 ) ∈ A. To avoid issues with crack

terms, we rigidly move the pieces of the rod so as to obtain a j-independent contribution
from the cracks that is exactly equal to the limiting crack energy. We set

ỹ
(j)
tot(x) =O(j,i)ỹ(j)(x) + c(j,i) and d

(j)
s =O(j,i)d̄

(j)
s , s = 2,3,

if σ i−1 < x1 < σ
i , i = 1,2, . . . , n̄f + 1, where O(j,i) ∈ SO(3) and c(j,i) ∈ R3 are defined consecu-

tively by O(j,0) = Id, c(j,0) = 0, and requiring that

ỹ
(j)
tot(σ

i+)− ỹ(j)
tot(σ

i−) = ỹ(σ i+)− ỹ(σ i−) and [R(j)
tot(σ

i−)]−1R
(j)
tot(σ

i+) = [R(σ i−)]−1R(σ i+)

for i = 1, . . . , n̄f, R
(j)
tot = (∂x1

ỹ
(j)
tot|d

(j)
2 |d

(j)
3 ), j ∈ N. By frame indifference, the elastic energy is not

changed by such an operation. Noting that O(j,i)→ Id and c(j,i)→ 0 for j →∞, we see that
these mappings are such that (i)–(iii) hold (for (iii) observe that the integral in (6.7) behaves
continuously in R with respect to the topologies used here).

7 Examples

Finally, we list a few examples of mass-spring models treatable by our methods: a model
with rather general pair interactions, the so-called truncated and shifted Lennard-Jones
potential (LJTS), ‘truncated harmonic spring’, and a simplified highly brittle model.

Example 7.1. As general nearest-neighbour (NN) and next-to-nearest-neighbour (NNN) in-
teractions on a cubic lattice, we can consider

E(k)(y) =
1
2

∑
x̂∗,x̂∗∗∈Λ̂k
|x̂∗−x̂∗∗|=1

W
(k)
NN(|ŷ(x̂∗)− ŷ(x̂∗∗)|) +

1
2

∑
x̂∗,x̂∗∗∈Λ̂k

|x̂∗−x̂∗∗|=
√

2

W
(k)
NNN

( |ŷ(x̂∗)− ŷ(x̂∗∗)|√
2

)
+Xk(y), (7.1)

where y : Λk → R3, ŷ(x̂) = ky(1
k x̂), x̂ ∈ Λ̂k , and W

(k)
NN, W (k)

NNN satisfy the following list of
assumptions:

(P1) W (k)
NN(N) : [0,∞) → [0,∞] is continuous and finite on (0,∞) and W

(k)
NN(N)(r) = 0 if and

only if r = 1;

(P2) there is a sequence (c(k)
f )∞k=1 with c(k)

f ↘ 0 and limk→∞ k[c(k)
f ]2 ∈ (0,∞) such that

W
(k)
NN(N)(r) =W0NN(N)(r)

for all r ∈ (1− c(k)
f ,1 + c(k)

f ), where W0NN(N) is of class C2 and W ′′0NN (N )(1) > 0;

(P3) W (k)
NN(N)(r) = W̄

(k)
NN(N)(r) if r ∈ [0,1 − c(k)

f ]∪ [1 + c(k)
f ,∞); the function W̄ (k)

NN(N) is bounded

from below by c̄(k)
NN(N) such that kc̄(k)

NN(N)→ c̄NN(N) > 0 and (k + 1)W (k+1)
NN(N) ≥ kW

(k)
NN(N) for

every k ∈ N;
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(P4) W̄ (k)
NN(N)(r) = ω

(k)
NN(N) + 1

k rNN(N)(r) if r ≥ kM̄k for M̄k → 0 with kM̄k → ∞, rNN(N)(r) =

O(r−1), r→∞, and limk→∞ kω
(k)
NN(N) ∈ (0,∞).

To guarantee preservation of orientation, in (7.1) we have included a nonnegative term Xk(y)
that gives rise to χ(k) below. Thus E(k) can be written in the form (2.2) as a sum of cell
energies with

W
(k)
cell(~y) =

1
8

∑
|zi−zj |=1

W
(k)
NN(|ŷi − ŷj |) +

1
4

∑
|zi−zj |=

√
2

W
(k)
NNN

( |ŷi − ŷj |√
2

)
+χ(k)(~y) (7.2)

for ~y = (ŷ1| · · · |ŷ8) ∈ R3×8 and the functions W (k)
surf, W

(k)
end constructed in a similar manner to

account for surface contributions to atomic bonds lying on the rod’s boundary (see [SZ22,
Subsection 2.4]). The frame-indifferent term χ(k), C/k ≥ χ(k) ≥ 0, penalizes deformations
that are not locally orientation-preserving, i.e. it is greater than or equal to c̄/k, c̄ > 0, on a k-
independent neighbourhood of O(3)Īd \ ¯SO(3) and vanishes otherwise (see [Sch06, FS15a]).
An alternative to penalties such as Xk and χ(k) is cell energies with O(3)-invariance, see
[BS22, Section 2.4].

It can be shown that potentials W (k)
NN, W (k)

NNN as above make the corresponding W (k)
cell ad-

missible, i.e. (W1)–(W6), and (W9) hold ((W9) is a consequence of (P4)). In particular, the
truncated and splined Lennard-Jones potential from [HE83] and versions thereof fall under
this case, with appropriately chosen parameters.

Example 7.2. Let

WLJ(r) = d
( 1
r12 −

2
r6

)
+ d,

where r ∈ (0,∞) and d > 0 is a parameter (note that limr→∞WLJ(r) = d and argminr>0WLJ(r) =
1). Further we set

W
(k)
LJTS(r) =

WLJ(r) r ∈ (0,1)

min{WLJ(r),
1
k } r ∈ [1,∞)

.

We again consider pair interactions, so the cell energy function takes the form (7.2) with

W
(k)
LJTS in place of W (k)

NN and W
(k)
NNN. The property (k + 1)W (k+1)

cell ≥ kW (k)
cell can be proved by

discussing for each bond if it is deformed elastically or if the truncation is active. Computing

the value of r beyond which truncation applies in W (k)
LJTS, we observe that assumptions (W3)

and (W5) hold with c(k)
frac = [ 6

√
d +
√
d/k − 6

√
d − (1/k)]/(2 6

√
d − (1/k)) and W0 being the sum of

Lennard-Jones interactions with no truncation. By the properties of ∇2W0(Īd), the estimate
ĈW0(~y) ≥ dist2(∇̄ŷ,SO(3)) holds with a constant Ĉ > 0 and the usual symbol ∇̄ŷ denoting
the discrete gradient of ~y ∈ R3×8 (cf. [Sch06, Lemma 3.2 and Section 7]).

Moreover, we claim that if dist(∇̄ŷ, ¯SO(3)) > c(k)
frac, thenW (k)

cell(~y) ≥min{1/(8k), [c(k)
frac]2/Ĉ} =:

c̄
(k)
1 . Indeed, as long as W (k)

cell(~y) < c̄(k)
1 , the cutoff is not active in any interatomic bond (the

arguments ofW (k)
LJTS are close enough to 1) and thusW (k)

cell(~y) =W0(~y) so that dist(∇̄ŷ, ¯SO(3)) ≤
c

(k)
frac. This shows the second part of assumption (W5).

Example 7.3. For the functions

Wharm(r) = K(r − 1)2, W
(k)
TH(r) =

min{Wharm(r), c
+
TH
k } r ≥ 1

min{Wharm(r), c
−
TH
k } r < 1
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with positive constants K , c−TH, c−TH, one can similarly find c(k)
frac and c̄(k)

1 so that W (k)
cell defined

by (7.2) with W (k)
NN and W (k)

NNN replaced by W (k)
TH is an admissible cell energy.

Example 7.4. Another simplified model can be obtained if we set

W
(k)
cell(~y) = min{W0(~y), c̄(k)

1 }

and cW, c̄(k)
1 , and frame-indifferentW0 are as in assumptions (W3), (W5). This corresponds to

W̄ (k) ≡ c̄(k)
1 and the cell formula then reduces to ϕ(u,R) ≡ (]L′)cWc̄1, where c̄1 = limk→∞ kc̄

(k)
1 ,

for any u ∈ R3 and R ∈ SO(3) except (u,R) = (0, Id) (specifically, we use sublevel sets of W0
instead of dist2(∇̄ŷ, ¯SO(3)) to define the threshold distinguishing between W0 and W̄ (k), but
our findings remain valid in this case as well).

8 Explicit calculation of crack energy

For mass-spring models, it is possible to simplify further (5.3) in specific situations.

Proposition 8.1. If E(k) is given by (7.1) and assumptions (P1)–(P4) hold, together with

(P5) limk→∞ kW̄
(k)
NN(N)(rk) = ωNN(N) for any sequence rk →∞,

for W (k)
NN and W (k)

NNN, then

ϕ(u,R) = (]L)ωNN + ]{(x′ ,x′∗) ∈ L2; |x′ − x′∗| = 1}ωNNN

for any 0 , u ∈ R3 and R ∈ SO(3).

Proof. Step 1. The mapping v(k) defined as

v(k)(w1,x
′) =

R(k)
− (rkw1,

1
k x
′)> + y(k)

− on [−1,0]× Sext

R
(k)
+ (rkw1,

1
k x
′)> + y(k)

+ on [r−1
k k−1,1]× Sext,

R
(k)
± ∈ SO(3), y(k)

± ∈ R3, (R(k)
− )−1R

(k)
+ → R, y

(k)
+ − y(k)

− → u; r−1
k →∞ as o(k),

and interpolated to be piecewise affine (v(k) ∈ PAff(Λrk ,k)) has the property that

lim
k→∞
Ek(v(k), [−1,1]) = (]L)ωNN + ]{(x′ ,x′∗) ∈ L2; |x′ − x′∗| = 1}ωNNN.

Thus we find that ϕ(u,R) is less than or equal to the right-hand side in the above equation.

Step 2. Given ε > 0, we find sequences ((rk)∞k=1, (k)∞k=1, (y
(k))∞k=1) ∈ Vu,R such that

limsup
k→∞

Ek(y(k), [−1,1]) ≤ ϕ(u,R) + ε, (8.1)

using Proposition 6.2. Set

W̄
(k)
1 :=

1
rkk

{⌊
−rkk

⌋
+

3
2
,
⌊
−rkk

⌋
+

5
2
, . . . ,

⌊
rkk

⌋
−1

2

}
.
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We show that the nature of our pair interactions causes at least one large gap in the spacing
of atoms within each fibre which the rod consists of.

Claim 1: For each x′ ∈ L and every T > 1 there is a k0 ∈ N such that whenever k ≥ k0, we

can find some w̄1 ∈ W̄
(k)
1 satisfying

|y(k)(w̄1 + 1
2rkk

,x′)− y(k)(w̄1 − 1
2rkk

,x′)|
1/k

> T .

Proof of claim: If the converse were true, there would be a T̃ > 1 and an increasing sequence

{kn}∞n=1 ⊂ N such that for all w̄1 ∈ W̄
(kn)
1 :

kn|y(kn)(w̄1 +
1

2rknkn
,x′)− y(kn)(w̄1 −

1
2rknkn

,x′)| ≤ T̃ .

Then we would get

0 , |u| =
∣∣∣y(kn)(maxW̄ (kn)

1 +
1

2rknkn
,x′)− y(kn)(minW̄ (kn)

1 − 1
2rknkn

,x′)
∣∣∣+ on→∞(1)

≤
∑

w̄1∈W̄
(kn)
1

∣∣∣y(kn)(w̄1 +
1

2rknkn
,x′)− y(kn)(w̄1 −

1
2rknkn

,x′)
∣∣∣+ on→∞(1) ≤ 2rkn

kn
kn
T̃ + on→∞(1)→ 0,

which is a contradiction.

Step 3. A similar argument applies to NNN bonds (‘diagonal springs’) – if we use zigzag
chains of atoms instead of straight atomic fibres. We state the corresponding claim without
proof.

Claim
√

2: For each (x′ ,x′∗) ∈ L×L with |x′∗ − x′ | = 1 and every T > 1 there is a k0 ∈ N such

that whenever k ≥ k0, we can find a j ∈ N and w̄1 = 1
rkk

(b−rkkc+
2j+1

2 ) ∈ W̄ (k)
1 such that y(k)

from (8.1) satisfies:

|y(k)(w̄1 + (−1)j+1 1
2rkk

,x′∗)− y(k)(w̄1 + (−1)j 1
2rkk

,x′)|
√

2/k
> T .

Step 4. Since Claims 1 and
√

2 hold for every approximating sequence (y(k))∞k=1 fulfilling
(8.1), we get

(]L)ωNN + ]{(x′ ,x′∗) ∈ L2; |x′ − x′∗| = 1}ωNNN ≤ ϕ(u,R) + ε.

As this is valid for any ε > 0, the desired conclusion follows.

Proposition 8.2. Under the assumptions of Proposition 8.1 and further supposing

(P6) W (k)
NN, W (k)

NNN are nondecreasing on [1,∞),

we have
0 < ϕ(0,R) < ϕ(u, R̃)

for any R, R̃ ∈ SO(3), R , Id and 0 , u ∈ R3.
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Proof. The first inequality was shown in Remark 4.3.

As to the second inequality, Proposition 8.1 implies that for a nonzero u, the crack energy
ϕ(u,R) is independent of R, hence we limit ourselves to the case R̃ = R without loss of

generality. If R ∈ SO(3) and u ∈ R3 \ {0} are fixed, it is enough to find a sequence (v(k)
0 )∞k=1 of

deformations admissible in the definition of ϕ(0,R) such that

limsup
k→∞

Ek(v
(k)
0 ; [−1,1]) < (]L)ωNN + ]{(x′ ,x′∗) ∈ L2; |x′ − x′∗| = 1}ωNNN

by Proposition 8.1. Fix k ∈ N and let v(k), R(k)
± , rk , and y(k)

± be as in the proof of Proposition
8.1 with our new definitions of R and u. We define

F± :=
{
R

(k)
±

( 1
2k
± 1

2k
,
1
k
x′
)>

+ y(k)
± ; x′ ∈ L

}
and observe that dist(F+,F−) = |y(k)

+ − y(k)
− |+O(1

k ) = |u|+ ok→∞(1). Now we choose x′0 ∈ L and
consider configurations with shifted right parts, given by

v(k)(w1,x
′; t) =

R(k)
− (rkw1,

1
k x
′)> + y(k)

− on [−1,0]× Sext

R
(k)
+ (rkw1,

1
k x
′)> + y(k)

+ − c
(k)
0 (t) on [r−1

k k−1,1]× Sext,

where c(k)
0 (t) = t[v(k)( 1

rkk
,x′0) − v(k)(0,x′0)], t ∈ [0,1]. We then define t(k)

0 to be the smallest
t ∈ [0,1] such that∣∣∣v(k)

( 1
rkk

,x′; t
)
− v(k)(0,x′; t)

∣∣∣ =
1
k

or
∣∣∣v(k)

( 1
rkk

,x′∗; t
)
− v(k)(0,x′∗∗; t)

∣∣∣ =

√
2
k

for some x′ ∈ L, or else, x′∗,x
′
∗∗ ∈ L with |x′∗ − x′∗∗| = 1, respectively. By construction such

t
(k)
0 ∈ (0,1) exists if k is large enough and we have |c(k)

0 (t(k)
0 )− u|→ 0 as k→∞. Setting v

(k)
0 =

v(k)( · ; t(k)
0 ) and recalling (P6) we find

Ek(v
(k)
0 ; [−1,1]) ≤ (]L)ωNN + ]{(x′ ,x′∗) ∈ L2; |x′ − x′∗| = 1}ωNNN −min{ωNN,ωNNN}. (8.2)

We still need to check that the sequence (v(k)
0 )∞k=1 thus constructed satisfies the correct

boundary conditions for ϕ(0,R). But this is clear, since |y(k)
+ − c

(k)
0 (t(k)

0 )− y(k)
− |→ 0.

9 Discussion

Our work makes a contribution to the modelling of elastic-brittle ultrathin structures, but
as such, it could be certainly extended in various directions.

We remark that the situation becomes considerably more difficult for plates due to a
much richer phenomenology of crack and kink patterns. For bending-dominated config-
urations also severe geometric obstructions that result from the isometry constraints are
encountered. A first step has recently been achieved in [SS22], where a ‘Blake–Zisserman–
Kirchhoff theory’ has been derived for plates with soft inclusions.

From the point of view of applications, it would be interesting to extend our findings to
other crystallographic lattices (such as diamond cubic as in [LPS17] or zincblende), hetero-
geneous nanostructures with several different types of atoms, or to study the influence of
lattice defects.
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The model could also be studied computationally (e.g. numerical approximations of the
cell formula could be implemented).
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