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Abstract

Rabinowitz–Floer homology is the Morse–Bott homology in the sense of Floer as-
sociated with the Rabinowitz action functional introduced by Kai Cieliebak and Urs
Frauenfelder in 2009. In our work, we consider a generalisation of this theory to
a Rabinowitz–Floer homology of a Liouville automorphism. As an application, we
show the existence of noncontractible periodic Reeb orbits on quotients of sym-
metric star-shaped hypersurfaces. In particular, our theory applies to lens spaces.
Moreover, we show a forcing theorem, which guarantees the existence of a con-
tractible twisted closed characteristic on a displaceable twisted stable hypersurface
in a symplectically aspherical geometrically bounded symplectic manifold if there
exists a contractible twisted closed characteristic belonging to a Morse–Bott com-
ponent, with energy difference smaller or equal to the displacement energy of the
displaceable hypersurface.
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Chapter 1
Introduction

The existence of closed Reeb orbits on lens spaces is important in the study of
celestial mechanics. Indeed, by [23, Corollary 5.7.5], the Moser regularised energy
hypersurface near the earth or the moon of the planar circular restricted three-body
problem for energy values below the first critical value is diffeomorphic to the
real projective space RP3. See also [35, Introduction] for more details. An explicit
noncontractible periodic orbit can be found via Birkhoff’s shooting method [23,
Theorem 8.3.2]. We present the main result of this thesis.

Theorem 1.1 ([14, Theorem 1.2]). Let˙ � Cn,n � 2, be a compact and connected
star-shaped hypersurface invariant under the rotation

' W Cn
! Cn; '.z1; : : : ; zn/ WD

�
e2�ik1=mz1; : : : ; e

2�ikn=mzn
�

for some even m � 2 and k1; : : : ; kn 2 Z coprime to m. Then ˙=Zm admits a
noncontractible periodic Reeb orbit generating �1.˙=Zm/ Š Zm.

Theorem 1.1 has similarities with the following two recent results.

Theorem 1.2 ([29, Corollary 1.6 (iv)]). Any contact form on S2n�1=Zm defining
the standard contact structure admits a closed Reeb orbit.

Using the fact that there is a natural bĳection between contact forms on the odd-
dimensional sphere equipped with the standard contact structure and star-shaped
hypersurfaces, Theorem 1.2 is actually stronger than Theorem 1.1 in that it does not
restrict the parity of the lens space. However, Theorem 1.2 does not say anything
about the topological nature of the Reeb orbit. The proof of this theorem uses a
generalisation of Givental’s nonlinear Maslov index to lens spaces.

Theorem 1.3 ([41, Theorem 1.2]). Every dynamically convex star-shaped C 3-
hypersurface ˙ � Cn, n � 2, satisfying ˙ D �˙ admits at least two symmetric
geometrically distinct closed characteristics.

Theorem 1.3 has the advantage of being a multiplicity result, but in disadvantage
requires the assumption that the hypersurface is dynamically convex and does only

1



2 1 Introduction

work for Z2-symmetry. To the authors knowledge, the first named author of [41]
is working on extending Theorem 1.3 to lens spaces. As many multiplicity results,
the proof of this theorem makes use of index theory and in particular Ekeland–
Hofer theory. The proof of Theorem 1.1 relies on a generalisation of Rabinowitz–
Floer homology. Rabinowitz–Floer homology is the Morse–Bott homology in the
sense of Floer associated with the Rabinowitz action functional introduced by Kai
Cieliebak and Urs Frauenfelder in 2009. See the excellent survey article [8] for a
brief introduction to Rabinowitz–Floer homology and [2] for an overview of common
Floer theories. One important feature of this homology in our work is that it provides
an affirmative answer to the Weinstein conjecture in some instances. Specifically, we
introduce an analogue of the twisted Floer homology [54] in the Rabinowitz–Floer
setting. Following [17] and [5], we construct a Morse–Bott homology for a suitable
twisted version of the standard Rabinowitz action functional, that is, the Lagrange
multiplier functional of the symplectic area functional.

Theorem 1.4 ([14, Theorem 1.1]). Let .M; �/ be the completion of a Liouville
domain .W; �/ and let ' 2 Diff.W / be of finite order and such that '��� � D df'
for some smooth compactly supported function f' 2 C1c .IntW /.

(a) The semi-infinite dimensional Morse–Bott homology RFH'.@W;M/ in the sense
of Floer of the twisted Rabinowitz action functional exists and is well-defined.
Moreover, twisted Rabinowitz–Floer homology is invariant under twisted ho-
motopies of Liouville domains.

(b) If @W is simply connected and does not admit any nonconstant twisted Reeb
orbit, then RFH'�.@W;M/ Š H�.Fix.'j@W /IZ2/.

(c) If @W is displaceable by a compactly supported Hamiltonian symplectomor-
phism in .M; �/, then RFH'.@W;M/ Š 0.

Twisted Rabinowitz–Floer homology does indeed generalise standard Rabinowitz–
Floer homology as

RFHidW .@W;M/ Š RFH.@W;M/:

The proof of Theorem 1.1 is straightforward, once we have computed the Zm-
equivariant twisted Rabinowitz–Floer homology of the spheres S2n�1 � Cn. Indeed,
by invariance we may assume that˙ D S2n�1, as˙ is star-shaped. Then we use the
following elementary topological fact (see Lemma 1.5 below). Let ˙ be a simply
connected topological manifold and let ' W ˙ ! ˙ be a homeomorphism of finite
order m that is not equal to the identity. If the induced discrete action

Zm �˙ ! ˙; Œk� � x WD 'k.x/

is free, then � W ˙ ! ˙=Zm is a normal covering map [38, Theorem 12.26]. For a
point x 2 ˙ define the based twisted loop space of ˙ and ' by

L'.˙; x/ WD f
 2 C.I;˙/ W 
.0/ D x and 
.1/ D '.x/g ;

where I WD Œ0; 1�. Then we have the following result. See Figure 1.1.
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Lemma 1.5. If 
 2 L'.˙; x/, then � ı 
 2 L.˙=Zm; �.x// is not contractible.
Conversely, if 
 2 L.˙=Zm; �.x// is not contractible, then there exists 1 � k < m
such that z
x 2 L'k .˙; x/ for the unique lift z
x of 
 with z
x.0/ D x.

For a more detailed study of twisted loop spaces of universal covering manifolds
as well as a proof of Lemma 1.5 see Appendix A.

˙

˙=Zm

�




x

�.x/

'.x/ z
x

1

Fig. 1.1: The projection�ı
 2 L.˙=Zm; �.x// of 
 2 L'.˙; x/ is not contractible
for the deck transformation ' ¤ id˙ .

Another interesting application of Theorem 1.4 is the following forcing result.
Suppose that @W is Hamiltonianly displaceable in the completion .M; �/ and simply
connected. If Fix.'j@W / ¤ ¿, then @W does admit a twisted periodic Reeb orbit.
Indeed, if there does not exist any twisted periodic Reeb orbit on @W , we compute

RFH'.@W;M/ Š H.Fix.'j@W /IZ2/ D
M
k�0

Hk.Fix.'j@W /IZ2/ ¤ 0

by part (b) of Theorem 1.4, contradicting part (c) of Theorem 1.4.
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Theorem 1.6 (Forcing). Let ˙ be a twisted stable displaceable hypersurface in
a symplectically aspherical, geometrically bounded, symplectic manifold .M;!/
for some ' 2 Symp.M;!/ and suppose that v0 is a contractible twisted closed
characteristic on ˙ belonging to a Morse–Bott component C . Then there exists a
contractible twisted closed characteristic v … C such thatZ

D
xv�! �

Z
D
xv�0! � ord.'/e.˙/;

where e.˙/ denotes the displacement energy of ˙ .

The proof of Theorem 1.6 is an adaptation of [19, Theorem 4.9]. This result was
initially shown by Felix Schlenk using quite different methods.

Finally, we put Theorem 1.1 into context. If ˙2n�1=Zm satisfies the index con-
dition

�CZ.
/ > 4 � n (1.1)

for all contractible Reeb orbits 
 , the
W

-shaped symplectic homology LSH.˙/ can
be defined in the positive cylindrical end Œ0;C1/ � ˙ by [53, Corollary 3.7]. If
˙=Zm admits a Liouville filling W , then we have

LSH�.˙=Zm;M/ Š RFH�.˙=Zm;M/;

where M denotes the completion of W . Note that even in the case of lens spaces
this need not be the case, as for example RP2n�1 is not Liouville fillable for any
odd n � 2 by [28, Theorem 1.1]. As the index condition (1.1) is only required for
contractible Reeb orbits and they come from the universal covering manifold ˙ ,
we can say something in the case where ˙ is strictly convex. Indeed, the Hofer–
Wysocki–Zehnder Theorem [23, Theorem 12.2.1] then implies that˙ is dynamically
convex, that is,

�CZ.
/ � nC 1

holds for all periodic Reeb orbits 
 . Thus for n � 2, the index condition is satis-
fied and we can compute LSH�.S2n�1=Zm/ via the Zm-equivariant version of the
symplectic homology LSH�.S2n�1/.

In the case of hypertight contact manifolds, there is a similar construction without
the index condition (1.1). See for example [44, Theorem 1.1]. By [44, Theorem 1.7],
there do exist noncontractible periodic Reeb orbits on hypertight contact manifolds
under suitable technical conditions. Moreover, one can show the existence of invariant
Reeb orbits in this setting. See [44, Corollary 1.6] as well as [45, Theorem 1.6] in
the Liouville-fillable case.

The thesis is organised as follows. In Chapter 2, we review the basics of Hamil-
tonian Floer homology defined as the Morse–Bott homology associated with the
symplectic action functional. We follow the cascade approach introduced by Urs
Frauenfelder and define Hamiltonian Floer homology in the simplest case, that is,
in the symplectically aspherical case. This is sufficient for our purposes. A detailed
proof of the compactness of the relevant moduli spaces is given in Appendix C
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and in order to deal with transversality, we use the polyfold approach which is
sketched in Appendix D. We also review stable Hamiltonian manifolds, a generalisa-
tion of contact manifolds. Appendix C is based on lecture notes written for a course
on Hamiltonian Floer homology in the winter semester 2021/2022 taught by Urs
Frauenfelder at the university of Augsburg.

In Chapter 3, we introduce the main machinery for defining our new homology
theory and prove Theorem 1.4. This material is an extended version of [14] and
additional details may also be found in [21].

In Chapter 4, we prove Theorem 1.1 and the Forcing theorem 1.6. Theorem 1.1
and its proof is also taken from [14].

In the final Chapter 5, we indicate two further results that may be obtained using
the theory developed in this thesis.





Chapter 2
Hamiltonian Floer Homology

Floer homology was introduced by Andreas Floer around 1988 to tackle the homo-
logical Arnold conjecture. Roughly speaking, the conjecture says in its simplest form
that the number of nondegenerate solutions of a 1-periodic Hamiltonian equation is
bounded below by the dimension of the singular homology of the symplectic mani-
fold with coefficients in Z2. That is, the number of such solutions is always bounded
below by a topological invariant. This resembles the famous Morse inequalities, and
thus it is not suprising that the construction of Floer homology was largely influenced
by Morse homology. See the excellent article [2]. However, a key technical ingre-
dient for this semi-infinite dimensional version of Morse homology was Gromov’s
analysis of pseudoholomorphic curves introduced in 1985. Today there are many
flavours of Floer theories, and we shall focus on Rabinowitz–Floer homology. This
homology was introduced in 2009 by Kai Cieliebak and Urs Frauenfelder. Crucial is
the observation, that Floer homology can also be constructed in a more general way,
namely in the Morse–Bott case. In contrast to standard Hamiltonian Floer homology,
Rabinowitz–Floer homology considers a fixed energy but arbitrary period problem.
This leads to particular instances of the Weinstein conjecture formulated in 1979,
including the result of Rabinowitz in 1978. Weinstein conjectured that on every
compact manifold admitting a contact form, there must exist a closed Reeb orbit. For
an extensive historical treatment see [43].

The aim of this introductory chapter is to explain the fundamental concepts
required later on. In the first section we discuss the finite-dimensional version of
Morse–Bott homology, a generalisation of Morse homology.

The second section discusses some basic facts coming from Hamiltonian dynam-
ics, focusing on theory we need in subsequent chapters.

The third section introduces the archetypical version of Floer homology, Hamilto-
nian Floer homology, on compact symplectic manifolds. We discuss the Morse–Bott
approach, as this one will be useful in the discussion of Rabinowitz–Floer homology.

In the last section we discuss suitable structures on regular hypersurfaces in
symplectic manifolds, including hypersurfaces of restricted contact type.

7



8 2 Hamiltonian Floer Homology

2.1 Morse–Bott Homology

Morse–Bott homology is a generalisation of Morse homology to functions with
degenerate critical points. See [17, Appendix A] for a short introduction via the
cascade approach and [22, Appendix A] for a more extensive treatment. Morse–Bott
functions often occur in the presence of symmetries. Indeed, let G be a Lie group
acting on a manifold M . If f 2 C1.M/ is G-invariant, that is, f .gx/ D f .x/

holds for all g 2 G and x 2M , then Crit f is alsoG-invariant. In particular, f is not
a Morse function in general. However, the presence of symmetry usually simplifies
the explicit computation of the Morse homology.

Definition 2.1 (Morse–Bott Function, [43, p. 232]). LetM be a smooth manifold.
A Morse–Bott function onM is defined to be a function f 2 C1.M/ such that

(i) Crit f �M is an embedded submanifold.
(ii) Tx Crit f D ker Hessf jx for all x 2 Crit f .

Remark 2.2. Assumption (ii) is crucial for proving the Morse–Bott Lemma [11,
Lemma 3.51], an analogue of the Morse Lemma. The Morse–Bott Lemma is a key
technical ingredient for proving exponential decay of gradient flow lines.

Example 2.3 (S2n�1). Let f W S2n�1 ! R on the odd-dimensional sphere

S2n�1 WD

(
.z1; : : : ; zn/ 2 Cn

W

nX
jD1

jzj j
2
D 1

)
be defined by

f .z1; : : : ; zn/ WD

nX
jD1

j jzj j
2 :

Then f is a Morse–Bott function with critical manifold being a disjoint union of n
copies of S1.

Let .M; g/ be a compact Riemannian manifold and f 2 C1.M/ a Morse–Bott
function. Choose an additional Morse function h 2 C1.Crit f / and a Riemannian
metric g0 on Crit f such that .h; g0/ is a Morse–Smale pair, that is, the stable and
unstable manifolds intersect transversally. Using Theorem D.12, one can define a
nonnegative Z-graded chain complex .CM�.f /; @�/ of Z2-vector spaces by

CMk.f / WD Critk h˝ Z2; Critk h WD fx 2 Crit h W indf .x/C indh.x/ D kg ;

for all k 2 Z, where ind denotes the ordinary Morse index, that is, the number of
negative eigenvalues of the Hessian at that point, with boundary operator

@k W CMk.f /! CMk�1.f /; @kx
�
WD

X
xC2Critk�1 h

n.x�; xC/xC;
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where
n.x�; xC/ WD #2M.x�; xC/ 2 Z2

denotes the Z2-count of the abstractly perturbed unparametrised negative gradient
flow lines with cascades from x� to xC. Then @� is indeed a boundary operator by

.@k ı @kC1/x
�
D

X
xC2Critk�1 h

X
x2Critk h

#2M.x�; x/#2M.x; xC/xC

D

X
xC2Critk�1 h

#2@M.x�; xC/xC

D 0

for all x� 2 CritkC1 h as

@M.x�; xC/ Š
a

x2Crith

M.x�; x/ �M.x; xC/:

Thus we can define the Morse–Bott homology of f by

HMk.f / WD
ker @k

im @kC1
; 8k 2 Z:

As our notation suggests, HM.f / is independent of any auxiliary data up to natural
isomorphisms. In particular, as every Morse function is a Morse–Bott function,
Morse–Bott homology is canonically isomorphic to the ordinary Morse homology
of M , and thus to the singular homology of M with coefficients in Z2, that is,

HM�.f / Š H�.M IZ2/:

Example 2.4 (S2n�1). Consider the odd-dimensional sphere S2n�1 with Morse–
Bott function f 2 C1.S2n�1/ defined in Example 2.3. Choose the standard height
function h 2 C1.Crit f / on each critical component S1. Then the associated chain
complex is given by

CMk.f / Š

(
Z2 0 � k � 2n � 1;

0 else:

with boundary operator

@k D

(
1 k even and 1 � k � 2n � 1;
0 else:

See Figure 2.1. Thus the resulting homology is

HMk.f / Š

(
Z2 k D 0; 2n � 1;

0 else:



10 2 Hamiltonian Floer Homology

1

Fig. 2.1: The sphere S2n�1 with standard height function is depicted on the left and
on the right we see the critical submanifold Crit f with standard height function on
each critical component.

Example 2.5 (The Teapot). Consider the deformed sphere S2 as in Figure 2.2.
Then the standard height function is a Morse–Bott function on the teapot with
critical manifold being the disjoint union of a circle S1 and four nondegenerate
critical points. Choose also the standard height function on S1. Then the resulting
chain complex is given by

0 Z2 ˚ Z2 Z2 ˚ Z2 Z2 ˚ Z2 0

0@1 1
0 0

1A 0@0 1
0 1

1A

Thus the homology coincides again with H�.S2IZ2/.

1

Fig. 2.2: The deformed sphere S2 resembling a teapot with the standard height
function.
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2.2 Hamiltonian Dynamics

The modern language of classical mechanics is provided by symplectic geometry.
For an introduction to symplectic geometry see [50] and for a more sophisticated
treatment [43]. For an introduction to Hamiltonian dynamics see [4] as well as [34]
for a view towards symplectic invariants. Here we just briefly review the basics
needed later on and to fix our conventions.

Definition 2.6 (Hamiltonian System). A Hamiltonian system is a symplectic man-
ifold .M;!/, called the phase space together with a smooth functionH 2 C1.M/,
called a Hamiltonian function. We write .M;!;H/ for a Hamiltonian system.

Definition 2.7 (Hamiltonian Vector Field). Let .M;!;H/ be a Hamiltonian sys-
tem. The Hamiltonian vector field is defined to be the vector field XH 2 X.M/

given implicitly by
iXH! D �dH:

Lemma 2.8 (Jacobi, [4, Theorem 3.3.19]). Let .M;!;H/ be a Hamiltonian system
and let ' 2 Symp.M;!/ be a symplectomorphism. Then

'�XH D X'�H :

Proof. We compute

iX'�H! D �d'
�H D �'�dH D '�.iXH!/ D i'�XH .'

�!/ D i'�XH!:

Thus we conclude by the uniqueness of the Hamiltonian vector field. �

Lemma 2.9. Let .M;!;H/ be a Hamiltonian system and let ' 2 Symp.M;!/ be a
symplectomorphism. Then

�
X'�H
t D '�1 ı �

XH
t ı ';

whenever either side is defined, where � denotes the smooth flow of a vector field.

Proof. Using Lemma 2.8 we compute

d

dt
'�1 ı �

XH
t ı ' D D'�1 ı

d

dt
�
XH
t ı '

D D'�1 ıXH ı �
XH
t ı '

D D'�1 ıXH ı ' ı '
�1
ı �

XH
t ı '

D '�XH ı '
�1
ı �

XH
t ı '

D X'�H ı '
�1
ı �

XH
t ı ';

and the result follows by the uniqueness of integral curves. �
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Definition 2.10 (Algebra of Classical Observables, [51, p. 46]). Let .M;!/ be a
symplectic manifold. The commutative real algebra C1.M/ of smooth functions
on M is called the algebra of classical observables.

Definition 2.11 (Poisson Bracket, [39, p. 578]). Let .M;!/ be a symplectic man-
ifold. Define a mapping, called the Poisson bracket on the algebra of classical
observables,

f�; �g W C1.M/ � C1.M/! C1.M/

by
ff; gg WD !.Xf ; Xg/:

Remark 2.12 ([39, Corollary 22.20]). Let .M;!/ be a symplectic manifold. Then

.C1.M/; f�; �g/! .X.M/; Œ�; ��/; f 7! Xf ;

is a Lie algebra homomorphism, where Œ�; �� denotes the Lie bracket given by

ŒX; Y � D LXY D
d

dt

ˇ̌̌̌
tD0

�
�Xt
��
Y

for all X; Y 2 X.M/.

Lemma 2.13 (Evolution Equation, [4, Corollary 3.3.15]). Let .M;!;H/ be a
Hamiltonian system. Then

d

dt
f ı �

XH
t D fH;f g ı �

XH
t 8f 2 C1.M/;

whenever either side is defined.

Proof. Using Fisherman’s formula [39, Proposition 22.14] we compute

d

dt
f ı �

XH
t D

d

dt

�
�
XH
t

��
f

D
�
�
XH
t

��
LXH f

D
�
�
XH
t

��
fH;f g

D fH;f g ı �
XH
t

for all f 2 C1.M/. �

Corollary 2.14 (Preservation of Energy, [23, Theorem 2.2.2]). Let .M;!;H/ be
a Hamiltonian system. Then

H
�
�
XH
t .x/

�
D H.x/ 8x 2M;

whenever the left side is defined.
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Proof. Using Lemma 2.13 we compute

d

dt
H ı �

XH
t D fH;H g ı �

XH
t D 0

by antisymmetry of the Poisson bracket. �

We describe a particularly interesting class of Hamiltonian systems. Let .M n; g/

be a compact Riemannian manifold and denote by � W T �M ! M its cotangent
bundle. For a smooth potential function V 2 C1.M/ define H 2 C1.T �M/ by

H.q; p/ WD
1

2
kpk2g� C V.q/: (2.1)

For � 2 �2.M/ closed, the form !� WD dp ^ dq C ��� is a symplectic form
on T �M where .q; p/ denote the standard coordinates on the cotangent bundle.
The symplectic manifold .T �M;!� / is called a magnetic cotangent bundle and
the Hamiltonian system .T �M;!� ;H/ is called a magnetic Hamiltonian system.
If � D 0, the system is called a mechanical Hamiltonian system. The dynamics of
a magnetic Hamiltonian system are given by the flow of the associated Hamiltonian
vector field

XH .q; p/ D

nX
iD1

@H

@pi

@

@qi
C

nX
iD1

 
nX

jD1

�ij .q/
@H

@pj
�
@H

@qi

!
@

@pi
; (2.2)

where � is locally given by

� D
1

2

nX
i;jD1

�ij .q/dqi ^ dqj ; �j i D ��ij :

Assume that � is exact, that is, there exists � 2 �1.M/ with � D d�. We claim that

'� W .T
�M;�T �M C �

��/! .T �M;�T �M /; '� .q; p/ WD .q; p C �q/

is an exact symplectomorphism, where �T �M denotes the canonical Liouville form
on T �M . For .q; p/ 2 T �M and v 2 T T �

.q;p/
M we compute

.'���T �M /.q;p/.v/ D '� .q; p/.D� ıD'� .v//

D .p C �q/.D.� ı '� /.v//

D p.D�.v//C �q.D�.v//

D �T �M j.q;p/.v/C .�
��/.q;p/.v/:

The mechanical Hamiltonian (2.1) is transformed to the magnetic Hamiltonian

H ı '�1� .q; p/ D
1

2
kp � �qk

2
g� C V.q/:
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Definition 2.15 (Cotangent Lift). Let ' 2 Diff.M/ be a diffeomorphism of a
smooth manifold M . Define a map D'� W T �M ! T �M , called the cotangent lift
of the diffeomorphism ', by

D'�.q; p/.v/ WD p
�
D'�1.v/

�
; 8v 2 T'.q/M:

Proposition 2.16 (Physical Transformation, [23, p. 10]). Let ' 2 Diff.M/ be a
diffeomorphism and denote by �T �M the Liouville form on T �M . Then

.D'�/��T �M D �T �M :

Proof. Let .q; p/ 2 T �M . Then we compute

.D'�/��T �M j.q;p/.v/ D �T �M jD'�.q;p/
�
D.D'�/.v/

�
D �T �M j.'.q/;pıD'�1/

�
D.D'�/.v/

�
D .p ıD'�1/

�
D�.'.q/;pıD'�1/

�
D.D'�/.v/

��
D p

�
D'�1 ıD.� ıD'�/.v/

�
D p

�
D'�1 ıD.' ı �/.v/

�
D �T �M j.q;p/.v/

for all v 2 T.q;p/T �M . �

Example 2.17 (Holomorphic Function). LetU � C be an open subset and suppose
that ' 2 C1.U;C/ is holomorphic with '0 ¤ 0 on U for the complex derivative '0
of '. Then the cotangent lift D'� of ' is given by

D'� W T �U ! T �C; D'�.z; w/ D

�
'.z/;

w

'0.z/

�
:

2.3 Morse–Bott Homology for the Symplectic Action Functional

In this section we briefly describe how to construct a Morse–Bott homology in a
semi-infinite dimensional setting following [24].

Definition 2.18 (The Symplectic Action Functional, [43, p. 446]). Let .M;!/ be
a connected symplectic manifold such that Œ!�j�2.M/ D 0 and denote by ƒM the
connected component of contractible loops in C1.T ;M/. For H 2 C1.M � T /,
define the symplectic action functional

AH W ƒM ! R; AH .
/ WD

Z
D
x
�! �

Z 1

0

Ht .
.t//dt; (2.3)

where x
 2 C1.D;M/ is a filling of 
 , that is, x
.e2�it / D 
.t/ for all t 2 T .
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The gradient gradJ AH of the symplectic action functional is given by

gradJ AH j
 .t/ D J. P
.t/ �XHt .
.t/// 8t 2 T ;

for all 
 2 ƒM and for some !-compatible almost complex structure J on .M;!/
with respect to the L2-metric

hX; Y iJ WD

Z 1

0

!.JX.t/; Y.t//dt

for allX; Y 2 �.
�TM/. Thus a negative gradient flow line of the symplectic action
functional AH is a map u 2 C1.R�T ;M/ that is a solution of the Floer equation

@su.s; t/C J.@tu.s; t/ �XHt .u.s; t/// D 0 8.s; t/ 2 R � T : (2.4)

Assume that .M;!/ is compact and we are given a sequence .uk/ of negative
gradient flow lines of the symplectic action functional such that the derivativesDuk
are uniformly bounded. Then by [42, Theorem 4.1.1] there exists a negative gradient
flow line u of the symplectic action functional such that

uk
C1loc
��! u; k !1;

up to a subsequence. Thus if the derivatives of the sequence of negative gradient flow
lines are uniformly bounded, .uk/ converges to a broken negative gradient flow line in
the Floer–Gromov sense. In contrast to finite-dimensional Morse–Bott homology, a
new phenomenon occurs if the derivatives explode. Indeed, if the derivatives explode,
by Theorem C.3 there exists a nonconstant J -holomorphic sphere v 2 C1.S2;M/,
see Figure 2.3. This cannot happen in our setting as we assumed Œ!�j�2.M/ D 0 and
thus Z

S2
v�! D 0;

contradicting [42, Lemma 2.2.1].

Fig. 2.3: The bubbling phenomenon of a sequence of solutions of the Floer equation.
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By adapting Theorem D.12 to the semi-infinite dimensional case as sketched in
[15, Corollary 8.13], we can define the Floer Homology ofH by

HF.H/ WD HM.AH /

if the symplectic action functional AH is a Morse–Bott function. More precisely,
choose an additonal Morse function h 2 C1.Crit AH / on Crit AH � M via the
obvious identification 
 7! 
.0/. Define a Z2-vector space CF.H/ WD Crit h˝ Z2
and a boundary operator

@ W CF.AH /! CF.AH /; @
� WD
X


C2Crith

n.
�; 
C/
C;

where
n.
�; 
C/ WD #2M0.
�; 
C/ 2 Z2

denotes the Z2-count of the zero dimensional component of the moduli space of
all abstractly perturbed unpartametrised negative gradient flow lines with cascades.
Then the ungraded Floer homology of H 2 C1.M � T / is given by

HF.H/ D
ker @
im @

:

Again, one can show that the definition of Hamiltonian Floer homology does not
depend on any auxiliary choices. In fact, Hamiltonian Floer homology is also inde-
pendent of the choice of time-dependent Hamiltonian functionH . Consequently, we
have a chain of natural isomorphisms

HF.H/ D HM.AH / Š HM.A0/ D
M
k�0

HMk.h/ Š
M
k�0

Hk.M IZ2/: (2.5)

Consequently, we have that

# Crit AH D dimZ2 CF.H/ � dimZ2 HF.H/ D
dimMX
kD0

dimZ2 Hk.M IZ2/

This resembles the famous Morse inequalities and yields a proof of a special case
for the following conjecture.

Conjecture 2.19 (Homological Arnold Conjecture). Let .M;!/ be a compact
symplectic manifold andH 2 C1.M �T / such that AH is a Morse function. Then
the number of contractible periodic orbits P .H/ of H satisfies the inequality

#P .H/ �

dimMX
kD0

dimZ2 Hk.M IZ2/:

For a discussion of the general homological Arnold conjecture, see [2, p. 29].
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We finally discuss a Z-grading for Hamiltonian Floer homology. There is an
obvious Z2-grading, but the Z-grading requires an additional assumption. First, we
observe that the ordinary Morse index and coindex are both infinite for the symplectic
action functional. Indeed, as AH is a zero-order perturbation of the symplectic area
functional A0, it is enough to consider that case. Using a Darboux chart, it is
actually enough to consider a loop z 2 C1.T ;Cn/. This loop can be represented
by its Fourier series

z D

C1X
kD�1

zke
2�ikt ; zk 2 Cn:

Then

A0.z/ D ��

C1X
kD�1

k kzkk
2
DW A.z/: (2.6)

Indeed, we have that A0.0/ D 0 D A.0/ and asC1.T ;Cn/ is connected, it suffices
to show that the differential on both sides of (2.6) coincide. Represent the tangent
vector v 2 TzC1.T ;Cn/ Š C1.T ;Cn/ by its Fourier series as

v D

C1X
kD�1

vke
2�ikt ; vk 2 Cn:

Then we compute

dA0jz.v/ D

Z 1

0

!.v.t/; Pz.t//dt

D

Z 1

0

Re.ixv.t/ Pz.t//dt

D �2� Re

 
C1X
kD�1

kxvkzk

!

D ��

C1X
kD�1

k.xvkzk C vkxzk/

D dAjz.v/:

Thus the gradient grad A0 with respect to the standard real inner product on Cn is
given by

grad A0j
k
z D �2�kzk 8k 2 Z:

Consequently, the spectrum of the Hessian of A0 is 2�Z and we see that A0

has infinite Morse index and coindex. Let 
 2 Crit AH be a critical point of the
symplectic action functional and choose a filling disk x
 2 C1.D;M 2n/ of 
 . Fix
a symplectic trivialisation of the pullback tangent bundle ˚ W D � R2n ! x
�TM .
This is possible by [43, Proposition 2.6.7]. Then we can associate to the pair .
; x
/
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an integer by
�.
; x
/ WD �CZ.	/ 2 Z;

where �CZ denotes the Conley–Zehnder index [23, Definition 10.4.1] of the path of
symplectic matrices 	 defined by

	 W Œ0; 1�! Sp.n/; 	.t/ WD ˚�1
e2�it

ıD�
XHt
t ı ˚1:

If we choose another filling disk x
 0 2 C1.T ;M/ of 
 , then we have the formula

�.
; x
/ � �.
; x
 0/ D 2c1.Œx

0#x
��/;

where Œx
 0#x
�� 2 �2.M/ and c1 denotes the first Chern class [43, p. 85]. So there is
always a well-defined Z2-grading of CF.H/. If c1.TM/j�2.M/ D 0, there is also a
well-defined Z-grading. More precisely, if c1.TM/j�2.M/ D 0, then the Floer chain
group CF.H/ is graded by the signature index

�CZ.
/ �
1

2
sgn Hessh.
/ 8
 2 Crit h:

See [17, p. 297]. Note that the chain of canonical isomorphisms (2.5) gives rise to a
natural isomorphism HF�.M/ Š H�Cn.M IZ2/.

2.4 Regular Energy Surfaces

In contrast to Floer homology, in Rabinowitz–Floer homology, we study an arbi-
trary period but fixed energy problem. Thus we need to consider hypersurfaces in
Hamiltonian systems.

Definition 2.20 (Regular Energy Surface). Let .M;!;H/ be a Hamiltonian sys-
tem. The level set ˙ WD H�1.0/ is a regular energy surface, if CritH \˙ D ¿.

Definition 2.21 (Hamiltonian Manifold, [23, Definition 2.4.1]). A Hamiltonian
manifold is defined to be a pair .˙; !/, where ˙ is an odd-dimensional smooth
manifold and ! 2 �2.˙/ is closed such that ker! is a line distribution. The
foliation inducing the line distribution ker! is called the characteristic foliation.

Example 2.22 (Regular Energy Surface). Let ˙ be a regular energy surface in a
Hamiltonian system .M;!;H/. Then .˙; !j˙ / is a Hamiltonian manifold. More-
over, the line distribution ker!j˙ is spanned by the Hamiltonian vector fieldXH j˙ .

Definition 2.23 (Stable Hamiltonian Manifold, [19, p. 1773]). A Hamiltonian
manifold .˙; !/ is called stable, if there exists � 2 �1.˙/ which is nowhere-
vanishing on ker! and such that ker! � ker d�. We write .˙; !; �/ for a stable
Hamiltonian manifold.
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Remark 2.24. Equivalently, a Hamiltonian manifold .˙2n�1; !/ is stable, if and
only if there exists � 2 �1.˙/ with ker! � ker d� and such that � ^ !n�1 is a
volume form on ˙ .

Example 2.25 (Regular Energy Surface). Let ˙ be a regular energy surface in
a Hamiltonian system .M;!;H/. Suppose that there exists a vector field X in a
neighbourhood of ˙ with X nowhere-tangent to ˙ and ker!j˙ � kerLX!j˙ .
Then .˙; !j˙ ; iX!j˙ / is a stable Hamiltonian manifold.

Example 2.26 ([19, Section 6.1]). Let Tn be the standard flat torus for n � 2 and
let J W Rn ! Rn be an antisymmetric nonzero linear map. Define � 2 �2.Tn/ by
setting �.�; �/ WD h�; J �i and denote by!� D dp^dqC��� the magnetic symplectic
form on T �Tn Š Tn � Rn. For an energy value c 2 R set ˙c WD H�1.c/ for the
mechanical Hamiltonian function

H.q; p/ WD
1

2
kpk2 8.q; p/ 2 Tn

�Rn:

Define A WD .J jimJ /�1 and ˛ 2 �1.imJ / by

˛x.v/ WD
1

2
hx;Avi:

Then ˙c is a stable Hamiltonian manifold for every c > 0 by [19, Proposition 6.3].
The stabilising form � on ˙c is given by

� WD f �.pdq/C .prk ı pr/�˛; (2.7)

where

pr? W Rn ! ker J; prk W Rn ! imJ; pr W Tn
�Rn ! Rn

denote the projections with respect to the orthogonal splitting

Rn D ker J ˚ imJ;

and
f W Tn

�Rn ! Tn
�Rn; f .q; p/ WD

�
q; pr?.p/

�
:

Definition 2.27 (Reeb Vector Field, [19, p. 1773]). Let .˙; !; �/ be a stable Hamil-
tonian manifold. The unique vector field R 2 X.˙/ implicitly defined by

iR! D 0 and iR� D 1

is called the Reeb vector field.

Example 2.28. The flow �t of the magnetic Hamiltonian system in Example 2.26 is
given by

�t .q; p/ D

�Z t

0

esJpds C q; etJp

�
;
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as one can explicitly compute this flow using (2.2), and .q; p/ 2 ˙c gives rise to a
contractible closed orbit of period � if and only if

pr?.p/ D 0; e�J prk.p/ D prk.p/; and


prk.p/



2 D 2c: (2.8)

It is illustrative to consider the special case n D 2 and � D dq1 ^ dq2. Then

� D �
1

2
.p1dp2 � p2dp1/;

and the projection of a contractible periodic orbit to T2 is depicted in Figure 2.4.

Fig. 2.4: A contractible periodic Reeb orbit on T2.

The following provides a large class of examples of stable Hamiltonian manifolds.

Definition 2.29 (Contact Manifold, [23, Definition 2.5.1]). A contact manifold is
defined to be a stable Hamiltonian manifold .˙; d�; �/. We simply write .˙; �/ for
a contact manifold.

Example 2.30 (Regular Energy Surface, [1, Theorem 1.2.2]). Let˙ be a compact
regular energy surface in a mechanical Hamiltonian system .T �M;!0;H/. Then
there exists � 2 �1.˙/ such that d� D !j˙ and .˙; �/ is a contact manifold.

Definition 2.31 (Liouville Domain, [23, Definition 2.6.2]). A Liouville domain is
a compact connected exact symplectic manifold .W; �/ with connected boundary
such that the Liouville vector field X 2 X.W /, implicitly defined by iXd� D �, is
outward-pointing along the boundary @W .

Remark 2.32 ([23, p. 24]). For a Liouville domain .W 2n; �/ we have @W ¤ ¿.
Indeed, if @W D ¿, then using Stokes Theorem we compute

0 <

Z
W

d�n D

Z
W

d.� ^ d�n�1/ D

Z
@W

� ^ d�n�1 D 0:
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Remark 2.33 ([23, Lemma 2.63]). Let .W; �/ be a Liouville domain. Then the
boundary .@W; �j@W / is a contact manifold.

Remark 2.34. In our definition of a Liouville domain .W; �/ it would actually
suffice to assume that the Liouville vector field X 2 X.W / is nowhere-tangent to
the boundary ˙ WD @W . Indeed, if the Liouville vector field is inward-pointing at
the boundary, we get an exact symplectic embedding

 W
�
Œ0;C1/ �˙; er�j˙

�
,! .W; �/

defined by
 .r; x/ WD �Xt .x/;

where �X denotes the smooth flow of X . But  expands volume as  �r � D er�j˙ .

Example 2.35 (Star-Shaped Domain, [23, Example 2.6.6]). Denote by .Cn; �/ the
standard exact linear symplectic manifold where

� WD
1

2

nX
jD1

�
yjdxj � xjdyj

�
D
i

4

nX
jD1

�
xzjdzj � zjdxzj

�
; (2.9)

with coordinates zj WD xj C iyj . Then the Liouville vector fieldX 2 X.Cn/ is given
by

X D
1

2

nX
jD1

�
xj

@

@xj
C yj

@

@yj

�
D
1

2

nX
jD1

�
zj

@

@zj
C xzj

@

@xzj

�
: (2.10)

If U � Cn is a bounded connected open subset which is star-shaped with respect to
the origin and with a smooth connected boundary @U , then . xU ; �j xU / is a Liouville
domain. All star-shaped Liouvile domains are diffeomorphic to .Bn; �jBn/ via the
radial projection, where Bn WD fz 2 Cn W kzk � 1g denotes the closed unit disc.
However, the Reeb flow of these star-shaped contact type boundaries can be very
different as in [2, Example 5.1].

Example 2.36 (Cotangent Bundle, [2, Example 5.2]). Let .M; g/ be a compact
connected Riemannian manifold and consider the cotangent bundle .T �M;pdq/.
Then the Liouville vector field is locally given by p @

@p
. Suppose U � T �M is

a bounded connected open set with smooth boundary containing the zero section
and such that the fibrewise intersection U \ T �qM is star-shaped with respect to
the origin for all q 2 M . Then . xU ; pdqj xU / is a Liouville domain. Any such star-
shaped Liouville domain in the cotangent bundle T �M is diffeomorphic to the unit
cotangent bundle

D�M WD f.q; p/ 2 T �M W kpkg� � 1g;

with contact type boundary the spherisation .S�M;pdqjS�M /. Once more, the Reeb
flow of such star-shaped hypersurfaces can be very different.
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Example 2.37 (Magnetic Hamiltonian System, [2, Example 5.2]). Consider an
exact magnetic Hamiltonian system .T �M;pdq C ���;H/ for � 2 �1.M/. For

c > max
q2M

�
1

2
k�qk

2
m� C V.q/

�
the level set H�1.c/ is fibrewise star-shaped.

Definition 2.38 (Liouville Automorphism, [16, p. 237]). Let .W; �/ be a Liouville
domain with boundary ˙ . A diffeomorphism ' 2 Diff.W / is said to be a Liouville
automorphism, if '�� � � is exact and compactly supported in the interior IntW ,
and ord' <1. We denote by Aut.W; �/ the set of all Liouville automorphisms on
a given Liouville domain .W; �/.

Remark 2.39. Let ' 2 Aut.W; �/ be a Liouville automorphism. Then there exists a
unique function f' 2 C1c .IntW / such that '�� � � D df' .

Remark 2.40. For a Liouville domain .W; �/, the set Aut.W; �/ of Liouville au-
tomorphisms is in general not a group. Indeed, for '; 2 Aut.W; �/ it is not
necessarily true that ' ı  is of finite order unless ' and  commute.

Remark 2.41. Any ' 2 Aut.W; �/ induces a strict contactomorphism 'j@W .

Example 2.42 (Rotation). For m � 1 consider the rotation

' W Cn
! Cn; '.z1; : : : ; zn/ WD

�
e2�ik1=mz1; : : : ; e

2�ikn=mzn
�
;

wherek1; : : : ; kn 2 Z are coprime tom. Let .W; �/ be a star-shaped Liouville domain
in Cn as in Example 2.35 invariant under the rotation ', that is, '.@W / D @W . Then
' is a Liouville automorphism as '�� D � by (2.9) and ord' D m.

1

Fig. 2.5: The completion of a Liouville domain.
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One can complete a Liouville domain .W; �/ to a noncompact exact symplectic
manifold without boundary by attaching the positive cylindrical end Œ0;C1/� @W
to its boundary @W . See Figure 2.5.

Definition 2.43 (Completion of a Liouville Domain, [43, p. 148]). Let .W; �/ be a
Liouville domain with boundary ˙ . The completion of .W;�/ is defined to be the
exact symplectic manifold .M; �/, where

M WD W [˙ Œ0;C1/ �˙ and �jŒ0;C1/�˙ WD e
r�j˙ :

Example 2.44 (Star-Shaped Domain). Let .W; �/ be a star-shaped Liouville do-
main as in Example 2.35. Then the completion .M; �/ of .W; �/ is symplectomorphic
to the exact linear symplectic manifold .Cn; �/ via the flow of the Liouville vec-
tor field. See Figure 2.6. The completion of a star-shaped Liouville domain in a
cotangent bundle T �M as in Example 2.36 is .T �M;pdq/.

1

Fig. 2.6: The completion .Cn; �/ of a star-shaped Liouville domain.

Finally, we consider more general hypersurfaces in symplectic manifolds.

Definition 2.45 (Stable Hypersurface, [19, p. 1774]). Let .M;!/ be a connected
symplectic manifold. A stable hypersurface in .M;!/ is a compact connected
hypersurface ˙ �M such that the following conditions are satisfied.

(i) ˙ is separating, that is, M n ˙ consists of two connected components M˙,
where M� is bounded and MC is unbounded.

(ii) There exists a vector field X in a neighbourhood of ˙ such that X is outward-
pointing to ˙ [M� and such that ker!j˙ � kerLX!j˙ .

Definition 2.46 (Displaceability, [43, p. 411]). A subset A � M of a symplectic
manifold .M;!/ is said to be Hamiltonianly displaceable, if there exists a compactly
supported Hamiltonian symplectomorphism 'F 2 Hamc.M;!/, such that

'F .A/ \ A D ¿:
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Example 2.47 ([25, p. 4]). Every compact subset of .M � C; ! ˚ !0/ is Hamilto-
nianly displaceable, where .M;!/ is any symplectic manifold.

Definition 2.48 (Hofer Norm, [43, p. 466]). Let .M;!/ be a symplectic manifold
and F 2 C1c .M � Œ0; 1�/. Define the Hofer norm of F by

kF k WDkF kC CkF k� ;

where

kF kC WD

Z 1

0

max
x2M

Ft .x/dt and kF k� WD �

Z 1

0

min
x2M

Ft .x/dt:

Definition 2.49 (Displacement Energy, [43, p. 469]). Let .M;!/ be a symplectic
manifold and A �M a compact subset. The displacement energy of A is

e.A/ WD inf
F 2C1c .M�Œ0;1�/
'F .A/\AD¿

kF k :

Example 2.50. Consider the displaceable hypersurface ˙c � .T �Tn; !� ;H/ as in
Example 2.26. Then by [43, Theorem 12.3.4], the displacement energy of ˙c is
given by

e.˙c/ D e
�
xBnp

2c
.0/
�
D 2�c 8c > 0;

where xBnp
2c
.0/ � Rn denotes the closed ball around the origin with radius

p
2c.



Chapter 3
Twisted Rabinowitz–Floer Homology

In this chapter we construct the generalisation of Rabinowitz–Floer homology and
prove Theorem 1.4.

To begin, we define the twisted Rabinowitz action functional for an exact sym-
plectic manifold and compute its first and second variation.

In the second section we prove a compactness result for the moduli space of
twisted negative gradient flow lines in a restricted geometrical setting. This follows
a standard procedure, but one has to carefully adapt the constructions and proofs to
this more general case.

In the third section we define ungraded and graded twisted Rabinowitz–Floer
homology and prove part (b) of Theorem 1.4 in Proposition 3.39.

In the fourth section we briefly illustrate how to prove part (a) of Theorem 1.4 (see
Theorem 3.41) and define the notion of twisted homotopies of Liouville domains.

In the last section we prove an important vanishing result for twisted Rabinowitz–
Floer homology, that is, part (c) of Theorem 1.4 (see Theorem 3.48).

3.1 The Twisted Rabinowitz Action Functional

Definition 3.1 (Free Twisted Loop Space). Let ' 2 Diff.M/ be a diffeomorphism
of a smooth manifold M . Define the free twisted loop space ofM and ' by

L'M WD f
 2 C
1.R;M/ W 
.t C 1/ D '.
.t// 8t 2 Rg :

Let .M;!/ be a symplectic manifold and let ' 2 Symp.M;!/. Given a twisted
loop 
 2 L'M and "0 > 0, we say that a curve

.�"0; "0/! L'M; " 7! 
"

starting at 
 is smooth, if the induced variation

R � .�"0; "0/!M; .t; "/ 7! 
".t/

25
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is smooth. Since 
".t C 1/ D '.
".t// holds for all " 2 .�"0; "0/ and t 2 R, we call
such a variation a twisted variation. Then the infinitesimal variation

ı
 WD
@
"

@"

ˇ̌̌̌
"D0

2 �.
�TM/;

satisfies
ı
.t C 1/ D D'.ı
.t// 8t 2 R:

Lemma 3.2. Let .M;!/ be a symplectic manifold and let ' 2 Symp.M;!/ be of
finite order. Let 
 2 L'M and let X 2 �.
�TM/ be such that

X.t C 1/ D D'.X.t// 8t 2 R:

Then there exists a twisted variation of 
 such that ı
 D X .

Proof. As ' is assumed to be of finite order, there exists a '-invariant !-compatible
almost complex structure J onM by [43, Lemma 5.5.6]. With respect to the induced
Riemannian metric

mJ WD !.J �; �/;

the symplectomorphism ' is an isometry. Define the exponential variation

R � .�"0; "0/!M; 
".t/ WD exprJ

.t/
."X.t//;

for "0 > 0 sufficiently small and rJ denoting the Levi–Civita connection associated
with mJ . Such an "0 > 0 exists by the naturality of geodesics [40, Corollary 5.14].
Then we compute


".t C 1/ D exprJ

.tC1/

."X.t C 1//

D exprJ
'.
.t//

.D'."X.t///

D '
�
exprJ


.t/
."X.t//

�
D '.
".t//

by naturality of the exponential map [40, Proposition 5.20]. �

Remark 3.3. The statement of Lemma 3.2 remains true if ord' D1.

This discussion together with Lemma A.3 motivates the following definition of
the tangent space to the free twisted loop space.

Definition 3.4 (Tangent Space to the Free Twisted Loop Space). Let .M;!/ be a
symplectic manifold and ' 2 Symp.M;!/. For 
 2 L'M define the tangent space
to the free twisted loop space at 
 by

T
L'M WD fX 2 �.

�TM/ W X.t C 1/ D D'.X.t// 8t 2 Rg :
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Definition 3.5 (Twisted Hamiltonian Function). Let .M;!/ be a symplectic man-
ifold and ' 2 Symp.M;!/. A function H 2 C1.M � R/ is said to be a twisted
Hamiltonian function, if

'�HtC1 D Ht 8t 2 R:

We denote the space of all twisted Hamiltonian functions by C1' .M � R/ and the
subspace of all autonomous twisted Hamiltonian functions by C1' .M/.

Recall, that an exact symplectic manifold is a pair .M; �/ such that .M; d�/ is a
symplectic manifold. Moreover, an exact symplectomorphism of an exact symplectic
manifold .M; �/ is a diffeomorphism ' 2 Diff.M/ such that '�� � � is exact.

Definition 3.6 (Perturbed Twisted Rabinowitz Action Functional). Let .M; �/
be an exact symplectic manifold and ' 2 Diff.M/ an exact symplectomorphism
such that '�� � � D df . For H;F 2 C1' .M � R/ define the perturbed twisted
Rabinowitz action functional

A.H;F /
' W L'M �R! R

by

A.H;F /
' .
; �/ WD

Z 1

0


�� � �

Z 1

0

Ht .
.t//dt �

Z 1

0

Ft .
.t//dt � f .
.0//:

If F D 0 and H 2 C1' .M/, we write AH
' for A

.H;F /
' and call AH

' the twisted
Rabinowitz action functional.

Remark 3.7. Assume that m WD ord' <1. Then

A.H;F /
' .
; �/ D

1

m
A.H;F /.x
; �/ �

1

m

m�1X
kD0

f .
.k//;

for all .
; �/ 2 L'M , where x
 2 LM is defined by x
.t/ WD 
.mt/.

Definition 3.8 (Differential of the Perturbed Twisted Rabinowitz Action Func-
tional). Let ' 2 Diff.M/ be an exact symplectomorphism of an exact symplectic
manifold .M; �/. ForH;F 2 C1' .M �R/, define the differential of the perturbed
twisted Rabinowitz action functional

dA.H;F /
' j.
;�/ W T
L'M �R! R

for all .
; �/ 2 L'M �R by

dA.H;F /
' j.
;�/.X; �/ WD

d

d"

ˇ̌̌̌
"D0

A.H;F /
' .
"; � C "�/;

where 
" is a twisted variation of 
 such that ı
 D X .
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Proposition 3.9 (Differential of the Perturbed Twisted Rabinowitz Action Func-
tional). Let ' 2 Diff.M/ be an exact symplectomorphism of an exact symplectic
manifold .M; �/ and H;F 2 C1' .M �R/. Then

dA.H;F /
' j.
;�/.X; �/ D

Z 1

0

d�.X.t/; P
.t/ � �XHt .
.t// �XFt .
.t///dt

� �

Z 1

0

Ht .
.t//dt (3.1)

for all .
; �/ 2 L'M�R and .X; �/ 2 T
L'M�R. Moreover, .
; �/ 2 Crit A
.H;F /
'

if and only if

P
.t/ D �XHt .
.t//CXFt .
.t// and
Z 1

0

Ht .
.t//dt D 0 (3.2)

for all t 2 R.

Proof. In order to show (3.1), we compute

dA.H;F /
' j.
;�/.X; �/ D

d

d"

ˇ̌̌̌
"D0

A.H;F /
' .
"; � C "�/

D

Z 1

0


�iXd�C

Z 1

0

diX� � �

Z 1

0

dHt .X.t//dt

� �

Z 1

0

Ht .
.t//dt �

Z 1

0

dFt .X.t//dt � df'.X.0//

D

Z 1

0

d�.X.t/; P
.t/ � �XHt .
.t// �XFt .
.t///dt

� �

Z 1

0

Ht .
.t//dt C �.X/j
1
0 � df'.X.0//

D

Z 1

0

d�.X.t/; P
.t/ � �XHt .
.t// �XFt .
.t///dt

� �

Z 1

0

Ht .
.t//dt C .'
�� � �/.X.0// � df'.X.0//

D

Z 1

0

d�.X.t/; P
.t/ � �XHt .
.t// �XFt .
.t///dt

� �

Z 1

0

Ht .
.t//dt:

Let .
; �/ 2 Crit A
.H;F /
' . It follows immediately from (3.1) thatZ 1

0

Ht .
.t//dt D 0
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and Z 1

0

d�.X.t/; P
.t/ � �XHt .
.t// �XFt .
.t///dt D 0

for all X 2 T
L'M . Suppose there exists t0 2 Int I such that

P
.t0/ � �XHt0 .
.t0// �XFt0 .
.t0// ¤ 0:

By nondegeneracy of the symplectic form d� there exists v 2 T
.t0/M with

d�.v; P
.t0/ � �XHt0 .
.t0// �XFt0 .
.t0/// ¤ 0:

Fix a Riemannian metric on M and let Xv denote the unique parallel vector field
along 
 jI such that Xv.t0/ D v. As Int I is open, there exists ı > 0 such that
xBı.t0/ � Int I . Fix a smooth bump function ˇ 2 C1.I / for t0 supported in Bı.t0/.
By shrinking ı if necessary, we may assume thatZ t0Cı

t0�ı

d�.ˇ.t/Xv.t/; P
.t/ � �XHt .
.t// �XFt .
.t///dt ¤ 0:

Extending

.ˇXv/.t C k/ WD D'
k.ˇ.t/Xv.t// 8t 2 I; k 2 Z;

we have that ˇXv 2 T
L'M and thus we compute

0 D dA.H;F /
' j.
;�/.ˇXv; 0/

D

Z t0Cı

t0�ı

d�.ˇ.t/Xv.t/; P
.t/ � �XHt .
.t// �XFt .
.t///dt

¤ 0:

Hence
P
.t/ D �XHt .
.t//CXFt .
.t// 8t 2 I;

implying

P
.t C k/ D D'k. P
.t//

D �.D'k ıXHt /.
.t//C .D'
k
ıXFt /.
.t//

D �.D'k ıXHt ı '
�k
ı 'k/.
.t//C .D'k ıXFt ı '

�k
ı 'k/.
.t//

D �'k�XHt .
.t C k//C '
k
�XFt .
.t C k//

D �X'k�Ht
.
.t C k//CX'k�Ft

.
.t C k//

D �XHtCk .
.t C k//CXFtCk .
.t C k//

for all t 2 I and k 2 Z. The other direction is immediate. �



30 3 Twisted Rabinowitz–Floer Homology

Corollary 3.10. The differential of the perturbed twisted Rabinowitz action func-
tional is well-defined, that is, independent of the choice of twisted variation, and
linear.

Preservation of energy 2.14 implies the following corollary.

Corollary 3.11. Let ' 2 Diff.M/ be an exact symplectomorphism of an exact
symplectic manifold .M; �/ and H 2 C1' .M/. Then Crit AH

' consists precisely of
all .
; �/ 2 L'M �R such that 
.R/ � H�1.0/ and 
 is an integral curve of �XH .

There is a natural R-action on the twisted loop space L'M given by

.s � 
/.t/ WD 
.t C s/ 8t 2 R:

If .M; �/ is an exact symplectic manifold and H 2 C1' .M/ for an exact symplec-
tomorphism ' 2 Diff.M/ of finite order such that suppf \H�1.0/ D ¿, then the
twisted Rabinowitz action functional AH

' is invariant under the induced S1-action
on Crit AH

' . In particular, the unperturbed twisted Rabinowitz action functional is
never a Morse function.

Definition 3.12 (Hessian of the Twisted Rabinowitz Action Functional). Let '
be an exact symplectomorphism of an exact symplectic manifold .M; �/ and sup-
pose that H 2 C1' .M/. For .
; �/ 2 Crit AH

' , define the Hessian of the twisted
Rabinowitz action functional

Hess AH
' j.
;�/ W .T
L'M �R/ � .T
L'M �R/! R

by

Hess AH
' j.
;�/..X; �/; .Y; �// WD

@2

@"1@"2

ˇ̌̌̌
"1D"2D0

AH
' .
"1;"2 ; � C "1�C "2�/;

for a smooth two-parameter family 
"1;"2 of twisted loops with

@

@"1

ˇ̌̌̌
"1D0


"1;0 D X and
@

@"2

ˇ̌̌̌
"2D0


0;"2 D Y:

Remark 3.13. Traditionally, the differential and the Hessian of the twisted Rabi-
nowitz action functional are called the first and second variation of the twisted
Rabinowitz action functional.

Definition 3.14 (Symplectic Connection). Let .M;!/ be a symplectic manifold. A
symplectic connection on .M;!/ is defined to be a torsion-free connection r in the
tangent bundle TM such that r! D 0.

Remark 3.15. Every symplectic manifold admits a symplectic connection by [31,
p. 308], but in sharp contrast to the Riemannian case, a symplectic connection on a
given symplectic manifold is in general not unique.
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Lemma 3.16. Let ' 2 Diff.M/ be an exact symplectomorphism of an exact sym-
plectic manifold .M; �/. Fix a symplectic connection r on .M; d�/ and a twisted
Hamiltonian function H 2 C1' .M/. If .
; �/ 2 Crit AH

' , then

Hess AH
' j.
;�/..X; �/; .Y; �// D

Z 1

0

d�.Y;rtX/

� �

Z 1

0

Hessr H.X; Y / � �
Z 1

0

dH.Y / � �

Z 1

0

dH.X/ (3.3)

for all .X; �/; .Y; �/ 2 T
L'M �R.

Proof. We compute

@2

@"1@"2

ˇ̌̌̌
"1D"2D0

.� C "1�C "2�/

Z 1

0

H ı 
"1;"2

D �

Z 1

0

dH.Y /C �

Z 1

0

dH.X/C �

Z 1

0

@2

@"1@"2

ˇ̌̌̌
"1D"2D0

H.
"1;"2/; (3.4)

and

@2

@"1@"2

ˇ̌̌̌
"1D"2D0

H.
"1;"2/ D
@

@"1

ˇ̌̌̌
"1D0

dH
�
@"2 j"2D0
"1;"2

�
D�

@

@"1

ˇ̌̌̌
"1D0

d�
�
XH .
"1;0/; @"2 j"2D0
"1;"2

�
D� d�

�
r"1 j"1D0XH .
"1;0/; Y

�
� d�

�
XH .
/;r"1 j"1D0@"2 j"2D0
"1;"2

�
:

The d�-compatibility of r implies

d�
�
r"1 j"1D0XH .
"1;0/; Y

�
D d�

�
r@"1 j"1D0
"1;0

XH ; Y
�

D d�.rXXH ; Y /

D rXd�.XH ; Y / � d�.XH ;rXY /

D �rXdH.Y /C dH.rXY /

D �X.Y.H//C .rXY /H

D �Hessr H j
 .X; Y /: (3.5)

Next we compute

@2

@"1@"2

ˇ̌̌̌
"1D"2D0

Z 1

0


�"1;"2� D

Z 1

0

@

@"1

ˇ̌̌̌
"1D0


�"1;0i@"2 j"2D0
"1;"2
.d� ı 
"1;0/

C

Z 1

0

@

@"1

ˇ̌̌̌
"1D0

d
�"1;0i@"2 j"2D0
"1;"2
.� ı 
"1;0/
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D

Z 1

0

@

@"1

ˇ̌̌̌
"1D0

d�
�
@"2 j"2D0
"1;"2 ; P
"1;0

�
C

@

@"1

ˇ̌̌̌
"1D0

�.@"2 j"2D0
"1;"2/j
1
0

D

Z 1

0

d�
�
r"1 j"1D0@"2 j"2D0
"1;"2 ; P


�
C

Z 1

0

d�
�
Y;r"1 j"1D0@t
"1;0

�
C

@

@"1

ˇ̌̌̌
"1D0

�.@"2 j"2D0
"1;"2/j
1
0

D�

Z 1

0

d�
�
r"1 j"1D0@"2 j"2D0
"1;"2 ; XH .
/

�
C

Z 1

0

d�
�
Y;rt@"1 j"1D0
"1;0

�
C

@

@"1

ˇ̌̌̌
"1D0

�.@"2 j"2D0
"1;"2/j
1
0

D �

Z 1

0

d�
�
r"1 j"1D0@"2 j"2D0
"1;"2 ; XH .
/

�
C

Z 1

0

d�
�
Y;rtX

�
C

@

@"1

ˇ̌̌̌
"1D0

�.@"2 j"2D0
"1;"2/j
1
0: (3.6)

MoreoverZ 1

0

d�
�
Y;rtX

�
D

Z 1

0

d

dt
d�.Y;X/ �

Z 1

0

d�.rtY;X/

D d�.Y;X/j10 C

Z 1

0

d�.X;rtY /

D d�
�
D'.Y.0//;D'.X.0//

�
� d�.Y.0/; X.0//

C

Z 1

0

d�.X;rtY /

D

Z 1

0

d�.X;rtY /: (3.7)

Finally

�.@"2 j"2D0
"1;"2/j
1
0 D �

�
@"2 j"2D0
"1;"2.1/

�
� �

�
@"2 j"2D0
"1;"2.0/

�
D �

�
@"2 j"2D0'.
"1;"2.0//

�
� �

�
@"2 j"2D0
"1;"2.0/

�
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D �
�
D'

�
@"2 j"2D0
"1;"2.0/

��
� �

�
@"2 j"2D0
"1;"2.0/

�
D .'�� � �/.@"2 j"2D0
"1;"2.0//

D df'.@"2 j"2D0
"1;"2.0//: (3.8)

Combining (3.6), (3.4), (3.7), and (3.8) yields (3.3). �

Corollary 3.17. The Hessian of the twisted Rabinowitz action functional is a well-
defined, that is, independent of the choice of twisted two-parameter family, symmetric
bilinear form.

Lemma 3.18. Let ' 2 Diff.M/ be an exact symplectomorphism of an exact sym-
plectic manifold .M; �/ and H 2 C1' .M/. If .
; �/ 2 Crit AH

' , then

Hess AH
' j.
;�/..X; �/; .Y; �// D

Z 1

0

d�.Y;L�XHX � �XH .
//

� �

Z 1

0

dH.X/ (3.9)

for all .X; �/; .Y; �/ 2 T
L'M �R, where

L�XHX.t/ D
d

ds

ˇ̌̌̌
sD0

D�XH�s�X.s C t / 8t 2 R:

Proof. Inserting Hessr.X; Y / D d�.Y;rXXH / into (3.3) yields

Hess AH
' j.
;�/..X; �/; .Y; �// D

Z 1

0

d�.Y;rtX � �rXXH /

� �

Z 1

0

dH.Y / � �

Z 1

0

dH.X/:

But as r has no torsion by assumption, we compute

rtX � �rXXH D r P
X � �rXXH D r�XHX � �rXXH D Œ�XH ; X�;

and

Œ�XH ; X�.t/ D L�XHX.t/

D
d

ds

ˇ̌̌̌
sD0

D�XH�s� .X.�
XH
s� .
.t///

D
d

ds

ˇ̌̌̌
sD0

D�XH�s� .X.�
XH
s� .�

XH
t� .
.0/////

D
d

ds

ˇ̌̌̌
sD0

D�XH�s�X.s C t /

for all t 2 R. �
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Corollary 3.19. Let ' 2 Diff.M/ be an exact symplectomorphism of an exact
symplectic manifold .M; �/ and let H 2 C1' .M/. The kernel of the Hessian of the
twisted Rabinowitz action functional AH

' at .
; �/ 2 Crit AH
' consists precisely of

all .X; �/ 2 T
L'M �R satisfying

L�XHX D �XH .
/ and
Z 1

0

dH.X/ D 0:

Lemma 3.20. Let ' 2 Diff.M/ be an exact symplectomorphism of an exact sym-
plectic manifold .M; �/ and H 2 C1' .M/. For every .
; �/ 2 Crit AH

' , there is a
canonical isomorphism

ker Hess AH
' j.
;�/ Š K.
; �/; (3.10)

where
K.
; �/ WD f.v0; �/ 2 T
.0/M �R W solution of (3.11)g

with

D.�XH�� ı '/v0 D v0 C �XH .
.0// and dH.v0/ D 0: (3.11)

Proof. We follow [23, p. 99–100]. Let .X; �/ 2 ker Hess AH
' j.
;�/ and define

v W I ! T
.0/M; v.t/ WD D�
XH
�� tX.t/:

We claim that

ker Hess AH
' j.
;�/ ! K.
; �/; .X; �/ 7! .v.0/; �/ (3.12)

is an isomorphism. First, we show that the above homomorphism is indeed well-
defined. The assumption that .X; �/ lies in the kernel of the Hessian of the twisted
Rabinowitz action functional at the critical point .
; �/ is by Corollary 3.19 equivalent
to the system

Pv D �XH .
.0// and
Z 1

0

dH.v/ D 0: (3.13)

Integrating the first equation yields

v.t/ D v0 C t�XH .
.0// 8t 2 I;

with v0 WD v.0/. Thus .v0; �/ 2 K.
; �/ follows from

v.1/ D D�XH�� X.1/

D D�XH�� D'.X.0//

D D.�XH�� ı '/X.0/

D D.�XH�� ı '/v0: (3.14)
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That (3.12) is an isomorphism follows by considering the inverse

K.
; �/! ker Hess AH
' j.
;�/; .v0; �/ 7! .X; �/;

where X 2 T
L'M is defined by

X.t/ WD D�
XH
� t .v0 C t�XH .
.0/// 8t 2 R:

This establishes the canonical isomorphism (3.12). �

Recall, that a strict contactomorphism of a contact manifold .˙; ˛/ is defined to
be a diffeomorphism ' 2 Diff.˙/ such that '�˛ D ˛.

Definition 3.21 (Parametrised Twisted Reeb Orbit). For a contact manifold .˙; ˛/
and a strict contactomorphism ' W .˙; ˛/ ! .˙; ˛/ define the set of parametrised
twisted Reeb orbits on .˙; ˛/ by

P'.˙; ˛/ WD f.
; �/ 2 L'˙ �R W P
.t/ D �R.
.t// 8t 2 Rg :

Definition 3.22 (Twisted Spectrum). For a contact manifold .˙; ˛/ and a strict
contactomorphism ' W .˙; ˛/! .˙; ˛/ define the twisted spectrum by

Spec'.˙; ˛/ WD f� 2 R W 9
 2 L'˙ such that .
; �/ 2 P'.˙; ˛/g :

Lemma 3.23. Let ' W .˙; ˛/ ! .˙; ˛/ be a strict contactomorphism of a compact
contact manifold .˙; ˛/. Then

' ı �Rt D �
R
t ı ' 8t 2 R:

Proof. If '�R D R, then we compute

d

dt
' ı �Rt D D' ıR ı �

R
t D '�R ı ' ı �

R
t D R ı ' ı �

R
t ;

for all t 2 R. To prove '�R D R, just observe that

i'�Rd˛ D '
�d˛.R ı '�1;D'�1�/

D d'�˛.R ı '�1;D'�1�/

D d˛.R ı '�1;D'�1�/

D '�.iRd˛/

D 0;

and

˛.'�R/ D ˛.D' ıR ı '
�1/ D '�˛.R ı '�1/ D ˛.R ı '�1/ D 1:

Hence the statement follows from the uniqueness of integral curves. �
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Proposition 3.24 (Kernel of the Hessian of the Twisted Rabinowitz Action Func-
tional). Let .˙; �j˙ / be a regular energy surface of restricted contact type in an
exact Hamiltonian system .M; �;H/ with XH j˙ D R. Suppose ' 2 Diff.M/ is an
exact symplectomorphism such that H 2 C1' .M/ and '��j˙ D �j˙ . Then

Crit AH
' D P'.˙; �j˙ /

and
ker Hess AH

' j.
;�/ Š ker
�
D.�R�� ı '/j
.0/ � idT
.0/˙

�
for all .
; �/ 2 P'.˙; �j˙ /. Moreover, we have R.
.0// 2 ker Hess AH

' j.
;�/ and if
P'.˙; �j˙ / � ˙ �R is an embedded submanifold, then Spec'.˙; �j˙ / is discrete.

Remark 3.25. If .
; �/ 2 P'.˙; �j˙ /, we have the period-action equality

AH
' .
; �/ D

Z 1

0


�� D

Z 1

0

�. P
/ D �

Z 1

0

�.R.
// D �:

Proof. The identity Crit AH
' D P'.˙; �j˙ / immediately follows from Corollary

3.11 together with [39, Corollary 5.30]. The proof of the formula for the kernel of
the Hessian of AH

' is inspired by [23, p. 102]. By Lemma 3.20 we have that

ker Hess AH
' j.
;�/ Š K.
; �/;

where .v0; �/ 2 T
.0/M �R belongs to K.
; �/ if and only if

D.�XH�� ı '/v0 D v0 C �XH .
.0// and dH.v0/ D 0:

Thus in our setting, the second condition implies v0 2 T
.0/˙ . Decompose

v0 D v
�
0 C aR.
.0// v

�
0 2 �
.0/; a 2 R;

where � WD ker�j˙ denotes the contact distribution. Then we compute

D.�R�� ı '/R.
.0// D D.�
R
�� ı '/

�
d

dt

ˇ̌̌̌
tD0

�Rt .
.0//

�
D

d

dt

ˇ̌̌̌
tD0

.�R�� ı ' ı �
R
t /.
.0//

D
d

dt

ˇ̌̌̌
tD0

.�Rt ı ' ı �
R
�� /.
.0//

D
d

dt

ˇ̌̌̌
tD0

�Rt .
.0//

D R.
.0//;

using Lemma 3.23. Hence
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v0 C �R.
.0// D D.�
R
�� ı '/v0 D D

�.�R�� ı '/v
�
0 C aR.
.0//;

where
D�.�R�� ı '/ WD D.�

R
�� ı '/j� W � ! �;

implies
� D 0 and D�.�R�� ı '/v

�
0 D v

�
0

by considering the splitting T˙ D � ˚ hRi. Consequently

K.
; �/ D ker
�
D.�R�� ı '/j
.0/ � idT
.0/˙

�
� f0g :

Finally, assume that P'.˙; �j˙ / � ˙ � R is an embedded submanifold via the
obvious identification of .
; �/ 2 P'.˙; �j˙ / with .
.0/; �/ 2 ˙ � R. Fix a path
.
s; �s/ in P'.˙; �j˙ / D Crit AH

' from .
0; �0/ to .
1; �1/. Using Remark 3.25 we
compute

@s�s D @sA
H
' .
s; �s/ D dAH

' j.
s ;�s/.@s
s; @s�s/ D 0;

implying that �s is constant, and in particular �0 D �1. Consequently, AH
' is constant

on each path-connected component of P'.˙; �j˙ /. As P'.˙; �j˙ / is a submanifold
of ˙ � R, there are only countably many connected components by definition,
implying that Spec'.˙; �j˙ / is discrete. �

3.2 Compactness of the Moduli Space of Twisted Negative
Gradient Flow Lines

Definition 3.26 (Twisted Defining Hamiltonian Function). Let .W; �/ be a Liou-
ville domain with boundary˙ and ' 2 Aut.W; �/. A twisted defining Hamiltonian
function for ˙ is a Hamiltonian function H 2 C1.M/ on the completion .M; �/
of .W; �/, satisfying the following conditions:

(i) H�1.0/ D ˙ and ˙ \ CritH D ¿.
(ii) H 2 C1' .M/.
(iii) dH is compactly supported.
(iv) XH j˙ D R is the Reeb vector field of the contact form �j˙ .

Denote by F'.˙/ the set of twisted defining Hamiltonian functions for ˙ .

Remark 3.27. A necessary condition for F'.˙/ ¤ ¿ is that '�R D R. This is not
true in general if ' does not induce a strict contactomorphism on ˙ .

Definition 3.28 (Adapted Almost Complex Structure). Let .W; �/ be a Liouville
domain with boundary ˙ . An adapted almost complex structure on .W;�/ is
a d�-compatible almost complex structure J on .W; �/ such that J restricts to
define a compatible almost complex structure on the contact distribution ker�j˙
and JR D @r holds near the boundary.
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Definition 3.29 (Rabinowitz–Floer Data). Let .M; �/ be the completion of a Liou-
ville domain .W; �/ with boundary ˙ and ' 2 Aut.W; �/. Rabinowitz–Floer data
for ' is defined to be a pair .H; J / consisting of a twisted defining Hamiltonian
function H 2 F'.˙/ for ˙ and an adapted almost complex structure J on .W; �/
such that '�J D J .

Lemma 3.30. Let .W; �/ be a Liouville domain and ' 2 Aut.W; �/. Then there
exists Rabinowitz–Floer data for '.

Proof. The construction of the twisted defining Hamiltonian H for ˙ is inspired
by the proof of [19, Proposition 4.1]. Fix ı > 0 such that the exact symplectic
embedding

 W
�
.�ı; 0� �˙; er�j˙

�
,! .W; �/

defined by
 .r; x/ WD �Xr .x/

satisfies
Uı WD  ..�ı; 0� �˙/ \ suppf' D ¿: (3.15)

Indeed, that  is an exact symplectic embedding follows from the computation

d

dr
 �r � D

d

dr

�
�Xr
��
�

D .�Xr /
�LX�

D
�
�Xr
��
.d iX�C iXd�/

D
�
�Xr
��
.d iX iXd�C �/

D
�
�Xr
��
�

D  �r �

implying
 �r � D e

r�j˙ 8r 2 .�ı; 0� ;

by  0 D �˙ , where �˙ W ˙ ,! W denotes the inclusion. Note that  �r X D @r . We
claim

'. .r; x// D  .r; '.x// 8.r; x/ 2 .�ı; 0� �˙; (3.16)

that is, ' and  commute. Note that (3.16) is well-defined since '.˙/ D ˙ by
assumption. Indeed, (3.16) follows from the uniqueness of integral curves and the
computation

d

dr
'. .r; x// D

d

dr
'.�Xr .x//

D D'.X.�Xr .x///

D .D' ıX jUı ı '
�1
ı '/.�Xr .x//

D .'�X j'.Uı/ ı '/.�
X
r .x//
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D .X j'.Uı/ ı '/.�
X
r .x//

D X.'. .r; x///

where we used the '-invariance of the Liouville vector field on Uı , that is

'�X j'.Uı/ D X j'.Uı/;

which in turn follows from

i'�Xd� D d�.'�X; �/

D d�.D' ıX ı '�1; �/

D d�
�
D' ıX ı '�1;D' ıD'�1�

�
D '�d�.X ı '�1;D'�1�/

D d�.X ı '�1;D'�1�/

D '�.iXd�/

D '��

D � � d.f' ı '
�1/

and assumption (3.15).
Next we construct the defining HamiltonianH 2 C1.M/. Let h 2 C1.R/ be a

sufficiently small mollification of the piecewise linear function

h.r/ WD

‚
r r 2

�
�
ı
2
; ı
2

�
;

ı
2

r 2
�
ı
2
;C1

�
;

�
ı
2

r 2
�
�1;� ı

2

�
;

as in Figure 3.1.

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fig. 3.1: Mollification of the piecewise linear function h.
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Define H 2 C1.M/ by

H.p/ WD

‚
h.r/ p D  .r; x/ 2 Uı ;

h.r/ p D .r; x/ 2 Œ0;C1/ �˙;

�
ı
2

p 2 W n Uı :

(3.17)

Then H is a defining Hamiltonian for ˙ and dH is compactly supported by con-
struction. Moreover, H is '-invariant by (3.16). Finally, XH j˙ D R follows from
the observation XH D h0.r/e�rR. Indeed, on Uı we compute

ih0.t/e�rR 
�d� D ih0.r/e�rRd.e

r�j˙ /

D ih0.r/e�rR.e
rdr ^ �j˙ C e

rd�j˙ /

D �h0.r/dr

D �dH:

Next we construct the adapted almost complex structure J . Fix a '-invariant
compatible almost complex structure J˙ on the contact distribution ker�j˙ . Extend
this family to ..�ı;C1/ �˙; d.er�j˙ // by setting

J˙ j.a;x/.b; v/ WD
�
�x.v/; J

˙
jx.�.v// � bR.x/

�
; (3.18)

where � W ker�j˙ ˚ hRi ! ker�j˙ denotes the projection. Choose a '-invariant
d�-compatible almost complex structure JW n˙ onW n˙ and let

˚
ˇ˙ ; ˇW n˙

	
be a

partition of unity subordinate to the open cover fUı ; W n˙g ofW . The compatible
almost complex structure J associated with the Riemannian metric

mJ .�; �/ WD ˇ
˙d�.J˙ �; �/C ˇW n˙d�.JW n˙ �; �/

on W is adapted. �

Definition 3.31 (L2-Metric). Let .H; J / be Rabinowitz–Floer data for a Liouville
automorphism ' 2 Aut.W; �/. Define an L2-metric on L'M �R

h.X; �/; .Y; �/iJ WD

Z 1

0

d�.JX.t/; Y.t//dt C �� (3.19)

for all .X; �/; .Y; �/ 2 T
L'M �R and 
 2 L'M .

With respect to theL2-metric (B.2), the gradient of the twisted Rabinowitz action
functional gradJ AH

' 2 X.L'M �R/ is given by

gradJ AH
' j.
;�/.t/ D

0B@J. P
.t/ � �XH .
.t///
�

Z 1

0

H ı 


1CA 8t 2 R:
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Lemma 3.32 (Fundamental Lemma). Let .H; J / be Rabinowitz–Floer data for a
Liouville automorphism ' 2 Aut.W; �/ of a Liouville domain .W; �/. Then there
exists a constant C D C.�;H; J; f'/ > 0 such that

kgradJ AH
' j.
;�/kJ

<
1

C
) j� j � C.jAH

' .
; �/j C 1/

for all .
; �/ 2 L'M �R.

Proof. We proceed in three steps.
Step 1: There exist constants ı > 0 and 0 < Cı < C1 such that if .
; �/ 2 L'M

with 
.I / � H�1
�
.�ı; ı/

�
DW Uı , then

j� j � 2 jAH
' .
; �/j C Cı kgradJ AH

' j.
;�/kJ
C 2 kf'k1 :

Choose ı > 0 such that Uı � suppXH and

�x.XH .x// �
1

2
C ı 8x 2 Uı :

This is possible as XH j˙ D R. Moreover, set

Cı WD 2 k�jUık1 :

Then Cı < C1 as dH is compactly supported. We estimate

jAH
' .
; �/j D

ˇ̌̌̌Z 1

0


�� � �

Z 1

0

H.
/ � f'.
.0//

ˇ̌̌̌
D

ˇ̌̌̌
�

Z 1

0

�.XH .
//C

Z 1

0

�. P
 � �XH .
// � �

Z 1

0

H.
/ � f'.
.0//

ˇ̌̌̌
� j� j

�
1

2
C ı

�
�

ˇ̌̌̌Z 1

0

�. P
 � �XH .
//

ˇ̌̌̌
� j� j ı � kf'k1

�
j� j

2
�
Cı

2

Z 1

0

k P
.t/ � �XH .
.t//kJ dt � kf'k1

�
j� j

2
�
Cı

2

sZ 1

0

k P
.t/ � �XH .
.t//k
2
J dt � kf'k1

�
j� j

2
�
Cı

2
kgradJ AH

' j.
;�/kJ
� kf'k1

by Jensen’s inequality.
Step 2: For all ı > 0, there exists " D ".ı/ > 0 with the property that if there

exists t0 2 I with jH.
.t0//j � ı for .
; �/ 2 L'M , then kgradJ AH
' j.
;�/kJ

� ".
Assume first that 
.t/ 2M n U ı

2
for all t 2 I . In this case we estimate
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kgradJ AH
' j.
;�/kJ

�

ˇ̌̌̌Z 1

0

H.
/

ˇ̌̌̌
�
ı

2
:

Otherwise, we may assume without loss of generality that there exists t1 2 I such
that jH.
.t1//j � ı

2
, t0 < t1 and ı

2
� jH.
.t//j � ı for all t 2 Œt0; t1�. Set

� WD max
x2 xUı

kgradJ HkJ > 0;

as dH ¤ 0 in a neighbourhood of ˙ . We estimate

kgradJ AH
' j.
;�/kJ

�

sZ 1

0

k P
.t/ � �XH .
.t//k
2
J dt

�

Z 1

0

k P
.t/ � �XH .
.t//kJ dt

�

Z t1

t0

k P
.t/ � �XH .
.t//kJ dt

�
1

�

Z t1

t0

kgradJ H.
.t//kJ k P
.t/ � �XH .
.t//kJ dt

�
1

�

Z t1

t0

jmJ .gradJ H.
.t//; P
.t/ � �XH .
.t///j dt

D
1

�

Z t1

t0

jdH. P
.t/ � �XH .
.t///j dt

D
1

�

Z t1

t0

jdH. P
.t//j dt

D
1

�

Z t1

t0

ˇ̌̌̌
d

dt
.H ı 
/

ˇ̌̌̌
�
1

�

ˇ̌̌̌Z t1

t0

d

dt
.H ı 
/

ˇ̌̌̌
D
1

�
jH.
.t1// �H.
.t0//j

�
1

�

�
jH.
.t0//j � jH.
.t1//j

�
�

ı

2�

by Cauchy–Schwarz. Hence kgradJ AH
' j.
;�/kJ

� " for

" D ".ı/ WD
ı

2max f1; �g
:
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Step 3: We prove the Fundamental Lemma. Choose ı > 0 and 0 < Cı < C1 as
in Step 1 and " D ".ı/ > 0 as in Step 2. Set

C0 WD max
˚
2; Cı"C 2 kf'k1

	
:

Assume that kgradJ AH
' j.
;�/kJ

< " for .
; �/ 2 L'M . Then 
.I / � Uı , as
otherwise there exists t0 2 I with jH.
.t0//j � ı implying kgradJ AH

' j.
;�/kJ
� "

by Step 2. Thus with Step 1 we estimate

j� j � C0.jA
H
' .
; �/j C 1/: (3.20)

Finally, set

C WD max
�
C0;

1

"

�
:

This proves the Fundamental Lemma. �

Definition 3.33 (Twisted Negative Gradient Flow Line). Let .H; J /be Rabinowitz–
Floer data for a Liouville automorphism ' 2 Aut.W; �/. A twisted negative gradient
flow line is a tuple .u; �/ 2 C1.R;L'M �R/ such that

@s.u; �/ D � gradJ AH
' j.u.s/;�.s// 8s 2 R:

Definition 3.34 (Energy). Let .H; J / be Rabinowitz–Floer data for a Liouville
automorphism ' 2 Aut.W; �/. The energy of a twisted negative gradient flow line
.u; �/ is defined by

EJ .u; �/ WD

Z C1
�1

k@s.u; �/k
2
J ds D

Z C1
�1



gradJ AH
' j.u.s/;�.s//



2
J
ds:

Theorem 3.35 (Compactness). Let .H; J / be Rabinowitz–Floer data for a Liouville
automorphism ' 2 Aut.W; �/. Suppose .uk ; �k/ is a sequence of negative gradient
flow lines of the twisted Rabinowitz action functional AH

' such that there exist
constants a; b 2 R with

a � AH
'

�
uk.s/; �k.s/

�
� b 8k 2 N; s 2 R:

For every reparametrisation sequence .sk/ � R there exists a subsequence .skl /
and a negative gradient flow line .u1; �1/ of AH

' such that

�
ukl .� C skl /; �kl .� C skl /

� C1loc
��! .u1; �1/ as l !1:

Proof. In order to show C1loc -convergence, we need to establish

� a uniform L1-bound on uk ,
� a uniform L1-bound on �k ,
� a uniform L1-bound on the derivatives of uk .
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Indeed, through elliptic bootstrapping [42, Theorem B.4.1] the negative gradient
flow equation, we will obtain C1loc -convergence by [42, Theorem B.4.2]. To obtain
a uniform L1-bound on the sequence of twisted negative gradient flow lines uk ,
observe that by definition of Rabinowitz–Floer data for ', there exists r 2 .0;C1/
such that

suppXH \ Œr;C1/ �˙ D ¿

and J is adapted to the boundary ofW [˙ Œ0; r��˙ . Consequently, the Maximum
Principle [42, Corollary 9.2.11] implies that every uk remains inside the compact
set W [˙ Œ0; r� �˙ as the asymptotics belong to W [˙ Œ0; r/ �˙ for all k 2 N.
Indeed, this follows from

EJ .uk ; �k/ D

Z C1
�1

k@s.uk ; �k/k
2
J ds

D

Z C1
�1

h@s.uk ; �k/; @s.uk ; �k/iJds

D �

Z C1
�1

hgradJ AH
' j.uk.s/;�k.s//; @s.uk ; �k/iJds

D �

Z C1
�1

dAH
' .@s.uk ; �k//ds

D �

Z C1
�1

@sA
H
' .uk ; �k/ds

D lim
s!�1

AH
' .uk.s/; �k.s// � lim

s!C1
AH
' .uk.s/; �k.s//

� b � a;

as this implies

lim
s!˙1

k@s.uk ; �k/kJ D lim
s!˙1



gradJ AH
' j.uk.s/;�k.s//




J
D 0

by the negative gradient flow equation.
The uniform L1-bound on the Lagrange multipliers �k follows from the Funda-

mental Lemma 3.32. Fix a twisted negative gradient flow line .u; �/ and let C > 0

as in the Fundamental Lemma 3.32. For every � 2 R we can define �.�/ � 0 by

�.�/ WD inf
�
� � 0 W



gradJ AH
' j.u.�C�/;�.�C�//




J
<
1

C

�
:

We estimate

b � a � EJ .u; �/ �

Z �C�.�/

�



gradJ AH
' j.us ;�.s//



2
J
ds �

�.�/

C 2
:

By the Fundamental Lemma 3.32 we have that
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j�.� C �.�//j < C.maxfjaj ; jbjg C 1/ 8� 2 R;

and thus using the negative gradient flow equation again we estimate

j�.�/j � j�.� C �.�//j C

Z �C�.�/

�

j@s�.s/j ds

D j�.� C �.�//j C

Z �C�.�/

�

ˇ̌̌̌Z 1

0

H.u.s; t//dt

ˇ̌̌̌
ds

� C.maxfjaj ; jbjg C 1/C �.�/ kHk1
� C.maxfjaj ; jbjg C 1/C C 2.b � a/ kHk1 :

for all � 2 R. Hence

k�k1 � C.maxfjaj ; jbjg C 1/C C 2.b � a/ kHk1

is independent of the twisted negative gradient flow line .u; �/.
The uniform L1-bound on the derivatives of uk follows from Corollary C.9 as

an exact symplectic manifold is symplectically aspherical. �

3.3 Definition of Twisted Rabinowitz–Floer Homology

In this section we make implicit use of the requirement that a Liouville automorphism
has finite order. This is crucial because then the arguments proceed as in the case of
loops by Remark 3.7.

Definition 3.36 (Transverse Conley–Zehnder Index). Let .W 2n; �/ be a Liouville
domain with boundary ˙ . Let .
0; �0/; .
1; �1/ 2 P'.˙; �j˙ / for some Liouville
automorphism ' 2 Aut.W; �/ such that there exists a path 
� in L'˙ from 
0 to

1. Define the transverse Conley–Zehnder index by

�..
0; �0/; .
1; �1// WD �CZ.	
1/ � �CZ.	

0/ 2 Z;

with

	0 W I ! Sp.n � 1/; 	0t WD ˚
�1
t;0 ıD

��R�0t ı ˚0;0;

	1 W I ! Sp.n � 1/; 	1t WD ˚
�1
t;1 ıD

��R�1t ı ˚0;1;

where ˚t;� W R2n�2 ! �
� .t/ is a symplectic trivialisation of F ��, � WD ker�j˙
with F 2 C1.R � I;M/ being defined by F.t; �/ WD 
� .t/, satisfying

˚tC1;� D D' ı ˚t;� 8.t; �/ 2 R � I: (3.21)

Lemma 3.37. In the setup of Definition 3.36, the transverse Conley–Zehnder index
is well-defined, that is, independent of the choice of symplectic trivialisation.
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Proof. First we need to show that one can always construct a symplectic trivialisation

˚t;� W R
2n�2

! �F.t;�/ 8.t; �/ 2 R � I;

of F �� satisfying the twist condition (3.21). By [43, Theorem 2.1.3], there exists a
linear symplectomorphism˚0;0 W R2n�2 ! �F.0;0/. By [43, Lemma 2.6.6], we get a
symplectic trivialisation˚t;0 W R2n�2 ! �F.t;0/ for all t 2 I with˚1;0 D D'ı˚0;0.
Extend this trivialisation to R by setting

˚tCk;0 WD D'
k
ı ˚t;0 8k 2 Z:

Next, trivialise along each ray � 7! F.t; �/ for fixed t 2 R. Hence we get a
symplectic trivialisation ˚t;� W R2n�2 ! �F.t;�/ of F �� satisfying (3.21).

Now we show that the transverse Conley–Zehnder index � is independent of the
choice of trivialisation. Suppose that z̊t;� W R2n�2 ! �F.t;�/ is another symplectic
trivialisation of F �� satisfying

z̊
tC1;� D D' ı z̊t;� 8.t; �/ 2 R � I:

Then we have

z	t;� D z̊
�1
t;� ı ˚t;� ı 	t;� ı ˚

�1
0;� ı

z̊
0;� 8.t; �/ 2 R � @I;

where
	t;� D ˚

�1
t;� ıD

��
��R
t ı ˚0;� :

Define

� W T � I ! Sp.n � 1/; �.t; �/ WD ˚�10;� ı
z̊
0;� ı z̊

�1
t;� ı ˚t;� :

Indeed, we compute

�.t C 1; �/ D ˚�10;� ı
z̊
0;� ı z̊

�1
tC1;� ı ˚tC1;�

D ˚�10;� ı
z̊
0;� ı z̊

�1
t;� ıD'

�1
ıD' ı ˚t;�

D �.t; �/;

for all .t; �/ 2 R� I . Using the naturality as well as the loop property [48, p. 20] of
the Conley–Zehnder index we compute

�CZ. z	
s/ D �CZ.�s � 	

s/ D �CZ.	
s/C 2�M.�s/ 8s 2 @I;

where �M denotes the Maslov index. In particular,

�CZ. z	
1/ � �CZ. z	

0/ D �CZ.	
1/ � �CZ.	

0/C 2
�
�M.�1/ � �M.�0/

�
D �CZ.	

1/ � �CZ.	
0/

by the invariance property of the Maslov index [23, p. 195]. �
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Remark 3.38. Denote by

˙' WD
˙ �R

.'.x/; t C 1/�.x; t/

the mapping torus of ' giving rise to the fibration

�' W ˙' ! T ; �'.Œx; t �/ WD Œt �:

The vertical bundle kerD��' ! ˙' is a symplectic vector bundle. If zF is another
homotopy in L'˙ from 
0 to 
1, the concatenation with the reversed path F � can
be identified with the map

zF #F � W T2
! ˙' ; .t; �/ 7! Œ. zF #F �.t; �/; t/�:

Hence using the concatenation property of the Conley–Zehnder index [23, p. 195]
as well as the functoriality of the Chern number [43, p. 85], for s 2 @I we compute

�CZ. z	
s/ � �CZ.	

s/ D �CZ
�
z	 s#.	 s/�

�
D 2�M

�
z	 s#.	 s/�

�
D 2c1

�
. zF #F �/� kerD��'

�
D 2c1.kerD��'/:

Thus if the transverse Conley–Zehnder index is viewed in Z2 or c1.kerD��'/ D 0,
then it additionally does not depend on the choice of path in L'˙ .

Let .H; J / be Rabinowitz–Floer data for ' 2 Aut.W; �/. Set

˙ WD @W and M WD W [˙ Œ0;C1/ �˙:

Fix .�; ��/ 2 P'.˙; �j˙ / and denote by Œ�� the corresponding class in �0L'˙ .
Assume that the twisted Rabinowitz action functional AH

' is Morse–Bott, that is,
Crit AH

' � ˙ � R is a properly embedded submanifold by Proposition 3.24, and
fix a Morse function h 2 C1.Crit AH

' /. Define the twisted Rabinowitz–Floer
chain group RFC'.˙;M/ to be the Z2-vector space consisting of all formal linear
combinations

� D
X

.
;�/2Crit.h/
Œ
�DŒ��

�.
;�/.
; �/

satisfying the Novikov finiteness condition

# f.
; �/ 2 Crit.h/ W �.
;�/ ¤ 0;AH
' .
; �/ � �g <1 8� 2 R:

Define a boundary operator

@ W RFC'.˙;M/! RFC'.˙;M/
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by
@.
�; ��/ WD

X
.
C;�C/2Crit.h/
Œ
C�DŒ
��

n'.

˙; �˙/.
C; �C/;

where
n'.


˙; �˙/ WD #2M0
'.

˙; �˙/ 2 Z2;

with M0
'.

˙; �˙/ denoting the zero-dimensional component of the moduli space of

all unparametrised twisted negative gradient flow lines with cascades from .
�; ��/

to .
C; �C/. This is well-defined by Theorem 3.35. Define the twisted Rabinowitz–
Floer homology of ˙ and ' by

RFH'.˙;M/ WD
ker @
im @

:

Proposition 3.39. Let .W; �/ be a Liouville domain with simply connected boundary
˙ and ' 2 Aut.W; �/. If there do not exist any nonconstant twisted periodic Reeb
orbits on ˙ , then

RFH'�.˙;M/ Š H�.Fix.'j˙ /IZ2/:

Proof. If there do not exist any nonconstant twisted periodic Reeb orbits,

Crit AH
' D f.cx ; 0/ W x 2 Fix.'j˙ /g Š Fix.'j˙ /

for any H 2 F'.˙/. Since Fix.'j˙ / is a properly embedded submanifold of ˙
by [40, Problem 8-32] or [43, Lemma 5.5.7], AH

' is a Morse–Bott function. Let
x; y 2 Fix.'j˙ /. As ˙ is simply connected by assumption, there exists some path

 from x to y in ˙ and a homotopy from 
 to ' ı 
 with fixed endpoints. Extend
this homotopy to a path in L'˙ from cx to cy . Choose a Morse function h on
Fix.'j˙ / and any critical point cx 2 Fix.'j˙ /. Then we can define a Z-grading of
RFC'.˙;M/ by

�..cy ; 0/; .cx ; 0//C indh.cy/ D indh.cy/ 8cy 2 Crit.h/;

and consequently,

RFH'�.˙;M/ D HM�.Fix.'j˙ /IZ2/ Š H�.Fix.'j˙ /IZ2/

as there are only twisted negative gradient flow lines with zero cascades, that is,
ordinary Morse gradient flow lines of h. Indeed, suppose that there is a nonconstant
twisted negative gradient flow line .u; �/ of AH

' with asymptotics .
˙; �˙/. Using
the twisted negative gradient flow equation we estimate

�� � �C D

Z C1
�1



gradJ AH
' j.u.s/;�.s//



2
J
ds > 0:

Hence �C < ��, contradicting �˙ D 0. �
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3.4 Invariance of Twisted Rabinowitz–Floer Homology Under
Twisted Homotopies of Liouville Domains

Definition 3.40 (Twisted Homotopy of Liouville Domains). Given the completion
.M; �/ of a Liouville domain .W0; �/ and ' 2 Aut.W0; �/, a twisted homotopy of
Liouville domains inM is a time-dependent Hamiltonian functionH 2 C1.M�I /
such that

(i) W� WD H�1� ..�1; 0�/ is a Liouville domain with symplectic form d�jW� and
boundary ˙� WD H�1� .0/ for all � 2 I ,

(ii) H� 2 F'.˙� / for all � 2 I ,
(iii) ˙� \ suppf' D ¿ for all � 2 I .

We write .H� /�2I for a twisted homotopy of Liouville domains.

Theorem 3.41 (Invariance of Twisted Rabinowitz–Floer Homology). If .H� /�2I
is a twisted homotopy of Liouville domains such that both A

H0
' and A

H1
' are Morse–

Bott, then there is a canonical isomorphism

RFH'.˙0;M/ Š RFH'.˙1;M/:

Proof. The proof follows from the same adiabatic argument as in [17, p. 275–
277]. Crucial is that [17, Theorem 3.6] remains true in our setting, as well as the
genericness of the Morse–Bott condition. Indeed, if .M; �/ is an exact symplectic
manifold and ' 2 Diff.M/ is of finite order such that '�� D �, then we have the
following generalisation of [17, Theorem B.1]. Adapting the proof accordingly, one
can show that there exists a subset

U � fH 2 C1' .M/ W supp dH compactg;

of the second category such that for every H 2 U, AH
' is Morse–Bott with critical

manifold being Fix.'jH�1.0// together with a disjoint union of circles. Again, this
works only since the contact condition is an open condition. �

Remark 3.42. Invariance of twisted Rabinowitz–Floer homology allows us to de-
fine twisted Rabinowitz–Floer homology also in the case where AH

' is not neces-
sarily Morse–Bott. Indeed, as the proof of Theorem 3.41 shows, we can perturb
the hypersurface ˙ slightly to make it Morse–Bott. Thus we can define the twisted
Rabinowitz–Floer homology of such a hypersurface to be the twisted Rabinowitz–
Floer homology of any Morse–Bott perturbation. By Theorem 3.41, this is indeed
well-defined.

Corollary 3.43 (Independence). Let ' 2 Aut.W; �/ andH0;H1 2 F'.˙/ be such
that either A

H0
' or A

H1
' is Morse–Bott. Then the definition of twisted Rabinowitz–

Floer homology RFH'.˙;M/ is independent of the choice of a twisted defining
Hamiltonian function for ˙ .
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Proof. Note that F'.˙/ is a convex space. Indeed, set

H� WD .1 � �/H0 C �H1 � 2 I:

Then '�H� D H� , dH� has compact support and XH� j˙ D R for all � 2 I .
Moreover, for the Liouville vector field X 2 X.M/ we compute

d

dt

ˇ̌̌̌
tD0

H ı �Xt j˙ D dH.X/j˙ D d�.X;XH /j˙ D �.XH /j˙ D �.R/ D 1;

for anyH 2 F'.˙/, and thusH < 0 on IntW andH > 0 onM nW . Consequently,
H�1� .0/ D ˙ and so H� 2 F'.˙/ for all � 2 I . Hence .H� /�2I is a twisted
homotopy of Liouville domains in M and Theorem 3.41 implies the claim. �

3.5 Twisted Leaf-Wise Intersection Points

Definition 3.44 (Twisted Leaf-Wise Intersection Point). Let .M; �/ be the com-
pletion of a Liouville domain .W; �/ and let ' 2 Aut.W; �/ be a Liouville automor-
phism. A point x 2 ˙ is a twisted leaf-wise intersection point for a Hamiltonian
symplectomorphism 'F 2 Ham.M; d�/, if

'F .x/ 2 L'.x/ WD f�
R
t .'.x// W t 2 Rg :

Definition 3.45 (Twisted Moser Pair). Let ' 2 Aut.W; �/. A twisted Moser pair is
defined to be a tuple M WD .�H;F /, where

(i) H 2 C1' .M/, F 2 C1' .M �R/ and � 2 C1.S1; I / such that
R 1
0
� D 1. Any

time-dependent Hamiltonian function �H is said to be weakly time-dependent.
(ii) supp� �

�
0; 1
2

�
and Ft D 0 for all t 2

�
0; 1
2

�
.

Lemma 3.46. Let ' 2 Aut.W; �/. For all H 2 F'.˙/ and 'F 2 Ham.M; d�/
there exists a corresponding twisted Moser pair M such that the flow of �XH is a
time-reparametrisation of the flow of XH .

Proof. For constructing the Hamiltonian perturbation zF , fix � 2 C1.I; I / such
that

�.t/ D

(
0 t 2

�
0; 1
2

�
;

1 t 2
�
2
3
; 1
�
:

See Figure 3.2a. Then define zF 2 C1' .M �R/ by

zF .x; t/ WD P�.t � k/F
�
'�k.x/; �.t � k/

�
8t 2 Œk; k C 1� ;

for k 2 Z. See Figure 3.2b. Then zFt D 0 for all t 2
�
0; 1
2

�
, and

�
X zF
t D �

XF
�.t/

8t 2 I:
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Indeed, we compute

d

dt
�
XF
�.t/
D P�.t/

d

d�
�
XF
�.t/
D P�.t/

�
XF�.t/ ı �

XF
�.t/

�
D X zFt ı �

XF
�.t/
:

In particular
' zF D �

X zF
1 D �

XF
�.1/
D �

XF
1 D 'F :

Finally, we have that

�
�XH
t D �

XH
�.t/

with �.t/ WD

Z t

0

�;

as we compute

d

dt
�
XH
�.t/
D �.t/

d

d�
�
XH
�.t/
D �.t/XH ı �

XH
�.t/

;

and thus we conclude by the uniqueness of integral curves. �

0.0 0.2 0.4 0.6 0.8 1.0
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0.6

0.8

1.0

(a) The smooth function �.
0.0 0.2 0.4 0.6 0.8 1.0

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

(b) The derivative P� of �.

Fig. 3.2

Lemma 3.47. Let ' 2 Aut.W; �/ and 'F 2 Ham.M; d�/ a Hamiltonian symplec-
tomorphism. If .
; �/ 2 Crit AM

' , then x WD 

�
1
2

�
is a twisted leaf-wise intersection

point for 'F .

Proof. Let M D .�H;F / denote the twisted Moser pair from Lemma 3.46. Using
Proposition 3.9 we compute

@tH.
.t// D dH. P
.t//

D dH.�X�.t/H .
.t//CXFt .
.t///

D dH.��.t/XH .
.t///

D ��.t/dH.XH .
.t///

D 0
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for all t 2
�
0; 1
2

�
. Thus H ı 
 D c 2 R on

�
0; 1
2

�
with

0 D

Z 1

0

�H.
/ D

Z 1
2

0

�H.
/ D c

Z 1
2

0

� D c

Z 1

0

� D c:

Consequently, 
.0/ 2 Lx and x 2 ˙ . Moreover, also 
.1/ D '.
.0// 2 ˙ by the
'-invariance of H . For t 2

�
1
2
; 1
�
, P
 D XFt .
/ and so 
.1/ D 'F .x/ 2 ˙ . We

conclude

L'.x/ D f�
R
t .'.x// W t 2 Rg D f'.�Rt .x// W t 2 Rg D '.Lx/;

and so 'F .x/ D 
.1/ D '.
.0// 2 L'.x/. �

Theorem 3.48. Let .W; �/ be a Liouville domain with displaceable boundary in the
completion .M; �/ and ' 2 Aut.W; �/. Then RFH'.˙;M/ Š 0.

Proof. Suppose that ˙ D @W is displaceable in M via 'F 2 Hamc.M; d�/

and choose Rabinowitz–Floer data .H; J / for '. Denote by M D .�H;F / the
associated twisted Moser pair from Lemma 3.46. Then Crit AM

' D ¿. Indeed, if
there exists .
; �/ 2 Crit AM

' , then 

�
1
2

�
is a twisted leaf-wise intersection point for

'F by Lemma 3.47. However, this is impossible as by displaceability we have that
'F .˙/\˙ D ¿. Consequently, the perturbed twisted Rabinowitz action functional
AM
' is a Morse function. By adapting the Fundamental Lemma to the current setting

as in [5, Theorem 2.9], the Floer homology HF.AM
' / is well-defined. By making

use of continuation homomorphisms we have that

0 D HF.AM
' / Š HF.A.�H;0/

' / Š RFH'.˙;M/;

where the last equation is the observation that twisted Rabinowitz–Floer homology
in the autonomous case extends to the weakly time-dependent case without any
issues. Crucial is, that the period–action equality (see Remark 3.25) is still valid.
Indeed, we compute

A.�H;0/
' .
; �/ D

Z 1

0


�� D

Z 1

0

�. P
/ D �

Z 1

0

��.R.
// D �

Z 1

0

� D �

for all .
; �/ 2 Crit A
.�H;0/
' . �



Chapter 4
Applications

In this chapter we give two applications of the abstract machinery developed in the
previous chapter and prove Theorem 1.1 as well as Theorem 1.6 (see Theorem 4.11).

4.1 Existence of Noncontractible Periodic Reeb Orbits

We define an equivariant version of twisted Rabinowitz–Floer homology for the
discrete group Zm following [7, p. 487]. In general, suppose that a topological
manifold M admits a group action by a topological group G. Then there exists a
principalG-bundleEG ! BG, whereBG D EG=G denotes the classifying space
ofG andEG is weakly contractible. ThenG acts freely onEG�M via the diagonal
action. Thus we can define the G -equivariant homology ofM by

HG� .M IR/ WD H�.EG �M=GIR/;

for any coefficient ring R and where EG � M=G is the homotopy quotient of
M by G. See [52, p. 30–31]. For example, if G D Zm, then EZm D S1 and
BZm D S1=Zm is a lens space. Since G acts freely on M , there is a fibre bundle

EG ! EG �M=G !M=G;

inducing an isomorphism

HG� .M/ Š H�.M=G/

by [52, Corollary 9.6] and [52, Theorem 3.3]. This observation will be crucial in
what follows. Explicitly, let˙ � Cn, n � 2, be a star-shaped hypersurface invariant
under the rotation ' from Example 2.42. As ˙ is star-shaped with respect to the
origin, there exists a '-invariant function f 2 C1.S2n�1/ such that

˙ D
˚
ef .z/z W z 2 S2n�1

	
:

53
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Define a twisted defining Hamiltonian function H 2 F'.˙/ by

H.z/ WD

(
ˇ
�
log.kzk/ � f .z= kzk/

�
z ¤ 0;

�
1
2

z D 0:

for some sufficiently small mollification of the piecewise linear function

ˇ.r/ WD

‚
�
1
2

r � �1
2
;

r �
1
2
� r � 1

2
;

1
2

1
2
� r:

Fix a '-invariant !-compatible almost complex structure on .Cn; �/, where � is
given by (2.9). Then ' induces a free Zm-action on Crit AH

' and on the moduli
space of twisted negative gradient flow lines with cascades of AH

' . Therefore, we
can define the Zm-equivariant twisted Rabinowitz-Floer homology

RFH'k.˙=Zm/ WD
ker x@k

im x@kC1
8k 2 Z;

as the homology of the Z-graded chain complex (see Remark 3.38)

x@k W RFC'
k
.˙;Cn/=Zm ! RFC'

k�1
.˙;Cn/=Zm

given by
x@k Œ.
; �/� WD Œ@k.
; �/� .
; �/ 2 Crit h;

for some '-invariant Morse function h on Crit AH
' . More generally, if G is a finite

symmetry of a Hamiltonian system which acts freely on the displaceable regular
energy hypersurface, one can define the G-equivariant twisted Rabinowitz–Floer
homology as above if the twisted Rabinowitz–Floer homology is defined. Under some
mild index assumption on the Conley–Zehnder index, the resulting G-equivariant
twisted Rabinowitz–Floer homology is isomorphic to the Tate homology of G with
coefficients in Z2. See [47, Theorem 5.6] for a proof and [55, Definition 6.2.4] as
well as [13, p. 135] for a definition of Tate homology.

Theorem 4.1. Let n � 2. For m � 1 consider the rotation

' W Cn
! Cn; '.z1; : : : ; zn/ WD

�
e2�ik1=mz1; : : : ; e

2�ikn=mzn
�

for k1; : : : ; kn 2 Z coprime to m. Then

RFH'k.S
2n�1=Zm/ Š

(
Z2 m even;
0 m odd;

8k 2 Z;

If m is even, then RFH'k.S2n�1=Zm/ is generated by a noncontractible periodic
Reeb orbit in the lens space S2n�1=Zm for all k 2 Z.
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Proof. First we consider the special case

' W Cn
! Cn; '.z/ D e2�i=mz:

The hypersurface S2n�1 � .Cn; �/ is of restricted contact type with contact form
�jS2n�1 and associated Reeb vector field

R D 2

nX
jD1

�
yj

@

@xj
� xj

@

@yj

� ˇ̌̌̌
S2n�1

D 2i

nX
jD1

�
xzj

@

@xzj
� zj

@

@zj

� ˇ̌̌̌
S2n�1

:

Suppose .
; �/ 2 Crit AH
' . If � D 0, then 
 is constant. This cannot happen as

Fix.'jS2n�1/ D ¿. So we assume � ¤ 0. Define a reparametrisation


� W R! S2n�1; 
� .t/ WD 
.t=�/:

Then 
� is the unique integral curve of R starting at z WD 
.0/ and thus


� .t/ D e
�2itz 8t 2 R:

From 
.t/ D 
� .� t/ and the requirement

e�2i�z D 
.1/ D '.
.0// D '.z/ D e2�i=mz;

we conclude � 2 �
m
.mZ � 1/. Hence

Crit AH
' D

˚�
��kR.z/; �k

�
W k 2 Z; z 2 S2n�1

	
Š S2n�1 � Z;

for any H 2 F'.S2n�1/, where we define �k WD �
m
.mk � 1/. By Proposition 3.24,

.z0; �/ 2 TzS2n�1 � R belongs to the kernel of the Hessian at .z; k/ 2 Crit AH
' if

and only if � D 0 and

z0 2 ker
�
D.�R��k ı '/jz � idTzS2n�1

�
:

A direct computation yields D.�R��k ı '/jz D idTzS2n�1 and thus the twisted Rabi-
nowitz action functional AH

' is Morse–Bott with spheres.
The full Conley–Zehnder index [23, Definition 10.4.1] gives rise to a locally

constant function

y�CZ W Crit AH
' ! Z; y�CZ.z; k/ D .2k � 1/n:

Indeed, this follows from the product property and the formula

y�CZ
�
.eit /t2Œ0;T �

�
D

�
T

2�

�
C

�
T

2�

�
:

Note that the definition of the Conley–Zehnder index also applies in this degenerate
case, compare [23, Remark 10.4.2]. By the adapted proof of the Hofer–Wysocki–
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Zehnder Theorem [23, Theorem 12.2.1] to then-dimensional setting, the full Conley–
Zehnder index coincides with the transverse Conley–Zehnder index �CZ. Indeed, for
a critical point .
; �/ 2 Crit AH

' define a smooth path

	 W I ! Sp.n/; 	t WD D�
H
� t j
.0/ W C

n
! Cn:

Adapting the proof of [23, Lemma 12.2.3 (iii)], we get that

	1.R.
.0/// D R.
.1// and 	1.
.0// D 
.1/:

Arguing as in [23, p. 235–236] we conclude

�CZ.
; �/ D y�CZ.
; �/:

1

Fig. 4.1: The critical manifold S2n�1 � Z with the standard height function, the
Morse–Bott function f and the resulting chain complex.

Fix z0 2 S2n�1 and define � WD ��0R.z0/. Note that ��kR.z/ belongs to the same
equivalence class in �0L'S2n�1 as � for all z 2 S2n�1 and k 2 Z because S2n�1
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is simply connected for n � 2. Let h 2 C1.S2n�1/ be the standard height function.
By Remark 3.38, RFH'.S2n�1;Cn/ carries the Z-grading

�..z; k/; .z0; 0//C indh.z/ D 2knC indh.z/ 8.z; k/ 2 S2n�1 � Z:

We claim that the number of twisted negative gradient flow lines between the mini-
mum of S2n�1 � fkC 1g and the maximum of S2n�1 � fkgmust be odd, so that the
critical manifold Crit AH

' looks like a string of pearls, see Figure 4.1. Indeed, if there
is an even number of such negative gradient flow lines, then RFH'�.S2n�1;Cn/ ¤ 0,
contradicting Theorem 3.48 as S2n�1 is displaceable in the completion Cn. To
compute the Zm-equivariant twisted Rabinowitz–Floer homology, choose the addi-
tional Zm-invariant Morse–Bott function f from Example 2.3. Additionaly, choose
a Zm-invariant Morse function on Crit f . For example, one can take

h W T ! R; h.t/ WD cos.2�mt/:

The resulting chain complex is given by

: : : Zm2 Zm2 Zm2 Zm2 Zm2 Zm2 : : :
1 A 1 A 1

where 1 2Mm�m.Z2/ has every entry equal to 1 and A 2Mm�m.Z2/ is defined by

A WD Im�m C

m�1X
jD1

e.jC1/j C e1m;

where eij 2Mm�m.Z2/ satisfies .eij /kl D ıikıjl . Thus the resulting chain complex
looks like a rope ladder. Compare Figure 4.1. Passing to the quotient via the free
Zm-action, we get the acyclic chain complex

: : : Z2 Z2 Z2 Z2 : : :
0 0 0

if m is even and the alternating chain complex

: : : Z2 Z2 Z2 Z2 Z2 Z2 : : :
1 0 1 0 1

if m is odd.
For the general case, we note that

Cn
� Œ0; 1�! Cn; 's.z

1; : : : ; zn/ WD
�
e2�isk1=mz1; : : : ; e

2�iskn=mzn
�

is a smooth path from '0 D idCn to '1 D '. By adapting the proof of [54,
Lemma 2.27], we get an isomorphism of chain complexes

RFC.S2n�1;Cn/ Š RFC'.S2n�1;Cn/:
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This isomorphism does not necessarily preserve the grading, but the relative Conley–
Zehnder index is preserved. Note that also f is invariant under 's for all s 2 Œ0; 1�.
It is no problem to allow twists 's of infinite order as the standard Reeb flow on
S2n�1 is periodic. Consider the torus action

Tn
�Cn

! Cn; .�1; : : : ; �n/ � .z1; : : : ; zn/ WD
�
e2�i�1z1; : : : ; e

2�i�nzn
�
:

Since the torus Tn is abelian, we have that the Zm-action induced by ' and the
different twists along the path .'s/s2Œ0;1� commute. Thus we get an isomorphism of
the Zm-equivariant chain complexes and consequently

RFH'�.S
2n�1=Zm/ Š RFHZm

� .S2n�1;Cn/;

where RFHZm
� denotes the Zm-equivariant Rabinowitz–Floer homology constructed

in [7, p. 487]. Performing the same computation of the latter homology as before in
the special case yields

RFHZm
k
.S2n�1;Cn/ Š

(
Z2 m even;
0 m odd;

8k 2 Z:

Lastly, RFH'k.S2n�1=Zm/ is generated by a noncontractible periodic Reeb orbit
in S2n�1=Zm for all k 2 Z by Lemma 1.5. �

Remark 4.2 (Coefficients). As RFH'�.S2n�1=Zm/ vanishes for odd m, one should
rather consider twisted Rabinowitz–Floer homology with coefficients in Z in this
case. Using the polyfold approach, it might be possible to invoke [33, Chapter 6]
to define coherent orientations on the moduli spaces. However, Lagrangian Floer
homology admits an abstract polyfold description, but it is not always possible to
define coherent orientations. But heuristically, the very same Zm-invariant chain
complex from 4.1 modulo the Zm-action should be given by

: : : Z Z Z Z Z Z : : :
m 0 m 0 m

in the oriented case. Thus the resulting homology is

RFH'k.S
2n�1=Zm/ Š

(
Zm k even;
0 k odd;

coinciding with the Tate homology yH�.CmIZ/.

Using Theorem 4.1 we can finally prove Theorem 1.1.

Proof (of Theorem 1.1). By assumption, ˙ bounds a star-shaped domain D with
respect to the origin. Thus .D [˙;�/ is a Liouville domain with � given by (2.9).
By rescaling we may assume that S2n�1 � D. Define a smooth function
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ı W ˙ ! .�1; 0/

by requiring ı.x/ to be the unique number such that �X
ı.x/

.x/ 2 S2n�1, x 2 ˙ , where
X 2 X.Cn/ denotes the Liouville vector field (2.10). We claim that ıı' D ı. Indeed,
ı.'.x// is the unique number such that �X

ı.'.x//
.'.x// 2 S2n�1. As the flow of X

and ' commute by the proof of Lemma 3.30, we conclude that �X
ı.'.x//

.x/ 2 S2n�1.
Define a smooth family of star-shaped hypersurfaces .˙� /�2I

˙� WD
˚
�X�ı.x/.x/ W x 2 ˙

	
� Cn:

Then we compute

'.˙� / D
˚
'
�
�X�ı.x/.x/

�
W x 2 ˙

	
D
˚
�X�ı.x/.'.x// W x 2 ˙

	
D
˚
�X�ı.'.x//.'.x// W x 2 ˙

	
D
˚
�X�ı.y/.y/ W y 2 '.˙/

	
D
˚
�X�ı.y/.y/ W y 2 ˙

	
D ˙�

for all � 2 I and therefore we can find a twisted homotopy .H� /�2I of Liouville
domains in Cn. By Theorem 3.41 we have that

RFH'�.˙;C
n/ Š RFH'�.S

2n�1;Cn/;

giving rise to a canonical isomorphism of the associated Zm-equivariant twisted
Rabinowitz–Floer homology

RFH'�.˙=Zm/ Š RFH'�.S
2n�1=Zm/:

Indeed, this follows from observing that the continuation homomorphism [17, p. 276]
is Zm-invariant and thus descends to the quotient. However, by Theorem 4.1 the
latter does not vanish as m � 2 is even. Thus there exists a noncontractible periodic
Reeb orbit on ˙=Zm if the twisted Rabinowitz action functional is Morse–Bott.
Otherwise, consider arbitrarily small symmetric perturbations of ˙ such that the
twisted Rabinowitz action functional is Morse–Bott. See Remark 3.42. The quotient
of every such perturbation then admits a noncontractible periodic Reeb orbit and we
conclude by Arzelà–Ascoli. �

Using Theorem 4.1 it is also possible to generalise [7, Theorem 1.2]. Define the
set of '-invariant Hamiltonian symplectomorphisms by

Ham'.Cn; d�/ WD f'F 2 Ham.Cn; d�/ W Ft .x/ D Ft .'.x// 8.x; t/ 2 Cn
� I g:
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If 'F 2 Ham'.Cn; d�/, then ' ı'F D 'F ı'. In particular 0 2 Fix.'F /, and thus
no element in Ham'.Cn; d�/ can displace a star-shaped hypersurface with respect
to the origin in Cn. We have the following result.

Theorem 4.3. Let ˙ � Cn be a compact connected star-shaped hypersurface in-
variant under the rotation '. Every element in Ham'.Cn; d�/ admits infinitely many
leaf-wise intersection points on ˙ or there does exist a leaf-wise intersection point
on a closed leaf.

Proof. We reproduce the proof in [7] for completeness with minor modifications.
Let 'F 2 Ham'

c .C
n; d�/ and for r 2 Œ0; 1� consider the smooth family of perturbed

Rabinowitz action functionals

Ar W LCn
�R! R

defined by

Ar .
; �/ WD

Z 1

0


�� � �

Z 1

0

Hr .
.t//dt � r

Z 1

0

Ft .
.t//dt;

where .Hr /r2I is a twisted homotopy of Liouville domains from S2n�1 to ˙ .
Clearly, every Ar is '-invariant. As in [6, Definition 5.1], we define the spectral
value �.Œ��/ of a homology class Œ�� 2 RFHZm

� .S2n�1;Cn/ by

�.Œ��/ WD inf
�2Œ��

max
�.
;�/¤0

A0.
; �/ 2 R [ f�1g:

Moreover, we define the set

S WD f�.Œ��/ W Œ�� 2 RFHZm
� .S2n�1;Cn/g :

By Theorem 4.1, we conclude that S D 2�Z. Hence A0 has critical values of
arbitrarily large critical value and so does A1 by [6, Corollary 5.14]. Thus A1 has
infinitely many critical points which give rise to leaf-wise intersection points by
Lemma 3.47. The map

Crit A1 ! fleaf-wise intersection pointsg

is injective unless there exists a leaf-wise intersection point on a closed leaf. For the
general case, use cut-off functions. �

4.2 A Forcing Theorem for Twisted Periodic Reeb Orbits

Definition 4.4 (Twisted Stable Hypersurface). Let .˙; !j˙ ; �/ be a stable hyper-
surface in a connected symplectic manifold .M;!/ and ' 2 Symp.M;!/. We say
that ˙ is twisted by ', if '.˙/ D ˙ , ' is of finite order and '�� D �.
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Example 4.5. Consider the stable hypersurface ˙c � .T �Tn; !� ;H/ for c > 0 as
in Example 2.26. Let ' 2 Diff.Tn/ be an isometry of finite order such that

D' ı J D J ıD' (4.1)

holds and consider the cotangent lift (2.15)

D'� W Tn
�Rn ! Tn

�Rn; D'�.q; p/ D
�
'.q/;

�
D'�1.q/

�t
p
�
:

Then clearly '.˙c/ D ˙c as ' is an isometry and D'� is of finite order as ' is.
Moreover, D'� 2 Symp.T �Tn; !� /, as D'� 2 Symp.T �Tn; !0/ by Proposition
2.16 andD'� preserves � by assumption (4.1). Lastly, we have that '�� D � as one
sees by considering the formula (2.7) together with assumption (4.1).

Let .˙; !j˙ ; �/ be a twisted stable hypersurface for ' 2 Symp.M;!/ in a con-
nected symplectically aspherical symplectic manifold .M;!/, that is, Œ!�j�2.M/ D 0.
As ' is of finite order by assumption, we can define the set of twisted contractible
loops, writtenƒ'M � ƒM , as follows. We say that a contractible free loop v 2 ƒM
is in ƒ'M , if there exists 
 2 L'M such that

v.t/ D 
.mt/ 8t 2 T ;

where m WD ord'. Then we can define a generalisation of the twisted Rabinowitz
action functional

AH
' W ƒ'M �R! R; AH

' .v; �/ WD
1

m

Z
D
xv�! � �

Z 1

0

H.v.t//dt; (4.2)

where xv 2 C1.D;M/ is a filling of v and H is any twisted defining Hamiltonian
function for ˙ . Then .v; �/ 2 Crit AH

' if and only if .
; �/ 2 L'˙ solves

P
.t/ D �R.
.t// 8t 2 R;

whereR 2 X.˙/ denotes the stable Reeb vector field 2.27. We call the projection of
the set of critical points of AH

' to ƒ'M contractible twisted closed characteristics
and denote it by C'.˙/. Define a function, called the !-energy, by

˝ W C'.˙/! R; ˝.v/ WD
1

m

Z
D
xv�!:

It follows that ˝.v/ D AH
' .v; �/.

Example 4.6. Consider the twisted stable hypersurface ˙c � .T �Tn; !� ;H/ as in
Example 4.5. By adapting Example 2.28, we have that .q; p/ 2 ˙k gives rise to a
contractible twisted closed characteristic if and only ifZ �

0

esJpds C q D '.q/; e�Jp D
�
D'�1.q/

�t
p; and kpk2 D 2c:
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A computation similar to [19, p. 1843] shows

˝ W C'.˙c/! R; ˝.v/ D c�:

In order to state the main result of this section, we need two additional preliminary
definitions.

Definition 4.7 (Morse–Bott Component, [5, p. 86]). Let M be a smooth manifold
and f 2 C1.M/. A subset C � Crit f is called a Morse–Bott component, if

(i) C is a connected embedded submanifold of M .
(ii) TxC D ker Hessf .x/ for all x 2 C .

Example 4.8 ([5, Lemma 2.12]). In the setting of Proposition 3.24, any connected
component of Fix.'j˙ / � Crit AH

' is a Morse–Bott component. Indeed, we have
that

ker Hess AH
' j.x;0/ Š ker.D'x � idTx˙ / D Tx Fix.'j˙ /

for all x 2 Fix.'j˙ /.

Definition 4.9 ([19, p. 1768]). A symplectic manifold .M;!/ is called geometrically
bounded, if there exists an !-compatible almost complex structure J and a complete
Riemannian metric such that the following conditions hold.

(i) There are constants C0; C1 > 0 with

!.Jv; v/ � C0 kvk
2 and j!.u; v/j � C1 kuk kvk

for all u; v 2 TxM and x 2M .
(ii) The sectional curvature of the metric is bounded above, and its injectivity radius

is bounded away from zero.

Example 4.10 ([19, p. 1768]). Twisted cotangent bundles are geometrically bounded.

Theorem 4.11 (Forcing). Let ˙ be a twisted stable displaceable hypersurface in a
symplectically aspherical, geometrically bounded, symplectic manifold .M;!/ for
some ' 2 Symp.M;!/ and suppose that v� 2 C'.˙/ belongs to a Morse–Bott
component C of the twisted Rabinowitz action functional (4.2). Then there exists a
contractible twisted closed characteristic v 2 C'.˙/ n C such that

˝.v/ �˝.v�/ � e.˙/:

Corollary 4.12. Let ˙ be a twisted stable displaceable hypersurface in a symplec-
tically aspherical, geometrically bounded, symplectic manifold .M;!/ for some
symplectomorphism ' 2 Symp.M;!/. If Fix.'j˙ / ¤ ¿, then there exists a con-
tractible twisted closed characteristic v 2 C'.˙/ n Fix.'j˙ / such that

˝.v/ � e.˙/:
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Corollary 4.13 ([43, Theorem 12.3.4], [34, p. 171]). We have that

e. xB2nr .0// D �r
2

8r > 0;

where xB2nr .0/ � R2n denotes the closed ball around the origin of radius r .

Proof. By monotonicity and [43, Exercise 12.3.7] we have that

e.@ xB2nr .0// � e.
xB2nr .0// � �r

2
8r > 0:

The Reeb flow on @ xB2nr .0/ is given by

�
Rr
t .z/ D e�2it=r

2

z 8z 2 @ xB2nr .0/:

Hence the parametrised periodic Reeb orbits are .�Rr .z/; �/ with � 2 �r2Z. But
Corollary 4.12 implies the existence of a nonconstant closed characteristic v on the
hypersurface @ xB2nr .0/ such that

0 < � D ˝.v/ � e.@ xB2nr .0// � �r
2:

This is only possible for � D �r2 and the statement follows. �

Proof (of Theorem 4.11). This proof uses a method called a “homotopy of homo-
topies argument”. Fix " > 0 and choose a Hamiltonian function F 2 C1c .M � I /
satisfying

kF k < e.˙/C " and 'F .˙/ \˙ D ¿:

For an appropriate twisted defining Hamiltonian functionH for˙ we denote by M
the associated twisted Moser pair. The actual construction ofH is very cumbersome
and is carried out in [19]. The crucial observation here is that [19, Proposition 2.6]
gives a '-invariant stable tubular neighbourhood of ˙ as '�� D � by invoking the
equivariant Darboux–Weinstein Theorem [30, Theorem 22.1]. Moreover, we choose
a smooth family .ˇr /r2Œ0;C1/ of cutoff functions ˇr 2 C1.R; I / such that

‚
ˇr .s/ D 0 jsj � r;

ˇr .s/ D 1 jsj � r � 1;

sˇ0r .s/ � 0 8s 2 R;

for all r 2 Œ0;C1/. Define a family of twisted Rabinowitz action functionals

Ar W ƒ'M �R �R! R

by

Ar .v; �; s/ WD AH
' .v; �/ � ˇr .s/

Z 1

0

Ft .v.t//dt

for all r 2 Œ0;C1/. Note that A0 D AH
' . For a suitable '-invariant !-compatible

almost complex structure we consider the moduli space



64 4 Applications

M WD f.u; �; r/ 2 C1.R;L'M �R/ � Œ0;C1/ W .u; �; r/ solution of (4.3)g ;

where „
@s.u; �/ D grad Ar j.u.s/;�.s/;s/ 8s 2 R;

lim
s!�1

.u.s/; �.s// D .v�; ��/;

lim
s!C1

.u.s/; �.s// 2 C:

(4.3)

Note that always .v�; ��; 0/ 2 M. The proof is now based on the following obser-
vation. If

˝.v/ > kF k C˝.v�/ 8v 2 C'.˙/ n C (4.4)

holds, then M is compact. This is absurd. Indeed, the moduli space M is the zero
level set of a Fredholm section of a bundle over a Banach manifold. As v� belongs
to a Morse–Bott component, the Fredholm section is regular at the point v�, that is,
the linearisation of the gradient flow equation is surjective there. By compactness,
we can therefore perturb the Fredholm section to make it transverse. Hence M is a
compact smooth manifold with boundary consisting precisely of the point v�. There
do not exist such manifolds. Thus we conclude that there exists v 2 C'.˙/ nC such
that

˝.v/ �˝.v�/ � kF k < e.˙/C ":

As " > 0was arbitrary, the statement follows. We prove the compactness of M under
assumption (4.4) in four steps.

Step 1: If .u; �; r/ 2M, then E.u; �/ �kF k. We estimate

E.u; �/ D

Z C1
�1

k@s.u; �/k
2 ds

D

Z C1
�1

dAr .@s.u; �/; s/ds

D

Z C1
�1

d

ds
Ar .u; �; s/ds �

Z C1
�1

.@sAr /.u; �; s/ds

D lim
s!C1

Ar .u; �; s/ � lim
s!�1

Ar .u; �; s/ �

Z C1
�1

.@sAr /.u; �; s/ds

D A0.v
C; �C/ �A0.v

�; ��/ �

Z C1
�1

.@sAr /.u; �; s/ds

D �

Z C1
�1

.@sAr /.u; �; s/ds

D

Z C1
�1

P̌
r .s/

Z 1

0

Ft .u.s; t//dtds

� kF kC

Z 0

�1

P̌
r .s/ds � kF k�

Z C1
0

P̌
r .s/ds

D ˇr .0/.kF k� C kF kC/
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D ˇr .0/ kF k

� kF k ;

as A0.v
C; �C/ D A0.v

�; ��/ since C is connected.
Step 2: There exists r0 2 R such that r � r0 for all .u; �; r/ 2M. Crucial is the

existence of a constant ı > 0 such that

kgrad Ar j.v;�;s/k � ı 8.v; �; s/ 2 ƒ'M �R �R:

This is proven along the lines of [17, Lemma 3.9]. With the above inequality and
Step 1 we estimate

kF k � E.u; �/ �

Z r

�r

kgrad Ar j.u.s/;�.s/;s/k
2 ds � 2rı2;

and thus we can set
r0 WD

kF k

2ı2
:

Step 3: There exists C > 0 such that k�k1 � C for all .u; �; r/ 2 M. This is
a delicate estimate based on the construction of the defining Hamiltonian H for ˙
as well as an extension of the stablising form and proceeds as in [19]. Particularly
crucial is [19, Proposition 4.1].

Step 4: If (4.4) holds, then M is compact. Let .uk ; �k ; rk/ be a sequence in the
moduli space M. By Step 2 and Step 3, the sequences .rk/ and .�k/ are uniformly
bounded. Thus .uk ; �k ; rk/ admits a C1loc -convergent subsequence by standard ar-
guments. Indeed, the uniform L1-bound on the sequence .uk/ follows from the
assumption that .M;!/ is geometrically bounded and the uniform L1-bound on
the derivatives .Duk/ follows from Corollary C.9 by the assumption that .M;!/
is symplectically aspherical. Denote the limit of this subsequence by .u; �; r/. This
limit clearly satisfies the first equation in (4.3), thus one only needs to check the
asymptotic conditions in (4.3). Again by compactness, .u; �/ converges to critical
points .w˙; �˙/ of A0 at its asymptotic ends. We claim that

Ar .u.s/; �.s/; s/ 2 Œ�kF k C˝.v
�/; kF k C˝.v�/� 8s 2 R: (4.5)

In particular,˝.w˙/ 2 Œ�kF k C˝.v�/; kF k C˝.v�/�. So if (4.5) holds, then by
assumption (4.4) we conclude .w˙; �˙/ 2 C and M is indeed compact. It remains
to prove (4.5). It is enough to prove

Ar .uk.s/; �k.s/; s/ 2 Œ�kF k C˝.v
�/; kF k C˝.v�/� 8s 2 R

for every k 2 N. As in the proof of [5, Lemma 2.8] we estimate

0 �

Z C1
s0

dAr .@s.uk ; �k/; s/ds
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D

Z C1
s0

d

ds
Ar .uk ; �k ; s/ds �

Z C1
s0

.@sAr /.uk ; �k ; s/ds

D lim
s!C1

Ar .uk ; �k ; s/ �Ar .uk.s0/; �k.s0/; s0/ �

Z C1
s0

.@sAr /.uk ; �k ; s/ds

D A0.v
C; �C/ �Ar .uk.s0/; �k.s0/; s0/C

Z C1
s0

P̌
r .s/

Z 1

0

Ft .uk.s; t//dtds

� A0.v
C; �C/ �Ar .uk.s0/; �k.s0/; s0/C

Z C1
�1

k P̌r .s/F kC ds

� A0.v
C; �C/ �Ar .uk.s0/; �k.s0/; s0/C kF k

D ˝.v�/ �Ar .uk.s0/; �k.s0/; s0/C kF k

for all s0 2 R. Similarly, we compute

0 �

Z s0

�1

dAr .@s.uk ; �k/; s/ds

D

Z s0

�1

d

ds
Ar .uk ; �k ; s/ds �

Z s0

�1

.@sAr /.uk ; �k ; s/ds

D Ar .uk.s0/; �k.s0/; s0/ � lim
s!�1

Ar .uk ; �k ; s/ �

Z s0

�1

.@sAr /.uk ; �k ; s/ds

D Ar .uk.s0/; �k.s0/; s0/ �A0.v
�; ��/C

Z s0

�1

P̌
r .s/

Z 1

0

Ft .uk.s; t//dtds

and thus we estimate

Ar .uk.s0/; �k.s0/; s0/ � A0.v
�; ��/ �

Z s0

�1

P̌
r .s/

Z 1

0

Ft .uk.s; t//dtds

� A0.v
�; ��/ �

Z C1
�1

k P̌.s/F kC ds

� ˝.v�/ � kF k :

This completes the proof of the Forcing Theorem 4.11. �

We conlcude this section by applying the Forcing Theorem 4.11 to a displaceable
twisted stable hypersurface.

Example 4.14. Consider the isometry

' W T2
�R2 ! T2

�R2; '.q1; q2/ WD .q2;�q1/

and its cotangent lift

D'� W T2
�R2 ! T2

�R2; D'�.q1; q2; p1; p2/ D .q2;�q1; p2;�p1/:
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Then ˙c � .T �T2; !� ;H/ is a displaceable twisted stable hypersurface for the
area form � D dq1 ^ dq2 by Example 4.5. By Example 4.6, we have that

v W R! ˙c ; v.t/ WD
p
2c.sin t; cos t; cos t;� sin t /

is a � -periodic twisted characteristic for all periods � 2 2�ZC �
2

and c > 0. Thus
if we choose v� 2 C'.˙c/ of period � > 0, then we compute for v 2 C'.˙c/ of
period � C 2�

˝.v/ �˝.v�/ D c.� C 2�/ � c� D 2�c D e.˙c/

by Example 4.6 and Example 2.50. Hence, we have verified the statement of the Forc-
ing Theorem 4.11 for the displaceable twisted stable hypersurface ˙c in the sym-
plectically aspherical and geometrically bounded symplectic manifold .T �T2; !� /.
Indeed, .T �T2; !� / is geometrically bounded by Example 4.10, and symplectically
aspherical as

�2.T
�Tn/ Š �2.T

n/ � �2.R
n/ Š 0:





Chapter 5
Further Steps in Twisted Rabinowitz–Floer
Homology

In this final chapter we discuss some possible further research in twisted Rabinowitz–
Floer homology for future work. One can of course try to find a twisted version of
every result provided by standard Rabinowitz–Floer homology. Following the survey
article [8], major results relate Rabinowitz–Floer homology to symplectic homology.

In the first section, we point out that one can combine Theorems 1.1 and 4.11 to
yield a partial multiplicity result as in Theorem 1.3.

In the second section, we discuss an invariance result under isotopies of twisted
Rabinowitz–Floer homology.

In the third section, we briefly outline a further computation of twisted Rabinowitz–
Floer homology, where the hypersurface is not displaceable.

In the last section, we explain an important physical setting where the Forcing
Theorem 4.11 and Theorem 1.1 might be applicable.

5.1 Forcing

Combining Theorem 1.1 and Theorem 4.11 yields the following prototypical result.
Recall, that a parametrised periodic orbit 
 of a Hamiltonian function H is called
(transversely) nondegenerate, if K.
/ D h.XH .
.0//; 0/i by [23, Definition 7.3.1].

Theorem 5.1. Let ˙ � Cn, n � 2, be a compact and connected star-shaped
hypersurface invariant under the rotation

' W Cn
! Cn; '.z1; : : : ; zn/ WD

�
e2�ik1=mz1; : : : ; e

2�ikn=mzn
�

for some even m � 2 and k1; : : : ; kn 2 Z coprime to m. Suppose that there exists
a nondegenerated simple noncontractible periodic Reeb orbit 
� on ˙=Zm. Then
there exists a second noncontractible periodic Reeb orbit 
C on ˙=Zm such thatZ 1

0


�C� �

Z 1

0


��� � e.˙/:

69



70 5 Further Steps in Twisted Rabinowitz–Floer Homology

In particular, if 
C is an n-fold iteration of 
�, then we get the estimate

0 <

Z 1

0


��� �
1

n � 1
e.˙/:

5.2 Invariance

Let .W; �/ be a Liouville domain. Given '; 2 Aut.W; �/ contained in the same
connected component of Aut.W; �/, we expect a similar invariance statement to hold
as in [54, Theorem 2.34]. More precisely, we expect that there exists an isomorphism

RFH'.@W;M/ Š RFH .@W;M/;

where .M; �/ denotes the completion of .W; �/. This was already used in the proof
of Theorem 4.1 for the special case of spheres and rotations. However, there the
Reeb flow is periodic and one can explicitly write down an isomorphism for the
generators of the corresponding chain complexes. The general case is assumed to be
similar but technically more challenging. Moreover, this isomorphism might imply
a contact version of the Seidel representation [42, Section 11.4]. This was suggested
by Will Merry.

5.3 Cotangent Bundles

Let .M; g/ be a compact connected Riemannian manifold and let .S�M;pdq/ be
the spherisation of M as in Example 2.36. By [3] or [18, Theorem 1.10], we have

RFHk.S�M;T �M/ Š

(
H�kC1.LM/ k < 0;

Hk.LM/ k > 1:

In the degrees k D 0; 1 the answer is known and depends on the Euler class.
The proof uses a relation between Rabinowitz–Floer homology and symplectic
homology, respectively symplectic cohomology. If ' 2 Aut.D�M;pdqjD�M / is a
Liouville automorphism, then it is plausible to expect

RFH'
k
.S�M;T �M/ Š

(
H�kC1.L'M/ k < 0;

Hk.L'M/ k > 1:

However, it would be also interesting to study the loop space homology H�.L'M/

itself, because usually one computes the free loop space homology via Morse theory.
For details see [37, Chapter 2].
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5.4 Stark–Zeeman Systems

Following [20] we introduce Stark–Zeeman systems. For�˙ > 0 define the potential
functions

V˙ W C n f˙1g ! R; V˙.z/ WD �
�˙

jz ˙ 1j
:

Let U0 � C be open and star-shaped with respect to the origin such that ˙1 2 U0.
Choose V0 2 C1.U0/. Moreover, set

V WD VC C V� C V0 2 C
1.U /

for U WD U0 n f˙1g. For a function B 2 C1.U0/, let �B WD Bdq1 ^ dq2 and ab-
breviate by .T �U;!B/ the associated magnetic cotangent bundle. Fix a Riemannian
metric g on U0 which is conformal to the standard metric. A Stark–Zeeman system
is the magnetic Hamiltonian system .T �U;!B ;H/ with

H.q; p/ WD
1

2
kpk2g� C V.q/ 8.q; p/ 2 T �U:

For c 2 R a regular value ofH , we consider a connected component˙c � H�1.c/
such that Kc [ f˙1g is bounded and simply connected, where the Hill’s region Kc
is defined by

Kc WD �.˙c/ � fq 2 U W V.q/ � cg:

For example, the planar circular restricted three-body problem is a Stark–Zeeman
system. In order to deal with collisions, we regularise ˙c .

Definition 5.2 (Regularisation, [23, p. 48]). Let .˙; !/ be a noncompact Hamilto-
nian manifold. A regularisation of .˙;!/ is defined to be a compact Hamiltonian
manifold . ẋ ; x!/ such that there exists an embedding � W ˙ ,! ẋ with �� x! D !.

Consider the Birkhoff regularisation map

' W C� ! C; B.z/ WD
1

2

�
z C

1

z

�
:

By Example 2.17, the cotangent lift D'� of ' is given by

D'� W T �C� ! T �C; D'�.z; w/ D

�
z2 C 1

2z
;
2xz2w

xz2 � 1

�
D .q; p/:

The regular energy surface˙c gives rise to a regular energy surface˙B
c � K

�1.0/,
where the rescaled Hamiltonian K WD H ıD'� is given by

K.z;w/ D
kwk2g�

2
�
�C jz C 1j

2

2 jzj3
�
�� jz � 1j

2

2 jzj3
C
.V0.q/ � c/ jz

2 � 1j
2

4 jzj4
:
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The compact regular energy surface˙B
c is called the Birkhoff regularisaton of˙c .

This regularisation is invariant under the cotangent lift

˚ W T �C� ! T �C�; ˚.z; w/ WD

�
1

z
;�xz2w

�
As the induced action of ˚ on ˙B

c is free, we obtain the cover

˙B
c ! ˙B

c =Z2:

Explicitly, there exist diffeomorphisms such that

˙B
c Š S1 � S2 and ˙B

c =Z2 Š RP3#RP3:

Therefore, it may be possible to apply the ideas developed in the proof of Theorem
1.1 or the Forcing Theorem 4.11 to these hypersurfaces. The analysis of these hyper-
surfaces is already quite delicate in the special case of the planar circular restricted
three-body problem. Indeed, it requires some work to show that the regularised en-
ergy hypersurface is fibrewise star-shaped for energy values below the first critical
value. For details, see [23, Theorem 5.7.2]. Hence we cannot expect stability of the
hypersurfaces in a general Stark–Zeeman system.



Appendix A
Twisted Loop Spaces

In this appendix, we will consider the category of topological manifolds rather
than the category of smooth manifolds, because smoothness does not add much to
the discussion. Free and based loop spaces are fundamental objects in Algebraic
Topology, for a vast treatment of the geometry and topology of based as well as
free loop spaces see for example [37]. But so-called twisted loop spaces are not
considered that much.

Theorem A.1 (Twisted Loops in Universal Covering Manifolds). Let .M; x/ be a
connected pointed topological manifold and � W zM !M the universal covering.

(a) Fix Œ�� 2 �1.M; x/ and denote by U� � L.M; x/ the path component cor-
responding to Œ�� via the bĳection �0.L.M; x// Š �1.M; x/. For every
e; e0 2 ��1.x/ and ' 2 Aut�. zM/ such that '.e/ D z�e.1/, where z�e de-
notes the unique lift of � with z�e.0/ D e, we have a commutative diagram of
homeomorphisms

L'. zM; e/ L ı'ı �1. zM; e0/

U�;

L 

	e 	e0

(A.1)

where  2 Aut�. zM/ is such that  .e/ D e0,

L W L'. zM; e/! L ı'ı �1. zM; e0/; L .
/ WD  ı 
;

and

	e W U� ! L'. zM; e/; 	e.
/ WD z
e;

	e0 W U� ! L ı'ı �1. zM; e0/; 	e0.
/ WD z
e0 :

Moreover, Ucx Š L'. zM; e/ via 	e if and only if ' D id zM , where cx denotes
the constant loop at x.

73
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(b) For every ' 2 Aut�. zM/ and e; e0 2 ��1.x/ we have a commutative diagram of
isomorphisms

Aut�. zM/ Aut�. zM/

�1.M; x/;

C 

˚e ˚e0

where for  2 Aut�. zM/ sucht that  .e/ D e0

C W Aut�. zM/! Aut�. zM/; C .'/ WD  ı ' ı  
�1;

and

˚e W �1.M; x/! Aut�. zM/; ˚e.Œ
�/ WD '
e
Œ
�;

˚e0 W �1.M; x/! Aut�. zM/; ˚e0.Œ
�/ WD '
e0

Œ
�;

with 'e
Œ
�
.e/ D z
e.1/ and 'e0

Œ
�
.e0/ D z
e0.1/.

(c) The projection

z�x W
a

'2Aut� . zM/

e2��1.x/

L'. zM; e/! L.M; x/

defined by z�x.
/ WD � ı 
 is a covering map with number of sheets coinciding
with the cardinality of �1.M; x/. Moreover, z�x restricts to define a covering
map

z�xjid zM W
a

e2��1.x/

L. zM; e/! Ucx ;

and z�x gives rise to a principal Aut�. zM/-bundle. If M admits a smooth struc-
ture, then this bundle is additionally a bundle of smooth Banach manifolds.

Proof. For proving part (a), fix a path class Œ
� 2 �1.M; x/. As any topological
manifold is Hausdorff, paracompact and locally metrisable by definition, the Smirnov
Metrisation Theorem [46, Theorem 42.1] implies that M is metrisable. Let d be a
metric on M and xd be the standard bounded metric corresponding to d , that is,

xd.x; y/ D min fd.x; y/; 1g 8x; y 2M:

The metric xd induces the same topology on M as d by [46, Theorem 20.1]. Topol-
ogise the based loop space L.M; x/ � LM as a subspace of the free loop space on
M , where LM is equipped with the topology of uniform convergence, that is, with
the supremum metric
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xd1.
; 

0/ D sup

t2S1

xd
�

.t/; 
 0.t/

�
8
; 
 0 2 LM:

There is a canonical pseudometric on the universal covering manifold zM induced
by xd given by xd ı � . As every pseudometric generates a topology, we topologise
the based twisted loop space L'. zM; e/ � P zM as a subspace of the free path space
on zM for every e 2 ��1.x/ via the supremum metric zd1 corresponding to xd ı � .
In fact, zd1 is a metric as if zd1.
; 
 0/ D 0, then by definition of zd1 we have that
�.
/ D �.
 0/. But as 
.0/ D e D 
 0.0/, we conclude 
 D 
 0 by the unique
lifting property of paths [38, Corollary 11.14]. Note that the resulting topology of
uniform convergence on L'. zM; e/ coincides with the compact-open topology by
[46, Theorem 46.8] or [32, Proposition A.13]. In particular, the topology of uniform
convergence does not depend on the choice of a metric (see [46, Corollary 46.9]). It
follows from [38, Theorem 11.15 (b)], that 	e and 	e0 are well-defined. Moreover, it
is immediate by the fact that the projection � W zM !M is an isometry with respect
to the above metric, that 	e and 	e0 are continuous with continuous inverse given by
the composition with � . It is also immediate that L is continuous with continuous
inverse L �1 .

Next we show that the diagram (A.1) commutes. Note that

� ı L ı 	e D � ı 	e D idU� D � ı 	e0 ;

thus by

.L ı 	e.
//.0/ D  .z
e.0// D  .e/ D e
0
D z
e0.0/ D 	e0.
/.0/

and by uniqueness it follows that

L ı 	e D 	e0 :

In particular

	e0.1/ D .L ı 	e/.1/ D  .'.e// D . ı ' ı  
�1/.e0/;

and thus 	e0.
/ 2 L ı'ı �1. zM; e0/. Consequently, the homeomorphism 	e0 is
well-defined.

Recall, that by the Monodromy Theorem [38, Theorem 11.15 (b)]


 ' 
 0 , 	e.
/.1/ D 	e.

0/.1/

for all paths 
 and 
 0 in M starting at x and ending at the same point. Note that the
statement of the the Monodromy Theorem is an if-and-only-if statement since zM is
simply connected.

Suppose 
 2 L.M; x/ is contractible. Then 
 ' cx , implying e 2 Fix.'/. But
the only deck transformation of � fixing any point of zM is id zM by [38, Proposi-
tion 12.1 (a)].
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Conversely, assume that 
 2 L.M; x/ is not contractible. Then we have that
	e.
/.1/ ¤ e. Indeed, if 	e.
/.1/ D e, then 
 ' cx and consequently, 
 would be
contractible. As normal covering maps have transitive automorphism groups by [38,
Corollary 12.5], there exists  2 Aut�. zM/ n fid zM g such that 	e.
/.1/ D  .e/.

For proving part (b), observe that˚e and˚e0 are isomorphisms follows from [38,
Corollary 12.9]. Moreover, it is also clear that C is an isomorphism with inverse
C �1 . Let Œ
� 2 �1.M; x/. Then using part (a) we compute

.C ı ˚e/Œ
�.e
0/ D . ı ˚eŒ
� ı  

�1/.e0/

D  
�
'eŒ
�.e/

�
D  .z
e.1//

D .L ı 	e/.
/.1/

D 	e0.
/.1/

D z
e0.1/

D 'e
0

Œ
�.e
0/

D ˚e0 Œ
�.e
0/:

Thus by uniqueness [38, Proposition 12.1 (a)], we conclude

C ı ˚e D ˚e0 :

Finally for proving (c), define a metric zd1 on

E WD
a

'2Aut� . zM/

e2��1.x/

L'. zM; e/

by

zd1.
; 

0/ WD

(
xd1

�
�.
/; �.
 0/

�

; 
 0 2 L'. zM; e/;

1 else:

Then the induced topology coincides with the disjoint union topology and with
respect to this topology, z�x is continuous. So left to show is that z�x is a covering map.
Surjectivity is clear. So let 
 2 L.M; x/. Then 
 2 U� for some Œ�� 2 �1.M; x/.
Now note that U� is open in L.M; x/ and by part (a) we conclude

z��1x .U�/ D
a

 2Aut� . zM/

L ı'ı �1. zM; .e// (A.2)

for some fixed e 2 ��1.x/ and ' 2 Aut�. zM/ such that '.e/ D z�e.1/.
As the cardinality of the fibre ��1.x/ and of Aut�. zM/ coincides with the car-

dinality of the fundamental group �1.M; x/ by [38, Corollary 11.31] and part (b),
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we conclude that the number of sheets is equal to the cardinality of the fundamental
group �1.M; x/.

Equip Aut�. zM/ with the discrete topology. As the fundamental group of every
topological manifold is countable by [38, Theorem 7.21], we have that Aut�. zM/ is
a discrete topological Lie group. Now label the distinct path classes in �1.M; x/ by
ˇ 2 B and for fixed e 2 ��1.x/ define local trivialisations

.z�x ; ˛ˇ / W z�
�1
x .Uˇ /

Š
�! Uˇ � Aut�. zM/;

making use of (A.2) by
˛ˇ .
/ WD  

�1;

whenever 
 2 L ı'ı �1. zM; .e//. Consequently, z�x is a fibre bundle with discrete
fibre Aut�. zM/ and bundle atlas .Uˇ ; ˛ˇ /ˇ2B . Define a free right action

E � Aut�. zM/! E; 
 � � WD ��1 ı 
:

Then ˛ˇ is Aut�. zM/-equivariant with respect to this action for all ˇ 2 B . Indeed,
using again the commutative diagram (A.1) we compute

˛ˇ .
 � �/ D ˛ˇ .�
�1
ı 
/ D

�
��1 ı  

��1
D  �1 ı � D ˛ˇ .
/ ı �

for all � 2 Aut�. zM/ and 
 2 L ı'ı �1. zM; .e//. Note, that here we use again
the fact that Aut�. zM/ acts transitively on the fibre ��1.x/.

Suppose that M admits a smooth structure. Then for every compact smooth
manifold N we have that the mapping space C.N;M/ admits the structure of a
smooth Banach manifold by [56]. By [37, Theorem 1.1 p. 24], there is a smooth fibre
bundle, called the loop-loop fibre bundle,

L.M; x/ ,! LM
ev0
��!M

where
ev0 W LM !M; ev0.
/ WD 
.0/:

Thus the based loop space L.M; x/ D ev�10 .x/ onM is a smooth Banach manifold
by the implicit function theorem [42, Theorem A.3.3] for all x 2 M . Likewise, by
[37, Theorem 1.2 p. 25], there is a smooth fibre bundle, called the path-loop fibre
bundle,

L. zM; e/ ,! P . zM; e/
ev1
��! zM;

where
P . zM; e/ WD f
 2 C.I; zM/ W 
.0/ D eg

denotes the based path space and

ev1 W P . zM; e/! zM; ev1.
/ WD 
.1/:
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Therefore, the twisted loop space L'. zM; e/ D ev�11 .'.e// is also a smooth Banach
manifold for all ' 2 Aut�. zM/ and e 2 ��1.x/ by the implicit function theorem [42,
Theorem A.3.3]. As the fundamental group �1.M; x/ is countable, the topological
space E has only countably many connected components being smooth Banach
manifolds and thus the total space itself is a smooth Banach manifold. Finally,
Aut�. zM/ is trivially a Banach manifold with dim Aut�. zM/ D 0 as a discrete Lie
group. �

Corollary A.2. Let .M; x/ be a connected pointed topological manifold and denote
by � W zM !M the universal covering of M . Assume that �1.M; x/ is abelian.

(a) Fix a path class Œ�� 2 �1.M; x/. For every e; e0 2 ��1.x/ and deck transfor-
mation ' 2 Aut�. zM/ such that '.e/ D z�e.1/, we have a commutative diagram
of homeomorphisms

L'. zM; e/ L'. zM; e0/

U�;

L 

	e 	e0

where  2 Aut�. zM/ is such that  .e/ D e0.
(b) For every ' 2 Aut�. zM/ we have that ˚e D ˚e0 for all e; e0 2 ��1.x/.

Lemma 1.5 now follows from part (a) of Theorem A.1. Indeed, by assumption
' 2 Aut�.˙/ n fid˙g and using the long exact sequence of homotopy groups of a
fibration [32, Theorem 4.41], there is a short exact sequence

0 �1.˙; x/ �1.˙=Zm; �.x// �0.Zm/ 0:

In particular, by [38, Corollary 12.9] we conclude

Aut�.˙/ Š �1.˙=Zm; �.x// Š Zm Š fid˙ ; '; : : : ; 'm�1g:

Finally, we discuss a smooth structure on the continuous free twisted loop space
of a smooth manifold.

Lemma A.3. Let M be a smooth manifold and ' 2 Diff.M/. Then the continuous
free twisted loop space L'M is the pullback of

.ev0; ev1/ W PM !M �M; 
 7! .
.0/; 
.1//;

where we abbreviate PM WD C.I;M/, along the graph of '

�' W M !M �M; �'.x/ WD .x; '.x//;

in the category of smooth Banach manifolds. Moreover, we have that

T
L'M D fX 2 �
0.
�TM/ W X.1/ D D'.X.0//g
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for all 
 2 L'M .

Proof. Write f WD .ev0; ev1/. Then

L'M D f
�1.�'.M//:

Thus in order to show that the free twisted loop space L'M is a smooth Banach
manifold, it is enough to show that f is transverse to the properly embedded smooth
submanifold �'.M/ � M �M . By [36, Proposition 2.4] we need to show that the
composition

˚
 W T
PM
Df

���! T.x;'.x//.M �M/! T.x;'.x//.M �M/=T.x;'.x//�'.M/

is surjective and ker˚
 is complemented for all 
 2 f �1.�'.M//, where we
abbreviate x WD 
.0/. Note that we have a canonical isomorphism

T.x;'.x//.M �M/=T.x;'.x//�'.M/! T'.x/M; Œ.v; u/� WD u �D'.v/:

Under this canonical isomorphism, the linear map ˚
 is given by

˚
 .X/ D X.1/ �D'.X.0//; 8X 2 �0.
�TM/:

Fix a Riemannian metric on M and let Xv 2 �.
�TM/ be the unique parallel
vector field with Xv.1/ D v 2 T'.x/M . Fix a cutoff function ˇ 2 C1.I / such
that suppˇ �

�
1
2
; 1
�

and ˇ D 1 in a neighbourhood of 1. Then ˚
 .ˇXv/ D v and
consequently, ˚
 is surjective. Moreover

ker˚
 D fX 2 �0.
�TM/ W X.1/ D D'.X.0//g

is complemented by the finite-dimensional vector space

V WD fˇXv 2 �.

�TM/ W v 2 T'.x/M g :

Indeed, any X 2 �0.
�TM/ can be decomposed uniquely as

X D X � ˇXv C ˇXv; v WD X.1/ �D'.X.0//:

Abbreviating Y WD X � ˇXv 2 �0.
�TM/, we have that

Y.1/ D D'.X.0// D D'.Y.0//;

implying Y 2 ker˚
 . Thus L'M is a smooth Banach manifold.
Now note that L'M can be identified with the pullback

f �PM D f.x; 
/ 2M �PM W .
.0/; 
.1// D .x; '.x//g;

making the diagram
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f �PM PM

M M �M

pr2

pr1 f

�'

commute, via the homeomorphism

L'M ! f �PM; 
 7! .
.0/; 
/:

Finally, one computes

T.x;
/f
�PM D f.v;X/ 2 TxM � T
PM W Df
X D D�' jx.v/g

for all .x; 
/ 2 f �PM . �

Remark A.4. Using Lemma A.3 one should be able to prove similar results as in
Theorem A.1 in the case of free twisted loop spaces. However, in the non-abelian
case the situation gets much more complicated as in general it is not true, that lifts
of conjugated elements of the fundamental group lie in the same free twisted loop
space by [37, Theorem 1.6 (i)].



Appendix B
On the Nonexistence of the Gradient of the
Twisted Rabinowitz Action Functional

Let .M; �/ be an exact symplectic manifold and ' 2 Symp.M; d�/ a symplecto-
morphism of finite order. For H 2 C1.M/ such that H ı ' D H , one can define
the twisted Rabinowitz action functional

AH
' W L'M �R! R; AH

' .
; �/ WD

Z 1

0


�� � �

Z 1

0

H.
.t//dt: (B.1)

Let J be a d�-compatible almost complex structure such that '�J D J . Then one
can consider the gradient of AH

' with respect to the L2-metric

h.X; �/; .Y; �/iJ WD

Z 1

0

d�.JX.t/; Y.t//dt C �� (B.2)

for all .X; �/; .Y; �/ 2 T
L'M �R and .
; �/ 2 L'M �R.

Theorem B.1 (Nonexistence Gradient). Let .M; �/ be a connected exact symplectic
manifold, ' 2 Symp.M; d�/ of finite order andH 2 C1.M/ such thatH ı' D H .
If '�� ¤ �, then the gradient of the twisted Rabinowitz action functional (B.1) with
respect to the L2-metric (B.2) does not exist.

Proof. Assume that the gradient grad AH
' 2 X.L'M �R/ exists. We write

grad AH
' D

0B@ J. P
 � �XH .
//
�

Z 1

0

H.
.t//dt

1CAC V
for some V 2 X.L'M/ and for all .
; �/ 2 L'M �R. Indeed, this follows from

dAH
' j.
;�/.X; �/ D

Z 1

0

d�.X; P
.t/ � �XH .
.t///dt � �

Z 1

0

H.
.t//dt

C .'�� � �/.X.0// (B.3)

81
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for all .X; �/ 2 T
L'M � R. By assumption, there exists x 2 M and v 2 TxM
with .'��/x.v/ ¤ �x.v/. As by assumption M is connected, there exists a
smooth path u 2 C1.Œ0; 1� ;M/ from x to '.x/. Fix a smooth cutoff function
ˇ 2 C1.Œ0; 1� ; Œ0; 1�/ such that ˇ D 0 in a neighbourhood of 0 and ˇ D 1 in a
neighbourhood of 1. Then we can extend u by


.t/ WD 'k.u.ˇ.t � k/// 8t 2 Œk; k C 1� ; k 2 Z:

Clearly, 
 2 L'M by construction. Extend v 2 T
.0/M to Xv 2 T
L'M by

Xv.t/ WD .1 � ˇ.t � k//P
'kıu

0;ˇ.t�k/
.D'k.v//C ˇ.t � k/P

'kıu

1;ˇ.t�k/
.D'kC1.v//;

for all t 2 Œk; k C 1� and k 2 Z, where P denotes the parallel transport system
induced by the Levi–Civita connection associated with the metric mJ . Choose a
sequence . ǰ / � C

1.S1; Œ0; 1�/ with ǰ D 1 on
�
0; 1
2j

�
[
�
1 � 1

2j
; 1
�

and such that
supp ǰ �

�
0; 1
j

�
[
�
1 � 1

j
; 1
�

for all j 2 N. Using (B.3) we compute

hV; ǰXviJ D .'
�� � �/. ǰ .0/Xv.0// D .'

�� � �/.v/

for all j 2 N, implying

.'�� � �/.v/ D lim
j!1
hV; ǰXviJ D lim

j!1

Z 1

0

d�.JV.t/; ǰ .t/Xv.t//dt D 0

by dominated convergence. �



Appendix C
Bubbling Analysis

In this section we prove the main result about the compactness of the moduli space
of negative gradient flow lines of the symplectic action functional.

Definition C.1 (Symplectic Asphericity). A connected symplectic manifold .M;!/
is said to be symplectically aspherical, ifZ

S2
f �! D 0 8f 2 C1.S2;M/:

Remark C.2. A symplectic manifold .M;!/ is symplectically aspherical, if and
only if Œ!�j�2.M/ D 0, where Œ!� 2 H2dR.M IR/ denotes the cohomology class of !.

Theorem C.3 (Bubbling). Let .M;!/ be a compact symplectically aspherical sym-
plectic manifold and let .uk/ be a sequence of negative gradient flow lines of the
symplectic action functional AH for someH 2 C1.M�T /with uniformly bounded
energy

EJ .uk/ WD

Z C1
�1

k@sukk
2
J

for some, and hence every, !-compatible almost complex structure J . Then the
derivatives of .uk/ are uniformly bounded.

The main idea of the proof is to assume that the derivatives .Duk/ explode and
then to construct a nonconstant J -holomorphic sphere. Indeed, assume that there
exists a sequence .sk ; tk/ in R � T such that

lim
k!1

k@suk.sk ; tk/k ! C1:

Then we rescale the sequence .uk/, see Figure C.1. Set

mk WD k@suk.sk ; tk/k and vk.�; �/ WD uk

�
�

mk
C sk ;

�

mk
C tk

�
for all .�; �/ 2 C.
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Fig. C.1: Looking at the sequence .uk/ of negative gradient flow lines of the sym-
plectic action functional with a magnifying glass via rescaling.

Then we compute

mk@�vk.�; �/ D @suk

�
�

mk
C sk ;

�

mk
C tk

�
;

mk@�vk.�; �/ D @tuk

�
�

mk
C sk ;

�

mk
C tk

�
:

In particular k@�vk.0; 0/k D 1 for all k 2 N. Moreover, every vk solves

@�vk.�; �/C J@�vk.�; �/ D
1

mk
JXH �

mk
Ctk
.vk.�; �// 8.�; �/ 2 C

as uk satisfies the Floer equation (2.4). If there exists v1 2 C1.C;M/ such that

vk
C1loc
��! v1; k !1;

modulo subsequences, then v1 satisfies

@�v1.�; �/C J@�v1.�; �/ D 0 8.�; �/ 2 C:

Consequently, v1 is a J -holomorphic plane. Using the assumption that the energy
of the sequence .uk/ is uniformly bounded, one can extend v1 to a J -holomorphic
sphere v 2 C1.S2;M/ such that vjC D v1 via the identification S2 Š C [ f1g.
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C.1 Rescaling

Lemma C.4 (Hofer, [1, Lemma 4.4.4]). Let .X; d/ be a complete metric space and

f W X ! Œ0;C1/

continuous. Given " > 0 and x 2 X , there exist 0 < ı � " and y 2 X such that

d.x; y/ � 2ı; ıf .y/ � "f .x/; and sup
z2 xBı.y/

f .z/ � 2f .y/:

Lemma C.5 (Rescaling). Let .uk/ be a sequence of negative gradient flow lines of
the symplectic action functional AH for some H 2 C1.M � T / and J some !-
compatible almost complex structure. Then there exists a sequence .Rk/ in .0;C1/
with Rk !C1 and a sequence vk 2 C1.BRk .0/;M/ such that

lim
k!1

k@�vk C J@�vkk1 D 0 and 1 � k@�vkk1 � 2:

Proof. Abbreviate zk WD .sk ; tk/ 2 R � T . Apply Hofer’s Lemma C.4 with

f W R � T ! Œ0;C1/ ; f .s; t/ WD k@suk.s; t/k ;

as well as
"k WD

1
p
mk

; and xk WD zk :

Thus there exists a nearby sequence z0
k
D .s0

k
; t 0
k
/ 2 R � T and 0 < ık � "k with

ık k@suk.z
0
k/k � "k k@suk.zk/k D

p
mk

and
sup

z2Bık .z
0
k
/

k@suk.z/k � 2 k@suk.z
0
k/k :

Rescale m0
k
WD k@suk.z

0
k
/k, set Rk WD ıkm0k and

vk.�; �/ WD uk

�
�

m0
k

C s0k ;
�

m0
k

C t 0k

�
8.�; �/ 2 BRk .0/:

As uk is a solution to the Floer equation (2.4), vk satisfies the equation

@�vk.�; �/C J@�vk.�; �/ D
1

m0
k

JXH �

m0
k

Ct0
k

.vk.�; �// (C.1)

for all .�; �/ 2 BRk .0/. As m0
k
� mk !C1, we conclude

lim
k!1

k@�vk C J@�vkk1 D 0:
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Finally, we compute

k@�vkk1 D sup
z2BRk .0/

k@�vk.z/k

D
1

m0
k

sup
z2Bık .z

0
k
/

k@suk.z/k

�
2

m0
k

k@suk.z
0
k/k

D 2;

and
m0k k@�vk.0; 0/k D k@suk.z

0
k/k D m

0
k :

This concludes the proof of the lemma. �

Lemma C.6. Let .vk/ be the sequence constructed in the Rescaling Lemma C.5.
Then there exists v1 2 C 0.C;M/ such that

vk
C0loc
��! v1; k !1;

up to a subsequence.

Proof. By the Rescaling Lemma C.5 and compactness of M there exists C > 0

such that
k@�vkk1 � C 8k 2 N:

Fix R > 0 and choose KR 2 N such that Rk � R for all k � KR and consider
the restrictions vkjBR.0/ for all k � KR. As the derivatives of vk are uniformly
bounded, we conclude that vkjBR.0/ is of Sobolev class

W 1;1.BR.0// WD ff 2 W
1;1.BR.0/;R

4nC1/ W f .BR.0// �M g

for all k � Kk where we consider M 2n ,! R4nC1 via the Whitney embedding
Theorem. Thus by Morrey’s inequality [12, Corollary 9.14], every vkjBR.0/ is of
Hölder classC 0;1.BR.0// , and hence vkjBR.0/ is equicontinuous. AsM is compact,
Ascolis Theorem implies the existence of vR 2 C 0.BR.0/;M/ with

vkjBR.0/
C0

��! vR; k !1;

up to a subsequence. Choose a subsequence .k1j / with k1j � K1 for all j 2 N and
such that there exists v1 2 C 0.B1.0/;M/ with

vk1
j
jB1.0/

C0

��! v1; j !1:
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Inductively, choose a subsequence .k�C1j / of .k�j / for all� 2 N with k�C1j � K�C1

for all j 2 N and such that there exists v�C1 2 C 0.B�C1.0/;M/ with

v
k
�C1

j

jB�C1.0/
C0

��! v�C1; j !1:

Finally, taking the diagonal subsequence yields

v
k
j

j

C0loc
��! v1 2 C

0.C;M/; j !1:

�

C.2 Elliptic Bootstrapping

Lemma C.7 (Elliptic Bootstrapping). Denote by v1 2 C 0.C;M/ the map con-
structed in Lemma C.6. Then v1 2 C1.C;M/ is a nonconstant J -holomorphic
plane.

Proof. Fix sequences .zj / � C and rj � .0;C1/ such that

� v1jB4rj .zj /
is contained in a chart Uj of M for all j 2 N.

�
S
j2N Brj .zj / D C.

� for all j 2 N there exists Kj such that vkjB2rj .zj / � Uj for all k � Kj .

Fix smooth bump functions ǰ 2 C
1.C; Œ0; 1�/ for xBrj .zj / supported in B2rj .zj /

and define
xv
j

k
WD ǰ vk 2 C

1
c .C;R

2n/

for all k; j 2 N. We compute

�xv
j

k
D .� ǰ /vk C 2@� ǰ @�vk C 2@� ǰ @�vk C ǰ�vk : (C.2)

To compute �vk , we differentiate (C.1) in charts. Applying @� we get that

@2�vk.�; �/CDJ@�vk.�; �/@�vk.�; �/C J@�@�vk.�; �/

is equal to
1

m0
k

D gradJ H �

m0
k

Ct 0
k
.vk.�; �//@�vk.�; �/;

where gradJ Ht denotes the gradient of Ht with respect to the Riemannian metric
induced by J , that is, the Riemannian metric !.J �; �/. Applying @� to (C.1) we get
that

@�@�vk.�; �/C J@
2
�vk.�; �/CDJ.@�vk.�; �//

2

is equal to
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1

m0
k

D gradJ H �

m0
k

Ct 0
k
.vk.�; �//@�vk.�; �/C

1

m0
k

@� gradJ H �

m0
k

Ct 0
k
.vk.�; �//:

Hence
�vk D P.@�vk ; @�vk/;

where P is a polynomial of degree 2 with C1-coefficients and so

�xv
j

k
D P.@�xv

j

k
; @xv

j

k
/

by (C.2). As the derivatives @�vk and @�vk are uniformly bounded, we conclude
that �xvj

k
is also uniformly bounded. Thus k�xvj

k
k
Lp

is uniformly bounded for all
exponents p 2 Œ1;C1� as �xvj

k
is compactly supported by construction. Therefore,

the Calderon–Zygmund inequality [42, Corollary B.2.7] implies that kxvj
k
k
W 2;p is

uniformly bounded for all 1 < p < C1. In particular,

k@�xv
j

k
k
W 1;p and k@�xv

j

k
k
W 1;p

are uniformly bounded. Thus again by Morrey’s inequality, @�xvjk and @�xvjk belong
to the Hölder class C 0;˛ for all 0 < ˛ < 1. By Ascolis Theorem, @�xvjk and @�xvjk
admit convergent subsequences and

xvj1 WD ǰ v1 2 C
1
c .C;R

2n/

satisfies
vkjBrj .zj /

C1

��! xvj1

for all j 2 N. Hence we have showed that v1 2 C 1.C;M/ and

vk
C1loc
��! v1

up to subsequences. This procedure can be generalised to higher derivatives and is
referred to as elliptic bootstrapping. Note that taking higher order derivatives makes
only sense locally in a chart if we do not refer to a particular connection. Thus we
get v1 2 C1.C;M/ and

vk
C1loc
��! v1; k !1;

up to subsequences. Finally, v1 is nonconstant as

k@�v1k1 D lim
k!1

k@�vkk1 � 1

and satisfies
@�v1 C J@�v1 D 0

by the Rescaling Lemma C.5. �
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C.3 Removal of Singularities

Consider the conformal diffeomorphism

' W C n f0g ! R � T ; '.re2�i� / WD Log.re2�i� /;

and define
w W R � T !M; w WD v1 ı '

�1;

where v1 2 C1.C;M/ denotes the nonconstant J -holomorphic plane constructed
in Lemma C.6. Then

lim
s!�1

w.s; �/ D v1.0/

and w is of finite energy. Indeed, we compute

EJ .w/ D

Z
R�T

w�! D

Z C1
�1

Z 1

0

!.J@sw.s; t/; @sw.s; t//dtds � sup
k2N

EJ .uk/

by [42, Lemma 2.2.1]. Moreover,w is a negative gradient flow line of the symplectic
area functional

A W ƒM ! R; A.
/ WD

Z
D
x
�!:

Lemma C.8. For every sequence .rk/ � .0;C1/ with rk ! C1 as k ! 1
define a sequence .wk/ by

wk.s; t/ WD w.s C rk ; t / 8.s; t/ 2 R � T :

Then there exists a point w1 2M such that

wk
C1loc
��! w1; k !1;

up to a subsequence.

Proof. By [42, p. 89–90] there exists a constant a � 0 such that

�e � �ae2;

where
e W R � T ! Œ0;C1/ ; e.s; t/ WD k@sw.s; t/k

2

denotes the energy density. As EJ .w/ < C1, there exists R > 0 such thatZ C1
R

Z 1

0

e.s; t/dtds � min
�
�

8a
; 1

�
and Z �R

�1

Z 1

0

e.s; t/dtds � min
�
�

8a
; 1

�
:
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Let z D .s; t/ 2 R � T such that jsj � RC 1. ThenZ
B1.z/

e <
�

8a
:

By [42, Lemma 4.3.3] we conclude

e.z/ �
8

�

Z
B1.z/

e �
8

�
:

Consequently, e is uniformly bounded, as ejŒ�R�1;RC1��T is uniformly bounded by
continuity of e. Hence k@swk is uniformly bounded by definition of e and k@twk
is uniformly bounded as w is a J -holomorphic curve. By an eliptic bootrstrapping
argument as in Lemma C.7, we conclude

wk
C1loc
��! w1; k !1;

up to a subsequence, where w1 is a negative gradient flow line of the symplectic
area functional A. Then w1 is constant. Indeed, assume that w1 is not constant.
Then there exists s < s0 such that

" WD A.w1.s// �A.w1.s
0// > 0:

Moreover, there exists K 2 N such that

A.wk.s// �A.wk.s
0// D A.w.s C rk// �A.w.s0 C rk// �

"

2

for all k � K. Define a subsequence .rkj / of .rk/ recursively by

k0 WD K and kj WD minfl 2 N W s0 C rkj�1 � s C rlg:

This works as rk !C1 as k !1. Fix l 2 N. Then we compute

E.w/ D sup
s2R

A.w.s// � inf
s2R

A.w.s//

� A.w.s C rk0// �A.w.s C rkl //

D

lX
�D1

�
A.w.s C rk��1// �A.w.s C rk� //

�
�

lX
�D1

�
A.w.s C rk��1// �A.w.s0 C rk��1//

�
�
"l

2
:

As l 2 N was arbitrary, we conlcude that E.w/ D C1. �
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Proof (of Theorem C.3). AsM is compact, there exists a finite open coverU1; : : : ; Um
of M such that xUj is contained in a Darboux chart. Define

U WD f
 2 ƒM W 
.T / � Uj for some j D 1; : : : ; mg:

Step 1: There exists s0 2 R such that w.s/ 2 U for all s � s0. Assume that there
exists a sequence .rk/ � .0;C1/ with rk ! C1 as k ! 1 and w.rk/ … U for
all k 2 N. By Lemma C.8, there exists w1 2M such that

wk
C1loc
��! w1; k !1;

up to a subsequence. Butw1 2 Uj for some j and thus there existsK 2 N such that
w.rk ; t / 2 Uj for all t 2 T and k � K. Consequently, w.rk/ 2 U for all k � K.

Step 2: There exist constants C > 0 and � > 0 such that

dL2.w.s/; w1/ � Ce
��s

8s � s0;

where w1 is the limit of w.k/ D wk.0/ as k ! 1 up to a subsequence .kj /. By
[24, Proposition 6.4] and [24, Lemma 6.3], we have the action-energy inequality

jA.
/j � C0 kgradJ A.
/k2J 8
 2 U

for some constant C0 > 0 as the symplectic area functional A is Morse–Bott. See
Remark 2.2. Let s � s0. Choose j0 such that kj0 > s. We estimate

A.w.s// > A.w.kj0// � lim
j!1

A.w.kj // D lim
j!1

A.wkj .0// D A.w1/ D 0:

Let s2 > s1 > s0. Using [24, Lemma 6.5] and [24, Lemma 6.6] we compute

d.w.s1/; w.s2// �
2
p
C0

�p
A.w.s1// �

p
A.w.s2//

�
�

2
p
C0

p
A.w.s1//

�
2
p
C0

p
A.w.s0//e

1
2C0

.s0�s1/

Choose j1 such that kj1 � s1. Then for all j � j1, we have that

dL2.w.s1/; w.kj // � Ce
��s1 ;

where
C WD

2
p
C0

p
A.w.s0//e

1
2C0

s0 and � WD
1

2C0
:

Thus
dL2.w.s1/; w1/ D lim

j!1
dL2.w.s1/; w.kj // � Ce

��s1 :
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Step 3: There exists a unique point w1 2M such that

w.s/
C1

��! w1; s !C1:

Uniqueness follows immediately from the exponential decay established in Step 2.
Indeed, a priori, w1 does depend on the choice of subsequence .kj /. Let w01 2M
be the limit of a different subsequence. Then we compute

dL2.w1; w
0
1/ � dL2.w.s/; w1/C dL2.w.s/; w

0
1/ � Ce

��s
C C 0e��

0s
! 0

as s ! C1. That the limit can also be taken with respect to the C1-topology
follows from [10, Proposition 6.5.3]. �

Corollary C.9. Let .M;!/ be a symplectically aspherical symplectic manifold and
let .uk ; �k/ be a sequence of solutions .uk ; �k/ 2 C1.R � T ;M/ � C1.R;R/ of

�
@suk.s; t/C J.@tuk.s; t/ � �k.s/XH .uk.s; t/// D 0;

@s�k.s/ D

Z 1

0

H.uk.s; t//dt;

for all s 2 R and k 2 N for someH 2 C1.M/, with uniformly bounded energy. If
there exists a compact subset K �M �R such that

im.uk ; �k/ � K 8k 2 N;

then the derivatives of .uk/ are uniformly bounded.

Proof. Crucial is the observation that under the above assumptions, the limit of (C.1)
is still a J -holomorphic curve. �



Appendix D
M-Polyfolds

The classical approach for establishing generic transversality results in Floer theories
is via a suitable version of the Sard–Smale Theorem [42, Theorem A.5.1]. The
idea is to represent the moduli space of negative gradient flow lines as the zero
set of an appropriate Fredholm section. Unfortunately, this does not work for the
moduli space of unparametrised negative gradient flow lines as the reparametrisation
action is not smooth. Moreover, the transversality results usually require perturbing
the given metric to a generic one. There is a more abstract approach for proving
transversality results via polyfold theory. This theory was and is still developed
by Hofer–Wysocki–Zehnder [33] primarily having symplectic field theory in mind.
Another more algebraic approach to abstract perturbations is via Kuranishi structures
developed by Fukaya–Oh–Ohta–Ono [27].

In the first section we introduce the basic terminology of polyfold theory, namely
the notion of scale smoothness on scale Banach spaces.

In the second section we formulate a prototypical result for Morse–Bott homology
following the brilliant lecture notes [15].

D.1 Scale Calculus

Definition D.1 (Scale Structure, [33, Definition 1.1.1]). A scale structure on a
Banach space E is a decreasing sequence

E DW E0 � E1 � E2 � : : :

of Banach spaces such that the inclusion EkC1 ,! Ek is compact for every k 2 N0

and such that E1 WD \1kD0Ek is dense in every Ek . A Banach space E together
with a scale structure .Ek/ is called a scale Banach space.

Example D.2 (Shifted Scale Banach Space, [26, Definition 3.3]). Let .E; .Ek//
be a scale Banach space and m 2 N0. Then

�
Ek ; .Em

k
/
�

is a scale Banach space
where Em

k
WD EmCk for all k 2 N0.

93



94 D M-Polyfolds

Example D.3 (Scale Direct Sum, [26, Definition 3.4]). Let .E; .Ek// and .F; .Fk//
be scale Banach spaces. Then .E ˚ F; .Ek ˚ Fk// is also a scale Banach space.

The following example underlies Morse and Floer theory.

Example D.4 (Weighted Sobolev Spaces, [26, Example 3.9]). Fix a monotone
cutoff function ˇ 2 C1.R; Œ�1; 1�/ with

ˇ.s/ D

(
1 s � 1;

�1 s � �1;

and ı > 0. Define

ı W R! R; 
ı.s/ WD e

ıˇ.s/s :

For p 2 .1;C1/ and k 2 N0 define the Sobolev spaces with weight ı by

W
k;p

ı
.R;Rn/ WD fu 2 W k;p.R;Rn/ W 
ıu 2 W

k;p.R;Rn/g:

Choose a strictly increasing sequence .ık/ with ı0 D 0. Then .E; .Ek// is a scale
Banach space with

Ek WD W
k;p

ık
.R;Rn/ 8k 2 N0:

Definition D.5 (Scale Continuity, [26, Definition 4.1]). Let .E; .Ek// and .F; .Fk//
be two scale Banach spaces. A map f W E ! F is called scale continuous, iff
f .Ek/ � Fk for all k 2 N0 and the restriction f jEk W Ek ! Fk is continuous.

Definition D.6 (Tangent Bundle, [33, Definition 1.1.14]). For a scale Banach space
.E; .Ek// define its tangent bundle by TE WD E1 ˚E.

Definition D.7 (Scale Differentiability, [26, Definition 4.2]). A scale continuous
map f W E ! F between scale Banach spaces .E; .Ek// and .F; .Fk// is called
scale differentiable, iff for every x 2 E1 there exists a bounded linear operator

Df.x/ W E0 ! F0;

called the scale differential off , such that the restriction f jE1 W E1 ! F0 is Fréchet
differentiable with derivative Df jE1 and the tangent map

Tf W TE ! TF; Tf .x; h/ WD .f .x/;Df .x/h/

is scale continuous.

Using the iterated notion of scale differentiability one can define higher scale
regularity. We say that a scale differentiable map is scale smooth, iff its tangent map
is infinitely scale differentiable. The following example motivated the development
of scale calculus.
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Example D.8 (Weighted Sobolev Spaces, [26, Theorem 6.2]). Let Ek be the scale
of weighted Sobolev spaces introduced in Example D.4 on the scale Banach space
E D Lp.R;Rn/. Then the shift map

R˚E ! E; .r; x/ 7! x.� C r/

is scale smooth.

One important property of scale differentiability is that the chain rule remains
valid in this general setting.

Proposition D.9 (Chain Rule, [33, Theorem 1.3.1]). Uppose that f W E ! F and
g W F ! G are scale differentiable maps for scale Banach spacesE, F andG. Then
the composition g ı f is scale differentiable with tangent map

T .g ı f / D Tg ı Tf W TE ! TG:

The proof of the chain rule heavily relies on the compactness of the embeddings
of the scales. Using the chain rule one is able to define the notion of scale manifolds
and scale differential geometry in analogy to the finite-dimensional case. For details
see [15, Chapter 5]. Thus with the theory developed so far, one can make sense of the
smooth moduli space of unparametrised negative gradient flow lines. However, for
broken negative gradient flow lines one needs an even more general notion, including
scale manifolds.

Definition D.10 (Retraction, [33, Definition 2.1.1]). Let E be scale Banach space.
A retraction on E is a scale smooth map r W E ! E such that r2 D r .

Remark D.11. If X is a smooth Banach manifold, then Fix.r/ D r.M/ is a smooth
submanifold for every smooth retraction r W X ! X by a result of Cartan [33,
Proposition 2.1.2].

It is in general not true that the fixed point set of a scale smooth retraction of
a scale manifold is a scale submanifold. This lead Hofer–Wysocki–Zehnder to the
generalised notion of an M-polyfold, where the “M” stands for “manifold flavoured”.
Heuristically, an M-polyfold is locally the fixed point set of a scale smooth retraction
of a scale smooth manifold. The main aspect for us is that Fredholm theory still is
valid in M-polyfolds in some sense. For an extensive treatment see [33, Part I].

D.2 M-Polyfold Setup for Morse–Bott Homology

In this section we explain how an M-polyfold Fredholm setup for Morse–Bott ho-
mology can be defined. We follow [15, Section 8.4]. The essential arguments are
contained in [22, Appendix A]. We assume the following setup. Let .M; g/ be a
compact Riemannian manifold and f 2 C1.M/ a Morse–Bott function. Choose an
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additional Morse function h 2 C1.Crit f / and a Riemannian metric g0 on Crit f
such that .h; g0/ is a Morse–Smale pair, that is, the stable and unstable manifolds
intersect transversally. Pick two connected critical components C˙ � Crit f . For

0 < ı < minfj�j W � 2 �.Hessx f // n f0g; x 2 Crit f g

and a positive strictly increasing sequence 0 < ı0 < ı1 < � � � < ı, consider the
Banach manifold zEk.C�; CC/ consisting of all maps u 2 H kC2

ık
.R;M/ converging

exponentially to C˙, that is, there exist x˙ 2 C˙ as well as

�� 2 H kC2
ık

..�1;�T � ; Tx�M/ and �C 2 H kC2
ık

.ŒT;C1/ ; TxCM/

for some T 2 R with

u.s/ D expx˙.�
˙.s// 8˙ s � T:

See Figure D.1. Local charts on zEk.C�; CC/ are constructed by exponential neigh-
bourhoods around smooth paths [49, Appendix A]. Similar to [9], one can construct
scale smooth charts using those exponential neighbourhoods, equipping the Banach
manifold zE.C�; CC/ WD zE0.C�; CC/with a scale smooth structure. Moreover, there
are two natural scale smooth evaluation maps

ev˙ W zE.C�; CC/! Crit f; ev˙.u/ D x˙:

1

Fig. D.1: An asymptotically exponential Sobolev path connecting two critical com-
ponents of a Morse–Bott function.

Fix x˙ 2 C˙ \ Crit h and define the stable and unstable manifolds by

W ˙.x˙/ WD

�
x 2 Crit f W lim

s!˙1
�s.x/ D x

˙

�
;
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where � W R�Crit f ! Crit f denotes the negative gradient flow of h with respect
to the Morse–Smale metric m0. Define

zE1k .x
�; xC/ WD

˚
u 2 zEk.C

�; CC/ W ev˙.u/ 2 W ˙.x˙/
	

for all k 2 N. See Figure D.2. Again, zE1.x�; xC/ WD zE10 .x�; xC/ is a scale manifold.
For details, see the proof of [22, Theorem A.12] and [22, Theorem A.14].

1

Fig. D.2: A weighted Sobolev path with one cascade.

There exists a canonical scale smooth bundle

zF 1.x�; xC/! zE1.x�; xC/;

where the fibre over u 2 zE1
k
.C�; CC/ is given by

zF 1
k .x

�; xC/ju D H
kC1
ık

.R; u�TM/

for all k 2 N. Then

z@ W zE1.x�; xC/! zF 1.x�; xC/; z@.u/ WD PuC gradm f .u/

is a scale Fredholm operator. If x� ¤ xC, the scale smooth reparametrisation action

R˚ zE1.x�; xC/! zE1.x�; xC/; .r; u/ 7! u.� C r/;

as in Example D.8 is free, giving rise to a scale smooth bundle

zF 1.x�; xC/=R! zE1.x�; xC/=R

to which z@ descends to a scale Fredholm section @. This construction can be gener-
alised to m cascades and thus yields the scale smooth bundle

F m.x�; xC/! Em.x�; xC/
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of unparametrised paths from x� to xC with m cascades. Now we consider broken
paths. For x0; : : : ; xl 2 Crit h with

f .x0/ � f .x1/ � � � � � f .xl�1/ � f .xl /;

we define the space of broken paths from x0 to xl by

E.x0; : : : ; xl / WD
a

.˛0;:::;˛l /2NlC1
0

E˛0.x0; x1/ � � � � � E˛l .xl�1; xl /:

Then E.x0; : : : ; xl / is a scale manifold over which we have the scale bundle

F .x0; : : : ; xl / WD
a

.˛0;:::;˛l /2NlC1
0

F ˛0.x0; x1/ � � � � � F ˛l .xl�1; xl /

and the scale Fredholm section

@ � � � � � @ W E.x0; : : : ; xl /! F .x0; : : : ; xl /:

For x˙ 2 Crit h with f .x�/ � f .xC/ we define the space of broken paths from x�

to xC by

X.x�; xC/ WD
a
l2N

a
x1;:::;xl�12Crith

f .x�/�f .x1/�����f .xl�1/�f .xC/

E.x�; x1; : : : ; xl�1; xC/:

Similarly, one defines

Y.x�; xC/ WD
a
l2N

a
x1;:::;xl�12Crith

f .x�/�f .x1/�����f .xl�1/�f .xC/

F .x�; x1; : : : ; xl�1; xC/:

One can show that X.x�; xC/ carries the natural structure of an M-polyfold and

Y.x�; xC/! X.x�; xC/

is a bundle. Moreover, the scale Fredholm section above induces a scale Fredholm
section

@ W X.x�; xC/! Y.x�; xC/

of index
ind @ D ind.x�/ � ind.xC/ � 1;

where either

ind D indf C indh or ind D �
1

2
sgn Hessf �

1

2
sgn Hessh:
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For details see [17, Appendix A]. One can show that the level set @�1.0/ of un-
parametrised broken negative gradient flow lines is compact and that there exists an
abstract perturbation of @, that is, a scale smooth section � W X ! Y , where

X WD
a

x˙2Crith
f .x�/�f .xC/

X.x�; xC/ and Y WD
a

x˙2Crith
f .x�/�f .xC/

Y.x�; xC/;

with the property that for all x˙ 2 Crit h the moduli space

M.x�; xC/ WD fu 2 X.x�; xC/ W .@C �/.u/ D 0g

is compact and @C� is transverse to the zero section. Hence we arrive at a prototypical
result for Morse–Bott homology, compare [15, Corollary 8.9].

Theorem D.12 (M-Polyfold Setup for Morse–Bott Homology). Let .M; g/ be a
compact Riemannian manifold without boundary and f 2 C1.M/ a Morse–Bott
function. Choose an additional Morse function h 2 C1.Crit f / and an additional
Riemannian metric g0 on Crit f such that .h; g0/ is a Morse–Smale pair. For all
critical points x˙ 2 Crit h, the moduli space

M.x�; xC/ WD fu 2 X.x�; xC/ W .@C �/.u/ D 0g

is a smooth compact manifold with corners of dimension

dim M.x�; xC/ D ind.x�/ � ind.xC/ � 1:

Moreover, there is a canoncial diffeomorphism

@M.x�; xC/ DM.x�; xC/ \ @X Š
a

x2Crith

M.x�; x/ �M.x; xC/:





References

1. Abbas, C., Hofer, H.: Holomorphic Curves and Global Questions in Contact Geometry.
Birkhäuser Advanced Texts Basler Lehrbücher. Springer International Publishing (2019)

2. Abbondandolo, A., Schlenk, F.: Floer homologies, with applications. Jahresbericht der
Deutschen Mathematiker-Vereinigung 121(3), 155–238 (2019)

3. Abbondandolo, A., Schwarz, M.: Estimates and computations in Rabinowitz–Floer homology.
Journal of Topology and Analysis 01(04), 307–405 (2009)

4. Abraham, R., Marsden, J.E.: Foundations of Mechanics, second edn. AMS Chelsea Publishing
(1978)

5. Albers, P., Frauenfelder, U.: Leaf-Wise Intersections and Rabinowitz Floer Homology. Journal
of Topology and Analysis 02(01), 77–98 (2010)

6. Albers, P., Frauenfelder, U.: Spectral invariants in Rabinowitz-Floer homology and global
Hamiltonian perturbations. Journal of Modern Dynamics 4(2), 329–357 (2010)

7. Albers, P., Frauenfelder, U.: On a Theorem by Ekeland–Hofer. Israel Journal of Mathematics
187(1), 485–491 (2012)

8. Albers, P., Frauenfelder, U.: Rabinowitz Floer Homology: A Survey. In: C. Bär, J. Lohkamp,
M. Schwarz (eds.) Global Differential Geometry, pp. 437–461. Springer Berlin Heidelberg
(2012)

9. Albers, P., Wysocki, K.: M-Polyfolds in Morse Theory (2013). Unpublished manuscript
10. Audin, M., Damian, M.: Morse Theory and Floer Homology. Universitext. Springer (2014)
11. Banyaga, A., Hurtubise, D.: Lectures on Morse homology. Kluwer texts in the mathematical

sciences. Springer, Dordrecht (2004)
12. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universi-

text. Springer-Verlag New York (2011)
13. Brown, K.: Cohomology of Groups. Graduate Texts in Mathematics. Springer New York

(1982)
14. Bähni, Y.: First Steps in Twisted Rabinowitz-Floer Homology (2021). DOI 10.48550/ARXIV.

2105.13934. URL https://arxiv.org/abs/2105.13934
15. Cieliebak, K.: Nonlinear functional analysis (2018). URL https://www.uni-augsburg.
de/en/fakultaet/mntf/math/prof/geom/books-and-scripts/

16. Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and Back: Symplectic Geometry of
Affine Complex Manifolds. American Mathematical Society colloquium publications. Amer-
ican Mathematical Society (2012)

17. Cieliebak, K., Frauenfelder, U.: A Floer homology for exact contact embeddings. Pacific
Journal of Mathematics 239(2), 251–316 (2009)

18. Cieliebak, K., Frauenfelder, U., Oancea, A.: Rabinowitz Floer homology and symplectic ho-
mology. Annales scientifiques de l’École Normale Supérieure Ser. 4, 43(6), 957–1015 (2010)

19. Cieliebak, K., Frauenfelder, U., Paternain, G.P.: Symplectic topology of Mañé’s critical values.
Geometry & Topology 14(3), 1765–1870 (2010)

101

https://arxiv.org/abs/2105.13934
https://www.uni-augsburg.de/en/fakultaet/mntf/math/prof/geom/books-and-scripts/
https://www.uni-augsburg.de/en/fakultaet/mntf/math/prof/geom/books-and-scripts/


102 References

20. Cieliebak, K., Frauenfelder, U., Zhao, L.: JC-invariants for planar two-center Stark-Zeeman
systems (2019)

21. Fauck, A.: Rabinowitz-Floer homology on Brieskorn manifolds. Ph.D. thesis, Humboldt-
Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät (2016). URL https:
//edoc.hu-berlin.de/handle/18452/18153

22. Frauenfelder, U.: The Arnold-Givental conjecture and moment Floer homology. International
Mathematics Research Notices 2004(42), 2179–2269 (2004)

23. Frauenfelder, U., van Koert, O.: The Restricted Three-Body Problem and Holomorphic Curves.
Pathways in Mathematics. Birkhäuser (2018)

24. Frauenfelder, U., Nicholls, R.: The moduli space of gradient flow lines and Morse homology
(2020)

25. Frauenfelder, U., Schlenk, F.: Hamiltonian dynamics on convex symplectic manifolds. Israel
Journal of Mathematics 159(1), 1–56 (2007)

26. Frauenfelder, U., Weber, J.: The shift map on Floer trajectory spaces. Journal of Symplectic
Geometry 19(2), 351–397 (2021)

27. Fukaya, K., Oh, Y.G., Ohta, H., Ono, K.: Kuranishi Structures and Virtual Fundamental Chains.
Springer Monographs in Mathematics. Springer, Singapore (2020)

28. Ghiggini, P., Niederkrüger, K.: On the symplectic fillings of standard real projective spaces
(2020)

29. Granja, G., Karshon, Y., Pabiniak, M., Sandon, S.: Givental’s Non-linear Maslov Index on
Lens Spaces. International Mathematics Research Notices (2020)

30. Guillemin, V., Sternberg, S.: Symplectic techniques in physics, first edition edn. Cambridge
University Press (1984)

31. Gutt, S.: Remarks on Symplectic Connections. Letters in Mathematical Physics 78(3), 307–328
(2006)

32. Hatcher, A.: Algebraic Topology. Cambridge University Press (2001)
33. Hofer, H., Wysocki, K., Zehnder, E.: Polyfold and Fredholm Theory, Ergebnisse der Mathe-

matik und ihrer Grenzgebiete, vol. 72. Springer (2021)
34. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser (1994)
35. Hryniewicz, U.L., Salomão, P.A.S.: Elliptic bindings for dynamically convex Reeb flows on

the real projective three-space. Calculus of Variations and Partial Differential Equations 55(2),
43 (2016)

36. Lang, S.: Fundamentals of Differential Geometry. Graduate Texts in Mathematics. Springer
New York (1999)

37. Latschev, J., Oancea, A. (eds.): Free Loop Spaces in Geometry and Topology: Including the
Monograph Symplectic Cohomology and Viterbo’s Theorem by Mohammed Abouzaid. IRMA
Lectures in Mathematics and Theoretical Physics. European Mathematical Society (2015)

38. Lee, J.M.: Introduction to Topological Manifolds, 2nd edn. Springer Science+Business Media
(2011)

39. Lee, J.M.: Introduction to Smooth Manifolds, 2nd edn. Graduate Texts in Mathematics.
Springer (2012)

40. Lee, J.M.: Introduction to Riemannian Manifolds, 2nd edn. Graduate Texts in Mathematics.
Springer International Publishing (2018)

41. Liu, H., Zhang, L.: Multiplicity of closed Reeb orbits on dynamically convex RP 2n�1 for
n � 2. Discrete and Continuous Dynamical Systems (2021)

42. McDuff, D., Salamon, D.: J-holomorphic Curves and Symplectic Topology, Colloquium Pub-
lications, vol. 52, 2nd edn. American Mathematical Society (2012)

43. McDuff, D., Salamon, D.: Introduction to Symplectic Topology, 3rd edn. No. 27 in Oxford
Graduate Texts in Mathematics. Oxford University Press (2017)

44. Meiwes, M., Naef, K.: Translated points on hypertight contact manifolds. Journal of Topology
and Analysis 10(02), 289–322 (2018)

45. Merry, W.J., Naef, K.: On the existence of infinitely many invariant Reeb orbits. Mathematische
Zeitschrift 283(1), 197–242 (2016)

46. Munkres, J.R.: Topology, 2nd edn. Pearson Education, Inc. (2000)

https://edoc.hu-berlin.de/handle/18452/18153
https://edoc.hu-berlin.de/handle/18452/18153


References 103

47. Ruck, K.: Tate homology and powered flybys (2022). DOI 10.48550/ARXIV.2203.16991.
URL https://arxiv.org/abs/2203.16991

48. Salamon, D.: Lectures on Floer Homology. Symplectic Geometry and Topology 7, 143–229
(1999)

49. Schwarz, M.: Morse Homology. Progress in Nonlinear Differential Equations and Their
Applications. Springer (1993)

50. da Silva, A.C.: Lectures on Symplectic Geometry, corrected 2nd printing edn. No. 1764 in
Lecture Notes in Mathematics. Springer (2008)

51. Takhtajan, L.A.: Quantum Mechanics for Mathematicians, Graduate Studies in Mathematics,
vol. 95. American Mathematical Society (2008)

52. Tu, L.W.: Introductory Lectures on Equivariant Cohomology. No. 204 in Annals of Mathe-
matics Studies. Princeton University Press (2020)

53. Uebele, P.: Periodic Reeb flows and products in symplectic homology. Journal of Symplectic
Geometry 17(4), 1201–1250 (2019)

54. Uljarevic, I.: Floer homology of automorphisms of Liouville domains. Journal of Symplectic
Geometry 15(3), 861–903 (2017)

55. Weibel, C.A.: An introduction to homological algebra, Cambridge studies in advanced math-
ematics, vol. 38. Cambridge University Press (1994)

56. Wittmann, J.: The Banach manifold Ck.M;N/. Differential Geometry and its Applications
63, 166–185 (2019)

https://arxiv.org/abs/2203.16991

	1 Introduction
	2 Hamiltonian Floer Homology
	2.1 Morse–Bott Homology
	2.2 Hamiltonian Dynamics
	2.3 Morse–Bott Homology for the Symplectic Action Functional
	2.4 Regular Energy Surfaces

	3 Twisted Rabinowitz–Floer Homology
	3.1 The Twisted Rabinowitz Action Functional
	3.2 Compactness of the Moduli Space of Twisted Negative Gradient Flow Lines
	3.3 Definition of Twisted Rabinowitz–Floer Homology
	3.4 Invariance of Twisted Rabinowitz–Floer Homology Under Twisted Homotopies
	3.5 Twisted Leaf-Wise Intersection Points

	4 Applications
	4.1 Existence of Noncontractible Periodic Reeb Orbits
	4.2 A Forcing Theorem for Twisted Periodic Reeb Orbits

	5 Further Steps in Twisted Rabinowitz–Floer Homology
	5.1 Forcing
	5.2 Invariance
	5.3 Cotangent Bundles
	5.4 Stark–Zeeman Systems

	A Twisted Loop Spaces
	B On the Nonexistence of the Gradient of the Twisted Rabinowitz Action Functional
	C Bubbling Analysis
	C.1 Rescaling
	C.2 Elliptic Bootstrapping
	C.3 Removal of Singularities

	D M-Polyfolds
	D.1 Scale Calculus
	D.2 M-Polyfold Setup for Morse–Bott Homology

	References

