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Abstract

A band is a connected compact manifold X together with a decomposition

∂X = ∂−X t ∂+X

where ∂±X are non-empty unions of boundary components. If X is equipped with a
Riemannian metric, the pair (X, g) is called a Riemannian band and the width of
(X, g) is defined to be the distance between ∂−X and ∂+X with respect to g.

Following Gromov’s seminal work on metric inequalities with scalar curvature,
the study of Riemannian bands with lower curvature bounds has been an active field
of research in recent years, which led to several breakthroughs on longstanding open
problems in positive scalar curvature geometry and to a better understanding of the
positive mass theorem in general relativity.

In the first part of this thesis we combine ideas of Gromov and Cecchini-Zeidler
and use the variational calculus surrounding so called µ-bubbles to establish a scalar
and mean curvature comparison principle for Riemannian bands with the property
that no closed embedded hypersurface which separates the two ends of the band
admits a metric of positive scalar curvature. The model spaces we use for this
comparison are warped product over scalar flat manifolds with log-concave warping
functions.

We employ ideas from surgery and bordism theory to deduce that, if Y is a
closed orientable manifold which does not admit a metric of positive scalar curvature,
dim(Y ) 6= 4 and Xn≤7 = Y × [−1, 1], the width of X with respect to any Riemannian
metric with scalar curvature ≥ n(n− 1) is bounded from above by 2π

n
. This solves,

up to dimension 7, a conjecture due to Gromov in the orientable case.
Furthermore, we adapt and extend our methods to show that, if Y is as before

and Mn≤7 = Y × R, then M does not admit a metric of positive scalar curvature.
This solves, up to dimension 7 a conjecture due to Rosenberg and Stolz in the
orientable case.

In the second part of this thesis we explore how these results transfer to the
setting where the lower scalar curvature bound is replaced by a lower bound on
the macroscopic scalar curvature of a Riemannian band. This curvature condition
amounts to an upper bound on the volumes of all unit balls in the universal cover of
the band.

We introduce a new class of orientable manifolds we call filling enlargeable and
prove: If Y is filling enlargeable, Xn = Y × [−1, 1] and g is a Riemannian metric on
X with the property that the volumes of all unit balls in the universal cover of (X, g)
are bounded from above by a small dimensional constant εn, then width(X, g) ≤ 1.

Finally, we establish that whether or not a closed orientable manifold is filling
enlargeable or not depends on the image of the fundamental class under the classifying
map of the universal cover.
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Notes on the text

This thesis grew in the writing and reflects my work on three different projects:

. Chapter 2 corresponds to my article [54], which is available as a preprint on
the arXiv and currently submitted for publication.

. Chapter 3 corresponds to parts of joint work [9] with Simone Cecchini and
Rudolf Zeidler, which is available as a preprint on the arXiv and currently
submitted for publication.

. Chapter 4 corresponds to my article [55], which was first published in the journal
Algebraic & Geometric Topology 22.1 (2022), pp. 405-432 by Mathematical
Science Publishers.
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Introduction

Given a smooth manifold X, a fundamental question in modern differential geometry
is whether or not X admits a smooth Riemannian metric with positive scalar
curvature. Furthermore, if such a metric g exists, it is intriguing to ask how
positivity of scal(X, g) manifests itself in other geometric properties of (X, g).

Over the years, multiple ways to approach these problems have been developed.
The first one is through index theory for spinor Dirac operators on spin manifolds
and originates in the work of Lichnerowicz [48].

He observed that, by the so called Schrödinger-Lichnerowicz formula

/D
2 = ∇∗∇+ scal

4 ,

the spinor Dirac operator on a closed Riemannian spin manifold is invertible if the
scalar curvature is uniformly positive. In combination with the Atiyah-Singer index
theorem one obtains topological obstructions to positive scalar curvature.

Building on this approach, and subsequent refinements due to Hitchin [40],
Gromov and Lawson [29, 30] were able to prove that the torus T n does not admit a
metric with positive scalar curvature.

In dimension n ≤ 7 this result had previously been established by Schoen and
Yau [63, 64]. Their approach is built on the observation that if Σ ⊂ (Xn, g) is a
closed embedded stable minimal hypersurface, the second variation formula for the
area functional yields∫

Σ
|∇Σψ|2 + 1

2 scal(Σ, g)ψ2 ≥
∫

Σ

1
2(scal(X, g) + |A|2)ψ2

for all ψ ∈ C∞(Σ), where A is the second fundamental form of Σ. If the scalar
curvature of (X, g) is positive, the right hand side of the equation is positive for
all ψ. By the Gauss-Bonnet theorem for n = 3, or a conformal change argument,
inspired by Kazdan and Warner [44], for n > 3, it follows that Σ itself admits a
metric with positive scalar curvature. If the homology of X is rich enough, this fact
can be used in an inductive way to provide obstructions to positive scalar curvature
and insight into the structure of metrics with non-negative scalar curvature on X.

Furthermore Gromov and Lawson [29] as well as Schoen and Yau [64] proved
that the existence of a metric with positive scalar curvature on a smooth manifold
X is preserved under surgery with codimension at least three. This result allows one
to study the question which manifolds of dimension at least five admit metrics with
positive scalar curvature via bordism theory. Consequently all simply connected
closed manifolds in dimension≥ 5 which admit a metric with positive scalar curvature
were completely classified in [29] and the work of Stolz [66].

11



12 Introduction

In dimension four there are additional obstructions and techniques coming from
Seiberg-Witten theory. They play a role in this work insofar as they often provide
counterexamples (see Remark 1.7) to conjectures regarding the structure of all
manifolds which do not admit metrics with positive scalar curvature (see Remark
1.7). For an overview on this topic we refer the reader to [58, Section 1.1.3].

If the manifold Xn≥2 is not closed, it admits a Riemannian metric g with
uniformly positive scalar curvature by Gromov’s h-principle. In order to encounter
interesting phenomena one has to adapt the fundamental questions accordingly. In
this case the metric is required to be complete and, if ∂X 6= 0, to fulfill certain
boundary conditions which are usually phrased in terms of mean curvature.1

This aspect of positive scalar curvature geometry is exemplified by a series of
results, mostly due to Gromov and Lawson [28, 30]. For now we refrain from stating
any result in their general form but focus instead on the special case of the torus.

Theorem 1.1 ([30, Corollary 6.13]). Let X = T n−1 × R and n ≥ 2. Then X does
not admit a complete metric with positive scalar curvature.

Theorem 1.1 is indicative of the general principle that obstructions to positive
scalar curvature on non-closed manifolds can be derived from obstructions on closed
submanifolds which are embedded in a suitable manner. This phenomenon persists
in codimension two. Although R2 admits a complete metric with positive scalar
curvature and hence T n−2×R2 does as well (the scalar curvature of a product metric
is equal to the sum of the scalar curvatures of its factors), the following holds true:

Theorem 1.2 ([30, 38, 75, Theorem 1.10]). Let X = T n−2 × R2 and n ≥ 3. Then
X does not admit a complete metric with uniformly positive scalar curvature.

Regarding boundary conditions, Gromov and Lawson observed that if a compact
manifold X admits a metric g with scal(X, g) > 0 and H(∂X, g) > 0, then the
double of X admits a metric with positive scalar curvature [28, Theorem 5.7]. This
result was later generalized by Almeida [1, Theorem 1.1] to allow for nonnegative
mean curvature (see also the recent work of Bär and Hanke [6]). Put together with
the fact that T n does not admit positive scalar curvature this implies:

Theorem 1.3 ([1, 28]). Let X = T n−1 × [−1, 1] and n ≥ 2. If g is a Riemannian
metric on X with scal(X, g) > 0, then

inf
x∈∂X

H(∂X, g)(x) < 0.

We adapt the viewpoint that Theorem 1.3 quantifies the fact that any metric
with positive scalar curvature on the open manifold T n−1 × (−1, 1) is necessarily
incomplete by Theorem 1.1. Recently, in an exciting development, a new way to
study boundary conditions for positive scalar curvature and to quantify the failure
of completeness on open manifolds has emerged. The following, so called, band width
estimate was proven by Gromov [31, Section 2] in dimension n ≤ 7 using the minimal
hypersurface approach of Schoen and Yau [64] and in all dimensions by Zeidler [75,
Theorem 1.4] and Cecchini [12, Theorem D] using Dirac operator methods:

1Throughout this thesis, H(∂X, g) is defined to be the trace of the second fundamental form
of ∂X with respect to the inner unit normal vector field. With this convention the unit sphere
Sn−1 ⊂ Rn has mean curvature (n− 1).
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Theorem 1.4 ([12, 31, 75]). Let X = T n−1×[−1, 1] and n ≥ 2. If g is a Riemannian
metric on X with scal(X, g) ≥ n(n− 1), then

width(X, g) := distg
(
T n−1 × {−1}, T n−1 × {1}

)
≤ 2π

n
. (1.0.1)

In the context of classical Riemannian geometry, Theorem 1.4 can be compared
with the Bonnet-Myers theorem, according to which a minimal geodesic in a complete
Riemannian manifold with Ricci curvature bounded from below by (n− 1)σ > 0 has
length at most π√

σ
. Cecchini [12, Theorem D] and Zeidler [76, Corollary 1.5] proved

that equality can not be attained in (1.0.1). The estimate, however, is sharp:

Example 1.5. For n ≥ 2 let X = T n−1× [−1, 1] and gT be the standard flat metric
on T n−1. Let ϕ(t) = cos

(
nt
2

) 2
n for t ∈ (−π

n
, π
n
). For any ε > 0 the warped product(

T n−1 ×
[
−π
n

+ ε,
π

n
− ε

]
, ϕ(t)2gT + dt2

)
has scal = n(n− 1) and width = 2π

n
− 2ε.

Theorem 1.4 should be contextualized among Theorem 1.1, 1.2 and 1.3. It is
important to point out that there is no direct formal implication between Theorem
1.1 and Theorem 1.4 as the latter only implies that T n−1 × R does not admit a
complete metric with uniformly positive scalar curvature. Nevertheless Zeidler [76,
Corollary 1.5] realized that the Dirac operator approach towards the band width
estimate could be adapted to prove Theorem 1.1 and Theorem 1.4 in unison.

For a complete Riemannian metric g on X = T n−2 × R2 with positive scalar
curvature Gromov [31, Section 2] established that the infimum of scal(X, g) in a
concentric ball of radius R in X decays at least quadratically with the radius R.
The key ingredient in his proof is Theorem 1.4. Hence it implies Theorem 1.2.

The relationship between Theorem 1.3 and Theorem 1.4 is more complex. On
the one hand the band width estimate in dimension n implies that T n does not
admit a metric with positive scalar curvature; otherwise there is a covering space
of the form (T n−1 × R, g) with uniformly positive scalar curvature. Together with
the aforementioned doubling result [1, Theorem 1.1, 6, 28, Theorem 5.7] for metrics
with scal > 0 and H ≥ 0, one recovers Theorem 1.3.

On the other hand one can analyze Example 1.5 to see that for ε→ 0 the mean
curvature of the corresponding metrics on T n−1×

[
−π
n

+ ε, π
n
− ε

]
diverges to −∞ as

their boundaries collapse to points. This behavior suggests that the width estimate
can be strengthened under the assumption of an additional lower bound for the
mean curvature. In this vein Cecchini and Zeidler [14] proved:

Theorem 1.6 ([14, Theorem 7.6]). For n ≥ 2 odd let X = T n−1 × [−1, 1] and g be
a Riemannian metric on X. If

. scal(X, g) ≥ n(n− 1),

. H(∂±X, g) ≥ ∓(n− 1) tan
(
n`±

2

)
for some −π

n
< `− < `+ < π

n
,2

then width(X, g) ≤ `+ − `−.
2In the following we denote ∂−X = Tn−1 × {−1} and ∂+X = Tn−1 × {1}
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The restriction to odd dimensions originates from technical difficulties in Dirac
operator approach to positive scalar curvature on manifolds with boundary as is
explained in [14, Section 1.4]. Whenever it applies Theorem 1.6 interpolates between
Theorem 1.3 and Theorem 1.4, which can be seen as its extremal cases.

Indeed, if g is a Riemannian metric on X = T n−1 × [−1, 1] with scal(X, g) ≥
n(n− 1), then H(∂±X) ≥ c for some constant c ∈ R. As (n− 1) tan

(
nt
2

)
→∞ for

t→ π
n
there are −π

n
< `− < `+ < π

n
such that H(∂±X, g) ≥ c ≥ ∓(n− 1) tan

(
n`±

2

)
.

By Theorem 1.6, one concludes that width(X, g) ≤ `+ − `− < 2π
n
.

Regarding Theorem 1.3 we could assume for a contradiction that the mean
curvature of (X, g) is non-negative. But then width(X, g) ≤ `+ − `− for `− = 0 and
`+ > 0 arbitrary by Theorem 1.6, contradicting the fact that width(X, g) > 0.

From a conceptual standpoint, Theorem 1.6 can be viewed as a scalar and mean
curvature comparison principle between arbitrary metrics on T n−1 × [−1, 1] and the
warped product

(M, gϕ) :=
(
T n−1 × [`−, `+] , ϕ(t)2gT + dt2

)
from Example 1.5. Standard results for warped products (see 2.2) imply:

. scal(M, gϕ) = n(n− 1),

. H(∂±M, gϕ) = ∓(n− 1) tan
(
n`±

2

)
,

. width(M, gϕ) = `+ − `−.

Thus Theorem 1.6 takes the following form: If scal(X, g) ≥ scal(M, gϕ) and
H(∂±X, g) ≥ H(∂±M, gϕ), then width(X, g) ≤ width(M, gϕ).

1.1 A set of Conjectures
It is only natural to ask, whether the results we have introduced for the torus hold
true for a larger class of, or perhaps all, manifolds which do not admit metrics with
positive scalar curvature. As we mentioned in the beginning, conjectures of this
kind tend to fail in dimension four, where the special obstructions coming from
Seiberg-Witten theory can be used to provide counterexamples. The following is an
instance of this phenomenon:

Remark 1.7. There exists a closed simply connected 4-manifold Y which does not
admit a metric of positive scalar curvature while Y ×S1 does (see [60, Counterexample
4.16]). But then Y × R, and consequently Y × R2, admit complete metrics with
uniformly positive scalar curvature.

In dimension 6= 4, the results for T n−1 are expected to hold in full generality:

Conjecture 1.8 ([59, Section 7]). Let Y n−1 be a closed manifold of dimension 6= 4
which does not admit a metric with positive scalar curvature. Then Y ×R does not
admit a complete metric with positive scalar curvature.
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Conjecture 1.9 ([59, Section 7]). Let Y n−2 be a closed manifold of dimension 6= 4
which does not admit a metric with positive scalar curvature. Then Y × R2 does
not admit a complete metric with uniformly positive scalar curvature.

Conjecture 1.10. Let Y n−1 be a closed manifold of dimension 6= 4 which does
not admit a metric with positive scalar curvature and X = Y × [−1, 1]. If g is a
Riemannian metric on X with scal(X, g) ≥ n(n− 1), then

inf
x∈∂X

H(∂X, g)(x) < 0.

Conjecture 1.11 ([31, 11.12 Conjecture C]). Let Y n−1 be a closed manifold of
dimension 6= 4 which does not admit a metric with positive scalar curvature and
X = Y × [−1, 1]. If g is a Riemannian metric on X with scal(X, g) ≥ n(n− 1), then

width(X, g) := distg(Y × {−1}, Y × {1}) ≤ 2π
n
.

Conjecture 1.12. Let Y n−1 be a closed manifold of dimension 6= 4 which does
not admit a metric with positive scalar curvature and X = Y × [−1, 1]. If g is a
Riemannian metric on X with

. scal(X, g) ≥ n(n− 1),

. H(∂±X, g) ≥ ∓(n− 1) tan
(
n`±

2

)
for some −π

n
< `− < `+ < π

n
,

then width(X, g) ≤ `+ − `−.

The following chart illustrates the connections and implications between these
conjectures, as they were discussed in the example Y = T n−1:

Conjecture 1.12

Conjecture 1.10 Conjecture 1.11 Conjecture 1.9

Conjecture 1.8

The dashed arrow represents the fact that, while Conjecture 1.11 does not imply
Conjecture 1.8, the techniques used to prove the former can likely be adapted to
prove the latter as is exemplified by [76, Corollary 1.5].

The main goal of the first part of this thesis (Chapters 2 and 3) is to prove all
of the conjectures above for orientable manifolds Y n−1 in dimension n ≤ 7. We
develop a general scalar and mean curvature comparison principle in Chapter 2,
which implies Conjecture 1.12 for orientable manifolds Y n−1 in dimension n ≤ 7.
Once this is established, Conjectures 1.10, 1.11 and 1.9 will follow suit, as is indicated
by the chart above.
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Furthermore, we modify our techniques in Chapter 3 to prove, what we call, a
partitioned scalar and mean curvature comparison principle, which implies Conjecture
1.8 for orientable manifolds Y n−1 in dimension n ≤ 7.

Throughout this endeavor, we follow ideas of Gromov [32, Sections 3.6 & 5] and
use a variation of the Schoen-Yau [64] approach to positive scalar curvature, where
minimal hypersurfaces are replaced by hypersurfaces of prescribed mean curvature,
which appear as the boundaries of so called µ-bubbles (see Section 2.3).

1.2 Overview of the Main Results
In this section we introduce the main results Theorem I and Theorem II of Chapters
2 and 3 respectively. We provide an overview over the context in which they were
developed and their various applications towards the conjectures listed in Section
1.1. We do not present any proofs at this stage.

All results and conjectures we have mentioned so far are concerned with manifolds
of the form X = Y × [−1, 1]. To study the underlying phenomena in a general
framework, Gromov introduced the concept of a band in [31, Section 2]. While he
originally provides a broader definition, the following is enough for our purposes:
Definition 1.13. A band is a connected compact manifold X together with a
decomposition

∂X = ∂−X t ∂+X,

where ∂±X are (non-empty) unions of boundary components. If X is equipped with
a Riemannian metric g, we call (X, g) a Riemannian band and denote by width(X, g)
the distance (with respect to g) between ∂−X and ∂+X.
Definition 1.14. A continuous map f : X → X ′ between two bands is called a
band map if it maps ∂−X to ∂−X ′ and ∂+X to ∂+X

′.
Remark 1.15. The standard example of a band is X = Y × [−1, 1], where Y is a
closed manifold. Such bands are called trivial throughout this thesis.

In [31, Section 2] Gromov observed that the band width estimate Theorem 1.4
holds true, not only for the trivial band T n−1 × [−1, 1], but for any oriented band
X which admits a band map of non-zero degree to T n−1 × [−1, 1]. Bands with this
property are usually called over-torical.

Following his lead, Cecchini [12] and Zeidler [75] proved the band width estimate
not only for Y × [−1, 1], where Y is spin and has non-vanishing Rosenberg index,
but for a general class of possibly non-trivial spin bands (see [75, Theorem 3.1]).

In [14, Theorem 7.6] they established the comparison result Theorem 1.6 for spin
bands with infinite vertical Â-area, which only occur in odd-dimensions.

What all of these bands have in common is the following:
Property A. No closed embedded hypersurface Σ ⊂ X which separates ∂−X and
∂+X admits a metric with positive scalar curvature.
Definition 1.16. Let X be a band and Σ ⊂ X be a closed embedded hypersurface.
We say that Σ separates ∂−X and ∂+X if no connected component of X\Σ contains
a path γ : [0, 1] → X with γ(0) ∈ ∂−X and γ(1) ∈ ∂+X. Furthermore Σ properly
separates ∂−X and ∂+X if every connected component of Σ can be connected to
both ∂+X and ∂−X inside X \ Σ.



Overview of the Main Results 17

The condition of being properly separating simply means that there are no
superfluous components. We observe that any separating hypersurface contains a
union of connected components which is properly separating (see Lemma 2.56).

Gromov [32, Section 3.6 & Section 5] pointed out that one can use a variation
of the Schoen-Yau [64] approach to prove the band width estimate for all oriented
bands with Property A in dimension ≤ 7.

Theorem 1.17 ([32, Section 3.6]). Let n ≤ 7 and Xn be an oriented band with
Property A. If g is a Riemannian metric on X with scal(X, g) ≥ n(n− 1), then

width(X, g) ≤ 2π
n
.

The idea of Gromov’s proof can be summarized as follows: Since scal(X, g) > 0
and X has Property A the band can not contain a stable minimal hypersurface
which separates ∂−X and ∂+X by the work of Schoen and Yau.

However, the only way to guarantee the existence of such an object is to assume
that H(∂X, g) ≥ 0, which implies that ∂−X and ∂+X act as barriers for the variation
of area. Notice, that one could prove Theorem 1.3 for X in this way.

Gromov realized that, if the band is wide enough, one can compensate for the
negativity of H(∂X, g) by augmenting the usual area functional with a contribution
from a potential function h : X → R. If one assumes for a contradiction that
width(X, g) > 2π

n
a clever choice of h guarantees the existence of a minimizer (call

µ-bubble) for such a variational problem.
In dimension ≤ 7 classical regularity results ensure that the boundary Σ ⊂ X

of this minimizer is a closed smooth embedded hypersurface of prescribed mean
curvature, ie H(Σ) = h

∣∣∣
Σ
, which separates ∂−X and ∂+X.

The potential can be chosen in such a way that the contributions in terms of h in
the second variation formula balance out with the positivity of scal(X, g). It follows
that Σ itself admits a metric with positive scalar curvature, which is a contradiction.

Remark 1.18. If X is a 2-dimensional band, the condition that no closed embedded
hypersurface which separates ∂−X and ∂+X admits a metric with positive scalar
curvature is vacuous. Hence every 2-dimensional band has Property A.

The proof of Theorem 1.17, as it is sketched above, is simplified in this case.
As before one obtains a minimizer to a suitable variational problem if the band is
assumed to be too wide. Its boundary Σ (a collection of circles) separates ∂−X and
∂+X and by stability and the second variational formula one concludes −∆Σ > 0.
This is the desired contradiction.

Of course, in dimension 2, scalar curvature is equal to twice the sectional curvature
and hence any statement we will derive about 2-dimensional bands with lower scalar
curvature bounds can also be obtained via the classical means of triangle comparison
and analysis of Jacobi fields.

Nevertheless it is conceptually pleasing to see that µ-bubbles can be used very
effectively in the study of 2-dimensional manifolds with positive curvature.

In Chapter 2 we use the µ-bubble approach to establish a general scalar and
mean curvature comparison principle, inspired by [14, Theorem 7.6], for oriented
bands with Property A in dimension ≤ 7. As model spaces for this comparison, we
use a class of warped products with constant scalar curvature (see Example 1.5).
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Definition 1.19. A smooth function ϕ : [a, b]→ R+ is called log-concave if

d2

dt2
log(ϕ)(t) =

(
ϕ′(t)
ϕ(t)

)′
≤ 0

for all t ∈ [a, b]. If the inequality is strict we say that ϕ is strictly log-concave. In
case of equality we say that ϕ is log-affine.

Definition 1.20. Let (N, gN ) be a closed Riemannian manifold with constant scalar
curvature. A warped product(

M, gϕ) = (N × [a, b], ϕ2(t)gN + dt2
)

with warping function ϕ : [a, b] → R+ is called a model space if scal(M, gϕ) is
constant and ϕ is strictly log-concave or log-affine.

Theorem I. Let n ≤ 7 and Xn be an oriented band with Property A. Let g be a
Riemannian metric on X and (Mn, gϕ) be a model space over a scalar flat base with
warping function ϕ : [a, b]→ R+. If

. scal(X, g) ≥ scal(M, gϕ),

. H(∂±X, g) ≥ H(∂±M, gϕ),

we distinguish two cases:

1. If ϕ is strictly log-concave, then width(X, g) ≤ width(M, gϕ).

2. If ϕ is log-affine, then (X, g) is isometric to a warped product(
N̂ × [c, d], ϕ2gN̂ + dt2

)
,

where (N̂ , gN̂) is a closed Ricci flat Riemannian manifold.

Via the choice of model space Theorem I applies to a variety of geometric
situations and provides results for bands with negative lower scalar curvature bounds
as well. In particular, we can estimate the width of (X, g) if scal(X, g) ≥ −n(n− 1)
and H(∂+X, g) > (n− 1) (see Corollary 2.9). An in depth discussion of Theorem I
and its various applications is included in Section 2.1.

For now, we point out that the warping function ϕ(t) = cos
(
nt
2

) 2
n from Example

1.5 is strictly log-concave. Hence Theorem I implies the following generalization of
Theorem 1.6 for bands with Property A in dimension n ≤ 7.

Theorem 1.21. Let n ≤ 7 and X be an oriented band with Property A. Let g be a
Riemannian metric on X. If

. scal(X, g) ≥ n(n− 1)

. H(∂±X, g) ≥ ∓(n− 1) tan
(
n`±

2

)
for some −π

n
< `− < `+ < π

n
,

then width(X, g) ≤ `+ − `−.
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In the discussion after Theorem 1.6 we explained that it implies Theorem 1.4
with strict inequality. Using the same idea, one can show that Theorem 1.21 yields
the following improved version of Theorem 1.17:

Corollary 1.22. Let n ≤ 7 and Xn be an oriented band with Property A. If g is a
Riemannian metric on X with scal(X, g) ≥ n(n− 1), then

width(X, g) < 2π
n
.

Theorem 1.21 is related to Conjecture 1.12. To bridge the gap between them we
investigate under which conditions on Y , the trivial band Y × [−1, 1] has Property
A in Sections 2.1.2 and 2.5.1. Our main result in this vein is:

Theorem 1.23. Let (n−1) 6= 4 and Y n−1 be a closed orientable manifold which does
not admit a metric with positive scalar curvature. Then Y × [−1, 1] has Property A.

We combine Corollary 1.22 and Theorem 1.23 to establish:

Corollary 1.24. Let (n−1) 6= 4 and n ≤ 7. Let Y n−1 be a closed orientable manifold
which does not admit a metric with positive scalar curvature and X = Y × [−1, 1].
If g is a Riemannian metric on X with scal(X, g) ≥ n(n− 1), then

width(X, g) < 2π
n
.

Furthermore, we can use the doubling argument of Gromov and Lawson [28] and
Almeida [1] to conclude the following:

Corollary 1.25. Let (n−1) 6= 4 and n ≤ 7. Let Y n−1 be a closed orientable manifold
which does not admit a metric with positive scalar curvature and X = Y × [−1, 1].
If g is a Riemannian metric on X with scal(X, g) ≥ n(n− 1), then

inf
x∈∂X

H(∂X, g)(x) < 0.

Finaly, we notice that for R > 0 small enough and Xn = Y n−2×R2 the manifold
X\UR(Y × {0}) is diffeomorphic to Y × S1 × [0,∞). We employ Corollary 1.22 to
establish the following result with regards to Conjecture 1.9:

Corollary 1.26. Let (n−2) 6= 4 and n ≤ 7. Let Y n−2 be a closed orientable manifold
which does not admit a metric with positive scalar curvature and X = Y ×R2. Then
X does not admit a complete metric with uniformly positive scalar curvature.

In Chapter 3 we combine the techniques we developed in Chapter 2 with ideas
of Cecchini and Zeidler from [10, 75] to prove Theorem II, a partitioned scalar and
mean curvature comparison principle for bands with Property A. Theorem II will
then be used to establish Conjecture 1.8 for orientable manifolds in dimension n ≤ 7.
The results of Chapter 3 were obtained in joint work with Cecchini and Zeidler and
correspond to parts of the preprint [9].

Gromov and Lawson [30, Section 6] first proved Conjecture 1.8 for enlargeable
spin manifolds. Cecchini [11] and Zeidler [76] showed that these results can be
generalized for spin manifolds with non-vanishing Rosenberg index. Recently, new
results in this vein appeared in [15], in connection with the positive mass theorem.
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In particular [15, Theorem 1.1] implies Conjecture 1.8 for closed aspherical manifolds
of dimension ≤ 5, which do not admit positive scalar curvature by [16, 33].

We motivate the main idea behind Theorem II and our approach to Conjecture
1.8. Let Xn = Y × R be as in Conjecture 1.8 with Y orientable and n ≤ 7. Assume
for a contradiction that g is a complete Riemannian metric on X with positive scalar
curvature. The band width estimate Conjecture 1.11 does not imply Conjecture
1.8 since scal(X, g) may not be uniformly positive. However, if we consider a
compact segment of (X, g), for example Y × [−1, 1] ⊂ X, the scalar curvature is
uniformly positive on this segment and non-negative on the segments Y × [−C,−1]
and Y × [1, C] for any C > 1. On the other hand, our partitioned comparison result
Theorem II will imply that the width of the segments Y × [−C,−1] and Y × [1, C]
is bounded from above by a constant, which depends on the uniform lower bound on
scal(X, g) in Y × [−1, 1] and the width of Y × [−1, 1]. Since the metric g is assumed
to be complete, we can choose C > 1 large enough to produce a contradiction.

As before, we work in the general setting where (X, g) has Property A. Further-
more, we assume that (X, g) is partitioned into multiple segments with possibly
different lower scalar curvature bounds.

Definition 1.27. Let X be a band and Σi, for i ∈ {1, . . . , k}, be closed embedded
hypersurfaces such that Σ1 properly separates ∂−X and ∂+X and Σi properly
separates Σi−1 and ∂+X for i ∈ {2, . . . , k}. We call (X,Σi, k) a partitioned band
and denote by Vj, for j ∈ {1, . . . , k + 1}, the segments of X bounded by Σj−1 and
the Σj, where Σ0 = ∂−X and Σk+1 = ∂+X.

Theorem II. Let n ≤ 7 and (Xn,Σi, k) be an oriented partitioned band with Property
A. Let g be a Riemannian metric on X and (Mj, gϕj

) for j ∈ {1, . . . , k+1} be strictly
log-concave model spaces over a scalar flat base. If

. scal(Vj, g) ≥ scal(Mj, gϕj
) for all j ∈ {1, . . . , k + 1},

. H(∂−X, g) ≥ H(∂−M1, gϕ1) and H(∂+X, g) ≥ H(∂+Mk+1, gϕk+1),

. H(∂+Mj, gϕj
) = −H(∂−Mj+1, gϕj+1) for all j ∈ {1, . . . , k},

then width(Vj, g) ≤ width(Mj, gϕj
) for at least one j ∈ {1, . . . , k + 1}.

Via a suitable choice of model spaces, Theorem II implies the following result
concerning a Riemannian band with Property A and a positively curved segment.

Theorem 1.28. Let n ≤ 7 and (Xn,Σi, 2) be an orientable partitioned band with
Property A. Let g be a Riemannian metric on X and κ > 0 be a positive constant. If

. scal(V2, g) ≥ κn(n− 1),

. scal(X, g) ≥ 0,

and we denote d := width(V2, g) < 2π√
κn
, then

min{width(V1, g),width(V3, g)} < ` = 2√
κn

cot
(√

κnd

4

)
.
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In combination with Theorem 1.23, a deformation result of Kazdan [45] and the
Cheeger-Gromoll splitting theorem, Theorem 1.28 yields:

Theorem 1.29. Let (n−1) 6= 4 and n ≤ 7. Let Y n−1 be a closed orientable manifold
which does not admit a metric with positive scalar curvature and X = Y × R. Then
X does not admit a complete metric with positive scalar curvature. Moreover, if
g is a metric on X with non-negative scalar curvature, then (X, g) is isometric to
(Y × R, gY + dt2), where gY is a Ricci flat metric on Y .

Thus we established Conjectures 1.8-1.12 for orientable manifolds in dimension
n ≤ 7. The dimensional restriction only enters the argument through the regularity
theory for µ-bubbles. If this issue could be circumvented, our methods could be
used to prove Conjectures 1.8-1.12 for orientable manifolds in all dimensions.

1.3 Macroscopic Scalar Curvature
In the second part of this thesis (Chapter 4) we explore a different aspect of positive
scalar curvature and the band width estimate Theorem 1.4. Instead of asking
whether the torus can be replaced by other manifolds which do not admit positive
scalar curvature, we ask whether the curvature condition itself can be replaced by a
lower bound on the macroscopic scalar curvature of (T n−1 × [−1, 1], g). This notion
of curvature was introduced by Larry Guth in [34]. We summarize:

The value scal(X, g)(x) of the scalar curvature at a point x in a Riemannian
manifold (Xn, g) appears as a coefficient in the Taylor expansion of the volume of a
geodesic ball of radius R around x:

vol(BR(x)) = ωnR
n

(
1− scal(X, g)(x)

6(n+ 2) R2 +O(R4)
)
, (1.3.1)

where ωn is the volume of the unit ball in euclidean space Rn. It follows that, if the
scalar curvature of (X, g) at a point x is positive, there is a λ(X, g, x) > 0 such that
all R-balls in (X, g) centered at X with R < λ(X, g, x) have vol(BR(x)) < ωnR

n.
Hence, for R small enough, the scalar curvature of (X, g) at X can be quantified

by comparing the volumes of R-balls around x with their counterparts in Sn, Rn

and Hn, the standard simply connected manifolds with constant scalar curvature. If
we carry out this volume comparison (see [34, Section 7]) for all radii R > 0 we get:

Definition 1.30. Let (Xn, g) be a Riemannian manifold and x ∈ X. The macro-
scopic scalar curvature at scale R at x, denoted by scalR(x), is defined to be the
number S such that the volume of the ball of radius R around any lift of x in the
universal cover of X equals the volume of the ball of radius R in a simply connected
space with constant curvature and with scalar curvature S.

The universal cover is used to ensure that the macroscopic scalar curvature of a
flat torus is zero at any scale. If X is closed and one does not consider balls in the
universal cover, but in (X, g) itself, then the macroscopic scalar curvature would be
positive at a large enough scale. By (1.3.1), we have

lim
R→0

scalR(X, g)(x) = scal(X, g)(x). (1.3.2)
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The study of macroscopic scalar curvature originates from [24]. In this work,
Gromov’s main conceit is the following: in a complete Riemannian manifold which
is large, in a suitable sense, compared to Rn, one can always find a ball of at least
euclidean volume for any radius R > 0. To make this precise he introduced several
notions of largeness for complete Riemannian manifolds and conjectured that each
of them is sufficient for the existence of such large balls.

Phrased in terms of the macroscopic scalar curvature of a closed Riemannian
manifold, this yields the following intriguing conjecture:

Conjecture 1.31 ([24]). Let (Xn, g) be a closed Riemannian manifold. If the
universal cover (X̃, g̃) is large, then

inf
x∈X

scalR(X, g)(x) ≤ 0

at all scales R > 0. In particular, there is a point x0 ∈ X with scal(X, g)(x0) ≤ 0.

Remark 1.32. The conclusion that the scalar curvature of (X, g) has to vanish at
some point is based on two observations:

. For a closed Riemannian manifold (X, g) with positive scalar curvature, we can
find a uniform constant λ(X, g) such that all R-balls in (X, g) with R < λ(X, g)
have vol(BR(x)) < ωnR

n (compare the paragraph after (1.3.1)).

. For R small enough the R-balls in (X, g) agree with the R-balls in (X̃, g̃).

Furthermore, many notions of largeness introduced in [24] are preserved under
bi-Lipschitz diffeomeorphisms. Since any two Riemannian metrics on a closed smooth
manifold X are in bi-Lipschitz correspondence (the identity is a Lipschitz map), it
follows that whether or not (X̃, g̃) is large, often does not depend on the particular
choice of g. The following can be viewed as special case of Conjecture 1.31:

Conjecture 1.33 ([24]). Let Xn be a closed aspherical manifold. If g is any
Riemannian metric on X, then

inf
x∈X

scalR(X, g)(x) ≤ 0

at all scales R > 0. In particular, there is a point x0 ∈ X with scal(X, g)(x0) ≤ 0.

The conclusion that a closed aspherical manifold Xn does not admit a metric
with positive scalar curvature has been established in certain cases. By work of
Rosenberg [57, Theorem 3.5] it holds true whenever π1(X) satisfies the strong
Novikov conjecture. Furthermore, by recent work of Chodosh and Li [16] and
Gromov [33], it holds true if n ≤ 5.

Conjecture 1.33 on the other hand has not been established for any closed
aspherical manifold and is widely considered to be out of reach with the present
methods.

One possible way to approach Conjecture 1.33 is to study quantitative versions
of it ie instead of searching for a ball of radius R in (X̃, g̃) with volume ≥ ωnR

n,
one replaces ωn with a smaller constant εn. Remarkable breakthroughs in this vein
have been made by Guth [35–37]. In [36, Corollary 3] he proved the following:
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Theorem 1.34 ([36]). For every n ≥ 1 there is a constant εn > 0 such that the
following holds. Let Xn be a closed aspherical manifold and g any Riemannian
metric on X. Then for every R > 0 there is a point x in the universal cover (X̃, g̃)
such that

vol(BR(x)) ≥ εnR
n.

Remark 1.35. We point out that, by rescaling the metric, it suffices to prove
Theorem 1.34 for any fixed radius R > 0. For simplicity, we work with R = 1 from
now on.

One can rephrase Theorem 1.34 to end up with:

Theorem 1.36 ([36]). For every n ≥ 1 there are constants εn > 0 and Sn > 0 such
that the following holds. No closed aspherical manifold Xn admits a Riemannian
metric g with the property that scal1(X, g) > Sn or equivalently that all unit balls in
the universal cover (X̃, g̃) have volume less than εn.

This result does not suffice to prove the non-existence of metrics with positive
scalar curvature on closed aspherical manifolds. If one rescales it to understand
scalR(X, g), one obtains infx∈X scalR(X, g)(x) ≤ SnR

−2 which, in the limit R→ 0,
yields nothing (compare (1.3.2)).

It does, however, imply the systolic inequality for a closed aspherical manifold
Xn, according to which there is a dimensional constant Cn such that, for any metric
g on X, the length of the shortest non-trivial loop in (X, g) is bounded from above
by Cnvol(X, g) 1

n . This result was first established by Gromov in [23].
Based on this observation, Guth [34, Section 7] proposed that the notion of

macroscopic scalar curvature can be used as a metaphor to connect systolic geometry
and the study of Riemannian manifolds with positive scalar curvature. Following this
idea, one tries to identify results or conjectures concerning Riemannian manifolds
with positive scalar curvature which, at least quantitatively, have their analogs in
the macroscopic setting. In this sense Theorem 1.36 is the macroscopic analog of the
conjecture that no closed aspherical manifold admits a metric with positive scalar
curvature.

In Chapter 4 we investigate a macroscopic analog of the band width estimate
Theorem 1.4 and Conjecture 1.11. The main conceit is that, if a closed manifold
Y n−1 does not admit a Riemannian metric with scal1 > Sn−1 and g is a Riemannian
metric on X = Y × [−1, 1] with scal1(X, g) > Sn, then the width of (X, g) should
be bounded from above by a uniform constant, which is independent of Y or g.

We proceed in two steps. First, we observe that Theorem 1.36 holds not only for
aspherical manifolds but also for enlargeable manifolds in the sense of [8, 13, 30]. We
define a class of closed orientable manifolds we call filling enlargeable by combining
the notion of the filling radius of a complete Riemannian manifold [23] with the
definition of enlargeability. We prove that this class has the following properties:

. If a closed orientable manifold Y is enlargeable or aspherical, then it is filling
enlargeable as well,

. If a closed orientable manifold is filling enlargeable, then Y × S1 is filling
enlargeable as well.

. Theorem 1.36 holds true for filling enlargeable manifolds,
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We then use a doubling trick, inspired by [1, Theorem 1.1, 28, Theorem 5.7] and
their application to Theorem 1.3, to prove the following main result of Chapter 4:

Theorem III. For all n ≥ 1 there is a constant εn > 0 such that the following
holds. Let Y n−1 be a closed filling enlargeable manifold and X = Y × [−1, 1]. If g
is a Riemannian metric on X with the property that all unit balls in the universal
cover (X̃, g̃) have volume less than 1

2εn, then width(X, g) ≤ 1.

Furthermore, to put this result into perspective, we investigate how the class of
filling enlargeable manifolds fits into the pantheon of large manifolds. We adapt
ideas of Brunnbauer and Hanke [8] to prove that whether or not a closed oriented
manifold is filling enlargeable, only depends on the image of its fundamental class
under the classifying map of the universal cover. In particular we construct a vector
subspace Hsm

n (BΓ;Q) ⊂ Hn(BΓ;Q) of ’small classes’ in the rational group homology
of a finitely generated group Γ such that:

Theorem 1.37. Let Y n be a closed oriented manifold. Then Y is filling enlargeable
if and only if φ∗[Y ] ∈ Hn(Bπ1(Y );Q) is not contained in Hsm

n (Bπ1(Y );Q).

As a consequence, we obtain the following metric characterization of rationally
essential manifolds with residually finite fundamental groups:

Corollary 1.38. A closed oriented manifold Y n with residually finite fundamental
group is rationally essential if and only if it is filling enlargeable.

1.4 Organization of this thesis
In Chapter 2 we develop the scalar and mean curvature comparison principle and
prove Theorem I in Section 2.4. We discuss its applications in Section 2.1.1 and list
the topological ingredients for Theorem 1.23 in Section 2.1.2. In Section 2.2 we recall
basic properties of warped products and motivate our choice of model spaces for the
comparison principle. In Section 2.3 we discuss µ-bubbles, the variational theory
surrounding them and some of the main tools we use to understand the geometry of
bands with lower scalar curvature bounds. In Section 2.5.1 we prove Theorem 1.23.
Furthermore, we investigate non-trivial bands with Property A and prove that the
trivial band over a closed aspherical 4-manifold has Property A.

In Chapter 3 we use the techniques and results developed in Chapter 2 in
combination with ideas from [10, 76] to prove the partitioned comparison principle
Theorem II and Theorem 1.29.

The main result of Chapter 4 is Theorem III, which will be proved in Section
4.3 after a discussion of largeness properties of manifolds in Section 4.2, where the
notion of filling enlargeability is introduced.



Scalar and Mean Curvature
Comparison via µ-Bubbles

The main goal of this chapter, which corresponds to the preprint [54] available on the
arXiv, is to prove Theorem I, our scalar and mean curvature comparison principle.
Furthermore we show that Theorem I implies Conjecture 1.12 for orientable manifolds
Y in dimension n ≤ 7. As we indicated in Section 1.1, Conjectures 1.9, 1.10 and
1.11 will follow suit for these manifolds.

So far, Conjecture 1.12 has been established for spin bands Xn with infinite
vertical Â-area by Cecchini and Zeidler [14, Theorem 7.6]. This class of, possibly
non-trivial, odd-dimensional spin bands includes in particular X = Y × [−1, 1],
where Y is a closed enlargeable spin manifold. Hence Conjecture 1.12 holds true for
any even dimensional torus.

The methods in [14] are based around a variation of the index theoretic approach
to positive scalar curvature, where the classical spinor Dirac operator is modified
in terms of potential functions. Cecchini and Zeidler had previously used these
techniques [12, 75] to prove Conjecture 1.11 for closed spin manifolds with non-
vanishing Rosenberg index.

We will approach Conjecture 1.12 in two steps, as was outlined in Section 1.2.
First, we establish Theorem I as a general principle regarding scalar and mean curva-
ture comparison between Riemannian bands with Property A and warped products
over closed scalar flat Riemannian manifolds. It provides a general framework, in the
context of which the connections between previous results, regarding Riemannian
bands with lower scalar curvature bounds, become apparent.

Via a choice of model space Theorem I implies Conjecture 1.12 for oriented bands
Xn with Property A in dimension n ≤ 7. The second step will be to investigate which
topological conditions on a band X ensure that it has Property A. In particular, we
prove Theorem 1.23 ie if Y n−1 is closed orientable, n− 1 6= 4 and Y does not admit
a metric with positive scalar curvature, then Xn = Y n−1 × [−1, 1] has Property A.

In dimension 4, where Seiberg-Witten theory provides counterexamples to Con-
jecture 1.12 (see Remark 1.7), we prove that X = Y 4 × [−1, 1] has Property A if Y
is a closed aspherical manifold.

The formulation of Theorem I and our choice of model spaces is inspired by [14].
However, instead of relying on the Dirac operator, we follow ideas of Gromov, which
already appear in [26, Section 55

6 ] and are developed further in [31, Section 9] and
[32, Section 5], and use a version of the minimal surface approach involving so called
µ-bubbles (see Section 2.3). Here the usual area functional is modified in terms of a
potential function.

25
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It is important to point out that the potential functions we use in this augmenta-
tion of the minimal surface approach also appear in the work of Cecchini and Zeidler,
where they are used to modify the Dirac operator. This parallelism indicates further
connections between these new methods.

We conclude these introductory remarks by reminding the reader of our mean
curvature convention:

Remark 2.1. Let (X, g) be a Riemannian manifold with boundary ∂X 6= ∅. In
this article H(∂X, g) denotes the trace of the second fundamental form of ∂X with
respect to the inner unit normal vector field. With this convention the unit sphere
Sn−1 ⊂ Rn has mean curvature (n− 1).

2.1 Comparison Principle
The following section contains an in depth discussion of Theorem I, the main result
of this chapter. We review its statement and survey its applications by providing
various examples of model spaces and bands with Property A. Throughout this
section we restate definitions and results from the Introduction for the convenience
of the reader.

Definition 1.19. A smooth function ϕ : [a, b]→ R+ is called log-concave if

d2

dt2
log(ϕ)(t) =

(
ϕ′(t)
ϕ(t)

)′
≤ 0

for all t ∈ [a, b]. If the inequality is strict we say that ϕ is strictly log-concave. In
case of equality we say that ϕ is log-affine.

Definition 1.20. Let (N, gN ) be a closed Riemannian manifold with constant scalar
curvature. A warped product(

M, gϕ) = (N × [a, b], ϕ2(t)gN + dt2
)

with warping function ϕ : [a, b] → R+ is called a model space if scal(M, gϕ) is
constant and ϕ is strictly log-concave or log-affine.

Theorem I. Let n ≤ 7 and Xn be an oriented band with Property A. Let g be a
Riemannian metric on X and (Mn, gϕ) be a model space over a scalar flat base with
warping function ϕ : [a, b]→ R+. If

. scal(X, g) ≥ scal(M, gϕ),

. H(∂±X, g) ≥ H(∂±M, gϕ),

we distinguish two cases:

1. If ϕ is strictly log-concave, then width(X, g) ≤ width(M, gϕ).

2. If ϕ is log-affine, then (X, g) is isometric to a warped product(
N̂ × [c, d], ϕ2gN̂ + dt2

)
,

where (N̂ , gN̂) is a closed Ricci flat Riemannian manifold.
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Remark 2.2. It is expected that part (1) of the Theorem I is rigid as well ie for
ϕ strictly log-concave we have width(X, g) = width(M, gϕ) if and only if (X, g) is
isometric to a warped product(

N̂ × [a, b], ϕ2gN̂ + dt2
)
,

where (N̂ , gN̂) is a closed Ricci flat Riemannian manifold. For spin bands with
Â(∂−X) 6= 0 this holds true by work of Cecchini and Zeidler [14, Theorem 8.3,
Theorem 9.1]. In our case there are some obstacles yet to be overcome (see Remark
2.31). On the other hand the log-affine case ie part (2) of Theorem I is not treated
in [14].

Remark 2.3. Even if rigidity in (1) can be established, both parts of Theorem
I have to be treated separately, as the width of the band plays a role only in the
strictly log-concave case. We point out that we have no control over the width of
the band in part (2) ie the log-affine case and X can be isometric to a model space
of arbitrary finite width.

Remark 2.4. It turns out that Theorem I holds true for any oriented band X in
dimension n = 2, where the condition that no closed embedded hypersurface admits
a positive scalar curvature metric is vacuous. This will become apparent in Section
2.4 (see Remark 2.54).

2.1.1 Model Spaces and Applications
To understand the different types of results we can deduce from Theorem I, we
consider five exemplary model spaces. Throughout this subsection (Nn−1, gN) is
fixed to be a closed scalar flat Riemannian manifold.

For −π
n
< `− < `+ < π

n
and the ϕ(t) = cos

(
nt
2

) 2
n (strictly log-concave), the

warped product
(N × [`−, `+], ϕ2(t)gN + dt2)

is a model space with scalar curvature n(n− 1). Plugging this into part (1) yields
the following result which was already mentioned in the introduction:

Theorem 1.21. Let n ≤ 7 and X be an oriented band with Property A. Let g be a
Riemannian metric on X. If

. scal(X, g) ≥ n(n− 1)

. H(∂±X, g) ≥ ∓(n− 1) tan
(
n`±

2

)
for some −π

n
< `− < `+ < π

n
,

then width(X, g) ≤ `+ − `−.

In dimension n ≤ 7, Theorem 1.21 generalizes Theorem 1.6, as T n−1× [−1, 1] has
Property A (see 2.1.2). In the discussion after Theorem 1.6 we saw that Theorem
1.6 implies Theorem 1.4 since (n− 1) tan

(
nt
2

)
→∞ as t→ π

n
.

The same observation yields that Theorem 1.21 implies the following version of
Gromov’s band width inequality, which upgrades Theorem 1.17 to strict inequality.
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Corollary 1.22. Let n ≤ 7 and Xn be an oriented band with Property A. If g is a
Riemannian metric on X with scal(X, g) ≥ n(n− 1), then

width(X, g) < 2π
n
.

Furthermore Theorem 1.21 implies a generalization of Theorem 1.3 for n ≤ 7:

Corollary 2.5. Let n ≤ 7 and Xn be an oriented band with Property A. If g is a
Riemannian metric on X with scal(X, g) ≥ n(n− 1), then

inf
x∈∂+X

H(∂+X, x) + inf
x∈∂−X

H(∂−X, x) < 0.

For 0 < `− < `+ <∞ and ϕ(t) = t
2
n (strictly log-concave) the warped product

(N × [`−, `+], ϕ2(t)gN + dt2)

is a scalar flat model space. Plugging this into part (1) yields:

Theorem 2.6. Let n ≤ 7 and Xn be an oriented band with Property A. Let g be a
Riemannian metric on X. If

. scal(X, g) ≥ 0

. H(∂±X, g) ≥ ±2(n−1)
n`±

for some 0 < `− < `+ <∞,

then width(X, g) ≤ `+ − `−.

Since 2(n−1)
nt
→∞ as t→ 0 and 2(n−1)

nt
→ 0 as t→∞, Theorem 2.6 allows one

to estimate the width of a Riemannian band (X, g) with Property A if its scalar
curvature is nonnegative and ∂+X (or ∂−X) is strictly mean convex.

Corollary 2.7. Let n ≤ 7 and Xn be an oriented band with Property A. If g is a
Riemannian metric on X with scal(X, g) ≥ 0 and H(∂+X) > 0, then

width(X, g) < 2(n− 1)
n
(
infx∈∂+X H(∂+X, x)

) .
For 0 < `− < `+ < ∞ and ϕ(t) = sinh(nt2 ) 2

n (strictly log-concave) the warped
product

(N × [`−, `+], ϕ2(t)gN + dt2)

is a model space with scalar curvature −n(n− 1). Plugging this into part (1) yields:

Theorem 2.8. Let n ≤ 7 and Xn be an oriented band with Property A. Let g be a
Riemannian metric on X. If

. scal(X, g) ≥ 0

. H(∂±X) ≥ ±(n− 1) coth
(
n`±

2

)
for some 0 < `− < `+ <∞,

then width(X, g) ≤ `+ − `−.
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Since (n− 1) coth
(
nt
2

)
→∞ as t→ 0 and (n− 1) coth

(
nt
2

)
→ n− 1 as t→∞,

Theorem 2.8 allows one to estimate the width of a Riemannian band (X, g) with
Property A if its scalar curvature is bounded from below by −n(n− 1) and ∂+X
(or ∂−X) has mean curvature > n − 1. For T n−1 × [−1, 1] this had already been
observed by Gromov [27, Section 4]:

Corollary 2.9. Let n ≤ 7 and Xn be an oriented band with Property A. If g is a
Riemannian metric on X with scal(X, g) ≥ −n(n− 1) and H(∂+X) > n− 1, then

width(X, g) < 2
n

arcoth
( 1
n− 1 inf

x∈∂+X
H(∂+X, x)

)
.

For −∞ < `− < `+ <∞ and ϕ(t) = 1 (log-affine) the warped product

(N × [`−, `+], gN + dt2)

is a scalar flat model space. Plugging this into part (2) yields the following rigidity
result, which is probably well known to experts although we were not able to find a
reference for it in the literature.

Theorem 2.10. Let n ≤ 7 and Xn be an oriented band with Property A. Let g be a
Riemannian metric on X. If

. scal(X, g) ≥ 0,

. H(∂±X, g) ≥ 0,

then (X, g) is isometric to a product (N̂ × [c, d], gN̂ + dt2), where (N̂ , gN̂ ) is a closed
Ricci flat Riemannian manifold.

For −∞ < `− < `+ <∞ and ϕ(t) = exp(t) (log-affine) the warped product

(N × [`−, `+], ϕ2(t)gN + dt2)

is a model space with scalar curvature −n(n− 1). Plugging this into part (2) yields:

Theorem 2.11. Let n ≤ 7 and Xn be an oriented band with Property A. Let g be a
Riemannian metric on X. If

. scal(X, g) ≥ −n(n− 1),

. H(∂±X, g) ≥ ±(n− 1),

then (X, g) is isometric to a warped product (N̂ × [c, d], exp(2t)gN̂ + dt2), where
(N̂ , gN̂) is a closed Ricci flat Riemannian manifold.

Remark 2.12. Special cases of Theorem 2.11 appear in [26, Section 55
6 , p. 57-58]

and in [31, Section 9], where its relation to the hyperbolic positive mass theorem is
explained. Furthermore there are cubical versions of Theorem 2.10 and Theorem
2.11, which involve the dihedral angle between adjacent faces. Li provided general
results in this direction in [47] and [46, Theorem 1.3].
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2.1.2 Topological Results
The results of Section 2.1.1 apply to oriented bands X with Property A. Gromov
provides a list of examples for such bands in [32, Section 3.6], which we expand
significantly. In particular we establish the following optimal result for trivial bands
in dimension n ≥ 6 (see Section 2.5.1).

Proposition 2.13. Let n ≥ 6 and Y n−1 be a closed connected oriented manifold
which does not admit a metric with positive scalar curvature. Then Y × [−1, 1] has
Property A.

In the spin setting we recall an observation by Zeidler [75, 76].

Proposition 2.14 ([75, 76]). Let n ≥ 2 and Y n−1 be a closed connected oriented
spin manifold with Rosenberg index α(Y ) 6= 0 ∈ KOn−1(C∗π1Y ). Then Y × [−1, 1]
has Property A.

Since any closed orientable manifold of dimension ≤ 3 which does not admit
a metric with positive scalar curvature is necessarily spin and has non-vanishing
Rosenberg index, these two results suffice to establish the following general result
which already appeared in the introduction:

Theorem 1.23. Let (n−1) 6= 4 and Y n−1 be a closed orientable manifold which does
not admit a metric with positive scalar curvature. Then Y × [−1, 1] has Property A.

Furthermore we consider a class of bands which are not necessarily trivial.

Definition 2.15. A closed connected oriented manifold Y n−1 is called NPSC+ if
it can not be dominated by a manifold which admits a metric with positive scalar
curvature. In other words: if Zn−1 is a closed oriented manifold and there exists a
continuous map f : Z → Y with deg(f) 6= 0, then Z does not admit a metric with
positive scalar curvature.

Definition 2.16. A connected oriented band Xn is called over-NPSC+ if there is a
NPSC+-manifold Y n−1 and a band map f : X → Y × [−1, 1] with deg(f) 6= 0.

Proposition 2.17. A connected oriented over-NPSC+ band has Property A.

Remark 2.18. The two classical examples of NPSC+-manifolds one should have in
mind are enlargeable manifolds (compare [30, Theorem 5.8], [13, Theorem A] and [30,
Proposition 5.7]) as well as Schoen-Yau-Schick manifolds (compare [64, Theorem 1],
[61] and [16, Definition 23]).

Chodosh and Li [16, Theorem 2] and Gromov [33, Section 7] used µ-bubbles
to prove that closed aspherical manifolds of dimension ≤ 5 do not admit metrics
with positive scalar curvature. We implement Gromov’s approach from [32] in the
language of [16] and present a proof of the following in Section 2.5.2

Theorem 2.19. All closed connected oriented aspherical 4-manifolds are NPSC+.

Remark 2.20. In the first arXiv version of [54] there was a mistake in the proof of
Theorem 2.19, which was pointed out to us by Otis Chodosh and Chao Li (the missing
piece was Proposition 2.68). In subsequent joint work with Yevgeny Liokumovich
they classified sufficiently connected manifolds in dimension 4 and 5 which admits a
positive scalar curvature metric. Their result implies Theorem 2.19 as well (see [17,
Theorem 3]).
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2.1.3 Synthesis

In Section 2.1.1 we explored the applications of Theorem I to several model spaces.
In Section 2.1.2 we provided examples of bands with Property A. Here we combine
both aspects and highlight some interesting applications of the general theory we
have displayed.

A combination of Corollary 1.22 and Theorem 1.23 yields the following result
towards Conjecture 1.11.

Corollary 1.24. Let (n−1) 6= 4 and n ≤ 7. Let Y n−1 be a closed orientable manifold
which does not admit a metric with positive scalar curvature and X = Y × [−1, 1].
If g is a Riemannian metric on X with scal(X, g) ≥ n(n− 1), then

width(X, g) < 2π
n
.

Remark 2.21. We point out that Corollary 1.24 implies the S1-stability conjecture
of Rosenberg [58, Conjecture 1.24] for closed connected orientable manifolds of
dimension (n− 1) ∈ {1, 2, 3, 5, 6}.

In dimension 4 a combination of Corollary 1.22, Proposition 2.17 and Theorem
2.19 yields a band width estimate for trivial bands over closed aspherical manifolds:

Corollary 2.22. Let Y 4 be a closed connected aspherical manifold. If X = Y ×[−1, 1]
and g is a Riemannian metric on X with scal(X, g) ≥ n(n− 1), then

width(X, g) < 2π
n
.

Remark 2.23. In Corollary 2.22 Y may be nonorientable since we can pass to the
orientable double cover, which is a closed connected aspherical manifold as well.

Finally we deduce our main result towards Conjecture 1.9:

Corollary 1.26. Let (n−2) 6= 4 and n ≤ 7. Let Y n−2 be a closed orientable manifold
which does not admit a metric with positive scalar curvature and X = Y ×R2. Then
X does not admit a complete metric with uniformly positive scalar curvature.

To see this we point out that if DR ⊂ R2 denotes the closed R-ball around the
origin in the euclidean metric, then Y × (DR\D̊1) ∼= Y × S1 × [−1, 1]. Since Y is
orientable, does not admit a metric with positive scalar curvature and dim(Y ) 6= 4
we deduce from Corollary 1.24 that Y × S1 does not admit a metric with positive
scalar curvature either.

Hence, if (X, g) is complete and has uniformly positive scalar curvature, the
width of the band (Y × (DR\D̊1), g) is bounded from above independent of R (if
dim(Y ) 6= 3, then we can apply Corollary 1.24 to (Y × (DR\D̊1), g); if dim(Y ) = 3,
then both Y and Y × S1 are spin and have non-vanishing Rosenberg index and we
can apply Corollary 1.22 and Proposition 2.14). For R→∞ this is a contradiction.
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2.2 Warped products
In this section we recall some facts about warped products and develop the general
framework for scalar and mean curvature comparison of Riemannian bands.

The following definitions and formulas are standard knowledge.

Definition 2.24. Let (N, gN ) be a closed Riemannian manifold and ϕ : (a, b)→ R+
be a smooth positive function. The warped product over (N, gN) with warping
function ϕ is

(M, gϕ) :=
(
N × (a, b), ϕ2gN + dt2

)
.

The scalar curvature of (M, gϕ) is determined by the scalar curvature of (N, gN )
and the warping function ϕ. The following formula

scal(M, gϕ)(p, t) = 1
ϕ2(t) scal(N, gN)(p)− 2(n− 1)ϕ

′′(t)
ϕ(t)

− (n− 1)(n− 2)
(
ϕ′(t)
ϕ(t)

)2 (2.2.1)

is obtained by a straightforward calculation (see also [32, Section 2.4]).
If we denote Nt := N × {t} for t ∈ (a, b) and consider Nt as the boundary of

N × (a, t], then its second fundamental form with respect to the inner unit normal
vector field is a diagonal matrix whose entries are all equal to

d

dt
log(ϕ)(t) = ϕ′(t)

ϕ(t) .

It follows that Nt is an umbilic hypersurface and its mean curvature is given by

H(Nt) = (n− 1)ϕ
′(t)
ϕ(t) =: hϕ(t). (2.2.2)

Finally, we rearrange (2.2.1) in terms of hϕ to obtain:

scal(M, gϕ)(p, t) + n

n− 1hϕ(t)2 + 2h′ϕ(t) = 1
ϕ2(t) scal(N, gN)(p). (2.2.3)

This formula, which combines information on scalar and mean curvature of a warped
product, is the basis on which we build a comparison principle.

2.2.1 Comparison of two Warped Products
As a first step towards a scalar and mean curvature comparison principle for Rie-
mannian bands, we compare two warped products (M1, gϕ1) and (M2, gϕ2) over the
same base manifold (N, gN). The results in this subsection are purely motivational
and do not factor into the proof of Theorem I.

We start off with the simplest situation, where the warping functions ϕ1 and ϕ2
have the same domain [a, b] and the base manifold (N, gN) is scalar flat.

Here we observe the following prototypical result, which can be regarded as a
first proof of concept for Theorem I and all the comparison results it implies:
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Proposition 2.25. Let (N, gN) be a closed scalar flat Riemannian manifold. Let
ϕ1 : [a, b]→ R+ and ϕ2 : [a, b]→ R+ be two smooth positive functions. If

. scal(M, gϕ1) ≥ scal(M, gϕ2),

. H(∂±M, gϕ1) ≥ H(∂±M, gϕ2),
then hϕ1 = hϕ2 ie equality holds in both conditions.

Even though the statement of Proposition 2.25 is geometric in nature, its proof
is purely analytical and based on:
Lemma 2.26. Let ϕ1 : [a, b] → R+ and ϕ2 : [a, b] → R+ be two smooth positive
functions. Then hϕ1 = hϕ2 if and only if

. n
n−1h

2
ϕ1 + 2h′ϕ1 ≤

n
n−1h

2
ϕ2 + 2h′ϕ2,

. hϕ1(a) ≤ hϕ2(a) and hϕ1(b) ≥ hϕ2(b).
Proof. The idea is to reduce the statement to a comparison result for the Riccati
equation which can be found in [5, Lemma 4.1]. Consider ϕ̂i(t) = ϕi

(
2
√

n−1
n
t
)n

2 as
functions [â, b̂]→ R+ where â := a

√
n

2
√
n−1 and b̂ := b

√
n

2
√
n−1 . We denote

ĥi(t) := ϕ̂′i(t)
ϕ̂i(t)

=
√

n

n− 1(n− 1)
ϕ′i
(
2
√

n−1
n
t
)

ϕi
(
2
√

n−1
n
t
) =

√
n

n− 1hϕi

2
√
n− 1
n

t

 .
Then

ĥ2
i (t) + ĥ′i(t) = n

n− 1h
2
ϕi

2
√
n− 1
n

t

+ 2h′ϕi

2
√
n− 1
n

t

 .
Furthermore, if we denote κi := −ĥ2

i (t)− ĥ′i(t), we see that κ2 ≤ κ1 and

ϕ̂′′i (t) + κiϕ̂i(t) = 0.

At this point we are in the situation where we can apply [5, Lemma 4.1] to conclude.
For the convenience of the reader, we repeat the proof here. Hence

0 =
∫ t

â
ϕ̂1(ϕ̂′′2 + κ2ϕ̂2)− (ϕ̂′′1 + κ1ϕ̂1)ϕ̂2

= (ϕ̂1ϕ̂
′
2 − ϕ̂′1ϕ̂2)

∣∣∣t
â

+
∫ t

â
(κ2 − κ1)ϕ̂1ϕ̂2

and therefore

ϕ̂1(t)ϕ̂′2(t)− ϕ̂′1(t)ϕ̂2(t) = ϕ̂1(â)ϕ̂′2(â)− ϕ̂′1(â)ϕ̂2(â) +
∫ t

â
(κ1 − κ2)ϕ̂1ϕ̂2. (2.2.4)

Now ϕ̂1(â)ϕ̂′2(â)− ϕ̂′1(â)ϕ̂2(â) ≥ 0 since ĥ1(â) ≤ ĥ2(â) and the second term on the
right hand side is nonnegative since κ2 ≤ κ1 and ϕ̂1ϕ̂2 > 0. It follows that

ϕ̂1(t)ϕ̂′2(t)− ϕ̂′1(t)ϕ̂2(t) ≥ 0⇔ ϕ̂′1(t)
ϕ̂1(t) ≤

ϕ̂′2(t)
ϕ̂2(t) ⇔ ĥ1(t) ≤ ĥ2(t) (2.2.5)

for all t ∈ [â, b̂]. By (2.2.4) ĥ1(â) = ĥ2(â) if equality holds at t. We can replace â by
any t0 ∈ [â, t] in the argument above since ĥ1(t0) ≤ ĥ2(t0). Hence ĥ1 = ĥ2 on [â, t] if
equality holds at t. Since ĥ1(b̂) ≥ ĥ2(b̂) by assumption and ĥ1(b̂) ≤ ĥ2(b̂) by (2.2.5),
equality holds at b̂. Hence ĥ1 = ĥ2 on [â, b̂] and therefore hϕ1 = hϕ2 on [a, b].
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Proof of Proposition 2.25. Since (N, gN) is scalar flat (2.2.3) implies

n

n− 1h
2
ϕ1(t) + 2h′ϕ1(t) = − scal(M, gϕ1)(p, t)

≤ − scal(M, gϕ2)(p, t) = n

n− 1h
2
ϕ2(t) + 2h′ϕ1(t).

Furthermore we have

hϕ1(a) = −H(∂−M, gϕ1) ≤ −H(∂−M, gϕ2) = hϕ2(a)

and
hϕ1(b) = H(∂+M, gϕ1) ≥ H(∂+M, gϕ2) = hϕ2(a)

by (2.2.2). Thus hϕ1 = hϕ2 by Lemma 2.26.

Next, we allow the warping functions to have different domains. Let (N, gN) be
a closed scalar flat Riemannian manifold and ϕ1 : [a, b]→ R+ and ϕ2 : [c, d]→ R+
two positive functions.

To compare the scalar curvature of the warped products (M1, gϕ1) and (M2, gϕ2)
pointwise, we need to choose a band map Φ : M1 →M2. In this setting the canonical
choice is Φ = idN × φ, where φ : [a, b]→ [c, d] is given by t 7→ (d−c)

(b−a)(t− a) + c.
To prove a comparison result like Proposition 2.25 we want to apply Lemma 2.26

to the functions hϕ1 and h̃ϕ2 = hϕ2 ◦ φ = hϕ̃2
where

ϕ̃2 : [a, b]→ R+ t 7→ ϕ2(φ(t))
b−a
d−c .

Hence we need to ensure that scal(M1, gϕ1)(p, t) ≥ scal(M2, gϕ2)(p, φ(t)) implies

n

n− 1h
2
ϕ1(t) + 2h′ϕ1(t) ≤ n

n− 1 h̃
2
ϕ2(t) + 2h̃′ϕ2(t).

for all t ∈ [a, b]. By (2.2.3) this works if

h′ϕ2(φ(t)) ≤ h̃′ϕ2(t) = h′ϕ2(φ(t))φ′(t),

which in turn holds true if h′ϕ2(φ(t)) = 0 or h′ϕ2(φ(t)) < 0 and φ′(t) ≤ 1 ie b−a ≥ d−c.
For this reason we consider strictly log-concave or log-affine warping functions

in our comparison results.

Proposition 2.27. Let (N, gN) be a closed scalar flat Riemannian manifold. Let
ϕ1 : [a, b] → R+ and ϕ2 : [c, d] → R+ be two positive functions. Consider the
warped products (M1, gϕ1) and (M2, gϕ2) and the map φ : [a, b] → [c, d] given by
t 7→ (d−c)

(b−a)(t− a) + c. If ϕ2 is log-affine,

. scal(M1, gϕ1)(p, t) ≥ scal(M2, gϕ2)(p, φ(t)),

. H(∂M1, gϕ1) ≥ H(∂M2, gϕ2),

then hϕ1 = hϕ2 ◦ φ ie equality holds in both conditions.



Warped products 35

Proof of Proposition 2.27. Denote h̃ϕ2 = hϕ2 ◦ φ : [a, b]→ R. By (2.2.3)

scal(M1, gϕ1)(p, t) = − n

n− 1h
2
ϕ1(t)− 2h′ϕ1(t)

as well as

scal(M2, gϕ2)(p, φ(t)) = − n

n− 1h
2
ϕ2(φ(t))− 2h′ϕ2(φ(t)) = − n

n− 1 h̃
2
ϕ2(t),

since ϕ2 is assumed to be log-affine ie h′ϕ2 = 0. Hence

n

n− 1h
2
ϕ1(t) + 2h′ϕ1(t) ≤ n

n− 1 h̃
2
ϕ2(t) = n

n− 1 h̃
2
ϕ2(t) + 2h̃′ϕ2(t).

Furthermore hϕ1(a) ≤ h̃ϕ2(a) and hϕ1(b) ≥ h̃ϕ2(b) (this follows from (2.2.2) and the
assumption on mean curvature). Now Lemma 2.26 implies hϕ1 = h̃ϕ2 .

Proposition 2.28. Let (N, gN) be a scalar flat Riemannian manifold. Let ϕ1 :
[a, b] → R+ and ϕ2 : [c, d] → R+ be two positive functions. Consider the warped
products (M1, gϕ1) and (M2, gϕ2) and the map φ : [a, b] → [c, d] given by t 7→
(d−c)
(b−a)(t− a) + c. If ϕ2 is strictly log-concave,

. scal(M1, gϕ1)(p, t) ≥ scal(M2, gϕ2)(p, φ(t)),

. H(∂M1, gϕ1) ≥ H(∂M2, gϕ2),

. width(M1, gϕ1) ≥ width(M2, gϕ2),

then b− a = d− c and hϕ1 = hϕ2 ◦ φ ie equality holds in all three conditions.

Proof of Proposition 2.28. Denote h̃ϕ2 = hϕ2 ◦ φ : [a, b]→ R. As before:

n

n− 1h
2
ϕ1(t) + 2h′ϕ1(t) ≤ n

n− 1h
2
ϕ2(φ(t)) + 2h′ϕ2(φ(t))

≤ n

n− 1 h̃
2
ϕ2(t) + 2h̃′ϕ2(t),

(2.2.6)

where we used that ϕ2 is log-concave and φ is 1-Lipschitz for the last inequality.
Furthermore hϕ1(a) ≤ h̃ϕ2(a) and hϕ1(b) ≥ h̃ϕ2(b). If b− a > d− c ie φ is strictly

1-Lipschitz, the last inequality in (2.2.6) would be strict since h′ϕ2 < 0. This is
impossible because Lemma 2.26 implies hϕ1 = h̃ϕ2 .

In the following we want to generalize Proposition 2.27 and Proposition 2.28, the
prototypes for the two parts of Theorem I, to allow for the comparison of Riemannian
bands with warped products over closed Riemannian manifolds with constant scalar
curvature.

2.2.2 Structural Maps
To compare the scalar and mean curvature of two Riemannian bands (X, g) and
(V, τ) pointwise, one has to choose a band map Φ : X → V . If scal(V, τ) is constant
and H(∂V, τ) is constant on ∂−V resp. ∂+V , the outcome does not depend on the
choice of Φ.
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If (V, τ) is a warped product (M, gϕ) over a closed Riemannian manifold (N, gN )
with warping function ϕ : [a, b] → R+, the second condition is always satisfied as
the mean curvature of ∂M = ∂−M t ∂+M with respect to gϕ is constant equal to
±hϕ(a) on ∂±(M) (see (2.2.2)).

Furthermore, if scal(N, gN) is constant, then scal(M, gϕ)(p, t) only depends on
the t-coordinate (see (2.2.3)) and therefore the scalar curvature comparison between
(X, g) and (M, gϕ) only depends on φ := pr[a,b] ◦ Φ : X → [a, b].

This is the situation we focus on for the rest of this chapter ie (Xn, g) will be a
Riemannian band, (Nn−1, gN) will be a closed Riemannian manifold with constant
scalar curvature and (Mn, gϕ) will be a warped product over (N, gN) with warping
function ϕ : [a, b]→ R+.

To compare (X, g) and (M, gϕ) we fix a point p0 ∈ N , choose a band map
φ : X → [a, b] and define Φ : X →M by x 7→ (p0, φ(x)).

While every choice of φ enables us to compare the scalar and mean curvature of
(X, g) and (M, gϕ) pointwise, we will need φ to preserve some geometric structure
to prove comparison results like Proposition 2.27 or Proposition 2.28. We denote
h = hϕ ◦ φ : X → R and consider a ’pullback’ version of equation (2.2.3) on (X, g).

Definition 2.29. A band map φ : X → [a, b], which is used to compare (X, g) and
(M, gϕ), is called structural if it is smooth and for any closed embedded hypersurface
Σ with outward unit normal field ν which separates ∂−X and ∂+X the inequality

scal(X, g)(x) + n

n− 1h
2(x) + 2g(∇h(x), ν(x)) ≥ 1

ϕ2(φ(x))Sc(N, gN) (2.2.7)

holds at all points x ∈ Σ.

In Section 2.3 we will use µ-bubbles to prove the following Proposition:

Proposition 2.30. Let n ≤ 7 and (X, g) be an oriented Riemannian band. Let
(N, gN) be a closed oriented Riemannian manifold with constant scalar curvature
and (M, gϕ) the warped product over (N, gN) with warping function ϕ : [a, b]→ R+.
If there is a structural band map φ : X → [a, b] and

H(∂±X, g) > H(∂±M, gϕ),

there is a hypersurface Σ ⊂ X, which separates ∂−X and ∂+X such that:

−∆Σ + 1
2 scal(Σ, g) ≥ 1

2ϕ2(φ)Sc(N, gN).

Remark 2.31. From a conceptual perspective one should be able to relax the as-
sumptionH(∂±X, g) > H(∂±M, gϕ) in Proposition 2.30 toH(∂±X, g) ≥ H(∂±M, gϕ)
if ϕ is log-concave. However, we are only able to do so whenever ϕ is log-affine (see
Section 2.3.1). If ϕ is strictly log-concave we can work around certain aspects of the
problem but fall short of the desired result. The reason for this indiscrepancy is the
lack of a strong maximum principle for µ-bubbles.

In light of Proposition 2.30 we try to identify situations where there are structural
maps to compare (X, g) and (M, gϕ). As in Proposition 2.27 and Proposition 2.28
we assume ϕ to be strictly log-concave or log-affine.
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Lemma 2.32. Let (X, g) be a Riemannian band, (N, gN) be a closed Riemannian
manifold with constant scalar curvature and (M, gϕ) be a warped product over (N, gN )
with warping function ϕ : [a, b]→ R+. If ϕ is log-affine, then any smooth band map
φ : X → [a, b] such that scal(X, g)(x) ≥ scal(M, gϕ)(p0, φ(x)) is structural.

Proof. Let Σ be a hypersurface which separates ∂−X and ∂+X inX. If φ : X → [a, b]
is smooth, and scal(X, g)(x) ≥ scal(M, gϕ)(p0, φ(x)), then

scal(X, g)(x) + n

n− 1h
2(x) + 2g(∇h(x), ν(x)) = scal(X, g)(x) + n

n− 1h
2(x)

since ∇h = 0 (ϕ is log-affine) and

scal(X, g)(x) + n

n− 1h
2(x) ≥ scal(M, gϕ)(p0, φ(x)) + n

n− 1h
2
ϕ(φ(x))

= 1
ϕ2(φ(x))Sc(N, gN),

which implies that φ is structural.

Lemma 2.33. Let (X, g) be a Riemannian band, (N, gN) be a closed Riemannian
manifold with constant scalar curvature and (M, gϕ) be a warped product over (N, gN )
with warping function ϕ : [a, b]→ R+. If

. φ : X → [a, b] is a smooth 1-Lipschitz band map,

. ϕ is log-concave and

. scal(X, g)(x) ≥ scal(M, gϕ)(p0, φ(x)),

then φ is structural.

Proof. Let Σ be a hypersurface which separates ∂−X and ∂+X in X. Since ϕ is
log-concave ie h′ϕ ≤ 0 and φ is 1-Lipschitz we have

n

n− 1h
2(x) + 2g(∇h(x), ν(x)) ≥ n

n− 1h
2
ϕ(φ(x)) + 2h′ϕ(φ(x))|∇φ|

≥ n

n− 1h
2
ϕ(φ(x)) + 2h′ϕ(φ(x)).

Together with scal(X, g)(x) ≥ scal(M, gϕ)(p0, φ(x)) and (2.2.3) it follows that φ is
structural.

The following can also be found in [79, Lemma 4.1] and [14, Lemma 7.2].

Lemma 2.34. Let (X, g) be a Riemannian band. If width(X, g) > a− b, there is a
smooth band map φ : (X, g)→ [a, b] with Lip(φ) < 1.

A combination of Lemma 2.33 and Lemma 2.34 yields:

Lemma 2.35. Let (X, g) be a Riemannian band, (N, gN) be a closed Riemannian
manifold with constant scalar curvature and (M, gϕ) be a warped product over (N, gN )
with warping function ϕ : [a, b]→ R+. If ϕ is log-concave, scal(M, gϕ) is constant,
and the following holds true
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. scal(X, g) ≥ scal(M, gϕ),

. width(X, g) > width(M, gϕ),

there exists a structural band map φ : X → [a, b].

Remark 2.36. If Lip(φ) < 1 in Lemma 2.33 and ϕ is strictly log-concave, we get
strict inequality in (2.2.7). This observation is important as it allows us to obtain
strict inequality for the operator in Proposition 2.30 later (see Remark 2.42). In
particular this applies to the band map φ we get from Lemma 2.35.

2.2.3 Model Spaces over Spheres
The notion of a model space (compare Definition 1.20) for scalar and mean curvature
comparison of Riemannian bands is motivated by our observations so far. In addition
to those we introduced in Section 2.1.1 one considers annuli in simply connected
space forms.

Let (Sn, g1)\{p1, p2} be the round unit n-sphere with two antipodal points
removed. This has constant scalar curvature equal to n(n− 1) and can be written
as a warped product (

Sn−1 × (−π2 ,
π

2 ), cos2(t)g1 + dt2
)
,

where (Sn−1, g1) is the unit sphere in one dimension less. Since cos(t) is strictly
log-concave we see that for −π

2 < `− < `+ < π
2 the warped product(

Sn−1 × [`−, `+], cos2(t)g1 + dt2
)

is a model space.
Let (Rn, gstd)\{0} be euclidean space with the origin removed. This is scalar flat

and can be written as a warped product(
Sn−1 × (0,∞), t2g1 + dt2

)
Since t is stricly log-concave we see that for 0 < `− < `+ <∞ the warped product(

Sn−1 × [`−, `+], t2g1 + dt2
)

is a model space.
Let (Hn, g−1)\{p} be hyperbolic space with a point removed. This has constant

scalar curvature equal to −n(n− 1) and can be written as a warped product(
Sn−1 × (0,∞), sinh2(t)g1 + dt2

)
.

Since sinh(t) is strictly log-concave we see that for 0 < `− < `+ < ∞ the warped
product (

Sn−1 × [`−, `+], sinh2(t)g1 + dt2
)

is a model space.



µ-Bubbles 39

Remark 2.37. Let (Xn, g) be a Riemannian spin band and (M, gϕ) one of the
above model spaces. Let Φ : X → M be a smooth 1-Lipschitz band map with
degree non zero. In [14, Corollary 10.4] Cecchini and Zeidler prove the following: If
scal(X, g) ≥ scal(M, g) and H(∂±X, g) ≥ H(∂±M, g), then Φ is an isometry.

As is explained in [32, Section 5.5] one can recreate similar results using µ-bubbles
and a stabilized version of Llarull’s theorem [50] in dimension 3 ≤ n ≤ 7 (one does
not need to assume that n is odd).

However, as rigidity for strictly log-concave warping functions remains problem-
atic in our setting (see Remark 2.2) the best result we could obtain at this moment
is: If scal(X, g) ≥ scal(M, g) and H(∂±X, g) ≥ H(∂±M, g), there is no smooth band
map Φ : X →M with degree non-zero and Lip(Φ) < 1.

2.3 µ-Bubbles
We briefly introduce the most important definitions and results (cf. [16, Section 3],
[32, Section 5.1] and [79, Section 2]) concerning µ-bubbles. As a good reference for
the theory of Caccioppoli sets, which will be used freely throughout the rest of this
section, we recommend [22, Chapter 1].

Let (X, g) be an oriented Riemannian band and h be a smooth function on
X. Denote by C(X) the set of all Caccioppoli sets in X which contain an open
neighborhood of ∂−X and are disjoint from ∂+X.

For Ω̂ ∈ C(X) consider the functional

Ah(Ω̂) = Hn−1(∂∗Ω̂ ∩ X̊)−
∫

Ω̂
hdHn,

where ∂∗Ω̂ is the reduced boundary [22, Chapter 3, 4] of Ω̂.
We denote

I := inf{Ah(Ω̂)
∣∣∣Ω̂ ∈ C(X)}

and call a Caccioppoli set Ω ∈ C(X) a µ-bubble if Ah(Ω) = I ie Ω minimizes the
Ah-functional among all Caccioppoli sets in X, which contain a neighborhood of
∂−X and are disjoint from ∂+X.

Remark 2.38. To preempt any confusion we remind reader of our mean curvature
convention in Remark 2.1, according to which H(∂−X) is the trace of the second
fundamental form with respect to the inner unit normal field.

However, if Ω̂ is a smooth Caccioppoli set which contains an open neighborhood
of ∂−X and Σ̂ is a connected component of ∂Ω̂ ∩ X̊, then the mean curvature H(Σ̂)
is the trace of the second fundamental form with respect to the unit normal field
pointing into Ω̂. Hence, if Σ̂ approaches ∂−X then H(Σ̂) approaches −H(∂−X) and
if Σ̂ approaches ∂+X, then H(Σ̂) approaches H(∂+X).

Lemma 2.39 (see [32, Section 5.1]). If n ≤ 7 and H(∂±X) > ±h on ∂±X, there is
a smooth µ-bubble Ω ie a smooth Caccioppoli set Ω ∈ C(X), with Ah(Ω) = I.

Proof. We adapt the proofs of [79, Proposition 2.1] and [16, Proposition 12]. For
t > 0 denote by Ωt

± the t-neighborhoods of ∂±X. Since ∂±X is smooth Ωt
± has a

foliation by smooth equidistant hypersurfaces Σs≤t
± for t small enough.
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Denote by νs± the unit normal vector field to Σs
± pointing in the direction of ∂+X

and by H(Σs
±) the trace of the second fundamental form of Σs

± with respect to −νs±.
By possibly making t even smaller we can guarantee

div(νs−) = H(Σs
−) < h(x) on Ωt

− and div(νs+) = H(Σs
+) > h(x) on Ωt

+.

Let Ω̂ be any Caccioppoli set with ∂−X ⊂ Ω̂ and ∂+X ∩ Ω̂ = ∅.
We want to see the following: if we add Ωt

− to Ω̂ or substract Ωt
+ from Ω̂ we do

not increase the value of Ah.

Ah((Ω̂∪Ωt
−)\Ωt

+)−Ah(Ω̂) = Hn−1(∂Ωt
−\Ω̂)−Hn−1(∂∗Ω̂∩Ωt

−) +Hn−1(∂Ωt
+ ∩ Ω̂)

−H(∂∗Ω̂ ∩ Ωt
+)−

∫
Ωt
−\Ω̂

hdHn +
∫

Ωt
+∩Ω̂

hdHn.

The divergence theorem and our assumption on h implies∫
Ωt
−\Ω̂

hdHn >
∫

Ωt
−\Ω̂

div νs−dHn

=
∫
∂∗(Ωt

−\Ω̂)
〈νs−, ν〉dHn−1

≥ Hn−1(∂Ωt
−\Ω̂)−Hn−1(∂∗Ω̂ ∩ Ωt

−)

and ∫
Ωt

+∩Ω̂
hdHn <

∫
Ωt

+∩Ω̂
div νs+dHn

=
∫
∂∗(Ωt

+∩Ω̂)
〈νs+, ν〉dHn−1

≤ −Hn−1(∂Ωt
+ ∩ Ω̂) +Hn−1(∂∗Ω̂ ∩ Ωt

+).

We conclude that
Ah((Ω̂ ∪ Ωt

−)\Ωt
+)−Ah(Ω̂) < 0, (2.3.1)

which implies that it is enough to search for a minimizer among all Caccioppoli sets
in X with Ωt

− ⊂ Ω̂ and Ωt
+ ∩ Ω̂ = ∅.

If C is a constant such that |h| < C on X, then for any such Caccioppoli
set we have Ah(Ω̂) > −CHn(X) > −∞. We choose a minimizing sequence Ω̂k.
By compactness for Caccioppoli sets (compare [22, Theorems 1.19 & 1.20]) Ω̂k

subconverges to a minimizing Caccioppoli set Ω which contains an open neighborhood
of ∂−X and is disjoint from ∂+X. Smoothness of Ω follows from the regularity
theorem [78, Theorem 2.2].

If Ω̂ ∈ C(X) is smooth and Σ̂ is a connected component of ∂Ω̂∩ X̊, we denote by
ν the outwards pointing unit normal vector field, by A the second fundamental form
with respect to −ν and by H the trace of A. We present the first and second variation
formula for the Ah-functional (cf. [79, Proof of Theorem 1.4] or [78, Equation 1.2]).

Lemma 2.40 (First variation formula). For any smooth function ψ on Σ̂ let Vψ be
a vector field on X, which vanishes outside a small neighborhood of Σ̂ and agrees
with ψν on Σ̂. If we denote by Φt the flow generated by Vψ, then

d

dt

∣∣∣∣
t=0
Ah(Φt(Ω̂)) =

∫
Σ̂

(H − h)ψdHn−1. (2.3.2)
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Lemma 2.41 (Second variation formula). For any smooth function ψ on Σ̂ let Vψ
be a vector field on X, which vanishes outside a small neighborhood of Σ̂ and agrees
with ψν on Σ̂. If we denote by Φt the flow generated by Vψ, then

d2

dt2

∣∣∣∣
t=0
Ah(Φt(Ω̂)) =

∫
Σ̂
|∇Σ̂ψ|

2 + (H2 −Ric(ν, ν)− |A|2 −Hh− g(∇Xh, ν))ψ2,

which is equal to∫
Σ
|∇Σψ|2−

1
2(scal(X, g)−scal(Σ̂, g)−H2+|A|2)ψ2−(Hh+g(∇X(h), ν))ψ2 (2.3.3)

Proof. We differentiate the first variation formula employing the following Leibniz
rule: If f is a smooth function on X, then

d

dt

∣∣∣∣
t=0

∫
Σ̂t

fψdHn−1 =
∫

Σ̂
(Hf + g(∇Xf, ν))ψ2dHn−1.

Furthermore we use the formula∫
Σ̂
g(∇XHΣ̂t

, ν)ψ2dHn−1 =
∫

Σ̂
|∇Σ̂ψ|

2 − (Ric(ν, ν) + |A|2)ψ2dHn−1,

and the standard trick to rewrite

Ric(ν, ν) = 1
2(scal(X, g)− scal(Σ, g) +H2 − |A|2)

from [64, p. 165].

If Ω is the µ-bubble we get from Lemma 2.39, then the mean curvature H of Σ
is equal to h by Lemma 2.40 and by stability and Lemma 2.41, we see that

0 ≤
∫

Σ
|∇Σψ|2 −

1
2(scal(X, g)− scal(Σ, g)−H2 + |A|2)ψ2 − (Hh+ g(∇Xh, ν))ψ2

=
∫

Σ
|∇Σψ|2 −

1
2(scal(X, g)− scal(Σ, g) +H2 + |A|2)ψ2 − g(∇Xh, ν)ψ2

≤
∫

Σ
|∇Σψ|2 −

1
2(scal(X, g)− scal(Σ, g) + n

n− 1h
2 + 2g(∇Xh, ν))ψ2,

where we used |A|2 ≥ H2

n−1 for the last inequality. By rearranging terms, we conclude
∫

Σ
|∇Σψ|2+1

2 scal(Σ, g)ψ2dHn−1 ≥
∫

Σ

1
2(scal(X, g)+ n

n− 1h
2+2g(∇Xh, ν))ψ2dHn−1.

(2.3.4)
We are now ready to prove Proposition 2.30:

Proof of Proposition 2.30. By assumption there is a structural band map φ : X →
[a, b]. Thus h = hϕ ◦φ is a smooth function on X and by assumption H(∂±X) > ±h.
Since n ≤ 7 Lemma 2.39 yields a smooth minimizer Ω for the Ah-functional, which
contains a neighborhood of ∂−X and is disjoint from ∂+X. Hence Σ = ∂Ω separates
∂−X and ∂+X in X. Furthermore by (2.3.4)∫

Σ
|∇Σψ|2+1

2 scal(Σ, g)ψ2dHn−1 ≥
∫

Σ

1
2(scal(X, g)+ n

n− 1h
2+2g(∇Xh, ν))ψ2dHn−1
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for any ψ ∈ C∞(Σ). Since φ is structural this implies∫
Σ
|∇Σψ|2 + 1

2 scal(Σ, g)ψ2dHn−1 ≥
∫

Σ

1
2ϕ2(φ)Sc(N, gN)ψ2

and hence
−∆Σ + 1

2 scal(Σ, g) ≥ 1
2ϕ2(φ)Sc(N, gN).

Remark 2.42. Let (X, g) be an oriented Riemannian band, (M, gϕ) a warped
product over (N, gN) and φ : X → [a, b] a smooth band map. If ϕ is strictly
log-concave, scal(X, g)(x) ≥ scal(M, gϕ(p0, φ(x)) and φ has Lip(φ) < 1, then φ is
structural by Lemma 2.33. As was observed in Remark 2.36 we even get strict
inequality in (2.2.7) in this case as g(∇Xh, ν) > h′ϕ. Hence the argument above
yields

−∆Σ + 1
2 scal(Σ, g) > 1

2ϕ2(φ)Sc(N, gN).

2.3.1 Constant Mean Curvature Surfaces

If Ω is a smooth minimizer for the Ah functional, then Σ = ∂Ω ∩ X̊ is often called a
prescribed mean curvature (or short PMC) surface in the literature (see for example
[78]). This terminology is based on the observation that H(Σ) = h

∣∣∣
Σ
by the first

variation formula.
In the following we assume h to be a constant function. In this case Σ is

called a constant mean curvature (or short CMC) surface and our main goal is to
understand what happens if we relax the strict boundary condition H(∂±X) > ±h
to H(∂±X) ≥ ±h in Lemma 2.39. In the proof of Lemma 2.39 the assumption
H(∂±X) > ±h was used to show that there is a minimizing sequence Ω̂k in C(X)
which converges to a Caccioppoli set Ω ∈ C(X).

This fails if we relax to H(∂±X) ≥ ±h, since it might happen that the limit Ω
of any minimizing sequence Ω̂k in C(X) contains points of ∂+X or does not contain
a neighborhood of ∂−X any more. However, for h constant, we can use a strong
maximum principle to address this issue.

To make this precise we slightly change our set up. Let (X, g) be an oriented
Riemannian band and h be constant function on X. Without loss of generality we
can assume h to be nonnegative (otherwise we just change the roles of ∂−X and
∂+X). For some δ > 0 we glue on collars ∂−X × (−δ, 0] and ∂+X × [0, δ) on both
sides of X and extend the metric g smoothly to produce a Riemannian manifold
(Xδ, gδ). This can be done in such a way that vol(Xδ, gδ) < vol(X, g) + δ.

Let C(Xδ) be the set of all Caccioppoli sets in Xδ, which contain ∂−X × (−δ, 0]
and are disjoint from ∂+X × (0, δ). We replace Hn−1(∂∗Ω̂ ∩ X̊) by Hn−1(∂∗Ω̂) in
the Ah-functional and define Iδ := inf{Ah(Ω̂)

∣∣∣Ω̂ ∈ C(Xδ)}.

Proposition 2.43. Let h ≥ 0 be constant and n ≤ 7. If H(∂±X) ≥ ±h and
Ω ∈ C(Xδ) is a minimizer ie Ah(Ω) = Iδ, then any connected component of ∂Ω is
either contained in X̊ or agrees with a connected component of ∂−X resp. ∂+X.
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Proof. The main issue we face is that, a priori, ∂Ω might not be smooth at the
points where it touches ∂±X. This is due to the fact that we minimize the Ah
functional with respect to the obstacles ∂−X and ∂+X.

The best a priori regularity result we can apply is [41, Theorem 1.3] (based on
[68]) according to which ∂Ω is a C1, 1

2 -submanifold of X and hence has a C0, 1
2 outer

unit normal vector field ν. If h = 0, then ∂Ω is even C1,1. For a related discussion
see also [73, Paragraph after Theorem 1].

This, however, is not quite good enough (we would need C2) to use the following
observation which would imply Proposition 2.43 if ∂Ω were smooth and had constant
mean curvature equal to h.
Claim. Let Ω1 and Ω2 be two smooth Caccioppoli sets in C(Xδ) such that Ω1 ⊂ Ω2
and their boundaries Σ1 resp. Σ2 touch at a point p (ie p is contained in both Σ1
and Σ2 and the interior normal vector fields to Σ1 resp. Σ2 at p agree). Assume
furthermore that H(Σ2) is constant. Then, if H(Σ1) ≤ H(Σ2), the connected
components of Σ1 and Σ2 which contain p coincide.

Proof of Claim. We adapt the proof of [77, Lemma 2.7]. Since the tangent planes
to Σ1 and Σ2 agree at p, there is a small ball U around p where both hypersurfaces
may be written as smooth graphs u1, u2 in the ν direction over the common tangent
plane TpΣ1 = TpΣ2.

There is a positive definite second order elliptic operator L with smooth coeffi-
cients such that the difference u = u2 − u1 satisfies Lu ≥ 0. Since Σ1 lies above Σ2
(with respect to ν) we have u ≤ 0 and u = 0 at p. Hence we can apply the Hopf
maximum principle [21, Theorem 3.5] (it would suffice if the ui were only C2) to
see that u is constant equal to zero in U and thus Σ1 coincides with Σ2 in an open
neighborhood of p. It follows that the set where Σ1 and Σ2 agree is non-empty, open
and closed in Σi. Hence the connected components of Σ1 and Σ2 which contain p
coincide.

To overcome this problem, we turn to [65] and [73], where strong maximum
principles, which do not require ∂Ω to be smooth, are established. For further
generalizations see also [74, Theorem 7.3] and [47, Section 3.1] for a free boundary
result in polyhedral domains.

We realize that, if h = 0, Proposition 2.43 follows directly from [73, Theorem 4]
or the main result of [65] (for the unfamiliar reader we point out, as it is done in
[73], that one may substitute ’varifold’ by ’C1-submanifold’ in these results).

Moreover, if h > 0, one can apply [73, Theorem 7] to show that a connected
component of ∂Ω can only touch a connected component of ∂+X if they coincide.

To see this we refer to [78, Equation (1.2)] for the general first variation formula
of the Ah-functional (compare with Lemma 2.40), according to which for any vector
field in X with g(X, ν±) ≥ 0 at the boundary ∂±X, we have∫

∂Ω
div∂Ω V dHn−1 −

∫
∂Ω
hg(V, ν)dHn−1 = 0,

since Ω minimizes the Ah-functional in X. Hence∫
∂Ω

div∂Ω V dHn−1 =
∫
∂Ω
hg(V, ν)dHn−1 ≥ −

∫
∂Ω
h|V |dHn−1,

and the assumptions of [73, Theorem 7] are satisfied.
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Thus it remains for us to prove that a connected component of ∂Ω can not touch
a connected component of ∂−X, unless they coincide.

The proofs of [73, Theorems 4 & 7] as well as those of [74, Theorem 7.3] and [47,
Theorem 3.1] follow the same two step procedure, which was first developed in [65].

The first step is to show that the minimizing object can not touch the boundary
at a point where the mean curvature barrier condition is strict. This is sometimes
called a weak maximum principle. It is usually proved by contradiction; if the
minimizer were to touch the boundary, one could explicitly construct a test vector
field such that the first variation of the minimizer in the direction of this vector field
would be negative, which is impossible (cf. [73, Theorems 1 & 5], [74, Theorem 7.1]
and [47, Proposition 3.3]).

The second step aims to reduce the strong maximum principle to the weak
maximum principle. Again, this is done by contradiction; if the minimizer were to
touch the boundary at a point p but does not coincide with the boundary in any
open neighborhood of p, one could use the implicit function theorem for differentiable
maps between Banach spaces to find, in a small enough neighborhood of p, a smooth
hypersurface with the strict mean curvature barrier condition, which touches the
minimizer as well. This, of course, is impossible by the weak maximum principle.

The main source for this part of the argument is [65, Step 1, p. 687]. In fact,
it seems to be accepted in the literature that once the weak maximum principle is
established (cf. [73, Theorems 1 & 5], [74, Theorem 7.1]) the corresponding strong
maximum principles (cf. [73, Theorems 4 & 7], [74, Theorem 7.3]) can be obtained
by just repeating the argument in [65, Step 1, p. 687] involving the implicit function
theorem with slight modifications. For the convenience of the reader, we will give
more details.

To prove that a connected component of ∂Ω can not touch a connected component
of ∂−X, unless they coincide, we follow this two step procedure.

For the weak maximum principle we assume that there is a point p ∈ ∂−X with
H(∂−X, g)(p) > η > −h. By [73, Theorem 2] there is a compactly supported vector
field V on Xδ such that V (p) is a nonzero normal to ∂−X and∫

∂Ω
div∂Ω V dHn−1 +

∫
∂Ω
η|V |dHn−1 ≤ 0.

If we choose the support of V small enough and assume that ∂Ω touches ∂−X at p
ie p ∈ ∂Ω and the normal vectors coincide, then

0 =
∫
∂Ω

div∂Ω V dHn−1 −
∫
∂Ω
hg(V, ν)dHn−1

<
∫
∂Ω

div∂Ω V dHn−1 +
∫
∂∗Ω

η|V |dHn−1 ≤ 0,

which is a contradiction. Hence p /∈ ∂Ω and the weak maximum principle is
established.

For the strong maximum principle we now follow the ideas from [65, Step 1, p.
687, Additional Remarks pp. 690-691]. Furthermore, we draw some inspiration from
[47, Lemma 3.4].
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We will assume that ∂Ω is connected. Otherwise we could treat each connected
component seperately. Let p ∈ ∂−X be arbitrary and assume that ∂Ω touches ∂−X
at p but does not coincide with ∂−X in any neighborhood of p.

For R > 0 let Bn
R(0) be the R-ball around the origin in TpXδ. Our convention is

that Tp∂−X ⊂ TpX corresponds to the plane xn = 0 and the upper half space are
the directions which point into X. For R small enough the exponential map at p
restricted to Bn

R(0) is a diffeomorphism onto its image in Xδ. We pull back the metric
via this diffeomorphism and denote the resulting Riemannian manifold by (Bn

R(0), g).
For R small enough and some even smaller 0 < r << R the intersection of some
neighborhood of p in ∂−X with the image of Bn

R(0) inXδ, corresponds via exponential
map to the graph of a function f : Rn−1 → R restricted to Bn−1

r (0) = Bn
r (0)∩Tp∂−X

with f(0) = 0 and such that the derivative of f vanishes at the origin.
For some fixed R > 0 and varying 0 < r << R, we consider the rescaled manifold

(Bn
R(0), r−2g) and within it the 10-ball

(Dn
10, gr) :=

{
x ∈ (Bn

R(0), r−2g) s.t. dist(x, 0) ≤ 10
}

with the restricted metric. Of course this is just extra notation and (Dn
10, gr) is

nothing but (Bn
10r(0), r−2g). Within (Dn

10, gr) we consider

(Dn−1
1 , gr) :=

{
x ∈ (Bn

R(0), r−2g) s.t. xn = 0; dist(x, 0) ≤ 1
}

and for r small enough we know that a neighborhood of p in ∂−X corresponds to a
graph of a function fr(x) := f(rx) over Dn−1

1 within Dn
10.

We proceed as in [71, Appendix] or [47, Lemma 3.4] and define a map:

q : R× R× C2,α(Dn−1
1 )× C2,α

0 (Dn−1
1 )→ C0,α(Dn−1

1 )

by q(r, t, w, u) = H (graph(fr + u+ w + t), gr)+r(h−s), where s ∈ (−ε, ε) for some
small ε > 0, which we will choose later. It is verified in [72, Theorem in Section 1.3,
Appendix] that q is indeed a C1-map.

Furthermore, since (Dn
10, gr) converges to a euclidean 10-ball and fr to the zero

function as r → 0, we have the following linearized operator:

Dq(0,t,0,0)(0, 0, 0, u) = −∆u,

which has trivial kernel in C2,α(Dn−1
1 ) and restricts to an isomorphism of Banach

spaces C2,α(D1) → C0,α(D1) (the Poisson-problem for the unit ball in Rn−1 is
uniquely solvable).

By the implicit function theorem we find, for any choice of r and w small enough
(ie r ∈ (−εs1, εs1) and ‖w‖2,α < εs2 for εs1, εs2 small enough, depending on s) and each
t ∈ [−1

2 ,
1
2 ] a function us,r,t,w ∈ C2,α

0 (Dn−1
1 ) such that

H(graph(fr + us,r,t,w + w + t), gr)) + r(h− s) = 0.

For fixed s, r and w and varying t, the graphs of fr + us,r,t,w + w + t foliate a
neighborhood of p. We still have the freedom to choose ε > 0 such that s ∈ (−ε, ε).
As it is pointed out in [71, Note, p. 254], we can rid ourselves of the dependency of
εsi on s by choosing ε small enough ie we find uniform bounds ε1 and ε2 for the sizes
of r resp. w which work for all s ∈ (−ε, ε).
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With these foliations at hand we can now tackle the strong maximum principle.
We assumed for a contradiction that ∂Ω touches ∂−X at p but does not coincide with
p in any open neighborhood of p. We choose ε > 0 small enough and s ∈ (−ε, ε).
For some r < ε1, ∂−X corresponds to the graph f : Rn−1 → R restricted to Bn−1

r (0)
and the set {x ∈ ∂Bn−1

r (0) : (x, u(x)) /∈ ∂Ω} is non empty.
We rescale the metric and look at the situation over (Dn−1

1 , gr) (here ∂−X is
the graph of fr over Dn−1

1 ). We find a non-zero function w ≥ 0 ∈ C2,α(Dn−1
1 ) with

‖w‖2,α < ε2 such that on ∂Dn−1
1 it is supported in {x ∈ ∂Dn−1

1 : (x, u(x)) /∈ ∂Ω}
and such that the graph of fr + w lies below ∂Ω (ie if (x, y) ∈ ∂Ω with x ∈ ∂Dn−1

1 ,
then fr(x) + w(x) ≤ y).

For t ∈ [−1
2 ,

1
2 ] we find functions vs,r,t,w = fr + us,r,t,w + w + t with us,r,t,w ∈

C2,α
0 (Dn−1

1 ) whose graphs foliate a neighborhood of the origin with

H(graph(vs,r,t,w), gr) = H(graph(fr + us,r,t,w + w + t), gr)) = −r(h− s).

From now on we keep r and w fixed and just vary s and t. Hence we denote
vs,t = vs,r,t,w.

We rescale back and work over (Bn−1
r (0), g). The vs,t correspond to functions on

Bn−1
r (0). We will denote them by vs,t as well. For a fixed s ∈ (−ε, ε) and t ∈ [− r

2 ,
r
2 ]

the vs,t foliate a neighborhood of the origin and H(graph(vs,t), g) = −h+ s.
We claim that v0,0(0) > f(0) = 0. Indeed, on ∂Bn−1

r (0), we have v0,0 = f+w ≥ f
and the inequality is strict at some points. Furthermore H(graph(vs,t), g) = −h ≤
H(graph(f), g). As in the proof of the first claim L(f − v0,0) ≥ 0 for some positive
definite second order elliptic operator L with smooth coefficients. On the other hand
f − v0,0 is ≤ 0 on ∂Bn−1

r (0) and the inequality is strict at some points. By the Hopf
maximum principle [21, Theorem 3.5] we see that f − v0,0 can not attain a maximum
at the origin. Hence f(0)− v0,0(0) < 0 ie 0 = f(0) < v0,0(0). Therefore we can find
some s0 > 0 small enough such that vs,0(0) > 0.

Now let t0 be the smallest value of t such that the graph of vs0,t0 intersects ∂Ω.
Since ∂Ω contains the origin and vs0,0(0) > 0 it follows that t0 is negative. It follows
that the graph of vs0,t0 touches ∂Ω, but since vs0,t0 = f +w+ t0 on ∂Bn−1

r (0) we see
that ∂Ω touches the graph of vs0,t0 in the interior of Bn−1

r (0). On the other hand
H(graph(vs0,t0), g) = −h+ s0. This contradicts the weak maximum principle and
therefore concludes the proof of Proposition 2.43.

Lemma 2.44. If h is constant, n ≤ 7 and H(∂±X) ≥ ±h on ∂±X, there is a
smooth Caccioppoli set Ω ∈ C(Xδ), with Ah(Ω) = Iδ.

Proof. Since vol(Xδ, gδ) < vol(X, g) + δ the Ah-functional is bounded from below
on C(Xδ). By compactness for Caccioppoli sets there is a minimizer Ω ∈ C(Xδ). By
Proposition 2.43 any connected component of ∂Ω is either contained in X̊ and hence
smooth by the regularity theorem [78, Theorem 2.2] or agrees with a connected
component of ∂−X resp. ∂+X.

Let Ω be the minimizer from Lemma 2.44 and Σ = ∂Ω. It is important to note
that Ω is only stationary and stable for variations which preserve X which is the
case if and only if the variation vector field has nonnegative scalar product with the
interior normal vector fields to ∂±X.
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Let Σ0 ⊂ Σ be a connected component. If Σ0 ⊂ X̊ all variation vector fields Vψ
are admissible and we conclude H(Σ0) = h

∣∣∣
Σ0

by the first variation formula. By the
second variation formula and stability (2.3.4) holds for all ψ ∈ C∞(Σ0).

If Σ0 agrees with a component of ∂−X (the case Σ0 ⊂ ∂+X follows in analogous
fashion), we only consider variation vector fields Vψ with ψ ≥ 0. By the first variation
formula ∫

Σ̂
(H − h)ψdHn−1 ≥ 0

for all nonnegative ψ ∈ C∞(Σ0).
Since (H − h) is nonpositive on ∂−X by assumption (remember Remark 2.38

ie H(Σ0) = −H(∂−X)) this implies H(Σ0) = h
∣∣∣
Σ0
. By stability and the second

variation formula (2.3.4) holds for all ψ ∈ C∞(Σ0) with ψ ≥ 0. Since the first
eigenfunction of the operator

−∆Σ0 + 1
2 scal(Σ0, g)− 1

2(scal(X, g) + n

n− 1h
2 + 2g(∇Xh, ν))

does not change sign (follows from elliptic regularity and the Hopf maximum
principle), this implies that the operator is nonnegative.

Remark 2.45. With Lemma 2.44 and the argument above we can prove Proposition
2.30 for constant hϕ with the weakened boundary condition H(∂±X) ≥ ±h.

2.3.2 Warped µ-Bubbles
The following version of µ-bubbles was introduced in [16, Section 3]. The results of
this subsection will be used exclusively in Section 2.5.2.

Let (X, g) be an oriented Riemannian band. Let u > 0 be a smooth function on
X and h be a smooth function on X̊ respectively X. We fix a Caccioppoli set Ω0
with smooth boundary, which contains an open neighborhood of ∂−X and is disjoint
from ∂+X. Hence all components of ∂Ω0, which are not part of ∂−X are contained
in X̊. We consider

Auh(Ω̂) =
∫
∂∗Ω̂

udHn−1 −
∫
X

(χΩ̂ − χΩ0)hudHn

for all Caccioppoli sets Ω̂ with Ω̂∆Ω0 contained in the interior of X (this implies
in particular, that Ω̂ contains an open neighborhood of ∂−X and is disjoint from
∂+X).

A Caccioppoli set, which is minimizing Auh in this class, is called a warped µ-
bubble. The following existence and regularity result is [79, Proposition 2.1] and [16,
Proposition 12].

Lemma 2.46. If n ≤ 7 and h(x) → ±∞ as x → ∂∓X, there exists a smooth
minimizer Ω for Auh, such that Ω∆Ω0 is contained in the interior of X.

The first and second variation formulas for the Auh-functional are given in [16,
Lemmas 13 & 14]. One can obtain the second variation formula from the first
variation formula in the same way we obtained Lemma 2.41 from 2.40. In doing so
we reorder the terms in a slightly different way than it is stated in [16, Lemma 14].
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Lemma 2.47 (Warped first variation formula). For any smooth function ψ on Σ̂
let Vψ be a vector field on X, which vanishes outside a small neighborhood of Σ̂ and
agrees with ψν on Σ̂. If we denote by Φt the flow generated by Vψ, then

d

dt

∣∣∣∣
t=0
Auh(Φt(Ω̂)) =

∫
Σ̂

(Hu+ g(∇Xu, ν)− hu)ψdHn−1. (2.3.5)

Lemma 2.48 (Warped second variation formula). For any smooth function ψ on Σ̂
let Vψ be a vector field on X, which vanishes outside a small neighborhood of Σ̂ and
agrees with ψν on Σ̂. If we denote by Φt the flow generated by Vψ, then

d2

dt2

∣∣∣∣
t=0
Auh(Φt(Ω̂)) =

∫
Σ̂
|∇Σ̂ψ|

2u+ (H2 −Ric(ν, ν)− |A|2)ψ2u+

+ (2Hg(∇Xu, ν) + d2u

dν2 −Hhu− g(∇X(hu), ν)ψ2,

which is equal to
∫

Σ̂
|∇Σ̂ψ|

2u− 1
2(scal(X, g)− scal(Σ̂, g)−H2 + |A|2)ψ2u

+ (2Hg(∇Xu, ν) + d2u

dν2 −Hhu− g(∇X(hu), ν))ψ2. (2.3.6)

2.4 Proof of the Comparison Principle
In this section we prove parts (1) and (2) of Theorem I using the techniques from
Section 2.2 and 2.3. Regarding part (1) of Theorem I, we establish:

Theorem 2.49. Let n ≤ 7 and (Xn, g) be an oriented Riemannian band with the
property that no closed embedded hypersurface Σ which separates ∂−X and ∂+X has
−∆Σ + 1

2 scal(Σ, g) > 0. Let (M, gϕ) be a model space over a scalar flat base with
warping function ϕ : [a, b]→ R+. If ϕ is strictly log-concave,

. scal(X, g) ≥ scal(M, gϕ),

. H(∂±X, g) ≥ H(∂±M, gϕ),

then width(X, g) ≤ width(M, gϕ).

Proof. If we assume for a contradiction that width(X, g) > width(M, gϕ) = b− a,
there is a small ε > 0, such that width(X, g) > b−a+ 2ε. Let (Mε, g

ε
ϕ) be the model

space (
N × [a− ε, b+ ε], ϕ2gN + dt2

)
.

We compare (X, g) and (Mε, g
ε
ϕ). According to Lemma 2.35 there is a structural

map φ : (X, g) → [a − ε, b + ε] with Lip(φ) < 1. Since ϕ is strictly log-concave
and H(∂±X, g) ≥ H(∂±M, gϕ) we have H(∂±X, g) > H(Mε, g

ε
ϕ). Proposition 2.30,

together with Remark 2.36 and Remark 2.42, implies the existence of a hypersurface
Σ, which separates ∂−X and ∂+X and has −∆Σ + 1

2 scal(Σ, g) > 0. This is a
contradiction.
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Theorem 2.49 implies part (1) of Theorem I with the help of the following classical
result of Kazdan-Warner [44] and Schoen-Yau [64]:

Lemma 2.50. Let (Σn≥2, g) be a closed connected oriented manifold. If −∆Σ +
1
2 scal(Σ, g) is positive, then Σ admits a metric with positive scalar curvature.

Proof. The proof is standard so we only recall the main ideas. Since the operator is
positive ∫

Σ
−ψ∆Σψ + 1

2 scal(Σ, g)ψ2 > 0

for all ψ ∈ C2(Σ). If n = 2 we choose ψ ≡ 1 and use Gauss-Bonnet to see that

0 <
∫

Σ

1
2 scal(Σ, g) = 2πχ(Σ).

It follows that Σ is a 2-sphere and hence admits a metric with positive scalar
curvature.

If n ≥ 3, we consider the conformal Laplacian Lg = −∆Σ + n−2
4(n−1) scal(Σ, g). It

is easy to see that this operator is positive as well. Hence the first eigenvalue λ1(Lg)
is positive. It follows from elliptic regularity and the strong maximum principle that
the first eigenfunction u ∈ C∞(Σ) can be chosen positive.

We then use this function for a conformal change of metric ie ĝ = u
4

n−2 g. We
conclude

scal(Σ, ĝ) = u−
n+2
n−2

4(n− 1)
n− 2 Lgu > 0

using the standard formula for scalar curvature under a conformal change of metric.

Regarding part (2) of Theorem I we establish:

Theorem 2.51. Let n ≤ 7 and (Xn, g) be an oriented Riemannian band with
Property A. Let (M, gϕ) be a model space over a scalar flat base with warping
function ϕ : [a, b]→ R+. If ϕ is log-affine,

. scal(X, g) ≥ scal(M, gϕ),

. H(∂±X, g) ≥ H(∂±M, gϕ),

then (X, g) is isometric to a warped product(
N̂ × [c, d], ϕ2gN̂ + dt2

)
,

where (N̂ , gN̂) is a closed scalar flat Riemannian manifold.

Proof. The following proof is an adaptation of the rigidity arguments presented in
[2, Section 2] and [79, Section 3]. Let φ : X → [a, b] be a band map. According to
Lemma 2.32 φ is structural. Following the proof Proposition 2.30, together with
Remark 2.45, we see that there is a hypersurface Σ, which separates ∂−X and ∂+X
and has

−∆Σ + 1
2 scal(Σ, g) ≥ 1

2
(
scal(X, g) + h2 + |A|2

)
≥ 0,

where h = hϕ ◦ φ. We start off by proving an infinitesimal splitting result.
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Claim 1. [cf. [2, Proposition 2.2]] For any connected component Σ0 ⊂ Σ which does
not admit a metric with positive scalar curvature, the following holds true:

. Σ0 is umbilic; all principal curvatures of Σ0 are equal to h
n−1 ,

. scal(Σ0, g) = 0 and scal(X, g) = scal(M, gϕ) along Σ0.

Proof of Claim. Let Σ0 ⊂ Σ be a connected component which does not admit a
metric with positive scalar curvature. Considering Lemma 2.50, we conclude that
the first eigenvalue of −∆Σ0 + 1

2 scal(Σ0, g) is equal to zero.
If w1 is the corresponding positive first eigenfunction, then∫

Σ0

1
2
(
scal(X, g) + h2 + |A|2

)
w2

1 = 0.

Consequently scal(X, g)+h2+|A|2 = 0 which is equivalent to −h2−|A|2 = scal(X, g).
On the other hand scal(X, g) ≥ scal(M, gϕ) = − n

n−1h
2
ϕ = − n

n−1h
2 by (2.2.3).

Since |A|2 ≥ H2

n−1 = h2

n−1 we conclude that scal(X, g) = scal(M, gϕ) along Σ0 and
|A|2 = H2

n−1 = h2

n−1 .
At every point p ∈ Σ0 the last equality forces A to be a diagonal matrix with all

entries equal to h
n−1 with respect to any orthonormal basis at p ie Σ0 is umbilic with

all principal curvatures equal to h
n−1 .

Regarding scal(Σ0, g) we distinguish three cases: If n = 2, the term scal(Σ0, g)
does not appear. If n = 3, we choose ψ ≡ 1 in∫

Σ0
|∇Σ0ψ|2 + 1

2 scal(Σ0, g)ψ2 ≥ 0.

By Gauss-Bonnet Σ0 is a torus and scal(Σ0, g) = 0.
If n > 3 we proceed as in [64, p. 166] and consider the first positive eigenfunction

w2 ∈ C∞(Σ0) corresponding to the first eigenvalue λ0 of the conformal Laplacian

Lg = −∆Σ0 + (n− 3)
4(n− 2) scal(Σ0, g).

If λ0 were positive, one could use w2 for a conformal change of metric which would
result in a metric with positive scalar curvature on Σ0 (compare the proof of Lemma
2.50). Since this is impossible we conclude that λ0 ≤ 0. Hence

2(n− 2)
n− 3

∫
Σ0
|∇Σ0w2|2 = −

∫
Σ0

1
2 scal(Σ0, g)w2

2 + 2λ0(n− 2)
n− 3

∫
Σ0
w2

2 ≤
∫

Σ0
|∇Σ0w2|2.

Since 2(n−2)
n−3 > 1 we see that λ0 = 0 and w2 is a constant function. Consequently

scal(Σ0, g) is constant as well. Since the first eigenvalue of −∆Σ0 + 1
2 scal(Σ0, g) is

equal to zero we conclude scal(Σ0, g) = 0.
Furthermore, we observe that the Jacobi operator associated to Σ0 is

−∆Σ0−(Ric(ν, ν)+ |A|2) = −∆Σ0−
1
2(scal(X, g)−scal(Σ0, g)+H2 + |A|2) = −∆Σ0 .

Before we continue we point out the following topological fact:
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Claim 2. There is a component Σ0 ⊂ Σ such that Σ0 × [−1, 1] has Property A.

Proof of Claim. If this were not the case, we could replace each component of Σ
inside its tubular neighborhood by a closed embedded hypersurface which admits
a metric with positive scalar curvature. The union of all these components would
then be a closed embedded hypersurface which separates ∂−X and ∂+X and admits
a metric with positive scalar curvature. This is impossible, since X is assumed to
have Property A.

Next, we use the infinitesimal splitting to establish that the desired warped
product splitting of (X, g) can be found locally around suitable components of Σ.
Claim 3. [cf. [2, Theorem 2.3]] There is a connected component Σ0 ⊂ Σ and a
tubular neighborhood U of Σ0 which is isometric to the warped product(

Σ0 × (−ε, ε), exp(2s h

n− 1)g0 + ds2
)

for some small ε > 0, where g0 denotes the metric on Σ0 induced by g.

Proof of Claim. Since X has Property A, there is a connected component Σ0 ⊂ Σ
which does not admit a metric with positive scalar curvature and such that Σ0×[−1, 1]
has Property A (see Claim 2). The conclusions of Claim 1 hold for Σ0.

We follow the proof of [2, Theorem 2.3] respectively [79, Lemma 3.4] and use the
implicit function theorem to show that there is a foliation {Σs}−δ<s<δ around Σ0
such that

. each Σs is a graph over Σ0 with graph function us along the outward unit
normal field ν with

d

ds

∣∣∣
s=0

us = 1 and
∫

Σ0
usdHn−1 = s; (2.4.1)

. Hs = H(Σs)− h is a constant function on Σs.

For s ∈ [0, δ) let Ωs be the union of Ω and the region bounded by Σ0 and Σs. By
choosing δ small enough, we can guarantee that the region bounded by Σ0 and Σs

does not intersect Σ\Σ0.
Since Ω minimizes the Ah functional, there is a 0 < δ′ ≤ δ such that Hs − h ≥ 0

for all s ∈ [0, δ′). There are two possibilities: either Hs − h > 0 for some s ∈ [0, δ′)
or Hs − h = 0 for all s ∈ [0, δ′).

In the first case we choose a constant 0 ≤ h < ĥ < Hs and consider the Aĥ-
functional on the Riemannian band X̂ bounded by Σ0 and Σs, which is diffeomorphic
to Σ0 × [−1, 1] and hence has Property A. By Lemma 2.39 there is a smooth
hypersurface Σ̂ which separates Σ0 and Σs with H(Σ̂) = ĥ and by stability and the
second variation formula we see

−∆Σ̂ + 1
2 scal(Σ̂, g) ≥ 1

2

(
scal(X, g) + n

n− 1 ĥ
2
)
> 0.

By Lemma 2.50, Σ̂ admits a metric with positive scalar curvature. Since X̂ has
Property A, this is a contradiction.



52 Scalar and Mean Curvature Comparison via µ-Bubbles

It follows that Hs − h = 0 for all s ∈ [0, δ′). We show that Ωs is a minimizer for
the Ah-functional as well:

Ah(Ωs)−Ah(Ω) = Hn−1(Σs)−Hn−1(Σ)−
∫
X̂
hdHn =

∫ s

0

∫
Σt

ft(Ht−h)dHn−1dt = 0,

where ft = g( d
dt
ut, νt) is the lapse function of Σt moving along the foliation.

As Ωs is a minimizer we can apply Claim 1 to ∂Ωs. Since Σs is diffeomorphic to
Σ0 and does not admit a metric with positive scalar curvature, we conclude that
scal(X, g) = scal(M, gϕ) along Σs and

|As|2 = H2
s

n− 1 = h2

n− 1

ie Σs is umbilic and all principal curvatures of Σs are equal to h
n−1 . Furthermore

scal(Σs, g) = 0 and the Jacobi operator of Σs is −∆Σs .
By an analogous argument for negative values of s, we see that there is some

0 < δ′′ < δ such that the above holds true for all Σs with s ∈ (−δ′′, 0]. We choose
some small 0 < ε ≤ min{δ′, δ′′}.

With the foliation we can write the metric as g = gs + f 2
s ds

2, where gs = g
∣∣∣
Σs

.
As the lapse function fs satisfies the Jacobi equation [41, Equation (1.2)], which
reduces to ∆Σsfs = 0, we see that fs is constant. By rescaling the s-coordinate, if
necessary, we can assume fs = 1 and hence Σs is s-equidistant to Σ0. Since Σs is
umbilic for all s ∈ (−ε, ε) we conclude that the map

S :
(

Σ0 × (−ε, ε), exp(2s h

n− 1)g0 + ds2
)
→ (X, g)

which is defined by
(p, s) 7→ expp(sν0)

is an isometry onto its image, which we denote by U .

Let Σ0 be the component we get from Claim 3. We want to show that there is a
maximal interval [c, d] containing (−ε, ε) such that

S :
(

Σ0 × [c, d], exp(2s h

n− 1)g0 + ds2
)
→ (X, g)

is an isometry. Note that if the map S is defined on Σ0 × (c′, d′) it is also defined on
Σ0 × [c′, d′] since the normal geodesic can always be extended to times c′ resp. d′.
Claim 4. Assume that for some real number 0 < d′ the map

S :
(

Σ0 × [0, d′), exp(2s h

n− 1)g0 + ds2
)
→ (X, g)

which is defined by
(p, s) 7→ expp(sν0)

is an isometry onto its image. Assume further that S (Σ0 × [0, d′)) does not intersect
Σ\Σ0. Then the following holds true:
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. S(Σ0 × {d′}) does not intersect Σ\Σ0,

. if S(Σ0 × {d′}) intersects ∂+X, it coincides with a component of ∂+X,

. S :
(
Σ0 × [0, d′], exp(2s h

n−1)g0 + ds2
)
→ (X, g) is an isometry onto its image,

Proof of Claim. Consider an increasing sequence sk → d′ in [0, d′) and the corre-
sponding sequence Σsk

= S(Σ0 × {sk}) of embeddings of Σ0. We denote by Ωsk
the

union of Ω and the region bounded by Σ0 and Σsk
. As we have seen before Ωsk

minimizes the Ah-functional for any k ∈ N.
Furthermore |Ask

|2 = h2

n−1 = const for all k and Hn−1(Σsk
) ≤ I+hvol(X, g) <∞.

By [7, Theorem 1.1] (and the comments thereafter) and the compactness theorem
[77, Theorem 2.11] for stable CMC-hypersurface, the limit S(Σ0 × {d′}) of these
embeddings is an immersion. In fact S(Σ0 × {d′}) is an almost embedded [77,
Definition 2.3] stable CMC-surface with mean curvature equal to h.

To show that S(Σ0×{d′}), which we will denote by Σd′ , does not intersect Σ\Σ0,
we distinguish two cases. If Σd′ is embedded and coincides with a component Σ′ of
Σ\Σ0 (with the opposite orientation), then h = 0 (the normal vector fields to Σ′
and Σd′ are inverse to each other and both have constant mean curvature equal to
h). If we consider the minimizing sequence Ωsk

for the Ah-functional, we see that
it converges to an open set Ω′ with boundary Σ\(Σ0 ∪ Σ′) (Σ′ and Σd′ cancel each
other out). Hence Ah(Ω′) < Ah(Ω) which contradicts the minimality of Ω.

If Σd′ intersects a component of Σ\Σ0 but they do not coincide, then the
minimizing sequence Ωsk

converges to an open set which is minimizing the Ah-
functional but has non-smooth boundary. This contradicts the regularity result [78,
Theorem 2.2]. Hence Σd′ does not intersect Σ\Σ0.

We denote by Ωd′ , the region in X which is bounded by Σd′ together with
Σ\Σ0 and ∂−X. Of course Ωd′ is a minimizer for the Ah-functional, as the limit
of the minimizing sequence Ωsk

. If Σd′ touches ∂+X it coincides with a connected
component of ∂+X by the strong maximum principle Proposition 2.43. If Σd′ does
not touch ∂+X it is embedded as a boundary component of the minimizer Ωd′ by the
regularity result [78, Theorem 2.2]. In both cases Σd′ is embedded and the smooth
limit of the embeddings Σsk

.
It is important to point out that, since the image S(Σ0×(0, d′]) does not intersect

Σ\Σ0, it is contained in X\Ω. Hence Σd′ is disjoint from Σ0 (the normal geodesics
to Σ0 do not close up).

We conclude that S :
(
Σ0 × [0, d′], exp(2s h

n−1)g0 + ds2
)
→ (X, g) is an isometry

(and not just a local isometry) onto its image.

Let smax ≥ 0 be maximal with the property that

S :
(

Σ0 × [0, smax), exp(2s h

n− 1)g0 + ds2
)
→ (X, g)

is an isometry onto its image and that this image does not intersect Σ\Σ0. We know
that smax > 0. We show that smax is finite and that S(Σ0 × {smax}) touches ∂+X.

If smax =∞, then a connected component of X\Σ is isometric to(
Σ0 × [0,∞), exp(2s h

n− 1)g0 + ds2
)
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which is impossible since X is compact.
Hence smax is finite. By Claim 4 the map

S :
(

Σ0 × [0, smax], exp(2s h

n− 1)g0 + ds2
)
→ (X, g)

is an isometry onto its image. We denote Σsmax := S(Σ0 × {smax}). As before, let
Ωsmax be the union of Ω and S(Σ×[0, smax]). Since Ωsmax minimizes the Ah-functional,
the metric splits infinitesimally around Σsmax by Claim 1.

Assume for a contradiction that Σsmax does not touch ∂+X. Then Σsmax is
contained in X̊ (remember that Σsmax can not touch ∂−X since the normal geodesics
never cross Σ\Σ0) and therefore a tubular neighborhood of Σsmax is contained in X̊.

Since Σ0 × [−1, 1] has Property A we can repeat the proof of Claim 3 to show
that the metric splits locally around Σsmax . Thus, there is some q > 0 such that
S :

(
Σ0 × [0, smax + q), exp(2s h

n−1)g0 + ds2
)
→ (X, g) is an isometry onto its image

and such that the image does not intersect Σ\Σ0. This contradicts the assumed
maximality of smax.

We conclude that S(Σ× {d}) touches ∂+X. In this case we have already seen in
Claim 4 that S(Σ×{d}) coincides with a component of ∂+X by the strong maximum
principle Proposition 2.43. We define d := smax.

Using a version of Claim 4 for negative values of s, and by an analogous argument
involving a minimal value smin, we see that for c := smin the map

S :
(

Σ0 × [c, d], exp(2s h

n− 1)g0 + ds2
)
→ (X, g)

is an isometry onto its image and that S(Σ0×{c}) resp. S(Σ0×{d}) are components
of ∂−X resp. ∂+X. Hence the image is open and closed in X. Since X is connected,
we conclude that (X, g) is isometric to(

Σ0 × [c, d], exp(2s h

n− 1)g0 + ds2
)
,

where g0 is a scalar flat metric on Σ0.
Since (n− 1)(logϕ(s))′ = h, we see that

ϕ(s) = exp
(
s

h

n− 1 + C

)
= exp

(
s

h

n− 1

)
exp(C)

for some constant C ∈ R. We define (N̂ , gN̂) to be (Σ0, exp(−2C)g0).

Theroem 2.51 implies part (2) of Theorem I. The last ingredient we need is the
following observation that appears in [28, Theorem 2.3] and is attributed to J. P.
Bourguignon:

Proposition 2.52. Let Σ be closed connected Riemannian manifold. If Σ does not
admit a metric with positive scalar curvature and g is a Riemannian metric on Σ
with scal(Σ, g) ≥ 0, then (Σ, g) is Ricci flat.

Remark 2.53. The rigidity analysis in the Proof of Theorem 2.51 could be adapted
to prove rigidity of part (1) of Theorem I in case width(X, g) = width(M, gϕ) if
there was a way to guarantee the existence of a µ-bubble in this situation. This is
connected to Remark 2.2 and Remark 2.31.
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Remark 2.54. As we already alluded to in Remarks 1.18 and 2.4, Theorem 2.49 as
well as Theorem 2.51 apply to any oriented band X in dimension n = 2, as for any
closed hypersurface Σ (a collection of circles), which separates ∂±X, the operator
−∆Σ + 1

2 scal(Σ, g) = −∆Σ has first eigenvalue equal to zero.

2.5 Proof of the Topological Results

2.5.1 Separating Hypersurfaces
Lemma 2.55. Let Y n−1 be a closed connected oriented manifold and X = Y ×[−1, 1].
If Σ is a closed embedded hypersurface in X, which separates ∂−X and ∂+X, there
is one connected component Σ0 of Σ that separates ∂−X and ∂+X.

Proof. Without loss of generality Σ can be assumed to be oriented, since nonori-
entable components are non-separating. Furthermore we can assume that Σ ⊂ X̊
(otherwise we isotope Σ by flowing along the interior unit normal vector field to ∂X
for a short time).

The relative homology group H1(X, ∂X) is generated by paths γ : [0, 1] → X
with γ(0) ∈ ∂−X and γ(1) ∈ ∂+X. Since the hypersurface Σ separates ∂−X and
∂+X it has nonzero algebraic intersection with every such path γ. It follows by
Lefschetz duality that [Σ] 6= 0 ∈ Hn−1(X) ∼= Hn−1(Y ) = Z.

Of course [Σ] is nothing but [Σ0] + . . . + [Σm], where Σi are the connected
components of Σ. Since [Σ] 6= 0 it follows that [Σi] 6= 0 for some i ∈ {0, . . . ,m}
(w.l.o.g. we can assume [Σ0] 6= 0). Going back, by Lefschetz duality, Σ0 has nonzero
algebraic intersection with any path γ which connects ∂−X and ∂+X and therefore
it separates ∂−X and ∂+X.

Lemma 2.56. Let Σ ⊂ X be a separating hypersurface in a band X. Then there
exists a union of components of Σ which is a properly separating hypersurface in X.

Proof. Suppose that Σ is a separating hypersurface that contains a component not
connected to both ∂−X and ∂+X inside X \ Σ. Then the hypersurface Σ′ obtained
from Σ by deleting this component is still a separating hypersurface. This shows
that there is a minimal collection of components of Σ such that its union is still
separating yields the desired properly separating hypersurface.

Lemma 2.57. Let Xn be a connected oriented band and X ′ = Y n−1× [−1, 1], where
Y is a closed connected oriented manifold. Let f : X → X ′ be a band map with
deg(f) = d 6= 0 and Σn−1 be a closed embedded hypersurface in X, which separates
∂−X and ∂+X. Then there is one connected component Σ0 of Σ such that the map
(prY ◦ f) : Σ0 → Y has nonzero degree.

Proof. Without loss of generality Σ can be assumed to be oriented, since nonori-
entable components are non-separating. Furthermore we can assume that Σ ⊂ X̊
(otherwise we isotope Σ by flowing along the interior unit normal vector field to ∂X
for a short time).

By Lemma 2.56 there is a union of components of Σ which is a properly separating
hypersurface. We denote this union of components by Σ′. By construction every
path γ : [0, 1] → X with γ(0) ∈ ∂−X and γ(1) ∈ ∂+X has algebraic intersection
number equal to one with Σ′.
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Since f is a band map f ◦ γ connects ∂−X ′ and ∂+X
′. It follows that [Σ′] is

Lefschetz dual to f ∗α, where α is the generator of H1(X ′, ∂X ′) ∼= Z.
Consider the diagram:

H1(X, ∂X;Z) Hn−1(X;Z)

H1(X ′, ∂X ′;Z) Hn−1(X ′;Z) Hn−1(Y ;Z).

∩[X,∂X]
∼=

f∗f∗

∩d[X′,∂X′] prY ∗

We conclude that (pr ◦ f)∗[Σ′] = d[Y ]. Hence there is one connected component Σ0
of Σ′ with (pr ◦ f)∗[Σ′] 6= 0. By construction Σ0 is also a component of Σ.

Proposition 2.58. Let Y be a closed connected oriented manifold of dimension
n− 1 ≥ 5 and X = Y × [−1, 1]. Let Σ0 be a closed connected oriented hypersurface
separating ∂−X and ∂+X in X. If Σ0 admits a metric with positive scalar curvature,
then so does Y .

Proof. The proof uses standard results and ideas from high dimensional topology.
We can assume that Σ0 ⊂ X̊ (otherwise we isotope Σ0 by flowing along the interior
normal vector field to ∂X for a short time).

We want to see that Y can be obtained from Σ0 by a finite sequence of surgeries
in codimension ≥ 3 and hence, by the well known argument of Gromov and Lawson
[29, Theorem A], a positive scalar curvature metric on Σ0 can be transported to Y .
See [18] for full details of the proof of [29, Theorem A].

We denote by W the connected component of X\Σ0 which contains ∂−X. Then
W is a cobordism W : Y  Σ0. We restrict the projection X → Y to W and obtain
a retract map r : W → Y .
Claim. The cobordismW : Y  Σ0 and the retract map r : W → Y can be improved
via surgery in the interior of W to a cobordism W2 : Y  Σ0 with a retract map
r2 : W2 → Y , which is 3-connected. The inclusion ι : Y ↪→ W2 will be 2-connected
since ι ◦ r2 = idM .

Proof of Claim. If ν(Y ) denotes the stable normal bundle of Y , there is a stable
trivialization of r∗ν(Y ) ⊕ TW . Since r is a retract map the induced map π1(r) :
π1(W )→ π1(Y ) is already surjective and its kernel is finitely generated as a normal
subgroup of π1(W ), since π1(W ) is finitely generated and π1(Y ) is finitely presented
(see [62, Lemma 3.2]). Let α be a generator of ker(π1(r)). Since 1 < n/2 we can
represent α by an embedding S1 ↪→ W̊ . Since W is oriented the normal bundle
of this embedding is trivial and hence we can kill α by surgery in the interior of
W . We obtain a cobordism Wα : Y  Σ0 and a retract map rα : Wα → Y . After
repeating this step finitely many times we end up with W1 : Y  Σ0 and a retract
map r1 : W1 → Y , which is 2-connected.

Next we need to kill the kernel of π2(r1) : π2(W1) → π2(Y ). In order to do so
one has to argue that this is possible with finitely many surgeries along elements of
ker(π2(r1)). We proceed similarily as in the proof of [62, Proposition 3.1], which in
turn is based on [67, Lemma 5.6] and [69, Lemma 1.1]. Since Y and W1 are compact
manifolds, if one starts with a handle decomposition of W1 relative to Y one can use
handle cancellation [70] and the fact that Y ↪→ W1 induces an isomorphism on π0
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and π1 to get rid of 0-handles and 1-handles. All the (finitely many) 2-handles in this
new handlebody are attached to Y via contractible maps (otherwise they would kill
elements in π1). Hence the 2-skeleton (W1, Y )(2) arising from this new handlebody is
homotopy equivalent to Y ∨ (∨j∈J S2). The 2-spheres in this wedge product finitely
generate ker(π2(r1)) as a Z[π1(Y )]-module over the common fundamental group
π1(Y ) = π1(W1).

Since 2 < n/2 we can represent each of those generators by an embedding
f : S2 ↪→ W̊1. Since r ◦ f(S2) is contractible, there is a map g : D3 → Y such that
the following diagram commutes:

S2 D3

W1 Y.

f

i

g

r1

The stable trivialization of r∗1ν(Y )⊕TW1 induces a stable trivialization of f ∗r∗1ν(Y )⊕
f ∗TW1 = i∗g∗ν(Y ) ⊕ f ∗TW1. But i∗g∗ν(Y ) is trivial since D3 is contractible and
hence f ∗TW1 ∼= ν(S2,W1) ⊕ TS2 is stably trivial. Since TS2 is stably trivial it
follows that ν(S2,W1) is stably trivial and since 2 < (n − 1)/2 we conclude that
ν(S2,W1) is trivial.

Hence we can kill ker(π2(r1)) in finitely many surgery steps. We end up with
a cobordism W2 : Y  Σ and a retract map r2 : W2 → Y which is 3-connected.
Consequently the inclusion ι : Y ↪→ W2 is 2-connected.

If we start with a handle decomposition of W2 with respect to Y we can use
handle cancellation [70] to get rid of all the 0-, 1- or 2-handles since the inclusion
ι : Y ↪→ W2 is 2-connected. Turning this upside down this handle decomposition
can be interpreted as a handle decomposition of W2 with respect to Σ0. In this
interpretation the dimension of each handle becomes its codimension.

Consequently W2 can be obtained from Σ0 × [−1, 1] by attaching handles of
codimension ≥ 3 and Y can be obtained from Σ0 by a finite sequence of surgeries in
codimension ≥ 3. Thus, by [29, Theorem A], Y admits a metric of positive scalar
curvature if Σ0 does.

We have all the ingredients to prove the main results of Section 2.1.2. Proposition
2.13 follows directly from Lemma 2.55 and Proposition 2.58. Further Proposition
2.17 follows directly from Lemma 2.55 and Definition 2.15. For the convenience of
the reader we also include a proof of Proposition 2.14, which heavily draws on the
work of Zeidler [75, 76].

Proof of Proposition 2.14. By Lemma 2.55 there is one connected component Σ0
of Σ, which separates ∂−X and ∂+X. We can assume that Σ0 ⊂ X̊ (otherwise we
isotope Σ0 by flowing along the interior normal vector field to ∂X for a short time).

We consider the real Miščenko bundle LY → Y , which is the flat bundle of
finitely generated projective Hilbert-C∗π1Y -modules associated to the representation
of π1Y on C∗π1Y by left multiplication. Recall (see for example [76, Section 2])
that the Rosenberg index α(Y ) ∈ KOn−1(C∗π1Y ) is then the (K-theoretic) index of
the Dirac operator on the spinor bundle of Y twisted with LY . We pull back LY
to X via the projection X → Y and restrict this pullback bundle to the connected
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component W of X which is bounded by ∂−X and Σ0. We denote the resulting
bundle by E → W .

Since Y is spin, so are W and Σ0. If we restrict E to Σ0, the index of the
Dirac operator on the spinor bundle of Σ0 twisted with the restriction of E is an
element in KOn−1(C∗π1Y ) which we denote by αE(Σ0). By bordism invariance of
the index αE(Σ0) = α(Y ) 6= 0 and hence Σ0 does not admit a metric with positive
scalar curvature as E is a flat bundle and by the usual argument involving the
Lichnerowicz-Weitzenböck formula.

2.5.2 Aspherical 4-Manifolds
In this section we present a detailed proof of Theorem 2.19. To do so we implement
the ideas of [33, Section 7, Main Theorem] using the techniques developed in [16].

Remark 2.59. To unburden the notation in this section we will denote the scalar
curvature of a Riemannian manifold (M, g) by RM . If B ⊂ M is an embedded
submanifold we will denote the scalar curvature of the induced metric g

∣∣∣
B
by RB.

Definition 2.60. Let Mn be a band. Let α 6= 0 ∈ Hn−2(M ;Z) be a non torsion
homology class. We say that α is a band class if there are α+ ∈ Hn−2(∂+M ;Z) and
α− ∈ Hn−2(∂−M ;Z) with α = ι∗(α±), where ι : ∂M →M denotes the inclusion of
the boundary.

The main analytical tool we need to develop is the following proposition, which
is reminiscent of what Gromov, in [33, Section 3], calls Richard’s Lemma in reference
to [56]. The proof, however, follows in the line of [16, Sections 6.1 & 6.2].

Proposition 2.61. Let (M4, g) be an oriented Riemannian band and α ∈ H2(M ;Z)
be a band class. If RM > σ > 0 and width(M, g) > 2π√

σ
, there is a closed oriented

embedded submanifold Σ which represents α and each connected component Σ0 of Σ
is homeomorphic to a 2-sphere with

diam(Σ0, g|Σ0) ≤ π

√
2

inf RM − σ
.

Proof. Denote ` = π√
σ
. Let β ∈ H3(M,∂M ;Z) be a relative class with ∂β = α+−α−.

Let B3 be a smooth embedded stable minimal hypersurface in the class β.
One can obtain B3 by directly minimizing area in β, as it is done in [30, Proof

of Theorem 12.1, pp. 398-399] and later [31, Induction Step, p.652]. However as it
is noted there, while the minimizer is smooth in M̊ , it might not be smooth at the
points where it intersects the boundary ∂M . This can be overcome by shaving off an
arbitrarily small collar neighborhood of ∂M . The strict inequality width(M, g) > 2π√

σ

can be preserved in this process.
Alternatively one can double M along its boundary (we denote the result by

M̂). By a simple Mayer-Vietoris argument, there is an absolute homology class
β̂ ∈ H3(M̂,Z) which maps to α+ − α− under the Mayer-Vietoris boundary map.

Hence if we subdivide a representative of β̂ in such a way that it can be written
as the sum of two chains contained in the two copies of M with common boundary
along ∂M , then each of these chains represents a suitable class β ∈ H3(M,∂M ;Z).
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If we were to smooth the metric on M̂ in an arbitrarily small neighborhood
of the common boundary we could minimize area in β̂ and restrict the resulting
closed smooth embedded minimal surface to a copy of (M, g), with the small
neighborhood we used for smoothing cut off, to obtain B3. Again, the strict
inequality width(M, g) > 2π√

σ
can be preserved in this process.

By stability of B and the classical second variation formula for the area functional
we see that ∫

B
|∇Bψ|2 −

1
2(RM −RB + |A|2)ψ2dH3 ≥ 0,

for all ψ ∈ C1
0(B). The first eigenfunction of the associated operator

−∆B −
1
2(RM −RB + |A|2)

will be smooth and can be chosen in such a way that it is positive on B̊ ie there is a
function u ∈ C∞0 (B) with u > 0 on B̊ and

∆Bu ≤ −
1
2(RM −RB + |A|2)u. (2.5.1)

Furthermore (B, g|B) is a Riemannian band with width(B, g|B) > 2`. We can
shrink B a little bit from both sides such that width > 2` remains true but ∂B ⊂ M̊
(this guarantees u > 0 on B). Let φ : B → [−`, `] be the map produced by Lemma
2.34 and set h(x) = −π

`
tan( π2`φ(x)).

We define Ω0 = φ−1[−`, 0] and consider the functional

A(Ω̂) =
∫
∂∗Ω̂

udH2 −
∫
B

(χΩ̂ − χΩ0)hudH3

for all Caccioppoli sets Ω̂ with Ω̂∆Ω0 contained in the interior of B.
By Lemma 2.46 we find a µ-bubble Ω ⊂ B with smooth boundary Σ = (∂Ω\∂−B),

which represents the class α ∈ H2(M ;Z). Stability of Ω and Lemma 2.48 imply that
for each connected component Σ0 of Σ we have:

∫
Σ0
|∇Σ0ψ|2u−

1
2
(
RB −RΣ0 −H2 + |A|2

)
ψ2u

+
(

2H〈∇Bu, ν〉+ d2u

dν2 −Hhu− 〈∇B(hu), ν〉
)
ψ2 ≥ 0,

for all ψ ∈ C∞(Σ0).

Claim. ∆Bu = ∆Σ0u+H〈∇Bu, ν〉+ d2u
dν2 .

Proof of Claim. We check this in local coordinates. Let e1, . . . , en−1 be a local
orthonormal frame of TΣ0. We extend ν to a unit vector field in a small tubular
neighborhood of Σ0 via the normal exponential map. The extension will be the
velocity vector field of normal geodesics to Σ0. In the following ∇Bu = ∇⊥Bu+∇ν

Bu
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denotes the decomposition of ∇Bu into its normal and tangential part.

∆Bu = div(∇Bu) =
n−1∑
i=1
〈∇ei

(∇Bu), ei〉+ 〈∇ν(∇Bu), ν〉

=
n−1∑
i=1
〈∇ei

(∇⊥Bu), ei〉+
n−1∑
i=1
〈∇ei

(∇ν
Bu), ei〉+ 〈∇ν(∇Bu), ν〉

= ∆Σ0u+
n−1∑
i=1
〈∇ei

(〈∇Bu, ν〉ν), ei〉+ 〈∇ν(∇Bu), ν〉

= ∆Σ0u+ 〈∇Bu, ν〉
n−1∑
i=1
〈∇ei

ν, ei〉+ 〈∇ν(∇Bu), ν〉

= ∆Σ0u+H〈∇Bu, ν〉+ 〈∇ν(∇Bu), ν〉

= ∆Σ0u+H〈∇Bu, ν〉+ d2u

dν2 − 〈∇Bu,∇νν〉

= ∆Σ0u+H〈∇Bu, ν〉+ d2u

dν2 ,

where we used that ν is the velocity vector field of normal geodesics to Σ0.

Consequently we combine with (2.5.1) to get:

d2u

dν2 +H〈∇Bu, ν〉 = ∆Bu−∆Σ0u ≤ −
1
2(RM −RB + |A|2)u−∆Σ0u.

By the first variation formula Lemma 2.47, we have hu = Hu + 〈∇Bu, ν〉 and
therefore

Hhu = H2u+H〈∇Bu, ν〉,

as well as
1
2H

2ψ2u = 1
2
(
h− u−1〈∇Bu, ν〉

)2
ψ2u

= 1
2u
−1〈∇Bu, ν〉2ψ2 − h〈∇Bu, ν〉ψ2 + 1

2h
2ψ2u.

Plugging all of this, step by step, into the stability inequality yields:

0 ≤
∫

Σ0
|∇Σ0ψ|2u−

1
2(RM −RΣ0 −H2 + 2|A|2)ψ2u

− (∆Σ0u−H〈∇Bu, ν〉+Hhu+ h〈∇B(u), ν〉+ u〈∇Bh, ν〉)ψ2

≤
∫

Σ0
|∇Σ0ψ|2u−

1
2(RM −RΣ0 +H2 + 2|A|2)ψ2u

− (∆Σ0u+ h〈∇B(u), ν〉+ u〈∇Bh, ν〉)ψ2

≤
∫

Σ0
|∇Σ0ψ|2u−

1
2(RM −RΣ0 + 2|A|2)ψ2u− (∆Σ0u)ψ2

− 1
2(h2 + 2〈∇Bh, ν〉)ψ2u

≤
∫

Σ0
|∇Σ0ψ|2u−

1
2(RM − σ −RΣ0)ψ2u− (∆Σ0u)ψ2

− 1
2(σ + h2 + 2〈∇Bh, ν〉)ψ2u
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for all ψ ∈ C∞(Σ0).
Using ` = π√

σ
, we can estimate

σ + h2 + 2〈∇Bh, ν〉 ≥ σ + h2 − 2|∇Bh| > 0.

We conclude

0 ≤
∫

Σ0
|∇Σ0ψ|2u−

1
2(RM − σ −RΣ0)ψ2u− (∆Σ0u)ψ2. (2.5.2)

If we choose ψ = u−
1
2 , we can use

div(u−1∇Σ0u) = −u−2|∇Σ0u|2 + u−1∆Σ0u

to integrate by parts and see

0 ≤
∫

Σ0
|∇Σ0u

− 1
2 |2u− 1

2(RM − σ −RΣ0)− (∆Σ0u)u−1

=
∫

Σ0
−3

4u
−2|∇Σ0u|2 −

1
2(RM − σ −RΣ0)

≤
∫

Σ0
−1

2(RM − σ −RΣ0),

or equivalently
1
2

∫
Σ0
RM − σ ≤

1
2

∫
Σ0
RΣ0 = 2πχ(Σ0),

which implies that Σ0 is a sphere with area(Σ0) ≤ 8π
inf RM−σ

.
To finish the proof we return to (2.5.2). Let w ∈ C∞(Σ0) be the first positive

eigenfunction to the associated operator. Thus

divΣ0(u∇Σ0w) ≤ −1
2(RM − σ −RΣ0)wu− (∆Σ0u)w.

If we set λ = uw, then

∆Σ0λ = divΣ0(u∇Σ0w) + divΣ0(w∇Σ0u)

≤ −1
2(RM − σ −RΣ0)λ− (∆Σ0u)w + divΣ0(w∇Σ0u)

= −1
2(RM − σ −RΣ0)λ− (∆Σ0u)w + w divΣ0(∇Σ0u) + 〈∇Σ0u,∇Σ0w〉

≤ −1
2(RM − σ −RΣ0)λ+ 〈∇Σ0u,∇Σ0w〉

≤ −1
2(RM − σ −RΣ0)λ+ 〈∇Σ0u,∇Σ0w〉+ 1

2u
−1w|∇Σ0u|2 + 1

2w
−1u|∇Σ0w|2

≤ −1
2(RM − σ −RΣ0)λ+ 1

2λ
−1|∇Σ0λ|2.

Now diam(Σ0, g|Σ0) ≤ π
√

2
inf RM−σ

follows directly from the next lemma.

Lemma 2.62 ([16, Lemma 16]). Let (N2, g) be a closed 2-dimensional Riemannian
manifold. If there is a smooth function λ > 0 on Σ0 with

∆Nλ ≤ −
1
2(C −RN)λ+ 1

2λ
−1|∇Nλ|2

for some C > 0, then diam(N, g) ≤
√

2
C
π.
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Proof. Let ` =
√

2
C
π. Assume for a contradiction, that there are p, q ∈ N with

distg(p, q) > `. For ε > 0 small enough M = N\(Bε(p) ∪ Bε(q)) is a band with
width(M, g) > `. Let φ : M → [− `

2 ,
`
2 ] be the map we get from Lemma 2.34 and

define h(x) = −2π
`

tan(π
`
φ(x)).

Let Ω0 = φ−1[− `
2 , 0] (w.l.o.g 0 is a regular value of φ) and consider the functional

A(Ω̂) =
∫
∂∗Ω̂

λ−
∫
M

(χΩ̂ − χΩ0)hλdH2

for all Caccioppoli sets Ω̂ with Ω̂∆Ω0 contained in the interior of M . We repeat
most of the steps from the proof of the previous Lemma, with u replaced by λ.

By Lemma 2.46 there is a minimizer Ω with smooth boundary (∂Ω\∂−M) and
by Lemma 2.47 every connected component Σ satisfies

H = −λ−1〈∇Mλ, ν〉+ h.

Note that in this case H is the geodesic curvature.
By stability and Lemma 2.48 we see

0 ≤
∫

Σ
|∇Σψ|2λ−

1
2(RM−H2+|A|2)ψ2λ+(2H〈∇Mλ, ν〉+

d2λ

dν2−Hhλ−〈∇M(hλ), ν〉)ψ2

for all ψ ∈ C∞(Σ). We use as before:
d2λ

dν2 +H〈∇Mu, ν〉 = ∆Mλ−∆Σλ ≤ −∆Σλ−
1
2(C −RM)λ+ 1

2λ
−1|∇Mλ|2,

as a consequence of Lemma 2.47

Hhλ = H2λ+H〈∇Mλ, ν〉,

as well as
1
2H

2ψ2λ = 1
2λ
−1〈∇Mλ, ν〉2ψ2 − h〈∇Mλ, ν〉ψ2 + 1

2h
2ψ2λ.

If we plug all of the above in the stability inequality, it follows that

0 ≤
∫

Σ
|∇Σψ|2λ+1

2λ
−1|∇Mλ|2ψ2−1

2λ
−1〈∇Mλ, ν〉2ψ2−(∆Σλ)ψ2−1

2(C+h2+2〈∇Mh, ν〉)ψ2λ

for all ψ ∈ C∞(Σ) and since C + h2 + 2〈∇Mh, ν〉 > 0 (remember that Lip(φ) < 1)
by construction of h, we see

0 <
∫

Σ
|∇Σψ|2λ+ 1

2λ
−1|∇Mλ|2ψ2 − 1

2λ
−1〈∇Mλ, ν〉2ψ2 − (∆Σλ)ψ2

If we choose ψ = λ−
1
2 , we can use

div(λ−1∇Σ0λ) = −λ−2|∇Σ0λ|2 + λ−1∆Σ0λ

to integrate by parts as before and see

0 <
∫

Σ
−3

4λ
−2|∇Σλ|2 + 1

2λ
−2|∇Mλ|2 −

1
2λ
−2〈∇Mλ, ν〉2

=
∫

Σ
−3

4λ
−2|∇Σλ|2 + 1

2λ
−2
(
|∇Σλ|2 + 〈∇Mλ, ν〉2

)
− 1

2λ
−2〈∇Mλ, ν〉2

=
∫

Σ
−1

4λ
−2|∇Σλ|2,

which is a contradiction.
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Definition 2.63. Let (Xn, g) be a complete oriented Riemannian manifold and c a
locally finite singular k-cycle. Then the the filling radius of c in (X, g) is defined to
be

FillRadZ(c,X) = inf{r > 0|[c] = 0 ∈ H lf
k (Ur(c);Z)},

where Ur(c) denotes the open r-neighborhood of c in (X, g). If one replaces Z by Q
the same definition yields the rational filling radius.

Remark 2.64. In [23, Section 1] Gromov generalizes the above and defines the
filling radius FillRadZ(X, g) of a complete oriented Riemannian manifold (X, g),
with respect to the Kuratowski embedding of (X, dg). Furthermore he proves two
results we will need in the following:

. FillRadZ(R, gstd) =∞ (see [23, Section 4.4.C])

. if X is isometrically embedded in a Metric space (S, d) and one defines
FillRadZ(X,S) appropriately as inf{r > 0|[X] = 0 ∈ H lf

k (Ur(X);Z)}, then
FillRadZ(X,S) ≥ FillRadZ(X, g) (see [23, Section 1]).

Both points remain true with rational coefficients.

Lemma 2.65 ([42, Theorem IX.4.7]). Let Xn be an oriented manifold. Let C ⊂ X
be a closed subset such that ∂C = C\C̊ is a smooth submanifold. Then H lf

1 (C;Z) ∼=
Hn−1(X,X\C;Z).

Lemma 2.66 (Codim 2 Linking Lemma [32, Lemma 4.G]). Let Y n be a closed
aspherical manifold and g a Riemannian metric on Y . For every σ > 0 there is a
compact band M in the universal cover (Ỹ , g̃) such that: width(M, g̃) > 2π√

σ
, there

is a band class α ∈ Hn−2(M ;Z) and for every cycle c ⊂M representing a nonzero
multiple of α we have FillRadZ(c, Ỹ ) > 2π√

σ
.

Proof. Let σ > 0 be arbitrary. By [16, Lemma 6] there is a geodesic line

γ : R→ (Ỹ , g̃).

Since γ is an isometric embedding of the real line,

FillRadZ(γ, Ỹ ) ≥ FillRadZ(R, gStd) =∞

(see Remark 2.64), hence for all r > 0 the line γ represents a non-zero class in
H lf

1 (Ur(γ),Z), where Ur(γ) denotes the open r-neighborhood of γ in (Ỹ , g̃). Since

FillRadQ(γ, Ỹ ) ≥ FillRadQ(R, gStd) =∞

we see by the same argument, that [γ] is non torsion in H lf
1 (Ur(γ),Z).

For some ε > 0 let ρ be a smooth approximation of dist(γ, ·) which is ε-close.
There is a sequence (rk)k∈N of regular values of ρ with rk → ∞ and the property
that for all k ∈ N we have rk > 2ε and rk+1 − rk > 2ε.

Denote Uk = ρ−1[0, rk]. By construction [γ] 6= 0 ∈ H lf
1 (Uk,Z) for all k and the

class is non torsion. Thus by Lemma 2.65, the fact that Ỹ is contractible we see:

0 6= [γ] ∈ H lf
1 (Uk,Z) ∼= Hn−1(Ỹ , Ỹ \Uk;Z) ∼= Hn−2(Ỹ \Uk;Z).
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Furthermore, since [γ] is non-torsion its image in Hn−2(Ỹ \Uk;Z) corresponds
by the UCT to an element αk 6= 0 ∈ Hn−2(Ỹ \Uk;Z). If we represent αk by a
closed smooth submanifold Nk ⊂ Ỹ \Uk, then Nk is linked with γ and dist(γ,Nk) >
rk − ε > rk−1 + ε. That Nk is linked with γ means that [Nk] 6= 0 ∈ Hn−2(Ỹ \γ;Z) ie
every fill-in of Nk in Ỹ , which exists because Ỹ is contractible, intersects γ.

Let Vk be a smoothed version (as before) of the closed (rk−1/2)-neighborhood
of Nk. Then 0 6= αk ∈ Hn−1(Vk;Z), since Nk is linked with γ and Vk ⊂ (Ỹ \γ).
Furthermore any cycle c ⊂ Vk, which represents a nonzero multiple of αk is linked
with γ (since αk is non torsion) and hence FillRadZ(c, Ỹ ) ≥ dist(γ, c) ≥ (rk−1/2).
We want to see that there is a class α+

k ∈ Hn−1(∂Vk;Z) with ι(α+
k ) = αk, where

ι : ∂Vk → Vk denotes the inclusion of the boundary.
Consider the ε-neighborhood Uε(γ) of γ. If we choose ε small enough, there is a

closed smooth submanifold N0 ⊂ Uε(γ) with [N0] = [Nk] ∈ Hn−2(Ỹ \γ;Z) (this N0
will be the image under the exponential map of small sphere around the origin in
the fiber over γ(0) in the normal bundle of γ). Hence we can find a smooth oriented
submanifold Bn−1 with ∂B = N0 ∪ Nk and by possibly deforming B a little bit
we can ensure that B intersects ∂Vk transversely in a closed (n − 2)-dimensional
submanifold N+

k . Then [N+
k ] is homologous to [Nk] in Hn−2(Vk;Z) and we can set

α+
k = [N+

k ] ∈ Hn−2(∂Vk;Z).
Finally, for δ > 0 small enough, Uδ(Nk) is isometric via the exponential map

to the normal δ-disc bundle Dδ(Nk). It follows that ∂Uδ(Nk) = Nk × S1 and we
set α−k = [Nk × {0}] ∈ Hn−2(Nk × S1;Z). We conclude that Mk = Vk\Uδ(Nk) is a
compact band with boundary ∂+Mk = ∂Vk and ∂−Mk = ∂Uδ(Nk) = Nk × S1, which
has width(Mk, g̃) ≥ rk−1

2 − ε− δ. Furthermore the triple (αk, α+
k , α

−
k ) represents a

band class in Mk. For k big enough width(Mk, g̃) ≥ rk−1
2 − ε− δ >

2π√
σ
.

Lemma 2.67. Let M ′ and M be two smooth connected oriented n-dimensional bands
and f : M ′ →M be a map of degree d 6= 0 with f(∂±M ′) = ∂±M . If α ∈ Hn−2(M ;Z)
is a band class, there is a band class α′ ∈ Hn−2(M ′;Z) with f∗(α′) = dα.

Proof. Consider the following diagram:

Hn−2(M ′;Z) H2(M ′, ∂M ′;Z)

Hn−2(M ;Z) H2(M,∂M ;Z).

f∗

∩[M ′,∂M ′]
∼=

f∗

∩d[M,∂M ]

The diagram commutes since f∗[M ′, ∂M ′] = d[M,∂M ]. By Lefschetz duality there
is a unique cohomology class η ∈ H2(M,∂M ;Z) with η ∩ d[M,∂M ] = dα 6= 0 since
α is non torsion. Then α′ := f ∗η ∩ [M ′, ∂M ′] is such that f∗α′ = dα.

The (co)homology of ∂M and ∂M ′ splits as the direct sum of the (co)homology
of the components ∂±M and ∂±M

′ i. e. H∗(∂M) = H∗(∂−M) ⊕ H∗(∂+M) and
H∗(∂M) = H∗(∂−M)⊕H∗(∂+M). The induced maps f∗ and f ∗ split into compo-
nents as well. By comparing the components of

f∗([∂+M
′])− f∗([∂−M ′]) = ∂f∗[M ′, ∂M ′] = ∂d[M,∂M ] = d[∂+M ]− d[∂−M ],

we conclude that f∗([∂+M
′]) = d[∂+M ] and f∗([∂−M ′]) = d[∂−M ], so the restricted

maps between the boundary components have degree d as well.
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For both boundary components we separately write down a diagram as above

Hn−2(∂±M ′;Z) H1(∂±M ′;Z)

Hn−2(∂±M ;Z) H1(∂±M ;Z)

f∗

∩[∂±M ′]
∼=

∩d[∂±M ]

f∗

and we find unique cohomology classes η± ∈ H1(∂±M ;Z) with η±∩d[∂±M ] = ±dα±.
We then consider

H1(∂−M ;Z)⊕H1(∂+M ;Z) Hn−2(∂−M ;Z)⊕Hn−2(∂+M ;Z)

H2(M,∂M ;Z) Hn−2(M ;Z)

∩[∂M ]

ι∗

∩[M ]

By comparing components we see that η− and η+ map to η under the connecting
homomorphism H1(∂M ;Z)→ H2(M,∂M ;Z).

Thus we define classes α′± := f ∗η± ∩ [∂±M ′]. Finally

H1(∂M ;Z) H1(∂M ′;Z) Hn−2(∂M ′;Z)

H2(M,∂M ;Z) H2(M ′, ∂M ′;Z) Hn−2(M ′;Z)

f∗ ∩[∂M ′]

ι∗

f∗ ∩[M ]

implies that ι∗(α′±) = α′.

The following Proposition is well known. A proof can be found in [17, Section 4].

Proposition 2.68. Let Y n and Znbe closed connected oriented manifolds and
f : Z → Y a smooth map with deg(f) 6= 0. The pullback pr : Ẑ → Z of the universal
covering Ỹ → Y has the following properties:

• Ẑ is non compact,

• the map f ◦ pr : Ẑ → Y can be lifted to a map f̂ : Ẑ → Ỹ ,

• f̂ is proper and deg(f̂) = deg(f).

Finally we have assembled all the tools we need to prove Theorem 2.19.

Proof of Theorem 2.19. Let Y 4 be a closed oriented aspherical manifold. Let Z4 be
a closed oriented manifold and f : Z → Y a continuous map with deg(f) 6= 0.

We remind the reader that for any metric on Y the universal cover, equipped
with the pullback metric, is uniformly contractible (see for example [23, Section
4.5.D]) i. e. for every radius R > 0 there is a radius C(R) > 0 such that for every
point y ∈ Ỹ the ball BR(y) is contractible within BC(R)(y).

Assume for a contradiction that Z admits a Riemannian metric g1 with Sc(Z, g) =
RZ > σ > 0. By possibly replacing it with a homotopic map, we can assume that f :
Z → Y is smooth. Let g2 be a Riemannian metric on Y . Then f : (Z; g1)→ (Y, g2)
is a Lipschitz map and by possibly rescaling g2, we can assume that it is distance
decreasing.
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By Proposition 2.68 there is a covering space Ẑ of Z and a lift f̂ : Ẑ → Ỹ such
that f̂ is proper and deg(f̂) = deg(f). By Lemma 2.66 we can find a compact
band M in (Ỹ , g̃2) with width(M, g̃2) > 2π√

σ
and a band class α ∈ Hn−2(M ;Z),

such that for every cycle c ⊂ M representing a nonzero multiple of α we have
FillRadZ(c, Ỹ ) > 2π√

σ
. By transversality we can deform the map f̂ by an arbitrarily

small amount to make it transverse to Mk as well as ∂Mk = ∂+M ∪ ∂−M , while
remaining distance decreasing.

Then M ′ = f̂−1(M) is a compact band in Ẑ with smooth boundary

∂M ′ = f̂−1(∂M) = f̂−1(∂+M) ∪ f̂−1(∂−M) =: ∂+M
′ ∪ ∂−M ′

and since f̂ is distance decreasing width(M ′, ĝ1) > 2π√
σ
. Furthermore f̂ restricts

to a map M ′ → M of degree non-zero. By Lemma 2.67, there is a band class
α′ ∈ Hn−2(M ′;Z) with f̂∗α′ = deg(f̂)α 6= 0.

By Proposition 2.61 there is a smooth oriented submanifold Σ which represents
α′ and each connected component Σ0 of Σ is a 2-sphere with

diam(Σ0, ĝ|Σ0) ≤
√

2
inf RZ − σ

π.

Then f̂(Σ) is a cycle c0 in M , which represents deg(f̂)α and FillRadZ(c0, Ỹ ) ≤
C
(√

2
inf RZ−σ

π
)
, since f̂ is distance decreasing and (Ỹ , g̃) is uniformly contractible.

For σ > 0 small enough this yields

FillRadZ(c0, Ỹ ) > 2π√
σ
> C

(√
2

inf RZ − σ
π

)
≥ FillRadZ(c0, Ỹ ), (2.5.3)

which is a contradiction.



Partitioned Scalar and Mean
Curvature Comparison

The main goal of this chapter, which corresponds to parts of joint work [9] with
Simone Cecchini and Rudolf Zeidler is to prove the partitioned scalar and mean
curvature comparison principle Theorem II and to see that it implies Conjecture 1.8
of Rosenberg and Stolz for orientable manifolds in dimension ≤ 7. We recall:

Conjecture 1.8 ([59, Section 7]). Let Y n−1 be a closed manifold of dimension 6= 4
which does not admit a metric with positive scalar curvature. Then Y ×R does not
admit a complete metric with positive scalar curvature.

The conjecture builds on the work [29, Section 6] of Gromov and Lawson, who
established this behavior for enlargeable spin manifolds Y in all dimensions. Cecchini
generalized this result in [11], where he proved Conjecture 1.8 for all spin manifolds
Y with non-vanishing Rosenberg index.

Following up on [11, 12, 75], Zeidler [76, Theorem 1.4] realized that there is a
general geometric statement underlying the band width conjecture and the non-
existence of complete metrics with positive scalar curvature on any connected spin
manifold X without boundary which contains a closed incompressible hypersurface
Y ⊂ X with trivial normal bundle and non-vanishing Rosenberg index.

Definition 3.1. Let X be a connected manifold and Σ ⊂ X be an embedded
hypersurface. The Σ is called incompressible if the map ι∗ : π1(Σ)→ π1(X), induced
by the inclusion ι : Y ↪→ X, is injective.

Recently Chen, Liu, Shi and Zhu [15, Theorem 1.1] used µ-bubbles to establish
the non-existence of complete metrics with uniformly positive scalar curvature on
any connected orientable manifold X≤7 without boundary which contains a closed
incompressible hypersurface Y ⊂ X which is aspherical and NPSC+. We remind
the reader that any closed aspherical manifold of dimension ≤ 5 is NPSC+ by our
Theorem 2.19 and [17].

In the following we will combine the methods we developed in Chapter 2 with
ideas from [76] to prove a scalar and mean curvature comparison principle for bands
with Property A which are partitioned into multiple segments.

Definition 1.27. Let X be a band and Σi, for i ∈ {1, . . . , k}, be closed embedded
hypersurfaces such that Σ1 properly separates ∂−X and ∂+X and Σi properly
separates Σi−1 and ∂+X for i ∈ {2, . . . , k}. We call (X,Σi, k) a partitioned band
and denote by Vj, for j ∈ {1, . . . , k + 1}, the segments of X bounded by Σj−1 and
the Σj, where Σ0 = ∂−X and Σk+1 = ∂+X.

67
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The main conceit is, that positivity of the scalar curvature in a single segment
can have global effects on the geometry of a partitioned Riemannian band.

3.1 Partitioned Comparison Principle
The following section contains an in depth discussion of Theorem II, the main
result of this chapter. We review its statement, its applications and provide the
necessary context. Throughout this section we restate definitions and results from
the introduction for the convenience of the reader.

Definition 1.19. A smooth function ϕ : [a, b]→ R+ is called log-concave if

d2

dt2
log(ϕ)(t) =

(
ϕ′(t)
ϕ(t)

)′
≤ 0

for all t ∈ [a, b]. If the inequality is strict we say that ϕ is strictly log-concave. In
case of equality we say that ϕ is log-affine.

Definition 1.20. Let (N, gN ) be a closed Riemannian manifold with constant scalar
curvature. A warped product(

M, gϕ) = (N × [a, b], ϕ2(t)gN + dt2
)

with warping function ϕ : [a, b] → R+ is called a model space if scal(M, gϕ) is
constant and ϕ is strictly log-concave or log-affine.

Theorem II. Let n ≤ 7 and (Xn,Σi, k) be an oriented partitioned band with Property
A. Let g be a Riemannian metric on X and (Mj, gϕj

) for j ∈ {1, . . . , k+1} be strictly
log-concave model spaces over a scalar flat base. If

. scal(Vj, g) ≥ scal(Mj, gϕj
) for all j ∈ {1, . . . , k + 1},

. H(∂−X, g) ≥ H(∂−M1, gϕ1) and H(∂+X, g) ≥ H(∂+Mk+1, gϕk+1),

. H(∂+Mj, gϕj
) = −H(∂−Mj+1, gϕj+1) for all j ∈ {1, . . . , k},

then width(Vj, g) ≤ width(Mj, gϕj
) for at least one j ∈ {1, . . . , k + 1}.

3.1.1 Applications
The following result is more or less a direct application of Theorem II:

Theorem 1.28. Let n ≤ 7 and (Xn,Σi, 2) be an orientable partitioned band with
Property A. Let g be a Riemannian metric on X and κ > 0 be a positive constant. If

. scal(V2, g) ≥ κn(n− 1),

. scal(X, g) ≥ 0,

and we denote d := width(V2, g) < 2π√
κn
, then

min{width(V1, g),width(V3, g)} < ` = 2√
κn

cot
(√

κnd

4

)
.
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If, instead of scal(X, g) ≥ 0, one assumes that the scalar curvature of the
partitioned band is bounded from below by a negative constant, Theorem II provides
the following estimate, which is very much in the same spirit as Theorem 1.28 and
should be compared with Zeidler’s result [76, Theorem 1.4] in the spin setting.
Theorem 3.2. Let n ≤ 7 and (X,Σi, 2) be an orientable partitioned n-dimensional
band with Property A. Let g be a metric on X and κ > 0 be a positive constant. If

. scal(V2, g) ≥ κn(n− 1),

. scal(X, g) ≥ −σ > −κn(n− 1) tan
(√

κnd
4

)2
, where d := width(V2, g) < 2π√

κn
,

then min{width(V1, g),width(V3, g)} < `, where ` is such that

√
κ(n− 1) tan

(√
κnd

4

)
=
√
σ(n− 1)

n
coth

( √
σn`

2
√
n− 1

)
.

We want to use Theorem 1.28 or Theorem 3.2 to attack Conjecture 1.8. If
X = Y × R and g is a complete metric on X, we consider the compact segment
Y × [−C,C] for any C > 0, which is partitioned in to the bands Y × [−C,−1],
Y × [−1, 1] and Y × [1, C]. If the scalar curvature of (X, g) is assumed to be positive
and Y × [−C,C] has Property A, the minimum of the widths of (Y × [−C,−1], g)
and (Y × [1, C], g) is bounded from above in terms of the width of (Y × [−1, 1], g)
and the infimum of scal(Y × [−1, 1], g). For C > 0 large enough, this produces a
contradiction.

We try to formulate the most general result that one can prove in this manner.
To do so, we make use of the Freudenthal end compactification [20] of a connected
manifold M , denoted by FM = M ∪ EM , where EM is the space of ends. We
introduce the following class of non-compact manifolds without boundary:
Definition 3.3. An open band is a connected non-compact manifold M without
boundary, together with a decomposition

EM = E−M t E+M,

where E±M are non-empty closed1 subsets E±M ⊂ EM ie M has at least two ends.
The standard example of an open band is M = X̊ where X is a band. In the

spirit of Conjecture 1.8 and Theorem II we are interested in open bands with:
Property B. No closed embedded hypersurface Σ ⊂M which separates E−M and
E+M admits a metric with positive scalar curvature.

We point out that, if X is a band with Property A, then M = X̊ is an open band
with Property B. Conversely if M is an open band with Property B and Σ± are two
closed embedded hypersurfaces such that Σ− properly separates E−M and E+M and
Σ+ properly separates Σ− and E+M , then the band X ⊂ M which is bounded by
Σ± has Property A.

In this way Theorem 1.28 or Theorem 3.2 yield obstructions to the existence of
a complete metric with positive scalar curvature on an open band with Property B.
Since any open band M has at least two ends by definition, we can go even further.
We include a proof of the following standard result in Section 3.3.

1While the space of end is totally disconnected, it is in general not necessarily discrete. In this
case it is important to assume E±M to be closed (and thus clopen) subsets of EM .
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Proposition 3.4. Let M be an open band. If g is a complete Riemannian metric
on M , there is a geodesic line which connects E−M and E+M .

With a deformation result due to Kazdan [45] and the classical Cheeger-Gromoll
splitting theorem (see e.g. [53, Theorem 7.3.5]) we arrive at the following conclusion:

Theorem 3.5. Let n ≤ 7 and Mn be an open band with Property B. If g is a
complete metric on M with nonnegative scalar curvature, then (M, g) is isometric to

(Y × R, gY + dt2),

where (Y, gY ) is a closed Ricci flat manifold.

3.1.2 Topological Results
Building on Section 2.1.2 we provide a list of open bands with Property B.

Proposition 3.6. Let Mn be a connected orientable manifold without boundary. If

. M = Y × R, where Y is a closed orientable manifold which does not admit a
metric with positive scalar curvature and n ≥ 6, then M is an open band with
Property B.

. there is a proper continuous map f : M → Y × R with nonzero degree, where
Y is closed oriented and NPSC+, then M is an open band with Property B.

. M is spin and Y ⊂M is a closed embedded incompressible hypersurface with
trivial normal bundle and α(Y ) 6= 0 ∈ KOn−1(C∗π1(Y )), there is a covering
space M̂ which is an open band with Property B.

. n ≤ 6 and Y ⊂ X is a closed embedded incompressible hypersurface with trivial
normal bundle which dominates an aspherical manifold, there is a covering
space M̂ which is an open band with Property B.

Together with Theorem 3.5 we conclude:

Theorem 1.29. Let (n−1) 6= 4 and n ≤ 7. Let Y n−1 be a closed orientable manifold
which does not admit a metric with positive scalar curvature and X = Y × R. Then
X does not admit a complete metric with positive scalar curvature. Moreover, if
g is a metric on X with non-negative scalar curvature, then (X, g) is isometric to
(Y × R, gY + dt2), where gY is a Ricci flat metric on Y .

3.2 Combining Potentials
As we did for part (1) of Theorem I, we will prove Theorem II by contradiction.
Under the assumption that width(Vj, g) > width(Mj, gϕj

) for all j ∈ {1, . . . , k + 1},
we will produce a closed embedded hypersurface Σ ⊂ X which separates ∂−X and
∂+X and admits a metric with positive scalar curvature.

As before, Σ will appear as the boundary of a µ-bubble. The key ingredient
for the corresponding functional is the potential function h : X → R. We can use
the construction from Chapter 2 for each band (Vj, g) and model space (Mj, gϕj

)
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separately to produce hj : Vj → R as the concatenation of a strictly 1-Lipschitz
band map (Vj, g)→ (Mj, gϕj

) and the function hϕj
: Mj → R. Subsequently we use

a gluing construction to paste all of the hj together to obtain a smooth function
h : X → R which is suitable for our purposes.

The idea to combine potential functions in this way, was already used in [10, 76].
The gluing construction is based on the following result:

Lemma 3.7. Let h : [a, b] → R be a smooth strictly monotonously decreasing
function such that

− n

n− 1h
2 − 2h′ = σ,

for some constant σ ∈ R. For every ε > 0 there is a function ĥ : [a− ε, b+ ε]→ R
such that:

. ĥ(t) = h(t) for t ∈ [a+ ε, b− ε],

. ĥ(t) = h(a) in a neighborhood of a− ε and ĥ(t) = h(b) in a neighborhood of
b+ ε,

. ĥ′ ≤ 0,

. − n
n−1 ĥ

2 − 2ĥ′ ≤ σ and − n
n−1 ĥ

2(t)− 2ĥ′(t) < σ if ĥ′(t) = 0.

Proof. Let ρ : R→ [a, b] be a smooth function with:

. ρ(t) = a for t ∈ (−∞, a − ε
2 ], ρ(t) = t for t ∈ [a + ε

2 , b −
ε
2 ] and ρ(t) = b for

t ∈ [b+ ε
2 ,∞).

. 0 < ρ′(t) < 1 for t ∈ (a− ε
2 , a+ ε

2) and t ∈ (b− ε
2 , b+ ε

2).

Then the function ĥ : [a− ε, b+ ε]→ R defined by ĥ = h ◦ ρ has all of the desired
properties. The first two are immediate from the definition. The third one holds
since ĥ′(t) = h′(ρ(t))ρ′(t) and h′ < 0 while ρ′ ≥ 0. To check the last property we
point out that

− n

n− 1 ĥ
2(t)− 2ĥ′(t) = − n

n− 1h(ρ(t))− 2h′(ρ(t))ρ′(t) = σ + 2h′(ρ(t))(1− ρ′(t)).

Since h′(ρ(t)) < 0 and 0 ≤ ρ′ ≤ 1 the above is always ≤ σ and it is < σ if ρ′(t) < 1
which holds true in particular where ĥ′(t) = 0 ie ρ′(t) = 0.

For the convenience of the reader we recall Lemma 2.34. Furthermore we
summarize those results concerning µ-bubbles (see Section 2.3) which are needed to
prove the partitioned comparison principle in Proposition 3.8.

Lemma 2.34. Let (X, g) be a Riemannian band. If width(X, g) > a− b, there is a
smooth band map φ : (X, g)→ [a, b] with Lip(φ) < 1.

Proposition 3.8. Let n ≤ 7 and (Xn, g) be an oriented Riemannian band. Let
h : X → R be a smooth function with the property that

scal(X, g) + n

n− 1h
2 − 2|∇h| > 0.
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If the mean curvature satisfies

H(∂±X, g) > ±h
∣∣∣
∂±X

,

there is a closed embedded hypersurface Σ which separates ∂−X and ∂+X such that

−∆Σ + 1
2 scal(Σ, g) > 0.

Proof. Denote by C(X) the set of all Caccioppoli sets in X which contain an open
neighborhood of ∂−X and are disjoint from ∂+X. For Ω̂ ∈ C(X) consider the
functional

Ah(Ω̂) = Hn−1(∂∗Ω̂ ∩ X̊)−
∫

Ω̂
hdHn,

where ∂∗Ω̂ is the reduced boundary [22, Chapters 3, 4] of Ω̂.
By Lemma 2.39 there is a smooth so called µ-bubble Ω ∈ C(X) ie a smooth

Caccioppoli set with

Ah(Ω) = I := inf{Ah(Ω̂)
∣∣∣Ω̂ ∈ C(X)}.

Denote ∂Ω ∩ X̊ = Σ and let ν be the outward pointing unit normal vector field to
Σ. By the first variation formula for Ah (see Lemma 2.40) the mean curvature of Σ
(computed with respect to −ν) is equal to h

∣∣∣
Σ
. By stability and the second variation

formula (see Lemma 2.41) we conclude that∫
Σ
|∇Σψ|2 + 1

2 scal(Σ, g)ψ2 ≥
∫

Σ

1
2(scal(X, g) + n

n− 1h
2 + 2g(∇Xh, ν))ψ2

> 0
(3.2.1)

for all ψ 6= 0 ∈ C∞(Σ).

3.3 Proof of the Partitioned Comparison Principle
We have gathered all the ingredients we need to prove Theorem II.

Proof of Theorem II. Assume for a contradiction that width(Vj, g) > width(Mj, gϕj
)

for all j ∈ {1, . . . , k + 1}. By Lemma 2.34 there are smooth maps

βj : Vj → [aj − ε, bj + ε]

such that βj(∂−Vj) = aj − ε, βj(∂+Vj) = bj + ε and Lip(βj) < 1. Consider the
functions

hϕj
(t) = (n− 1)

ϕ′j(t)
ϕj(t)

: [aj, bj]→ R;

Since the ϕj are strictly log-concave the hj are strictly monotonously decreasing
and the scalar curvature of (Mj, gϕj

) is given by:

σj = scal(Mj, gϕj
) = − n

n− 1h
2
ϕj
− 2h′ϕj

. (3.3.1)
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For j ∈ {2, . . . , k} we apply Lemma 3.7 to hϕj
and obtain smooth functions

ĥϕj
: [aj − ε, bj + ε]→ R

with the aforementioned properties.
For j = 1 we extend the domain of hϕj

to [a1− ε, b1] and apply the interpolation
procedure of Lemma 3.7 only on the right hand side of the interval to produce
ĥϕ1 : [a1 − ε, b1 + ε] → R. For j = k + 1 we extend the domain of hϕk+1 to
[ak+1, bk+1 + ε] and apply the interpolation procedure of Lemma 3.7 only on the left
hand side of the interval to produce ĥϕk+1 : [ak+1 − ε, bk+1 + ε]→ R.

Finally, we define h : X → R by h(x) = ĥϕj
◦ βj(x) if x ∈ Vj. The function h is

continuous since

ĥϕj
(bj + ε) = H(∂+Mj, gϕj

) = −H(∂−Mj+1, gϕj+1) = ĥϕj+1(aj+1 − ε)

for all j ∈ {1, . . . , k}. It is smooth since the ĥϕj
◦ βj are constant in a neighborhood

of the separating hypersurfaces Σi, which partition the band.
Furthermore

scal(X, g) + n

n− 1h
2 − 2|∇h|

≥ scal(Mj, gϕj
) + n

n− 1(ĥϕj
◦ βj)2 + 2|∇βj|((ĥ′ϕj

) ◦ βj)

>− n

n− 1h
2
ϕj
− 2h′ϕj

− σj = 0

by (3.3.1), the chain rule, the third and fourth property of the ĥj from Lemma 3.7
and since Lip(βj) < 1 ie |∇βj| < 1.

For the mean curvature of the boundary, the following holds true:

H(∂−X, g) ≥ H(∂−M1, gϕ1) = −ĥϕ1(a1) > −ĥϕ1(a1 − ε) = −h
∣∣∣
∂−X

and

H(∂+X, g) ≥ H(∂+Mk+1, gϕk+1) = ĥϕk+1(bk+1) > ĥϕk+1(bk+1 + ε) = h
∣∣∣
∂+X

.

By Proposition 3.8 there is a closed embedded hypersurface Σn−1 such that

−∆Σ + 1
2 scal(Σ, g) > 0

and Σ separates ∂−X and ∂+X.
If n = 2, this yields an immediate contradiction (choose ψ = 1). If n ≥ 3, then

Σ admits a metric of positive scalar curvature by Lemma 2.50 which contradicts the
fact that X has Property A.

Theorem 1.28 and Theorem 3.2 are more or less direct applications of Theorem
II for a suitable choice of partition and model spaces (Mj, gϕj

). The main examples
of strictly log-concave model spaces we use, were introduced in Section 2.1.2.
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Proof of Theorem 1.28. Consider the function

ϕ2 : (− π√
κn
,
π√
κn

)→ R+ t 7→ cos
(√

κnt

2

) 2
n

,

which is strictly log-concave and has

hϕ2(t) = −
√
κ(n− 1) tan

(√
κnt

2

)
.

Consider the function
ϕ1 : R+ → R+ t 7→ t

2
n ,

which is strictly log-concave and has

hϕ1(t) := 2(n− 1)
nt

.

Since hϕ1(t)→∞ as t→ 0 there is a value t− > 0 such that H(∂−X, g) ≥ −hϕ1(t−).
By continuity there are δ1, δ2 > 0 small enough such that

hϕ2

(
−d+ δ1

2

)
= hϕ1(`+ δ2),

while δ2 < t− and hence ` + δ2 − t− < `. Let (N, gN) be a closed scalar flat
Riemannian manifold. We fix the model space:

(M1, gϕ1) = (N × [t−, `+ δ2], ϕ2
1(t)gN + dt2)

with scalar curvature equal to zero and width < `.
Let ϕ3 : R− → R+ be defined by ϕ3(t) = ϕ1(−t). This function is strictly

log-concave and hϕ3(t) = −hϕ1(−t). Since hϕ3(t)→ −∞ as t→ 0 there is a value
t+ < 0 such that H(∂X , g) ≥ hϕ3(t+). Similarly as before we find δ3, δ4 > 0 such
that

hϕ2

(
d− δ3

2

)
= hϕ3(−`− δ4),

while δ4 < −t+ and hence `+ δ4 + t+ < `. We fix the model space:

(M3, gϕ3) = (N × [t−, `+ δ4], ϕ2
3(t)gN + dt2)

with scalar curvature equal to zero and width < `.
Finally we fix the model space

(M2, gϕ2) = (N ×
[
−d+ δ1

2 ,
d− δ3

2

]
, ϕ2

2(t)gN + dt2)

with scalar curvature equal to κn(n− 1) and width < d.
It follows from Theorem II that width(Vj, g) ≤ width(Mj, gϕj

) for at least one
i ∈ {1, 2, 3}. Since d = width(V2, g) > width(M2, gϕ2) we conclude that

min{width(V1, g),width(V3, g)} < `,

which is what we wanted to prove.
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Proof of Theorem 3.2. Consider the function

ϕ2 : (− π√
κn
,
π√
κn

)→ R+ t 7→ cos
(√

κnt

2

) 2
n

,

which is strictly log-concave and has

hϕ2(t) = −
√
κ(n− 1) tan

(√
κnt

2

)
.

Consider the function

ϕ1 : R+ → R+ t 7→ sinh
( √

σnt

2
√
n− 1

) 2
n

,

which is strictly log-concave and has

hϕ1(t) :=
√
σ(n− 1)

n
coth

( √
σnt

2
√
n− 1

)
.

Since hϕ1(t)→∞ as t→ 0, there is a value t− > 0 such that the mean curvature
H(∂−X, g) is greater or equal to −hϕ1(t−). By continuity there are δ1, δ2 > 0 small
enough such that −σ > −κn(n− 1) tan

(√
κn(d−2δ1)

4

)2
and

hϕ2

(
−d+ δ1

2

)
= hϕ1(`+ δ2),

while δ2 < t− and hence ` + δ2 − t− < `. Let (N, gN) be a closed scalar flat
Riemannian manifold. We fix the model space:

(M1, gϕ1) = (N × [t−, `+ δ2], ϕ2
1(t)gN + dt2)

with scalar curvature equal to −σ and width < `.
Let ϕ3 : R− → R+ be defined by ϕ3(t) = ϕ1(−t). This function is strictly

log-concave and hϕ3(t) = −hϕ1(−t). Since hϕ3(t)→ −∞ as t→ 0 there is a value
t+ < 0 such that H(∂X , g) ≥ hϕ3(t+). Similarly as before we find δ3, δ4 > 0 such
that −σ > −κn(n− 1) tan

(√
κn(d−2δ3)

4

)2
and

hϕ2

(
d− δ3

2

)
= hϕ3(−`− δ4),

while δ4 < −t+ and hence `+ δ4 + t+ < `. We fix the model space
(M3, gϕ3) = (N × [−`− δ4, t+], ϕ2

3(t)gN + dt2)
with scalar curvature equal to −σ and width < `.

Finally we fix the model space

(M2, gϕ2) = (N ×
[
−d+ δ1

2 ,
d− δ3

2

]
, ϕ2

2(t)gN + dt2)

with scalar curvature equal to κn(n− 1) and width < d.
It follows from Theorem II that width(Vj, g) ≤ width(Mj, gϕj

) for at least one
i ∈ {1, 2, 3}. Since d = width(V2, g) > width(M2, gϕ2) we conclude that

min{width(V1, g),width(V3, g)} < `,

which is what we wanted to prove.
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With Theorem II and its applications established, we now focus on open bands
for the rest of this chapter. First of all we prove that in an open band we can always
find a closed embedded hypersurface which properly separates the two ends E−M
and E+M and we can find them arbitrarily far out.

Lemma 3.9. Let M be an open band and K ⊂M be an arbitrary compact subset.
Then there exists a properly separating hypersurface Σ ⊂M which also separates K
from E+M (or E−M , respectively).

Proof. Note that the end compactification FM is a compact Hausdorff space which
in our case of a connected manifold is also second countable (see [19, Proposition 2.5]).
Thus, since E±M are two disjoint closed subsets of FM , Urysohn’s lemma implies
the existence of a continuous function f : FM → [−1, 1] such that E±M = f−1(±1).
Since K ⊆ M is compact, there exists 0 < r < 1 such that K ⊆ f−1([−r, r]).
Choose s ∈ (r, 1). Then f−1(s) ⊆ M is a compact subset which separates E−M
from E+M . Now choose a connected compact n-dimensional submanifold V ⊂M
with boundary, where n = dim(M), such that f−1(s) ⊆ V̊ ⊆ f−1([s− ε, s+ ε]) for
some ε > 0 with r < s− ε. Then ∂V is a separating hypersurface and it contains a
properly separating hypersurface Σ ⊆ ∂V by Lemma 2.56. Since by construction
f(x) ≤ r < s − ε ≤ f(y) ≤ s + ε < 1 for each x ∈ K and y ∈ Σ, it follows that
Σ must separate K from E+M . A completely analogous argument also provides a
properly separating hypersurface that separates K from E−M .

Next, we prove Proposition 3.4 ie the assertion that for any complete Riemannian
metric on an open band M there is a geodesic line which connects E−M and E+M .

Proof of Proposition 3.4. Consider an exhaustion Ki of M by compact sets. By
Lemma 3.9 we can assume without loss of generality that each Ki has smooth
boundary ∂Ki and that M\Ki = U− tU+, where U± are open sets with E±M ⊂ U±.
We decompose

∂Ki = ∂−K
i t ∂+K

i

accordingly as ∂±Ki := ∂U±. Let γi be a length minimizing geodesic which connects
∂−K

i and ∂+K
i.

On each compact set Ki the sequence γj≥ii of geodesics connecting ∂−Ki and
∂+K

i subconverges to a length minimizing geodesic by Arzelà-Ascoli. Now a diagonal
sequence (over i) converges to a geodesic line in (M, g).

Finally, we have all the necessary ingredients to prove Theorem 3.5.

Proof of Theorem 3.5. If (M, g) is not Ricci flat, thenM admits a complete metric ĝ
with positive scalar curvature by [45, Theorem B]. Let Σ ⊂M be a closed embedded
proper separating hypersurface which separates E−M and E+M in M . It exists by
Lemma 3.9. There is a κ > 0 such that scal(M, ĝ) ≥ κn(n− 1) in a neighborhood
of width d < 2π√

κn
, which is bounded by two closed embedded hypersurfaces Σ1 and

Σ2. For every C > 0 we can find closed embedded hypersurfaces ΣC
± such that ΣC

±
properly separates Σ and E±M and

distĝ(ΣC
−,Σ1) = C = distĝ(Σ2,ΣC

+).

Let XC be the compact band bounded by ΣC
±. For C large enough Theorem 1.28 or

3.2 applied to XC yields a contradiction. Hence (X, g) is Ricci flat.
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By Proposition 3.4 and the Cheeger-Gromoll splitting theorem (M, g) is isometric
to (Y × R, gY + dt2), where (Y, gY ) is a Ricci flat manifold. Furthermore M has at
least two ends by definition of an open band and hence Y is compact.

3.4 Proof of the Topological Results
We conclude this chapter with a proof of Proposition 3.6. Hereby, we mostly adapt
ideas from Section 2.5.1 to the non-compact setting:

Proof of Proposition 3.6. Since Y ×R is diffeomorphic to Y × (−1, 1) the first point
follows directly from Proposition 2.13.

To prove the second point we denote X ′ = Y × R. Since f is proper it maps
ends to ends and we define E±M = f−1(E±X ′). Since f has non-zero degree E±M
are both non empty closed collections of ends. From here we proceed as in Lemma
2.57 (replace H1(X ′, ∂X ′;Z) by H1

c (X ′;Z) and use the fact that f is proper) to
see that any closed embedded separating Σ which separates E−M and E+M has a
connected component Σ0 such that (f ◦ π)∗[Σ0] = deg(f)[Y ] where π : Y × R→ Y
is the projection. Then Σ0 does not admit a metric with positive scalar curvature,
since Y is NPSC+.

For the third point let M̂ be the covering space with π1(M̂) = ι∗(π1(Y )) where
ι : Y ↪→ M is the inclusion. Since Y is incompressible ι∗(π1(Y )) is isomorphic to
π1(Y ). We denote by Ŷ a copy of Y in M̂ . We point out that Ŷ separates M̂
into two components U− and U+. If this were not the case we could find a loop
γ ⊂ M̂ which has algebraic intersection number 1 with Σ. Since π1(Ŷ ) → π1(M̂)
is surjective there is a loop γ′ in Ŷ , which is homotopic to γ. Since Ŷ has trivial
normal bundle γ′ can be pushed out of Ŷ . Since the intersection number is invariant
under homotopy this is a contradiction. The two components U± are unbounded
since otherwise α(Y ) would be zero by bordism invariance of the index. We define
the ends of U− to be E−M̂ and the ends of U+ to be E+M̂ . If Σ is a closed embedded
hypersurface which separates E−M̂ and E+M̂ there is a union Σ′ of components of Σ
which is a properly separating hypersurface by Lemma 3.9. Let K ⊂ M̂ be a band
which contains Σ′ ∪ Ŷ and such that ∂−K separates E−M̂ and Σ′ ∪ Ŷ (to find K
one can use Lemma 3.9). Let W ⊂ M̂ be the cobordism between ∂−K and Ŷ and
W ′ ⊂ M̂ be the cobordism between ∂−K and Σ′.

Let E = LM̂ → M̂ be the Miščenko bundle, which is the flat bundle of finitely
generated projective Hilbert-C∗π1M̂ -modules associated to the representation of
π1M̂ on C∗π1M̂ by left multiplication. Since π1(Ŷ ) = π1(Y ) = π1(M̂) the Rosenberg
index α(Ŷ ) ∈ KOn−1(C∗π1(Ŷ )) is equal to the (K-theoretic) index αE(Ŷ ) of the
Dirac operator on the spinor bundle of Ŷ twisted with the restriction of E to Ŷ .
In the same way we can compute the indices αE(∂−K) ∈ KOn−1(C∗π1(Ŷ )) and
αE(Σ′) ∈ KOn−1(C∗π1(Ŷ )). By bordism invariance of the index

0 6= α(Ŷ ) = αE(Ŷ ) = αE(∂−K) = αE(Σ′).

Consequently there is a connected component of Σ′ which does not admit a metric
with positive scalar curvature.

The last point is explained in [15, Section 2]. Let M̂ be the covering space with
π1(M̂) = ι∗(π1(Y )), where ι : Y ↪→M is the inclusion, and let Ŷ and E±M̂ be defined
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as before. By assumption there is an aspherical manifold Z and a map f : Ŷ → Z
of non-zero degree. Consider the induced homorphism f∗ : π1(Ŷ ) = π1(M̂)→ π1(Z).
Since Z is aspherical we can define an extension f̂ : M̂ → Z of f with f̂∗ = f∗.
Then any closed embedded hypersurface Σ which separates E−M̂ and E+M̂ has a
connected component Σ0 such that f̂∗([Σ0]) 6= 0 ∈ Hn−1(Z;Z). Since Z is NPSC+

we conclude that Σ0, and therefore Σ, does not admit a metric with positive scalar
curvature.

Proof of Theorem 1.29. We use the fact that any closed connected oriented manifold
Y in dimension ≤ 3 which does not admit a metric with positive scalar curvature
is enlargeable and hence NPSC+. By Proposition 3.6, M is an open band with
Property B. Therefore we can use Theorem 3.5 to conclude the proof.



Macroscopic Band Width
Inequalities

In this chapter, which corresponds to the article [55] which was first published in
the journal Algebraic & Geometric Topology 22-1 (2022) by Mathematical Science
Publishers, we investigate an analog of the band width inequalities we have seen so
far in the setting of macroscopic scalar curvature.

For a detailed introduction of this concept, the ideas connected to it and a
detailed overview of the results we establish in the following, we refer to Section 1.3
in the introduction.

Remark 4.1. We point out that the notation in this chapter varies slightly from
the rest of this thesis. In particular, it differs from the one we used in Section 1.3.
In the following, bands will usually be denoted by V and closed manifolds by M or
N , while X resp. Y are reserved for Riemannian polyhedra.

4.1 Main results
We introduce a class of orientable manifolds we call filling enlargeable (see Definiton
4.22) in Section 4.2. This notion combines Gromov and Lawson’s [28] classical
definition of enlargeability with the filling radius of a complete oriented Riemannian
manifold, a metric invariant that was introduced by Gromov in [23, Section 1].

Some important features of filling enlargeable manifolds we establish in this
paper are:

. If a closed orientable manifold is enlargeable or aspherical, then it is filling
enlargeable (see Propositions 4.24 and 4.28).

. Closed filling enlargeable manifolds are essential. In fact we prove an even
stronger statement in Theorem 4.4 (see also Remark 4.39 and Remark 4.54).

. For all n ≥ 1 there is a constant εn > 0 such that the following holds. Let
Mn be a closed filling enlargeable manifold and g a Riemannian metric on
M . For any radius R > 0 there is a point p in the universal cover (M̃, g̃) with
vol(BR(p)) ≥ εnR

n (see Proposition 4.34).

In light of the third point and in the context of macroscopic scalar curvature we
prove, in Section 4.3, the following macroscopic analog of the band width inequalities
with scalar curvature for trivial bands over filling enlargeable manifolds:

79



80 Macroscopic Band Width Inequalities

Theorem 4.2 (cf. Theorem III). For all n ≥ 1 there is a constant εn > 0 such
that the following holds. Let Mn−1 be a closed filling enlargeable manifold and
V := M × [0, 1]. If g is a Riemannian metric on V with the property that all unit
balls in the universal cover (Ṽ , g̃) have volume less than 1

2εn, then width(V, g) ≤ 1.

It is a natural question to ask whether Theorem 4.2 holds true for all essential
manifolds. However, as it turns out, there are some immediate counterexamples (see
Example 4.42). In order to obtain similar results one has to add further assumptions
regarding the systole (the length of the shortest noncontractible loop) of (V, g):

Theorem 4.3. For all n ≥ 1 there is a constant εn > 0 such that the following
holds. Let Mn−1 be a closed essential manifold and V := M × [0, 1]. Let g be a
Riemannian metric on V and 0 < R < 1

2 sys(V, g). If every ball of radius R in (Ṽ , g̃)
has volume less than 1

2εnR
n, then width(V, g) ≤ R.

In Section 4.4 we follow ideas of Brunnbauer and Hanke [8] and study some
functorial properties of filling enlargeable manifolds. In particular we construct a
vector subspace Hsm

n (BΓ;Q) ⊂ Hn(BΓ;Q) of ’small classes’ in the rational group
homology of a finitely generated group Γ and prove:

Theorem 4.4 (cf. Theorem 1.37). Let Mn be a closed oriented manifold. Then
M is filling enlargeable if and only if φ∗[M ] ∈ Hn(Bπ1(M);Q) is not contained in
Hsm
n (Bπ1(M);Q).

As a consequence, we obtain the following metric characterization of rationally
essential manifolds with residually finite fundamental groups:

Corollary 4.5 (cf. Corollary 1.38). A closed oriented manifold Mn with residually
finite fundamental group is rationally essential if and only if it is filling enlargeable.

4.2 Largeness properties of manifolds
Even though our results are stated for smooth manifolds, almost all of our actual
work takes place in the setting of simplicial complexes with piecewise smooth metrics
(see Babenko [4, Section 2]).

Definition 4.6. By a Riemannian metric on a k-simplex ∆k we understand the
pullback of an arbitrary Riemannian metric on Rk via an affine linear embedding
∆k ↪→ Rk. A Riemannian metric on a simplicial complex X is given by a Riemannian
metric gτ on every simplex, such that gτ ′ ≡ gτ |τ ′ for τ ′ ⊂ τ . We call (X, g) a
Riemannian polyhedron.

A Riemannian metric g enables us to measure the lengths of piecewise smooth
curves in a simplicial complex Xn. As for Riemannian manifolds one obtains a
path metric dg on Xn if Xn is connected. Moreover there is an obvious notion of
n-dimensional Riemannian volume, coinciding with the n-dimensional Hausdorff
measure. In the following we introduce some classical metric invariants used to
describe the size of (X, g).

We remind the reader that a metric space is called proper if every closed and
bounded subset is compact. Furthermore a continuous map between metric spaces is
called proper if the preimage of every bounded set is bounded. It is a classical result,
that a path metric space is proper if and only if it is locally compact and complete.
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Remark 4.7. In most of the literature a continuous map between topological spaces
is called proper, if the preimage of every compact set is compact. Our definition
coincides with the classical one for continuous maps between proper metric spaces.

While Theorem 4.2 and Theorem 4.3 are concerned with compact metric spaces,
the relevance of proper metric spaces is that we will be talking about possibly
infinite-sheeted covering spaces of these compact spaces.

Definition 4.8. The k-dimensional Alexandrov width URk(X, g) of a proper Rie-
mannian polyhedron (X, g) is the infimum over all values R > 0, such that: there is
a continuous map f : X → Y k to a locally finite k-dimensional simplicial complex
Y , with the property that the preimage f−1(τ) of every simplex τ ⊂ Y is contained
in a metric ball of radius R in X.

While originally appearing in the context of topological dimension theory, this
notion was popularized in Riemannian Geometry by works of Gromov (see [23,
Appendix 1] or [25]).

Over the course of this paper we will often use an equivalent definition of the
k-dimensional Alexandrov width in terms of open covers, namely: URk(X, g) is the
infimum over all R such that X admits a locally finite cover by open sets of radii
≤ R (ie contained in a metric ball of radius R) and multiplicity ≤ k + 1.

The following Lemma, which (only in the compact case) appears in [25, Section
(H)], modulates between this definition and Definition 4.8. For the convenience
of the reader, and since we need to be a little bit more careful, when considering
non-compact polyhedra, we include a proof of this result.

Lemma 4.9. A proper Riemannian polyhedron (X, g) has k-dimensional Alexandrov
width URk(X, g) < R if and only if there is a locally finite open cover of X with
multiplicity ≤ k + 1 and radius < R

Proof. Suppose that X has a locally finite open cover Oi with multiplicity ≤ k + 1
and radius < R. If we denote by N the nerve of this cover, the nerve map φ
associated to a partition of unity, subordinate to Oi, is a continuous map X → N
and for each simplex τ ⊂ Y the preimage φ−1(τ) is contained in one of the sets Oi.

For the other direction suppose that (X, g) has URk(X, g) < R ie there is a locally
finite simplicial complex Y k and a continuous map f : X → Y such that for each
simplex τ ⊂ Y the preimage f−1(τ) is contained in a ball of radius URk(X, g)+δ < R
for some small δ > 0.

We equip Y with the canonical path metric ie we equip every simplex with the
standard euclidean metric and consider the induced path metric on Y . First we
want to show that the map f is in fact proper. A bounded subset K ⊂ Y intersects
only finitely many simplices of Y . In particular it is contained in a finite subcomplex
K ′ ⊂ Y . Since (X, g) is proper and the preimage of every simplex is closed and
bounded we conclude that f−1(K ′) is bounded. But then f−1(K) is a closed subset
of a bounded set and thus it is bounded as well.

Since Y is k-dimensional, we prove the following: there is an open cover Oi of Y
with multiplicity ≤ k + 1 such that f−1(Oi) is contained in a ball of radius < R for
all i. We start by claiming that for every simplex τ ⊂ Y there is a constant ε(τ) > 0
such that f−1(Uε(τ)(τ)) is contained in a ball of radius < R in (X, g). By assumption
f−1(τ) is contained in a ball of radius URk(X, g) + δ < R around a point p ∈ X.
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Now we assume for a contradiction, that for every ` ∈ N there is a point
y` ∈ U1/`(τ) with f−1(y`) 6⊂ BR−1/`(p) and choose a preimage x` /∈ BR−1/`(p). Up to
a subsequence (y`)`∈N converges to a point y ∈ τ . Since (x`)`∈N is contained in the
compact set f−1(U1(τ)) there is a subsequence converging to a point x ∈ X\BR(p),
which contradicts the continuity of f .

To construct Oi we consider the skeleta of Y one at a time, starting with the
vertices. If v ∈ Y is a vertex then f−1(Bε(v)(v)) is contained in a ball of radius < R
in (X, g) and we can assume that for two vertices v1 and v2 the balls Bε(v1)(v1) and
Bε(v2)(v2) are disjoint. Now let γ ⊂ Y be an edge connecting vertices v1 and v2.
Denote γ′ = γ\(Bε(v1)(v1) ∪ Bε(v2)(v2)). Then f−1(Uε(γ)(γ′)) is contained in a ball
of radius < R in (X, g) and by possibly making ε(γ) smaller we can arrange that
Uε(γ)(γ′) does not intersect Uε(η)(η′) for any other edge η ⊂ Y .

We continue this process for all higher skeleta of Y and make sure that for
each skeleton all newly introduced open sets are disjoint, which provides the upper
bound on the multiplicativity of this cover. Finally f−1(Oi) is the required cover of
(X, g).

For us the most important result concerning the Alexandrov width of a proper
Riemannian polyhedron (Xn, g) is the following theorem (which is a version of [52,
Theorem 3.1]), providing an upper bound on URn−1(X, g) under the assumption
that for a fixed radius R > 0 all R-balls in (X, g) have very small volume.

Theorem 4.10. For all n ≥ 1 there is a constant εn > 0 such that the following
holds: If (Xn, g) is a proper Riemannian polyhedron and R > 0 is a radius such that
for every x ∈ X the volume of the ball BR(x) is bounded from above by εnRn, then
URn−1(X, g) ≤ R.

Remark 4.11. In the case of complete smooth Riemannian manifolds this was
first proved by Guth in [37]. His theorem was generalized by Liokumovich, Lishak,
Nabutovsky and Rotman [49] to metric spaces and Hausdorff content instead of
volume. Building on ideas from [35] the proof of this result was significantly simplified
by Papasoglu [52, Theorem 3.1]. Finally Nabutovsky [51, Theorem 2.6] was able to
improve the constant εn from an exponential bound to a linear one in the case of
compact Riemmanian polyhedra.

Remark 4.12. Any smooth Riemannian manifold (M, g) becomes a Riemannian
polyhedron by choosing a smooth triangulation of M . For the rest of this paper, a
Riemannian metric on M , if not explixitly required to be smooth, is a polyhedral
metric with respect to some smooth triangulation of M . Furthermore all manifolds
are assumed to be connected.

Next, we revisit the filling radius of a complete oriented Riemannian manifold
(Mn, g) (we mostly follow [8, Section 2]). The orientation corresponds to a funda-
mental class [M ] ∈ H lf

n (M ;Z) in locally finite homology (ie we consider infinite
chains with the property that each bounded subset intersects only finitely many
singular simplices).

Denote by L∞(M) the vector space of all functions M → R with the uniform
’norm’ ‖ − ‖∞. We consider the affine subspace L∞(M)b of L∞M , that is parallel to
the Banach space of all bounded functions on M and contains the distance function
dg(x,−) for some x ∈M . Notice that ‖ − ‖∞ defines an actual metric on L∞(M)b.
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The Kuratowski embedding

ιg : (M,dg) ↪→ L∞(M)b x 7→ dg(x,−)

is isometric by the triangle inequality.

Definition 4.13. The filling radius of (M, g) is defined as

FillRad(M, g) := inf {r > 0|ιg∗[M ] = 0 ∈ H lf
n (Ur(ιgM);Q)},

where Ur(ιgM) denotes the open r-neighborhood of ιgM in L∞(M)b. If the set on
the right hand side is empty we say that (M, g) has infinite filling radius.

If M is closed, then L∞(M)b is the vector space of all bounded functions and
the above definition coincides with the classical one from [23, Section 1]. We remind
the reader that for an arbitrary metric space S, the space L∞(S) of all functions
has the following universal property.

Lemma 4.14. If Y ⊂ X is a subspace of a metric space and if f : Y → L∞(S) is
an L-Lipschitz map, then there exists an extension F : X → L∞(S) which is also
L-Lipschitz.

This is due to Gromov [23, Page 8]. There it is only stated for closed Riemannian
manifolds, but the proof works in the general setting. The extension F is given by

Fx(v) := inf
y∈Y

(fy(v) + L · d(x, y)).

For our purposes we also need the following property of F :

Lemma 4.15. If f is proper and d(·, Y ) is uniformly bounded in X, then F is
proper as well.

Proof. Let K ⊂ L∞(S) be a bounded subset. Let C > 0 be a uniform upper bound
of d(·, Y ) in X. Since F is L-Lipschitz we have Fx ∈ ULC(im(f)) for all x ∈ X. It
follows that if K does not intersect ULC(im(f)), then F−1(K) = ∅.

Hence assume that K ⊂ ULC(im(f)). Consider the bounded set

A := ULC(K) ∩ im(f).

Since f is proper, f−1(A) ⊂ Y is bounded as well. We claim that F−1(K) ⊂
UC(f−1(A)).

Let x /∈ UC(f−1(A)) be arbitrary. Since d(·, Y ) is uniformly bounded in X, there
is a y ∈ Y with d(x, y) < C. Consequently y /∈ f−1(A). But then

d(Fx, Fy) = d(Fx, fy) ≤ L · d(x, y) < LC

and thus Fx /∈ K because otherwise fy ∈ A.

Let (Nn, h) be another complete oriented Riemannian manifold with fundamental
class [N ] ∈ H lf

n (N ;Z). The mapping degree of a continuous map f : M → N is well
defined if f is proper or N is closed and f is almost proper (ie constant outside a
compact set).

A fundamental property of the filling radius, which follows from Lemma 4.14
and Lemma 4.15 and will be used throughout this paper, is that it behaves well
under Lipschitz maps of non-zero degree.
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Lemma 4.16. If f : (M, g) → (N, h) be a 1-Lipschitz proper (or almost proper)
map with deg(f) 6= 0, then FillRad(M, g) ≥ FillRad(N, h).

Proof. Assume that for some R > 0 the fundamental class ιg∗[M ] bounds a locally
finite chain in UR(ιgM) ⊂ L∞(M)b. By Lemma 4.14 the 1-Lipschitz map ιg′ ◦ f :
M → L∞(N)b extends to a 1-Lipschitz map F : L∞(M)b → L∞(N)b, which maps
UR(ιgM) to UR(ιhN). Since ιg′◦f is proper, F , when restricted to UR(ιgM), is proper
as well (see Lemma 4.15) ie preimages of bounded sets are bounded. By construction,
F maps ιg∗[M ] ∈ H lf

n (UR(ιgM);Q) to deg(f)ιh∗[N ] ∈ H lf
n (UR(ιhN);Q). Hence

ιh∗[N ] vanishes in UR(ιhN) ⊂ L∞(N)b
Remark 4.17. Here it is important that we chose rational coefficients for our
definition of the filling radius. For integral coefficients we would need to restrict to
the case deg(f) = 1 in the Lemma above.

The next lemma regarding the relationship between the filling radius and the
Alexandrov width is taken from [23, Appendix 1, Example in (B) and (D)].

Lemma 4.18. For a complete Riemannian manifold (Mn, g) we have the following
relation: FillRad(M, g) ≤ URn−1(M, g).

Finally Theorem 4.3 is related to systolic geometry, the study of the following
metric invariant:

Definition 4.19. The systole sys(X, g) of a Riemannian polyhedron (X, g) is defined
to be the infimum of all lengths of noncontractible closed piecewise smooth curves
in X.

Definition 4.20. A connected finite n-dimensional simplicial complex X is called
essential if the classifying map f : X → K(π1(X), 1) induces a homomorphism

f∗ : Hn(X;G)→ Hn(K(π1(X), 1);G)

with non-trivial image for coefficients G = Z or Z2. A closed manifold M is called
essential if any smooth triangulation of M produces an essential simplicial complex.

It is a central result in systolic geometry [23, Appendix 2, (B1’)] that for any
compact essential Riemannian polyhedron (Xn, g) the following, so called, isosystolic
inequality holds true:

sys(X, g) ≤ C(n)vol(X, g) 1
n , (4.2.1)

where C(n) is a constant that only depends on the dimension n. For the special
case of closed essential manifolds see [23, Theorem 0.1.A].

4.2.1 Filling enlargeable manifolds
With all invariants in play we now want to explain the notion of a filling enlargeable
manifold featured in Theorem 4.2. It is based on the concept of an enlargeable
manifold, introduced by Gromov and Lawson [28].

Definition 4.21. A closed orientable manifold Mn is called enlargeable, if for every
Riemannian metric g on M and every r > 0 there is a Riemannian covering M r of
(M, g) and a distance decreasing almost proper (ie constant outside of a compact
set) map fr : M r → Sn(r) to the round sphere of radius r with deg(fr) 6= 0.
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We consider the following notion, which combines the ideas of Definition 4.21
and the filling radius of a complete oriented Riemannian manifold:
Definition 4.22. A closed orientable manifold Mn is called filling enlargeable, if for
every Riemannian metric g on M and every r > 0 there is a Riemannian covering
M r of M with FillRad(M r, g) ≥ r, where g denotes the lifted metric.
Remark 4.23. To check whether or not a closed orientable manifold is (filling)
enlargeable it suffices to consider one fixed metric g, since all Riemannian metrics
on a closed manifold are in bi-Lipschitz correspondence. Furthermore we want to
stress the fact that the covering spaces M r might very well be infinite-sheeted ie
non-compact (see Remark 4.7).

We begin our discussion of this new class of large manifolds by proving that it
contains all closed enlargeable and all orientable closed aspherical manifolds.
Proposition 4.24. If (M, g) is a closed enlargeable manifold, then (M, g) is filling
enlargeable.
Proof. Katz [43] proved that the filling radius of the unit sphere Sn(1) is 1

2arccos(− 1
n+1).

Let r > 0 be arbitrary and denote r′ = r
FillRad(Sn(1)) . Since M is enlargeable there

is a Riemannian covering M r′ of M and a distance decreasing almost proper
map fr : M r′ → Sn(r′) of nonzero degree. By Lemma 4.16 it follows that
FillRad(M r′ , g) ≥ FillRad(Sn(r′)) = r.

To prove the same for orientable closed aspherical manifolds we need some more
preparation.
Definition 4.25. A proper Riemannian polyhedron (X, g) is said to be uniformly
contractible if there exists a function C : [0,∞)→ R≥0 such that every ball of radius
R in X is contractible within the ball with the same center and radius C(R).
Lemma 4.26. Let (X, g) be a contractible proper Riemannian polyhedron and
assume there exists a subgroup G of the isometry group that acts cocompactly on X.
Then (X, g) is uniformly contractible.
Proof. Let π : X → X/G be the quotient projection and for any x ∈ X we consider
the open ball B1(x). The projection is an open map: If U ⊂ X is open, then

π−1(π(U)) = {x ∈ X : π(x) ∈ π(U)} =
⋃
g∈G

gU

is the union of open sets. Hence the image π(B1(x)) is an open neighborhood of
π(x) ∈ X/G. Since X/G is compact there are finitely many points x1, . . . , xk in X
such that X/G ⊂ ⋃ki=1 π(B1(xi)). We define K := ⋃k

i=1B1(xi). Then for any x ∈ X
there is a α ∈ G such that αx ∈ K. Furthermore K is compact.

Let R > 0 be arbitrary. Since X is contractible there is a homotopy H : X ×
[0, 1]→ X connecting idX to the constant map X 7→ p where p ∈ X is a basepoint.
Without loss of generality we assume p ∈ K. Now H(BR+diam(K)(p) × [0, 1]) is a
compact subset of X containing p. As compact sets are bounded H(BR+diam(K)(p)×
[0, 1]) is contained in a ball of radius C(R) − diam(K) around p for some R ≤
C(R) <∞.

Now let x ∈ X be arbitrary and α ∈ G such that αx ∈ K. Then α(BR(x)) ⊂
BR+diam(K)(p) and thus BR(x) is contractible within BC(R)−diam(K)(α−1p) ⊂ BC(R)(x).
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Lemma 4.27 ([24]). Let (Xn, g) be a complete oriented Riemannian manifold. If
X is uniformly contractible then FillRad(X, g) =∞.

Proposition 4.28. If (M, g) is an orientable closed aspherical manifold, then (M, g)
is filling enlargeable.

Proof. The universal cover of a closed orientable aspherical manifold is uniformly
contractible by Lemma 4.26 and, if we fix an orientation, has infinite filling radius by
Lemma 4.27. Hence closed oriented aspherical manifolds are filling enlargeable.

We remind the reader that the product of two enlargeable manifolds is enlargeable
[28, Introduction]. As, later on, our proof of Theorem 4.2 will rely on a doubling
procedure, where we glue two bands M × [0, 1] and obtain a copy of M × S1, we
investigate whether or not the same holds true for filling enlargeable manifolds.

Lemma 4.29. Let (Mn, g) be a complete oriented Riemannian manifold and (S1, gr)
the standard round circle of radius r. If FillRad(S1, gr) ≥ FillRad(M, g), then

FillRad(M × S1, g ⊕ gr) ≥ FillRad(M, g).

Proof. We assume for a contradiction that FillRad(M ×S1, g⊕ gr) < FillRad(M, g).
Let ε > 0 be such that FillRad(M × S1, g ⊕ gr) < ε < FillRad(M, g).

Using Lemma 4.14 we extend the projections

p1 : M × S1 →M and p2 : M × S1 → S1

to some nonexpanding maps

P1 : L∞(M × S1)b → L∞(M)b and P2 : L∞(M × S1)b → L∞(S1).

By our choice of ε the class ιgr∗[S1] does not vanish in the ε-neighborhood of ιgr(S1)
in L∞(S1). Since we are working with field coefficients the universal coefficient
theorem tells us that there is a cohomology class [α] ∈ H1(Uε(ιgr(S1));Q) dual to
ιgr∗[S1] that extends the fundamental cohomology class of S1.

We pull back [α] via P2 to get a cohomology class

P ∗2 [α] ∈ H1(Uε(ιg⊕gr(M × S1));Q).

Denote by σ the locally finite fundamental cycle ιg⊕gr∗[M × S1]. By choice of ε we
know that σ bounds a chain in its ε-neighbourhood. Consequently the cap product

σ ∩ P ∗2α ∈ C lf
n (Uε(ιg⊕gr(M × S1));Q)

is a boundary as well. By construction σ ∩ P ∗2α represents the same locally fi-
nite homology class as ιg⊕gr [M × {∗}]. We conclude that 0 = ιg⊕gr∗[M × {∗}] ∈
H lf
n (Uε(ιg⊕gr(M × S1));Q).
Finally P1 maps Uε(ιg⊕gr(M × S1)) to Uε(ιg(M)) and is proper when restricted

accordingly. Thus

0 = P1∗(ιg⊕gr∗[M × {∗}]) = ιg∗[M ] ∈ H lf
n (Uε(ιg(M));Q).

This contradicts our assumption that ε < FillRad(M, g).
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Proposition 4.30. Let M be a closed filling enlargeable manifold. Then M × S1 is
filling enlargeable as well.

Proof. By Remark 4.23 it is enough to consider the case that M × S1 is equipped
with a product metric g ⊕ g1, where g is a Riemannian metric on M and g1 is the
standard metric on S1 with radius 1. Let r > 0 be arbitrary.

On the one hand, since M is filling enlargeable, there is a Riemannian covering
(M r, g) with FillRad(M r, g) ≥ r. On the other hand there is a radius ` such that
(S1, g`) is a Riemannian covering of (S1, g1) and FillRad(S1, g`) ≥ FillRad(M r, g).
Using Lemma 4.29 we conclude that FillRad(M r × S1, g ⊕ g`) ≥ r.

Since (M r × S1, g ⊕ g`) is a Riemannian covering of (M × S1, g ⊕ g1) this proves
the proposition.

Remark 4.31. Lemma 4.29 remains true if we replace (S1, gr) with any other closed
oriented Riemannian manifold (N, h) such that FillRad(N, h) ≥ FillRad(M, g).

This is, however, not enough to answer the general question whether the product
of two filling enlargeable manifolds is filling enlargeable, as in the definition of filling
enlargeability the Riemannian coverings are not required to be compact.

4.2.2 Width enlargeable manifolds
In the proof of our main Theorem 4.2, it will be convenient to consider an even more
general class of manifolds, which we obtain by replacing the filling radius with the
Alexandrov width in the definiton of filling enlargeability:

Definition 4.32. A closed manifold Mn is called width enlargeable, if for every
Riemannian metric g on M and every r > 0 there is a covering manifold M r of M
with URn−1(Mr, g) ≥ r, where g denotes the lifted metric.

Remark 4.33. In contrast to Definition 4.22 we don’t have to restrict ourselves to
orientable manifolds in this case, since the definition of the Alexandrov width does
not involve a fundamental class.

Any filling enlargeable manifold is also width enlargeable by Lemma 4.18. Fur-
thermore all closed aspherical manifolds, including the non-orientable ones, are width
enlargeable (the universal cover has URn−1 =∞ by Lemma 4.27 and Lemma 4.18).

It is not clear to us whether a product result like Proposition 4.30 also holds for
width enlargeable manifolds. If so, our band width inequality Theorem 4.2 would be
true for this even more general class of manifolds.

The main property of width enlargeable manifolds we are interested in is:

Proposition 4.34. For all n ≥ 1 there is a constant εn > 0 such that the following
holds. Let Mn be a width enlargeable manifold and g any Riemannian metric on
M . Then for every R > 0 there is a point p in the universal cover (M̃, g̃) such that
vol(BR(p)) ≥ εnR

n.

Proof. Let εn be the constant from Theorem 4.10. Assume for a contradiction, that
there is a radius R > 0 such that the volume of all balls of radius R in (M̃, g̃) is
bounded from above by εnRn. Since M is width-enlargeable there is a covering MR

with URn−1(M r, g) > R.
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On the other hand the volume of a ball of radius R centered at a point p in (M r, g)
is bounded from above by the volume of the R-ball around any lift p̃ of p in the
universal cover (M̃, g̃), which is smaller than εnRn by assumption. Since (M r, g) is a
complete locally compact path metric space it is proper by the Hopf-Rinow Theorem
and hence URn−1(M r, g) ≤ R by Theorem 4.10, which is a contradiction.

We spend the rest of this section proving that for closed width enlargeable
manifolds the isosystolic inequality 4.2.1 holds true. Using [3, Corollary 8.3] we
conclude that orientable closed width enlargeable manifolds are essential.

This result is not necessary to prove Theorem 4.2, but it is interesting to see how
our newly introduced classes fit into the hierarchy of large manifolds.

For closed orientable manifolds we get:

Aspherical, Enlargeable ⊆ Filling enlargeable ⊆ Width enlargeable ⊆ Essential

Lemma 4.35. Let (M, g) be a Riemannian manifold and (M, g) be a Riemannian
cover. Let BR(p) be a ball with the property that the inclusion homomorphism
π1(BR(p))→ π1(M) is trivial. Then BR(p) lifts to a collection of disjoint open sets
in M , each of which is the ball of radius R around some lift p′ of p.

Proof. Choose a preimage p′ of p under the covering projection Since π1(BR(p))→
π1(M) is trivial, there is a unique lift f ′ : BR(p) → (M, g) with f ′(p) = p′. Let
x ∈ BR(p) be arbitrary. There is a path γ : [0, 1] → M with γ(0) = p, γ(1) = x
and length(γ) < R. Now γ lifts to a path f ′ ◦ γ connecting p′ and f ′(x) and
length(f ′ ◦ γ) = length(γ) < R. Thus f ′(BR(p)) is contained in BR(p′).

Let x′ ∈ BR(p′) be arbitrary. There is a path σ : [0, 1]→M with σ(0) = p′ and
σ(1) = x′ and length(σ) < R. But then π ◦ σ is a path in M connecting p and π(x′)
with the property length(π ◦ σ) = length(σ) < R. Thus π(BR(p′)) ⊂ BR(p).

Furthermore π is injective on BR(p′). If it were not then BR(p) would contain a
loop that is not contractible inM . Together with the fact that π◦f ′ is the identity on
BR(p) this implies that both inclusions f ′(BR(p)) ⊂ BR(p′) and π(BR(p′)) ⊂ BR(p)
are in fact equalities.

If p′′ is a different preimage of p and f ′′ : BR(p)→ (M, g) the respective lift of
BR(p) with f ′′(p) = p′′ then f(BR(p)) ∩ f ′′(BR(p)) = ∅. If not then p′ and p′′ could
be joined by a path within π−1(BR(p)) which would project to a noncontractible
loop in BR(p).

Proposition 4.36. Let (M, g) be a Riemannian manifold and assume that URk(M, g) <
1
2 sys(M, g). If (M, g) is any Riemannian cover of (M, g), then

URk(M, g) ≤ URk(M, g)

Proof. Denote URk(M, g) = r and let (Ui)i∈I be an open cover of radius ≤ r + δ
and multiplicity ≤ k + 1, where δ < 1

3(sys(M, g)− 2r). For a fixed i ∈ I there is a
point pi ∈M such that Ui ⊂ Br+δ(pi). We claim that the inclusion homomorphism
π1(Br+δ(pi))→ π1(M) is trivial.

Let γ be a loop in Br+δ(pi). There is a subdivision 0 = t0 < . . . < t` = 1 of
the unit interval such that dg(γ(ti), γ(ti+1)) < δ. We can connect each γ(ti) to p
by a minimizing geodesic σi of length < R + δ and thus γ is homotopic to the
concatenation of ` ’thin’ triangles σi(1− t) · γ|[ti,ti+1] · σi. Each of these triangles is a
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loop based at p of length less than sys(X, g) and thus contractible, which implies
that γ is contractible as well.

Lemma 4.35 the ball Br+δ(pi) lifts to a collection of disjoint (r + δ)-balls around
the preimages of pi. Thus Ui also lifts to a collection of disjoint open sets in M ,
each of which is contained in a ball of radius r + δ. If we do this for each i ∈ I we
produce an open cover of (M, g) with radius ≤ r + δ. The multiplicity of this cover
is still ≤ k + 1.

To see this assume for a contradiction, that a point x ∈ M is contained in
k + 2 open sets U1, . . . , Uk+2 of the cover. Then π(x) is contained in the sets
π(U1), . . . , π(Uk+2). But each of these sets π(Uj) corresponds to an open set in the
cover of M . Since only k + 1 of these sets can contain x we can assume without
loss of generality that π(U1) = π(U2) = U . Let p1 ∈ U1 and p2 ∈ U2 be such that
π(p1) = π(p2). Since U1 ∩ U2 6= ∅, it follows that U1 = U2.
Corollary 4.37. If a closed manifold Mn is width enlargeable, then 1

2 sys(M, g) ≤
URn−1(M, g) for any metric g on M .

Proposition 4.38. Let Mn be a closed width enlargeable manifold and g be a
Riemannian metric on M . Then:

sys(M, g) ≤ C(n)vol(M, g)1/n,

where C(n) is a constant that only depends on the dimension n.

Proof. IfM is width enlargeable and g is a metric onM then sys(M, g) ≤ 2 URn−1(M, g)
by Corollary 4.37. If we take the radius R to be ε−

1
n

n vol(M, g) 1
n in Theorem 4.10,

then the assumption automatically holds true and we conclude that URn−1(M, g) ≤
ε−

1
n vol(M, g)1/n. Thus the isosystolic inequality 4.2.1 holds with C(n) = 2ε−

1
n

n .
Remark 4.39. It follows directly from [3, Corollary 8.3] that an orientable closed
width enlargeable manifold is essential.

4.3 Proof of the main results
Let Mn−1 be a manifold and g a Riemannian metric on V := M × [0, 1]. The key
idea in our proof of Theorem 4.2 is to construct a Riemannian polyhedron (D, gd)
from a Riemannian band (V, g) by taking its metric double, which is constructed
like this:

We fix a smooth triangulation of V . Let (V1, g1) be the Riemannian polyhedron
obtained from (V, g) via this triangulation. Let V2 := M × [−1, 0] and g2 be the
pullback metric under the diffeomorphism s : V2 → V1 (x, y) 7→ (x,−y). Since s is a
diffeomorphism we can also pull back the smooth triangulation from V1 to V2 via s,
giving (V2, g2) the structure of a Riemannian polyhedron.

In order to get (D, gd) we take the disjoint union of (V1, g1) and (V2, g2), and
glue them together along their (isometric) boundaries ie M ×{−1} ∼s M ×{1} and
M × {0} ∼id M × {0}. The result is a simplicial complex D. Every simplex of D
is a proper subset of the subcomplexes V1 or V2 (here we identify V1 and V2 with
their images under the quotient map from their disjoint union to D). Thus we can
define a Riemannian metric gd on D by setting gd|τ = gi|τ for any simplex τ in D
depending on whether τ is a subset of V1 or V2.

To get acquainted with the notion of the double we establish the following:
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Proposition 4.40. Let γ be a closed noncontractible piecewise smooth curve in
(D, gd). Then either length(γ) ≥ 2 width(V, g) or there is a closed noncontractible
piecewise smooth curve γ̃ in (V, g) with length(γ̃) = length(γ).

Proof. As above, consider V1 and V2 as subsets of D. Their intersection is the
disjoint union of two copies of M , call them M0 and M±1. Without loss of generality
we assume γ(0) = γ(1) ∈ V1.

There is a partition 0 ≤ t1 < · · · < t2k ≤ 1 of [0, 1] (k might of course be
0), such that the following holds: γ(ti) ∈ M0 ∪M±1 and γ([t2i−1, t2i]) ⊂ V2 while
γ([t2i, t2i+1]) ⊂ V1. Furthermore γ([0, t1]) ⊂ V1 and γ([t2k, 1]) ⊂ V1.

Of course if ti ∈ M0 and ti+1 ∈ M±1 (or the other way round) for some index
i = 1, . . . , 2k − 1 then γ([ti, ti+1]) as well as γ([ti+1, 1]) · γ([0, ti]) are curves that
connect M0 and M±1. It follows that length(γ) ≥ 2 · width(V, g).

Thus we assume that for all i we have γ(ti) ∈M0. Denote by r : D → V1 the map
which is the identity on V1 and on V2 = M × [−1, 0] has the form (x, y) 7→ (x,−y)
(where we consider D as M × [−1, 1]/∼). This is a continuous retraction, preserving
the length of curves. Let i = 1, . . . , k and take the curve c := γ([t2i−1, t2i]) ⊂ V2. We
claim that c is homotopic to r(c) ∈ V1 with fixed end points.

Let c = (c1, c2). By assumption c2(t2i−1) = 0 = c2(t2i). Furthermore c2(t) ∈
[−1, 0] as c ⊂ V2. Now

H1 : [t2i−1, t2i]× [0, 1]→ D (t, s) 7→ (c1(t), (1− s)c2(t))

is a homotopy between c and the curve (c1(t), 0) ⊂M0. In the same way

H2 : [t2i−1, t2i]× [0, 1]→ D (t, s) 7→ (c1(t), (s− 1)c2(t))

is a homotopy between (c1,−c2) = r(c) and (c1(t), 0) ⊂M0. As the endpoints are
fixed in both H1 and H2, we can concatenate them to get a homotopy between c
and r(c).

Finally, γ̃ := r(γ) = γ([0, t1])·r(γ([t1, t2]))·γ([t2, t3]) · · · r(γ([t2k−1, t2k]))·γ([t2k, 1])
is a closed curve in V1 homotopic to γ and therefore noncontractible. As r preserves
the length of curves, we get length(γ̃) = length(γ) and since we can view (V1, gd|V1) ⊂
(D, gd) as a copy of (V, g), this proves the lemma.

Now we have all the necessary tools to prove our main Theorem 4.2:

Proof of Theorem 4.2. Let εn be the constant from Theorem 4.10. Denote by (Ṽ , g̃)
the universal cover of (V, g) and let (D, gd) be the metric double of (Ṽ , g̃). We claim
that the volume of every unit ball in (D, gd) is bounded from above by εn:

To see this let p1 ∈ Ṽ1 be arbitrary and p2 be the mirror image of p1 in Ṽ2
(here Ṽ1 and Ṽ2 are the two copies of Ṽ used in the doubling procedure). If we
denote by q : Ṽ1

∐
Ṽ2 → D the quotient projection, it turns out that BR(q(p1)) ⊂

q(BR(p1)∪BR(p2)). In fact let x ∈ BR(q(p1)) ie there is a path σ of length less than
R connecting q(p) and x in D. Now if x ∈ q(Ṽ1), then, using the same techniques as
in the proof of Proposition 4.40, σ can be modified to a path of the same length
that connects q(p1) and x in q(Ṽ1). Hence x ∈ q(BR(p1)). If, on the other hand,
x ∈ q(Ṽ2), the σ can be modified to a path of the same length that connects q(p2)
and x in q(Ṽ2).

Assume that 1
2 sys(D, gd) = width(V, g) > 1. Let p be an arbitrary point in the

universal cover (D̃, g̃d). If π : D̃ → D denotes the covering projection, then π is
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injective on B1(p) as two points p1 and p2 in D̃ with p1 6= p2 and π(p1) = π(p2)
have dist(p1, p2) ≥ sys(D, gd) > 2 and any two points in B1(p) are of distance less
than 2 from each other. It follows that B1(p) is isometric to B1(π(p)) and thus
vol(B1(p)) < εn.

Now (D̃, g̃d) is also the universal cover of the metric double of (V, g), which, as a
manifold, is just M × S1 and hence it is width enlargeable by Proposition 4.30 and
Lemma 4.18. Furthermore (D̃, g̃d) is a complete, locally compact path metric space
and thus proper by the Hopf-Rinow-Theorem. Since the volume of all unit balls in
(D̃, g̃d) is bounded from above by εn this contradicts Proposition 4.34.

Remark 4.41. The same proof also works for bands over closed width-enlargeable
manifolds except for the fact that we do not know whether a product result like
Proposition 4.30 also holds for width enlargeable manifolds ie whether M × S1 is
width enlargeable if M is width enlargeable (see Remark 4.33).

However, since the product of an aspherical manifold with S1 is aspherical as well,
Theorem 4.2 holds true for all closed aspherical manifolds, not only the orientable
ones.

As we stated in the introduction Theorem 4.2 does not hold true for all essential
manifolds. This is due to the fact that some essential manifolds, for example RP n−1,
actually do admit metrics with uniformly positive (macroscopic) scalar curvature at
all scales. This leads to the following:

Example 4.42. Let g be the standard metric on RP n−1 induced by the round
metric on the unit sphere Sn−1. Consider the direct product with an interval of
arbitrary length [0, `]. We can produce a metric with any given lower bound on
Sc1(p) for all p ∈ RP n−1 × [0, `] by just rescaling the metric on RP n−1 to be very
small, since the volume of a unit ball in the universal cover of the product is bounded
from above by the volume of a unit ball in Sn−1, which becomes very small when
rescaling the metric with a small constant.

We spend the rest of this section proving Theorem 4.3. It will be crucial to relate
the systoles of (V, g) and (D, gd).

Lemma 4.43. Let M be a closed manifold and V := M× [0, 1]. If g is a Riemannian
metric on V, then

sys(D, gd) ≥ min{sys(V, g), 2 width(V, g)} (4.3.1)

where (D, gd) denotes the metric double of (V, g).

Proof. As the systole is defined to be the infimum over the lengths of all closed
noncontractible piecewise smooth curves, this follows immediately from Proposition
4.40.

Lemma 4.43 implies that to estimate the systole or the width of a Riemannian
band (V, g) from above in terms of some R > 0, it is enough to estimate the systole
of the metric double (D, gd) from above in terms of R.

In order to achieve this we use Theorem 4.10 and the next two lemmata, the
second of which appears in [51] and is attributed to Roman Karasev.
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Lemma 4.44. Let Mn−1 be a closed essential manifold and V = M × [0, 1] a band
over M . Then the double D is essential as well.

Proof. Since Mn−1 is closed and essential the classifying map f : M → K(π1(M), 1)
induces a homomorphism f∗ : Hn−1(M ;G)→ Hn−1(K(π1(M), 1);G) with non-trivial
image for coefficients G = Z or Z2. Since D is homeomorphic to M × S1 we have
π1(D) = π1(M)× Z.

Hence a K(π1(D), 1)-space is given by K(π1(M), 1)× S1. The classifying map
g : D → K(π1(M), 1)×S1 is the direct product of f and idS1 . The general Künneth
formula tells us that the cross product maps

Hn−1(M ;G)⊗H1(S1;G)→ Hn(M × S1;G)

and
Hn−1(K(π1(M), 1);G)⊗H1(S1;G)→ Hn(K(π1(M), 1)× S1;G)

are injective and commute with the maps induced by f, idS1 and g. Let α ∈
Hn(M ;G) be a class with f∗α 6= 0 and denote by e the generator of H1(S1;G). Then
g∗(α× e) = f∗α× e 6= 0, proving the lemma.

Lemma 4.45. If (Xn, g) is an essential Riemannian polyhedron, then sys(X, g) ≤
2 URn−1(X, g).

Proof. Assume that sys(X, g) > 2 URn−1(X, g) := 2R. Choose a covering of X with
multiplicity≤ n by connected open sets Uα of radii≤ R+δ with δ < 1

3(sys(X, g)−2R).
Let γ be a loop contained in one of the Uα and p be the center of a ball of radius
R + δ that contains Uα.

There is a subdivision 0 = t0 < . . . < tk = 1 of the unit interval such that
dg(γ(ti), γ(ti+1)) < δ. We can connect each γ(ti) to p by a minimizing geodesic σi of
length < R + δ and thus γ is homotopic to the concatenation of k ’thin’ triangles
σi(1 − t) · γ|[ti,ti+1] · σi. Each of these triangles is a loop based at p of length less
than sys(X, g) and thus contractible, which implies that γ is contractible as well.

It follows that the inclusion homomorphisms π1(Uα) → π1(X) are trivial and
hence each Uα lifts to a collection of disjoint open sets (Ũα)g (with g ∈ π1(X)),
homeomorphic to Uα, in the universal cover (X̃, g̃) (for more details see Lemma
4.35).

If we consider the nerves N of the covering {Uα} of X and N ′ of the covering
{(Ũα)g} of X̃, we see that N ′ is a covering of N and the following diagram commutes:

X̃ N ′

X N.

Here the vertical arrows are the covering projections while the horizontal arrows
are the nerve maps. Let p ∈ X be a point and γ a noncontractible loop in X based
at p. Then γ lifts to a path γ̃ connecting two different points p̃1 and p̃2 in the fiber
over p. By construction p̃1 and p̃2 are not contained in a common set (Ũα).

Hence γ̃ is mapped to a path connecting different points in the nerve N ′. When
projected to N this yields a noncontractible loop, which agrees with the image of γ
under the nerve map X → N . It follows that the induced map π1(X)→ π1(N) is



Homological invariance of filling enlargeability 93

injective. Since this map is always surjective it is an isomorphism. Therefore the
classifying map X → K(π1(X), 1) factors through the (n− 1)-dimensional nerve N ,
so X is not essential.

With these ingredients we can prove Theorem 4.3:

Proof of Theorem 4.3. Consider the double (D, gd) of (V, g) as before. Every R-ball
in V has volume smaller than 1

2εnR
n, and hence every R-ball in D has volume

smaller than εnRn (see the proof of Theorem 4.2).
Now Theorem 4.10 implies that URn−1(D, gd) ≤ R. As M is essential, D is

essential as well by Lemma 4.44, and hence Lemma 4.45 implies

sys(D, gd) ≤ 2 URn−1(D, gd) ≤ 2R.

Finally it follows from Lemma 4.43, that min{sys(V, g), 2 width(V, g)} ≤ 2R, which
proves the theorem as we assumed sys(V, g) > 2R.
Remark 4.46. There are two ways to look at this result: on the one hand, if we
assume that 2R < sys(V, g) (like we did in Theorem 4.3) the above proof produces
a band width estimate.

On the other hand, if we replace the assumption that 2R < sys(V, g) by
width(V, g) > R, the above proof produces an estimate for the systole. One could
consider this to be an extension of the classical isosystolic inequality 4.2.1 to bands
over essential manifolds which are wide enough.

4.4 Homological invariance of filling enlargeability
In this section we closely follow the arguments of Brunnbauer and Hanke [8, Section
3] to prove Theorem 4.4. In order to do this, we need to extend our notion of
filling enlargeability from closed oriented manifolds to rational homology classes of
simplicial complexes.

In the following if p : X → X is a (not necessarily connected) cover of a
simplicial complex X and c ∈ Hn(X;Q) is a (simplicial) homology class, the transfer
p!(c) ∈ H lf

n (X;Q) is represented by the formal sum of all possible lifts of simplices
in a chain representative of c, where every lift of a simplex σ : ∆n → X is added
with the same coefficient as σ. For more information on the transfer homomorphism
(in the case of finite coverings) see for example Hatcher [39, 3.G].
Definition 4.47. A connected subcomplex S of a simplicial complex X is called
π1-surjective if the inclusion induces a surjection on fundamental groups and we say
that S carries a homology class c ∈ H∗(X;Q) if c lies in in the image of the map in
homology induced by the inclusion.
Definition 4.48. (Compare [8, Definition 3.1]) Let X be a simplicial complex
with finitely generated fundamental group and let c ∈ Hn(X;Q) be a (simplicial)
homology class. Choose a finite connected π1-surjective subcomplex S ⊂ X carrying
c. (This subcomplex exists because π1(X) is finitely generated).

The class c ∈ Hn(X;Q) is called filling enlargeable, if the following holds: For any
r > 0, there is a connected cover p : X → X such that the class p!(c) ∈ H lf

n (S;Q)
does not vanish in the r-neighborhood of the Kuratowski embedding ι(S). Here
S = p−1(S) (which is connected since S is π1-surjective) is equipped with the
canonical path metric.
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Remark 4.49. A closed oriented manifold Mn is filling enlargeable (as in Definition
4.22) if and only if its fundamental class [M ] is filling enlargeable (choose S = M in
Definition 4.48).

As in [8] we need to show that this definition does not depend on the choice of S.
Let S ′ ⊂ S be a smaller π1-surjective subcomplex carrying c and r > 0 be arbitrary.
Let S be a covering of S such that p!(c) does not vanish in the r-neighborhood of
ι(S). The lifted inclusion S ′ ↪→ S is 1-Lipschitz and extends to a nonexpanding map
L∞(S ′)→ L∞(S). By naturality of p! the class p!(c) ∈ H lf

n (S ′;Q) can not vanish in
the r-neighborhood of ι(S ′).

Now for two different π1-surjective subcomplexes carrying c there is always a
third one containing both. By the above it now remains to show that if T ⊃ S
is a larger π1-surjective subcomplex carrying c then we can pass from S to T in
Definition 4.48. This will be shown by induction on the skeleta T (k) of T . At the
start of the induction we treat the cases k = 0, 1 simultaneously.

For the inductive step we will need the following Lemma, which works as a
substitute for [8, Lemma 3.2].
Lemma 4.50. Let X be a connected simplicial complex and c ∈ Hn(X;Q) be a
(simplicial) homology class. Let Y ⊂ X be a subcomplex carrying c such that X\Y is
the disjoint union of possibly infinitely many copies of the interior of a k-dimensional
simplex with k ≥ 2. There is a constant δk such that the following holds true: If the
class c does not vanish in the r-neighborhood of ι(Y ), then c does not vanish in the
(δkr − 1)-neighborhood of ι(X).
Proof. Let ∆k be the standard simplex endowed with the canonical path metric
d∆k . Consider its boundary ∂∆k and the canonical map (∂∆k, d∆k) → ∂∆k with
Lipschitz constant 1

δk
for some 0 < δk ≤ 1.

If we rescale the canonical path metric on Y by δk then the map (Y, dX) →
(Y, δkdY ) is non expanding. To see this let v and v′ be two points in Y . By definition
there is a path γ in X connecting v and v′ with length(γ) = dX(v, v′). By replacing
all segments of γ lying the interior of a copy of ∆k with shortest paths connecting
the endpoints in ∂∆k we construct a path γ′ ⊂ Y of length ≤ 1

δk
length(γ). Hence

dY (v, v′) ≤ 1
δk
dX(v, v′), which proves the claim.

If c does not vanish in the r-neighborhood of ι(Y ) then it does not vanish in
the δkr-neighborhood of ι(Y, δkdY ). Using Lemma 4.16, we conclude that c does not
vanish in the δkr-neighborhood of ι(Y, dX). As the (δkr − 1)-neighborhood of ι(X)
is contained in the δkr-neighborhood of ι(Y, dX), this proves the Lemma.

Now we can start the induction process from [8]: First assume that T\S contains
only one vertex v. Let V ⊂ T be the set of lifts of v. For each v ∈ V let F (v) ⊂ S
be the set of vertices having a common edge with v. Note that F (v) is nonempty
and finite since T is connected and locally finite.

Let F (ṽ) ⊂ S̃ be the subset defined in an analogous fashion as F (v) but with S
replaced by the universal cover S̃ → S (and v by a point ṽ over v) and set

d := diam(F (ṽ))

measured with respect to canonical the path metric in S̃. Then d is independent of
the choice of ṽ and r and furthermore

diamF (v) ≤ d.
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Now the Lipschitz constant of the canonical map (S, dT )→ S is smaller or equal d2 .
As in the proof of Lemma 4.50 we rescale the canonical path metric on S by

2
d
. If p!(c) does not vanish in the r-neighborhood of ι(S), then the same holds

true for the 2r
d
-neighborhood of ι(S, 2

d
dS). Hence p!(c) does not vanish in the 2r

d
-

neighborhood of ι(S, dT ) and since the (2r
d
− 1)-neighborhood of ι(T ) is contained in

the 2r
d
-neighborhood of ι(S, dT ) we found a lower bound for the filling radius of p!(c)

in T which only depends on S and T .
If T\S contains more than one vertex, we apply this procedure inductively, where

in each induction step we pick a vertex which has a common edge with some vertex
in the subcomplex of T that has already been treated. As T and S are both finite
this produces (if r is sufficiently large) a constant δ′1 such that p!(c) does not vanish
in the δ′1r-neighborhood of S ∪ T 1. For the inductive step we assume that this holds
true for the δ′kr-neighborhood of S ∪ T k. By Lemma 4.50 we conclude that p!(c)
does not vanish in the (δk+1δ

′
kr)-neighborhood of S ∪ T k+1.

In the end we get a constant δ only depending on S and T (and not on r), such
that c does not vanish in the δr-neighborhood of ι(T ). Hence the notion of filling
enlargeability is well defined.

Next we study functorial properties of filling enlargeable homology classes (com-
pare [8, Proposition 3.4]).

Proposition 4.51. Let X and Y be connected simplicial complexes with finitely
generated fundamental groups and let φ : X → Y be a continuous map. Then
following implications hold:

• If φ induces a surjection of fundamental groups and φ∗(c) is filling enlargeable,
then c is filling enlargeable.

• If φ induces an isomorphism of fundamental groups and c is filling enlargeable,
then also φ∗(c) is filling enlargeable.

Proof. First assume that φ∗(c) is filling enlargeable and φ is surjective on π1. Let
S ⊂ X be a finite connected π1-surjective subcomplex carrying c.

Then φ(S) is contained in a finite π1-surjective subcomplex T ⊂ Y carrying
φ∗(c). As S and T are both compact the map φ : S → T is Lipschitz with Lipschitz
constant 1

λ
. Hence, if we rescale the canonical path metric on T by λ, this map is

nonexpanding.
Let r > 0 and choose a connected cover pY : Y → Y such that p!(φ∗(c)) does

not vanish in the 1
λ
r-neighborhood of ι(T ). Then the same holds true for the r-

neighborhood of ι(T , λdT ). Let pX : X → X be the pullback of the covering to X.
This will be connected since φ is surjective on π1 and we get a map of covering
spaces

S T

S T,

pX

φ

pY

φ

which restricts to a bijection on each fibre. In particular it is nonexpanding, if
we rescale the canonical path metric on T by λ, and by naturality it maps p!(c)
to p!(φ∗(c)). Hence by Lemma 4.16, we see that p!(c) does not vanish in the
r-neighborhood of ι(S) and c is filling enlargeable.
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If φ induces an isomorphism of fundamental groups, then, by the first part, we
can replace Y by a homotopy equivalent complex and hence we may assume that φ
is an inclusion. Let S ⊂ X be a finite π1-surjective subcomplex carrying c. Then S
is also a subcomplex of Y and it carries φ∗(c). Because φ induces an isomorphism
on fundamental groups each connected cover of X can be written as the restriction
of a connected cover of Y . This shows that φ∗(c) is filling enlargeable.

As a corollary we get homological invariance of filling enlargeability. Notice that,
by the above, the filling enlargeable classes form a well defined subset in the group
homology H∗(Γ;Q) = H∗(BΓ;Q) of a finitely generated group Γ, since a homotopy
equivalence between two different simplicial models of BΓ identifies the subsets of
filling enlargeable classes.

Corollary 4.52. Let M be a closed oriented manifold of dimension n. Then M is
filling enlargeable if and only if φ∗[M ] ∈ Hn(Bπ1(M);Q) is filling enlargeable.

Our Theorem 4.4 follows directly from Corollary 4.52 and the next proposition
(compare [8, Theorem 3.6]).

Proposition 4.53. Let X be a connected simplicial complex with finitely generated
fundamental group. Then the non filling enlargeable classes in Hn(X;Q) form a
rational vector subspace.

Proof. The class 0 ∈ Hn(X;Q) is not filling enlargeable. This follows directly from
Definition 4.48 (every finite π1-surjective subcomplex S carries 0 but of course the
0-class vanishes in any neighbourhood of ι(S) for all S → S). Furthermore if a
class is not filling enlargeable then clearly no rational multiple of it can be filling
enlargeable.

Finally we need to show that the subset of non filling enlargeable classes is closed
under addition. Let c, d ∈ Hn(X;Q) be non filling enlargeable and assume that c+d
is filling enlargeable. Then by definition there is a finite π1-surjective subcomplex
S carrying c+ d such that for every r > 0 there is a connected cover X → X such
that p!(c+ d) = p!(c) + p!(d) does not vanish in the r-neighborhood of ι(S).

But this implies that either p!(c) or p!(d) does not vanish in the r neighborhood
of S. If we consider all natural numbers k ≥ 1 for values of r then for infinitely
many k either p!(c) or p!(d) does not vanish in the k-neighborhood of S. Since S
carries both c and d we conclude that either c or d is filling enlargeable.

Remark 4.54. While we have already seen in Remark 4.39 that an orientable closed
width-enlargeable manifoldMn is essential ie φ∗[M ] 6= 0 ∈ Hn(Bπ1(M);Z), it follows
from Corollary 4.52 and Proposition 4.53 that if Mn is also filling enlargeable, then
it is even rationally essential ie φ∗[M ] 6= 0 ∈ Hn(Bπ1(M);Q). This conclusion is
strictly stronger since there are essential manifolds which are not rationally essential,
for example RP 3.

Conversely if Mn is a closed rationally essential manifold and π1(M) is residually
finite, then for any metric g on M and any r > 0 there is a compact covering (M r, g)
with sys(M r, g) ≥ r. Since M is rationally essential M r is rationally essential as
well and by [23, Lemma 1.2.B] we conclude that 6 FillRad(M r, g) ≥ sys(M r, g) ≥ r.
Hence M is filling enlargeable. Together with Remark 4.54 this proves Corollary 4.5.
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