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Abstract—With the rapid development of the high-speed rail-
ways, the speed of trains is getting faster and faster, and the
dynamic load between the wheels and rails of the vehicle increases
accordingly. The rolling bearing is a key part of the high-
speed train transmission system. The train is subjected to high-
frequency vibration for a long time during operation, and the
bearing is prone to fatigue damage, which affects the safe opera-
tion of the train. Nowadays, many methods have been applied in
fault diagnosis like reinforcement learning, convolutional neural
networks and autoencoders. One of the typical methods is the
reinforcement neural architecture research method. It makes
neural network design automatic and eliminates the bottleneck
associated with choosing network architectural parameters. How-
ever, this method focuses on the time domain signal, and a
time domain signal cannot capture the particular properties of
a frequency domain signal. In order to solve these problems, we
propose a new method containing two Steps: Use FFT to convert
the time domain signal to the frequency domain and use Bi-
LSTM neural network model to recognize different faults. For
each fault, the time series signal has some correlation with some
specific frequencies. The frequency domain is more intuitive than
the time domain and describes different states of faulty types.
For recognition, LSTM is better at classifying sequence data than
other methods, and Bi-LSTM can predict the sequence from both
directions, achieving higher accuracy. Experiments on public data
sets demonstrate the efficiency of the proposed method.

Index Terms—Bi-LSTM, FFT, Bearing fault

I. INTRODUCTION

A few essential components ensure that the train operates
safely and efficiently, and the development of high-speed

rail has considerably improved traffic conditions in many
countries. The transmission system is one of them and is
crucial to the efficient running of high-speed trains. In the
majority of high-speed train transmission systems, the traction
motor serves as the power source and is a critical compo-
nent. Therefore, it is important to recognise traction motor
breakdowns. The most frequent type of motor failure is motor
bearing failure [1]. For instance, according to the research,
40% of motor failures are caused by motor bearing failures.
Fatigue spalling, which includes partial damage or fall-off on
the inner ring, outer ring, rolling element, and other bearing
surfaces, is one of the most common defects in motor bearings.
Fatigue stress from alternating loads is the main factor in
bearing fatigue spalling [2]. When a bearing experiences a
fatigue spalling failure, a particular frequency of shock pulse
will manifest. As a result, rolling bearing maintenance is
quite expensive and very important for every country. For
instance, the US spends hundreds of billions of dollars every
year on maintaining machinery and routinely replacing vital
components [3].

However, if the crucial components of the equipment are
not updated in a timely manner, catastrophic tragedies could
happen. For instance, on June 3, 1998, a high-speed train in
Germany’s elastic wheel burst due to prolonged use, resulting
in 101 fatalities and 194 serious injuries [4]. 72 people lost
their lives and 416 were hurt when 9 carriages of the NO.T195
train from Beijing to Qingdao derailed and crashed with the



NO.5034 train from Yantai to Xuzhou on April 28, 2008, in
China. [5].

Consequently, rolling bearing detection and recognition for
health monitoring has emerged as one of the key research fields
in order to lower the cost of rolling bearing maintenance and
maintain the safety of operation for high-speed trains. In recent
years, some laboratories used accelerometers located at the
driving end of the motor housing to adopt a significant amount
of vibration data. The sampling frequency is usually 12000
samples per second, 25600 samples per second and 48000
samples per second. These vibration data lengths are generally
more than 120000, and many subcategories of vibration signals
exist.

Hence, signal processing and status recognition have taken
centre stage in rolling bearings research. For signal processing,
Huang et al. [6] proposed a method of adaptively decomposing
non-stationary signals into a series of zero-mean intrinsic
modal functions (IMF), which was called empirical mode
decomposition (EMD). Saidi et al. [7] used EMD to dissect
the non-stationary signal into several IMFs according to the
local characteristic time scale of the signal. Ali et al. [8] used
the Intrinsic Mode Function (IMF) energy bribe generated
by empirical mode decomposition to describe seven different
bearing states. Dybała and Zimroz [9] proposed an early
damage detection method for rolling bearings based on EMD.
Wang et al. [10] proposed a new non-negative EMD manifold
(NEM) bearing failure feature extraction method. Popular
learning has been a more popular dimensionality reduction
method in recent years. It has been used in a wide variety
of fields of fault diagnosis. Among them, Arena et al. [11]
proposed Laplacian Eigenmaps (LE), He and Partha [12]
proposed Locality Preservation Projection (LPP), Roweis and
Saul [13] proposed Locally Linear (LLE), Zhang et al. [14]
proposed linear local tangent space alignment (LLTSA). He
[15] used LLE to extract the popular features of wavelet
packet energy and effectively distinguished bearing and gear
failures with different failure degrees. Li and Zhang [16] used
the supervised LLE algorithm to map the features from the
high-dimensional space to the embedding space and performed
bearing fault classification in the embedding space.

More importantly, status recognition achieves much success
as well. For instance, Shao et al. [17] proposed a Deep wavelet
auto-encoder (DWAE) with an extreme learning machine
(ELM). They used the wavelet function to design a wavelet
autoencoder, to get data features and improve the ability to
study unsupervised features. ELM is a classifier. The result is
95.2%. Shao et al. [18] proposed ensemble deep auto-encoders
(EDAEs). Use the Unsupervised feature learning from the raw
vibration data and design a strategy to ensure accuracy and
stability. The result is 97.18%. Tao et al. [19] proposed deep
belief networks (DBN). DBN can reduce energy loss between
the output and input vibration signals. The result is 96.67%.
Gan and Wang [20] proposed hierarchical diagnosis network
(HDN) can achieve 99.03%. Zhuang and Qin [21] proposed
a multi-scale deep CNN (MS-DCNN) model that can reach
99.27%. Guo et al. [22] constructed a hierarchical adaptive

deep convolutional neural network (ADCNN), the accuracy is
97.7%.

In these recognition methods, the ability to reinforce learn-
ing is the most similar to manually detection. Among them,
Wang et al. [23] proposed a reinforcement neural architecture
search method to achieve success. The article suggested and
validated the neural network architecture automatic search
method. The framework of the article includes two parts: the
controller model and the child model.

The controller model has 2 Nascell layers, and the output
of this model are convolutional kernel size and kernel number
and a pooling kernel size of each layer. They formed the
CNN [24]. The child models are CNNs. The model consists
of an input layer. The two groups of the same convolutional
layer, the pooling layer, take turns to each other. The complete
connection layer.

However, the time domain is the main emphasis of these
methods. The time domain analysis is unable to observe the
frequency-dependent signal properties for the vibration signal.
The frequency domain analysis is more succinct than the time
domain. Following the signal in the frequency domain provides
a deeper and more practical analysis of the issue.

This paper proposed feature extraction and recognition for
rolling bearing fault diagnosis based on frequency domain
and Long Short-Term Memory (LSTM) to overcome the
shortcomings mentioned before. In this method, uses Fast
Fourier Transform (FFT) to alter the bearing’s time-domain
signal before it is transmitted to the network. We only need
to fine-tune the maxepochs and hidden units in the process.

II. METHODOLOGY

A. Overview of system

The structure of the proposed method is shown in Fig. 1,
the vibration signal is collected by accelerometers which are
located drive end of the motor housing, and the signal is mea-
sured at 1750 RPM in each working state. Then the vibration
signal is divided into several overlapping samples, and each
sample is window processed and transformed with FFT. And
then input these data into networks, the neural network train
these data, gets outputs and calculates the accuracy. Adjust the
number of the hidden units and MaxEpochs until the result
reaches the best.

The layers in the neural network system include the input
layer, Bi-LSTM layer, fully connection layer, softmax Layer
and classification Layer.

B. Frequency domain analysis

The existence of FFT makes Discrete Fourier Transform
play a central role in algorithms in digital signal processing.
The calculation formula of Discrete Fourier Transform is [25]:
X(k) =

∑N−1
n=0 x(n)Wnk,(0≤ k ≤ N − 1)

X(k) = 1
N

∑N−1
n=0 x(n)W−nk,(0≤ k ≤ N − 1)

Where x stands a limited long sequence, X stands data after
Discrete Fourier transformation, N is sampled n points in a
sinusoidal cycle, and W = e

−j2p
N is the Fourier factor. For a



Fig. 1: Overview of the system, (a) is raw data example from CWRU dataset [29], (b) is egmented data with 300 points, (c)
is segmented data using FFT, (d) is training data sent to the network and (e) is score of 12 classes.

discrete signal x, FFT will transform the signal in frequency
domain. Fig. 2 shows that the signal changes before and after
FFT.

Fig. 2: Signal transformed by FFT. Left part is raw data, each
of them have 300 points, right part is data with FFT, each of
them have 150 points. And (a) is an example of Normal signal,
(b) is an example of Roller Fault size 0.007 inches signal, (c)
is an example of Outer Fault size 0.007 inches signal.

C. Bi-LSTM

Long Short Term Memory (LSTM) is a special Recurrent
Neural Network (RNN) that can learn long-term dependencies
[26]. Vanishing and exploding gradient problems are hard
to avoid in traditional RNNs. LSTM learned the long-term
dependence on the network with passed these problems. The
hidden layer of traditional RNN is usually a tanh function or

ReLU. A typical LSTM unit will conclude 3 sigmoid layer
and 1 tanh layer.

Fig. 3: (a) is notwork structure of LSTM, (b) is LSTM unit.
The repetitive module in LSTM has four interaction layers,
three sigmoid and one tanh, and they interact in a unique
way.

LSTM consists of three gate variables: Input gate, Forgetting
Gate and Output gate.

A cell state C is applied in LSTM with only a few linear
operating on it, which could retain information easily. The first
gate in LSTM is forget gate, which decides what information
should be discarded. xt will be send to a sigmoid function with
ht−1 and get a value between 0 and 1 which multiplied with
the cell state Ct−1. The output of the sigmoid function will
decide how much information remains. Part of the information
in the last layer t−1 has been forgotten in the cell state Ct−1,
and the new information in the current layer will be added by
a tanh function and a sigmoid function. This sigmoid function
is called input gate and the output of it will multiply by a tanh
function. When the value of it is 0, the cell state doesn’t need
to update.

Then the last cell state Ct−1 multiply with forget gate ft to
discard part of information and update the information from
it×Ct. The output gate concludes the information in updated
cell state Ct and the output after a tanh function and a sigmoid
function. A brief figure of LSTM is shown in Fig. 3.



TABLE I: Description of 12 states, one normal state and eleven failure states

Data no. Fault type Fault size/inches Motor speed (r/min) Sampling frequency (kHz) Size of training / testing samples
1 Normal 0 1750 12 350/50
2 Roller Fault 0.007 1750 12 350/50
3 Roller Fault 0.014 1750 12 350/50
4 Roller Fault 0.021 1750 12 350/50
5 Roller Fault 0.028 1750 12 350/50
6 Inner Race Fault 0.007 1750 12 350/50
7 Inner Race Fault 0.014 1750 12 350/50
8 Inner Race Fault 0.021 1750 12 350/50
9 Inner Race Fault 0.028 1750 12 350/50
10 Outer Race Fault-Center@6:00 0.007 1750 12 350/50
11 Outer Race Fault-Center@6:00 0.014 1750 12 350/50
12 Outer Race Fault-Center@6:00 0.021 1750 12 350/50

LSTM has the advantages of long-term trajectory memory
and short memory unification, simulation of selective brain
forgetting, and more accurate trajectory modelling. Therefore,
the multi-layer structure can be mixed to solve the efficiency
and stability problems of massive data training.

Bi-LSTM is an RNN with LSTM unit and will predict
the sequence from both directions [27]. It could perform
better in a sequence without directionality [28]. Actually
the sequences are sent to two LSTM unit indenpently with
different directions. The structure of Bi-LSTM is shown in
(a) of Fig. 4. In this paper, Bi-LSTM model was selected
instead of LSTM model because the input data is the FFT
of the vibration signals. In frequency domain, there is no
strong dependent relationship between current and previous
components. Bi-LSTM can model both relationship of the one
from low frequency to high frequency as well as the one from
high frequency to low frequency.

Fig. 4: Bi-LSTM networks. The LSTM framework is used to
merge the input sequence’s front and backward directions. The
two LSTM layers’ vectors can be added to, averaged out, or
connected.

III. EXPERIMENT

A. Dataset

The data are collected from the Electrical Engineering
Laboratory at Case Western Reserve University [29]. The data
was collected at 12,000 samples/second and has four different
fault inches: 0.007, 0.014, 0.021 and 0.028 inches.

B. Parameters

The parameter information is shown in Table 1. Twelve data
in different states include one normal state and eleven faults
states. Each of these has 400 samples. Among them, the first
350 samples are training samples, and the left 50 samples are
test samples, a totally of 4800 samples, and the length of each
sample is 300. The last vision of network Parameters in this
paper is in the following Table II.

TABLE II: Parameters of network

Name of Parameters Size of Parameters
Mini Batch-Size 20
Input Size 1
Number Hidden Units 100
Number Classes 12
Max Epochs 100

C. Experimental results

In this experiment, the experimental setting follows the same
one in paper [23] for a fair comparison. In this setting, the
subset data related to 12 faulty types are used, as shown in
Table 1. In [23], the result of the recognition accuracy is
98.47%, and the standard deviation obtained by reinforcement
neural architecture after 10 experiments are 0.61.

The average classification accuracy rate of proposed method
on raw data can reach 94.88%, and the accuracy standard
deviation after 10 experiments is 1.90 as shown in Table 3.
This paper’s average classification accuracy rate for data with
FFT can reach 99.70±0.23%, improved by 4.82%. Compared
with neural reinforcement architecture, enhanced by 1.23%,
the classification accuracy of test samples is summarized in
Table 3, which is better than reinforcement neural architecture.
Therefore, it can be considered that FFT data in Bi-LSTM has
better performance.

TABLE III: Results of comparison paper, Bi-LSTM for raw
data and FFT data

Method Average accuracy (%)
± standard deviation (%)

Reinforcement neural architecture 98.47 ± 0.61 [23]
Raw data/Bi-LSTM 94.88±1.90
FFT/Bi-LSTM 99.70±0.23



And the 10 times of results show in table 4, the best result
for raw data is 97.83% and the worst is 92%. the best result
for data with FFT approached 100% and the worst is 99.33%,
which improved 2.17% and 7.33% respectively.

TABLE IV: Test results of Raw data and Data with FFT

NO. Times Raw data/Bi-LSTM % FFT/Bi-LSTM %
1 97.83 100
2 96.67 100
3 96 99.83
4 96.5 99.83
5 95.67 99.83
6 94 99.67
7 93.67 99.5
8 93.67 99.5
9 92.83 99.5
10 92 99.33

It is significantly better than the comparison network struc-
tures, it can be seen that the proposed method has better
performance. the diagnostic results are summarized in Fig. 5.

Fig. 5: Accuracy of the 10 times.The horizontal axis is the
number of iterations and Vertical axis is accuracy. The blue
folding line is the result of the raw signal combined with the
Bi-LSTM network, the orange folding line is the result of the
signal after FFT combined with the BI-LSTM network.

CONCLUSION

Even if the data from the time sequence is transferred to the
frequency domain after being processed by FFT, it remains a
continuous signal. It is equally applicable to engineering prac-
tice and produces positive outcomes. In the paper [30], [31],
[32], combination method of FFT and LSTM has achieved
good results.

As a result of comparisons between paper [23], the ex-
perimental procedures are completely consistent. Paper [23]
only uses training and testing sets, and there is no verification
set. Therefore, there is no verification set in the experiments
described in this paper.

Finally, deep learning methods, in particular, have become
increasingly popular in recent years. As a result, deep learning-
based automated recognition is now utilised in numerous new
sectors. The goal of increasingly more automatic recognition

systems is to simplify our lives. In this paper, the signal is
transformed from the time domain to the frequency domain
by fully using of the FFT. The best result, when combined
with BI-LSTM, is 100%, while the mean value over ten
times is 99.70±0.23 %. Future studies on the existing research
issue can include a variety of methods, including EMD.
Practical engineering challenges will be solved using some
methodologies that will be enhanced and employed in this
research.
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