The Effects of Heat Acclimatization, Heat Acclimation, and Intermittent Heat Training on Maximal Oxygen Uptake

RYAN A. DUNN¹, LAUREN A. FRY², YASUKI SEKIGUCHI¹, COURTENEY L. BENJAMIN^{2,3}, CIARA N. MANNING², ROBERT A. HUGGINS², REBECCA L. STEARNS², DOUGLAS J. CASA².

¹Sports Performance Laboratory; Department of Kinesiology & Sport Management; Texas Tech University; Lubbock, TX. ²Korey Stringer Institute; Department of Kinesiology; University of Connecticut; Storrs, CT. ³Department of Kinesiology; Samford University; Birmingham, AL.

Category: Doctoral

Advisor / Mentor: Sekiguchi, Yasuki (yasuki.sekiguchi@ttu.edu)

ABSTRACT

Maximal oxygen uptake (VO_{2max}) is an important determinant of endurance performance. Heat acclimation/acclimatization (HA/HAz) strategies elicit improvements in endurance performance. When heat exposure is reduced, intermittent heat training (IHT) is potentially beneficial to alleviate HA/HAz adaptation decay, however corresponding VO_{2max} responses are unknown. PURPOSE: To determine the effects of HA/HAz and IHT on VO_{2max} in endurance runners and identify how long VO_{2max} adaptations remain following removal of repeated heat exposure. METHODS: Twenty-seven male endurance runners (mean \pm SD; age, 36 \pm 12 years; body mass, 73.03 \pm 8.97 kg; height, 178.81 \pm 6.39 cm; VO_{2max}, 57.48 \pm 7.03 $ml.kg^{-1}.min^{-1}$) completed VO_{2max} and exercise testing at five time points; baseline, pre-HA, post-HA, week 4 of IHT (IHT₄), and week 8 of IHT (IHT₈). Exercise testing and HA environmental conditions were the same (ambient temperature, 35.42 ± 1.06°C; relative humidity, 46.35 ± 2.48%). Following baseline testing, participants completed HAz, proceeded by 5 days of HA involving exercise to induce hyperthermia (38.50 - 39.50°C) for 60 minutes. Participants were then randomly assigned to one of three IHT groups: once weekly (n = 9), twice weekly (n = 10), or no IHT (n = 8). Differences in VO_{2max} and maximal heart rate at VO_{2max} (HR_{max}) for baseline, pre-HA, post-HA, IHT₄, and IHT₈ were analyzed using repeated-measures ANOVAs with Bonferroni corrections post-hoc. RESULTS: No significant VO_{2max} differences were observed between baseline (57.92 ± 6.82 ml.kg⁻¹.min⁻¹), pre-HA (59.65 ± 8.24 ml.kg⁻¹.min⁻¹), and post-HA $(59.49 \pm 7.18 \text{ ml.kg}^{-1}.\text{min}^{-1}, p = 0.36)$. No significant group or time effects were identified for VO_{2max} at post-HA, IHT₄, and IHT₈ (p = 0.67). However, significant HR_{max} differences were observed between baseline $(180 \pm 11 \text{ beats.min}^{-1})$, pre-HA $(177 \pm 10 \text{ beats.min}^{-1})$, and post-HA tests $(175 \pm 10 \text{ beats.min}^{-1})$, p = 0.01). No significant group or time HR_{max} differences were shown for post-HA, IHT₄, and IHT₈ (p = 0.59). CONCLUSION: No changes in VO2_{max} were identified among endurance runners following HA/HAz, potentially due to participants' high aerobic fitness levels. As IHT maintained VO_{2max} following 8 weeks without repeated heat exposure, it is potentially a beneficial strategy to minimize VO_{2max} adaptation decay in endurance athletes.