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ABSTRACT Quantum information is prone to suffer from errors caused by the so-called decoherence,
which describes the loss in coherence of quantum states associated to their interactions with the surrounding
environment. This decoherence phenomenon is present in every quantum information task, be it transmission,
processing or even storage of quantum information. Consequently, the protection of quantum information
via quantum error correction codes (QECC) is of paramount importance to construct fully operational
quantum computers. Understanding environmental decoherence processes and the way they are modeled
is fundamental in order to construct effective error correction methods capable of protecting quantum
information. Moreover, quantum channel models that are efficiently implementable and manageable on
classical computers are required in order to design and simulate such error correction schemes. In this
article, we present a survey of decoherence models, reviewing the manner in which these models can
be approximated into quantum Pauli channel models, which can be efficiently implemented on classical
computers. We also explain how certain families of quantum error correction codes can be entirely simulated
in the classical domain, without the explicit need of a quantum computer. A quantum error correction code
for the approximated channel is also a correctable code for the original channel, and its performance can be
obtained by Monte Carlo simulations on a classical computer.

INDEX TERMS Decoherence, quantum channels, quantum error correction, Gottesman-Knill theorem.

I. INTRODUCTION
Since Richard Feynman’s original and ground-breaking
proposal in [1] of constructing computers that follow the laws
of quantummechanics to simulate physical systems that obey
said laws, the scientific community has gone to extraordinary
lengths in order to build an operational quantum computer.
Following the introduction of these novel ideas about
constructing quantum machines, research has shown that
application of quantum physics theory is not only useful for
simulation of complex quantum mechanical systems such as
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macromolecules for drug discovery [2]–[5], but also to effi-
ciently solve tasks which are computationally unmanageable
in a reasonable amount of time for classical computers. The
most prominent of these tasks are the factorization of prime
numbers and the discrete logarithm problem [6], Byzantine
agreement [7], or searching an unstructured database or an
unordered list [8], [9]. Furthermore, quantum computing is
a powerful asset for secure communications. For instance,
Quantum Key Distribution (QKD) protocols enable two
parties to create a shared random secret key only known
to them. The key remains secure given that these protocols
allow the aforementioned parties to detect if a malicious
entity is trying to gain knowledge of it, which enables them
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to adapt their message exchange so that the eavesdropper
extracts no information. The best-known cryptographic QKD
protocols are the BB84 protocol proposed by Bennett and
Brassard in [10] and the E91 protocol by Ekert presented
in [11].

In light of the astonishing potential of quantum frame-
works, the construction of devices capable of exploiting the
benefits offered by the paradigm of quantum computing
represents a step forward in the advance of technology,
regardless of these machines being in the form of fully
operational quantum computers [12], quantum processors as
accelerators of classical computers [13], or specific devices
that perform QKD [14]. Unfortunately, quantum information
is vulnerable to errors that arise and corrupt quantum states
while they are being processed, which oftentimes leads
to incorrect algorithm outcomes. The frailty of quantum
information is caused by the phenomenon known as quantum
decoherence, which refers to the destruction of the superposi-
tion of quantum states from the interaction that they have with
the environment [15]. This quantum noise arises during every
task related to the quantum computing paradigm: information
storage, processing or communication. Hence, it is necessary
to invoke Quantum Error Correction Codes (QECC) in order
to have qubits with sufficiently long coherence times1 for
practical applications. Quantum information is so sensitive
to decoherence that many think that quantum computation
is unfeasible without the aid of quantum error correction
tools.

The earliest formulation of QECCs appeared in 1995 [15]
when Shor proposed a 9-qubit code, which was later aptly
named after him. This code is capable of correcting errors of
weight one and it does not saturate the Quantum Hamming
Bound (QHB) [16], which implies that the same task could be
achieved with codes of shorter length. Nevertheless, it stands
as the first proposal of an error correcting code for the
quantum computing paradigm. Since then, research efforts
have focused on deriving QECC schemes that approach the
quantum capacity limits [17] at a reasonable complexity cost.
Encoding and decoding gate depths play an important role
in the paradigm of correcting quantum errors due to the fact
that quantum gates introduce additional errors. Additionally,
the runtimes of the decoding algorithms should not exceed the
coherence times of the qubits that are being processed, else
these states would suffer from new decoherence effects while
being corrected. A major breakthrough in the development
of QECCs came in Gottesman’s Ph.D. thesis [19], where he
proposed the theory of Quantum Stabilizer Codes (QSC),
which is a very useful framework that facilitates the
construction of QECC families from classical binary and
quaternary error correction codes. This formalism has led
to the development of several promising QECC families
such as Quantum Reed-Muller codes [20], Quantum Low
Density Parity Check (QLDPC) codes [21], [22], Quantum

1The coherence time of a qubit is defined as the time during which the
superposition that defines said state remains uncorrupted.

Low Density Generator Matrix (QLDGM) codes [23], [24],
Quantum Convolutional Codes (QCC) [25], Quantum
Turbo Codes (QTC) [26]–[29], and Quantum Topological
Codes [30], [31].

QECC design requires the assumption of an error model
in the form of a quantum channel that accurately represents
the decoherence processes that affect quantum information.
Based on these error models, appropriate strategies to combat
the effects of decoherence can be derived. In order for
the designed QECCs to be applicable in realistic quantum
devices, the quantum channels should capture the essential
characteristics of the physical processes that make qubits
lose their coherence. The depolarizing model is a widespread
quantum error model used to evaluate the error correcting
abilities of QECC families [15], [16], [19]–[22], [24]–[31].
This decoherence model is especially useful due to the fact
that it makes the system fulfill the Gottesman-Knill theorem,2

and thus it can be efficiently simulated on a classical
computer [32], [33]. At the time of writing, the availability
of quantum computers for researchers is limited and the
accessible machines operate on a reduced number of qubits.
Therefore, classical resources remain an invaluable tool for
the design of advanced QECCs that will be used beyond the
Noisy Intermediate-Scale Quantum (NISQ) era. The NISQ
era [34] is a term coined by Preskill that makes reference to
the time when quantum computers will be able to perform
tasks that classical computers are incapable of, but will
still be too small (in qubit number) to provide fault-tolerant
implementations of quantum algorithms.

The motivation for this article is to provide a clear
description of how the physical processes that lead to the
corruption of quantum information can be approximated
so that they are tractable using classical resources. To do
so, we survey the techniques existing in the literature
to approximate general quantum channels (resulting from
decoherence phenomena) by the widely used Pauli channels.
Consequently, we review the decoherence processes that
affect quantum information compromising the integrity of
quantum algorithms, and their mathematical description,
in the form of quantum channels. We then study the use of
the technique called twirling [35]–[40] in order to obtain
approximations of those quantum channels, resulting in the
asymmetric Pauli channel and the depolarizing channel.
We also justify that any error correction methods designed
for the twirled approximated channels will also be valid for
the more realistic original channels. Furthermore, we provide
an extensive discussion regarding the Pauli channel and its
symmetric instance, commonly known as the depolarizing
channel, as these approximations are widely used for QECC
constructions with classical resources. Additionally, even
though the memoryless version is generally considered,
we discuss the emergence and impact of memory effects

2The depolarizing channel can be implemented by applying random Pauli
gates to the encoded quantum states. The Gottesman-Knill theorem states
that Pauli gates are quantum computations that can be efficiently simulated
on classical computers.
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on those channels [41], [42]. Finally, we survey the way in
which twirled approximations are implemented on a classical
computer, and discuss how they can be employed to simulate
the performance of QECCs, as done in [24], [28], [29].

The main contribution of this article is two-fold. On the
one hand, we clearly explain how it is possible to construct
and evaluate certain families of quantum error correction
codes without the explicit need of a quantum computer,
since the error models and quantum codes can be entirely
simulated in the classical domain. On the other hand,
we describe how the performance of the aforementioned
quantum error correcting schemes under general decoherence
models can be assessed on classical computers. The key
is that decoherence models can be approximated as Pauli
channels. which can be implemented with classical resources,
and that the performance of quantum error correcting codes
over the approximated channels is equivalent to that obtained
for the original decoherence model.

The rest of the paper is organized as follows: section II
describes the typical decoherence models that are used for
QECC design; section III approximates such models into
channels that can be implemented efficiently on classical
computers via twirling techniques; section IV discusses the
use of memory in the twirled models in order to use more
realistic approximations when correlations between different
quantum information units exist; section V describes the
basic theory of stabilizer coding and the way the so called
Pauli-to-binary isomorphism is used to efficiently simulate
such QECCs under the corruption of the presented twirled
channels. Finally, section VI concludes the paper.

II. DECOHERENCE AND THE DAMPING CHANNELS
Environmental decoherence is described as the undesired
interaction3 of a qubit with the environment, resulting in
the perturbation of the coherent superposition of the basis
states of such a quantum information unit. Decoherence
mechanisms arise from several physical processes. Thus,
these physical interactions are described mathematically
based on different representations making use of quantum
information theory.

The physical processes that generate this quantum noise
depend on the technology that is used to construct the qubits
of the quantum computer. Some of the most promising
technologies currently in use are transmon superconducting
qubits [43], trapped ion qubits [44] and quantum dot
qubits [45] among others. Decoherence also takes place
during the transmission of quantum states through fiber optics
or via laser beams. However, despite the diversity of the
quantum mechanical processes that generate errors in the
quantum information that is being processed, they can all
be mathematically represented by the so-called combined
amplitude and phase damping channel.

3In quantum mechanical terms this interaction is more specifically called
entanglement.

A. AMPLITUDE DAMPING CHANNEL
Quantum systems suffer from energy dissipation, which is
the name given to the effects that quantum mechanical states
suffer as a result of spontaneous energy losses. This can
happen when an atom in an excited state emits a photon
and returns to its ground state, when a spin system at high
temperature approaches equilibrium with its environment,
when a photon in an interferometer is subjected to scattering
and attenuation; or when a photon is absorbed during its
transmission through an optical fiber. An example of why
this energy loss occurs can be appreciated by observing
the energy profile of a transmon qubit, which is shown
in figure 1. Presently, transmon superconducting qubits are
an extremely popular technology for building experimental
quantum computers (IBM or Rigetti computing use this
technology for their prototypes). In the energy level chart
presented for said qubits, it is easy to see that the states
defining the qubits (or qudits if more than two energy levels
are taken) are given by the possible quantized energy states
of such a superconducting transmon. Therefore, the |0〉 state
corresponds to the ground state of the system, and the |1〉
state is related to an excited state. Due to the fact that an
isolated system tends to drop into its lowest energy state,
decoherence for this type of qubit takes place when energy is
lost to the environment as a consequence of the excited state
approaching the ground state.

FIGURE 1. Energy levels of typical transmon superconducting qubits. The
|0〉 state corresponds to the ground state of the system while the |1〉 state
is an excited state of such a transmon. Source: [46].

Every energy dissipation process has its own unique
features, but in the quantum information framework their
behaviour can be well described mathematically using the
so-called amplitude damping channel. Consider the two-level
transmon qubit described before, whose ground state is
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denoted by |0〉T and its excited state by |1〉T . Additionally,
consider the mathematical abstraction that the environment
is also a two-level system with a vacuum state |0〉E and an
excited state |1〉E , that is always initialized in the vacuum
state. Then the amplitude damping channel describes the
evolution of the composite system as [47]

|0〉T |0〉E → |0〉T |0〉E ,

|1〉T |0〉E →
√
1− γ |1〉T |0〉E +

√
γ |0〉T |1〉E , (1)

where γ refers to the damping probability or the probability
that the system loses energy to the environment when it is
in its excited state. The expressions in (1) mathematically
describe, in a general and unified way, what was previously
discussed regarding the processes of energy dissipation that
occur for the various methods used for the construction
of qubits. Qubits are superpositions of states, so the effect
that the amplitude damping channel induces in a general
qubit4 |ψ〉 = α|0〉 + β|1〉 is described by the following
transformation:

|ψ〉|0〉E →
(
α|0〉 + β

√
1− γ |1〉

)
|0〉E + β

√
γ |0〉|1〉E .

(2)

Following the rationale of (1), what (2) is describing is the fact

that state |ψ〉 decoheres to state
(

α√
1−γβ2

|0〉 + β
√
1−γ

√
1−γβ2

|1〉
)

with probability 1−γβ2 leaving the environment unchanged;
or it decoheres to |0〉 with probability γβ2 releasing a photon
(or energy quanta) to the environment, and so leaving it in
state |1〉E .

It is important to remark that in the discussion above |ψ〉
has been assumed to be an isolated qubit. However, this is not
true in general, since in a real system more than one qubit is
present, and they will most assuredly interact with each other.
This interaction is reflected in the form of entanglement,
which implies that the decoherence processes affect the set of
qubits in a combined fashion, and not in the isolated manner
described before. Regardless, the assumption that each of the
qubits interacts with the environment independently is still
reasonable [47], simplifying the description of the amplitude
damping channel to that of (2).

Up to this point, the description has been based on
pure quantum states. However, a quantum system can be
represented in amore general fashion as a statistical ensemble
of pure states. In the latter representation, quantum states
should be described by means of the so-called density
matrices. It is important to mention that the formulation of
quantum mechanics for density matrices is equivalent to the
one of pure states [32], but that each is more convenient for
specific tasks of quantum information theory. In the context
of the density matrix formulation, a quantum channel N is
a completely-positive, trace-preserving (CPTP) linear map
between the spaces of operators. Such CPTP maps can be

4Note that the subscript T is no longer used. The rationale now refers to
every qubit technology, and not just transmon superconducting qubits. Its
prior use was intended as a particular instance for explanatory purposes.

represented by the so-called Choi-Kraus decomposition or
operator-sum representation, which means that the input
density matrix ρ is mapped by quantum channel N as

N (ρ) =
∑
k

EkρE
†
k , (3)

where the Ek matrices are operators on the state space of the
principal system and receive the name of Kraus operators
or error operators of the channel. As quantum channels
are trace-preserving operators, Kraus operators must fulfill∑

k E
†
kEk = I, with I being the identity matrix. The minimum

number of Kraus operators is called the Kraus rank of the
quantum channel N . Channels with Kraus rank 1 are called
pure.

For this description of quantum channels, the amplitude
damping channel NAD describing the decoherence processes
that cause energy loss in qubits acts on an arbitrary quantum
state with density matrix ρ as

NAD(ρ) = E0ρE
†
0 + E1ρE

†
1 , (4)

where the error operators of the channel are

E0 =
(
1 0
0
√
1− γ

)
and E1 =

(
0
√
γ

0 0

)
. (5)

It is important to look at how the Kraus operators are
related to the description that has been given about the
amplitude damping channel in (2). If we apply each of the
error operators to the pure state |ψ〉, we will see that each of
the possible outcomes that were present in (2) are obtained.
Applying E0,

E0|ψ〉 =
(
1 0
0
√
1− γ

)(
α

β

)
=

(
α

√
1− γ β

)
= α

(
1
0

)
+
√
1− γ β

(
0
1

)
= α|0〉 +

√
1− γ β|1〉, (6)

which, up to normalization, is the state that occurs with
probability |E0|ψ〉|2 = (1− γβ2) in (2) if the environment is
left unchanged. If E1 is applied,

E1|ψ〉 =
(
0
√
γ

0 0

)(
α

β

)
=

(√
γ β

0

)
=
√
γ β

(
1
0

)
=
√
γ β|0〉, (7)

which, up to normalization, is the state that occurs with
probability |E1|ψ〉|2 = γβ2 in (2) if an energy quanta
is lost to the environment. In consequence, we can see
the equivalence relationship between the Kraus operators of
the CPTP map of the amplitude damping channel and the
description of this channel that was given for pure states.
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To conclude with the description of the amplitude damping
channel as a mathematical model that represents the decoher-
ence effects on qubits related to energy dissipation processes,
we should relate the damping probability with some physical
parameter that represents the constructed realistic qubits.
The temporal evolution of the damping probability is given
by [32]

γ (t) = 1− e
−t
T1 , (8)

where T1 is the qubit relaxation time. The definition of T1
is system specific, i.e it depends on the technology that
is being used, but it can be measured for the employed
qubits [48], and so it is related to the physical system via
the mathematical model of the amplitude damping channel.
Table 1 shows the relaxation time of the quantum machines

TABLE 1. Relaxation times T1 for some of the quantum devices available
nowadays. Each company uses a different technology to implement the
qubits of the quantum machines.

that some of the companies working with experimental
quantum computers possess at the time of writing. The values
of T1 vary from several microseconds to a few hours. Such
a large variation is the result of the different technologies
that are used to construct the quantum information units
of the devices. For example, IBM, Rigetti and Google use
transmon superconducting qubits while IonQ uses trapped
ions and Intel employs quantum dots for their qubits. Having
a longer relaxation time is better for decoherence purposes,
as it will take longer for the damping probability to reach
relevant values. However, the technologies shown in table 1
that present such long T1 have some drawbacks (such as slow
operation or size), and thus qubit technology selection can not
be solely based on this parameter.

B. DEPHASING CHANNEL
Another set of physical mechanisms that affect quantum
information are those encompassed by the terms dephasing
or phase damping. These processes are uniquely quantum
mechanical and describe the loss of quantum information
without loss of energy. This kind of environmental decoher-
ence can arise when a photon scatters randomly as it travels
through awaveguide or when electronic states are perturbated
due to the action of stray electrical charges. What happens
during these events is that the system evolves for an amount
of time which is not known with precision, and so partial
information about its quantum phase is lost.

A simple model to mathematically describe this particular
set of processes can be constructed using phase kicks on the
qubits [32]. Phase kicks are rotations applied to the qubit |ψ〉

with a random angle θ . Assuming that the random variable θ
follows a Gaussian distribution with mean 0 and variance 2λ,
then the dephasing channel or phase damping channel NPD
acts on the qubit with density matrix ρ as

NPD(ρ) = E0ρE
†
0 + E1ρE

†
1 , (9)

where the Kraus operators of the channel are

E0 =
(
1 0
0
√
1− λ

)
and E1 =

(
0 0
0
√
λ

)
, (10)

and λ is interpreted as the scattering probability of a photon
without loss of energy. In a similar fashion to what was
done for the amplitude damping channel, we apply the error
operators of the channel to an arbitrary pure state |ψ〉 =
α|0〉 + β|1〉. The application of E0 results in

E0|ψ〉 =
(
1 0
0
√
1− λ

)(
α

β

)
=

(
α

√
1− λβ

)
= α

(
1
0

)
+
√
1− λβ

(
0
1

)
= α|0〉 +

√
1− λβ|1〉, (11)

with probability |E0|ψ〉|2 = (1 − λβ2). The effect of E1
produces

E1|ψ〉 =
(
0 0
0
√
λ

)(
α

β

)
=

(
0
√
λβ

)
=
√
λβ

(
0
1

)
=
√
λβ|1〉, (12)

which is the state |1〉, up to normalization, occurring with
probability λβ2.

To conclude with the description of the phase damping
channel, we have to relate the scattering probability λ to
physical parameters that can be measured for the qubits of
each of the possible existing technologies, as was previously
done for the damping probability. The temporal evolution
of the scattering probability that defines the dephasing
channel [35] is

λ(t) = 1−e
t
T1
−

2t
T2 , (13)

where T1 is the qubit relaxation time as defined for the
amplitude damping channel and T2 is called the qubit
dephasing time. T2 is often referred to as the ‘spin-spin’
relaxation time, and it is considered one of the subtlest
processes in the quantum information paradigm, which has
led, unsurprisingly, to extensive research on the topic [32].
Table 2 shows the dephasing times T2, in microseconds, for
the experimental devices presented in table 1. The table shows
that the values of T2 display substantial variation among
devices, since each company uses different qubit technologies
for their machines. This is similar to what happened for the
relaxation time.
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TABLE 2. Dephasing times T2 for some of the quantum devices available
nowadays. Each company uses a different technology to implement the
qubits of the quantum machines.

C. COMBINED AMPLITUDE AND PHASE DAMPING
CHANNEL
If the previously described amplitude and phase damping
channels are combined, a fairly complete mathematical
model of qubit decoherence is obtained, as several physical
processes that corrupt quantum information are encompassed
by this abstraction. We will designate this amalgamation
of channels as the combined amplitude and phase damping
channel NAPD. The effect of this combined channel is
captured by the next operator-sum representation with Kraus
rank 3 [35]:

NAPD(ρ) = E0ρE
†
0 + E1ρE

†
1 + E2ρE

†
2 , (14)

with the following error operators:

E0 =
(
1 0
0
√
1− γ − (1− γ )λ

)
=

1+
√
1− γ − (1− γ )λ

2
I

+
1−
√
1− γ − (1− γ )λ

2
Z

E1 =
(
0
√
γ

0 0

)
=

√
γ

2
X+ i

√
γ

2
Y

E2 =
(
0 0
0
√
(1− γ )λ

)
=

√
(1− γ )λ

2
I−
√
(1− γ )λ

2
Z,

(15)

where I,X,Y,Z are the Pauli matrices. We use Pn to refer to
the set of n-fold tensor products of the Pauli matrices Pn =
{I,X,Y,Z}⊗n [55]. The damping, γ , and the scattering, λ,
probabilities, as well as their corresponding time evolutions,
are defined as in earlier sections of this work.

If we now consider the combination of (8), (13), (14) and
(15), the time evolution of an arbitrary quantum state with
density matrix ρ can be obtained as

ρ → NAPD(ρ) =

(
1− ρ11e

−
t
T1 ρ01e

−
t
T2

ρ∗01e
−

t
T2 ρ11e

−
t
T1

)
, (16)

where ρij corresponds to the element of the matrix ρ in row
i and column j. This last expression shows that the qubits are
likely to decohere if the operation time (either information
transmission, processing or storage) t is of the same order
of magnitude as either the relaxation time (t ≈ T1) or the
dephasing time (t ≈ T2). This means that the reliability time
of a qubit is defined by T1 and T2, and so the run times of

the algorithms that will be executed on such devices will be
limited to the aforementioned reliability time.5

III. TWIRL APPROXIMATIONS OF QUANTUM CHANNELS
The combined amplitude and phase damping channel
introduced in the previous section, embodies an accurate
mathematical depiction of several decoherence processes
that corrupt the quantum information that is processed in a
quantum device, transmitted between machines or stored in
a quantum memory. Thus, the application of this model to
create QECCs that will guarantee the stability of quantum
information in the presence of decoherence seems reasonable.
Unfortunately, the fact that the dimensions of the Hilbert
spaces of N -qubit composite systems scale with a factor
of 2N makes matters increasingly more complex, since this
implies that the classical simulation of quantum algorithms
or error correction mechanisms may ultimately turn into an
intractable problem. For example, a simple surface code of
distance d = 5 needs 25 physical qubits, which is a system
that has a Hilbert space with 33 millions of dimensions [35].
As a result, the error dynamics of QECC schemes cannot be
efficiently modeled on classical computers6 by using (16),
meaning that an approximation that is manageable employing
conventional methods must be found.

In this section we present how approximated channels
that can be efficiently simulated on classical computers are
obtained by using a quantum information theory technique
called twirling [35]–[40]. Additionally, we justify why
QECCs designed for the twirled channels will also be
valid for the original channel, and why those approximated
channels are indeed tractable as classical problems. This
means that the quantum computing community has access to
the necessary design tools working with algorithms that rely
only on the classical machines that are available in this day
and age.

A. THE GOTTESMANN-KNILL THEOREM
AND THE PAULI CHANNEL
The decoherence model presented in section II in the form
of the combined amplitude and phase damping channel
cannot be efficiently implemented on a classical computer
when multiqubit systems are considered. The quandary then
becomes which quantum systems can be efficiently simulated
using classical methods, if any at all.

Such a question is answered by the Gottesman-Knill
theorem for stabilizer circuits7 [32], [33]. The theorem states
the following [32]:

5The motivation behind QECCs is to extend the reliability times of
qubits so that time demanding algorithms can be effectively executed in the
quantum devices.

6We assume that these QECC systems will be designed on classical
computers due to the lack of practical quantum machines at the time of
writing.

7We will use the term ‘‘stabilizer formalism’’ to refer to the quantum
circuits that are constructed according to the restrictions that are described
in the Gottesman-Knill theorem.

172628 VOLUME 8, 2020



J. Etxezarreta Martinez et al.: Approximating Decoherence Processes for the Design and Simulation

Theorem 1 (Gottesman-Knill Theorem): Suppose a quan-
tum computation is performed using only the following
elements: state preparations in the computational basis,
Hadamard gates, phase gates, controlled-NOT gates, Pauli
gates, and measurements of observables in the Pauli group
(which includes measurement in the computational basis as
a special case), together with the possibility of classical
control conditioned on the outcomes of such measurements.
Such computation can be efficiently simulated on a classical
computer.

This theorem shows that certain quantum computations
that involve very complex and highly entangled states are
actually tractable problems for classical computers. The
stabilizer formalism does not describe all possible quantum
computations, but it does so for a sizeable quantity of
these operations. For instance, notice that all the QECC
families [20]–[31] that are constructed within the Quantum
Stabilizer Code (QSC) framework [19] will fulfill the con-
ditions of the theorem (including the entanglement-assisted
versions), and so wewill be able to implement them in regular
computers.

As a consequence of Theorem 1, it is desirable to operate
with a quantum channel whose dynamics are described by the
stabilizer formalism, so that the error model of the system can
be efficiently included in the classical simulation. In quantum
information theory, the Pauli channel, NP, is the CPTP map
that transforms the quantum state with density matrix ρ as

NP(ρ) = (1− px − py − pz)IρI+ pxXρX+ pyYρY

+ pzZρZ, (17)

where the constants {px , py, pz} are interpreted as the
probabilities of each specific operator impinging on the
state ρ. The Kraus operators of this channel are

√
pAA,

with A ∈ P1.
The operation of each of the error operators on a qubit |ψ〉

is:
• Operator I leaves the state unchanged

I|ψ〉 =
(
1 0
0 1

)(
α

β

)
=

(
α

β

)
= |ψ〉. (18)

• Operator Z causes a phase-flip

Z|ψ〉 =
(
1 0
0 −1

)(
α

β

)
=

(
α

−β

)
= α|0〉 − β|1〉.

(19)

• Operator X causes a bit-flip

X|ψ〉 =
(
0 1
1 0

)(
α

β

)
=

(
β

α

)
= β|0〉 + α|1〉. (20)

• Operator Y causes both bit-flip and phase-flip8

Y|ψ〉 =
(
0 − i
i 0

)(
α

β

)
=

(
−iβ
iα

)
= −i(β|0〉 − α|1〉).

(21)

Following (17), we see that NP maps qubits |ψ〉 onto a
linear combination of the original state (I), the phase-flipped

8Note that Y = iXZ.

state (Z), the bit-flipped state (X) and the phase-and-
bit-flipped state (Y), where the sum is weighted by the
probabilities pA,A ∈ P1. The symmetric instance of
this channel9 is a widely used model for decoherence in
quantum information theory [20]–[31] and it is known as the
depolarizing channelND. The expression (17) then simplifies
to

ND(ρ) = (1− p)ρ +
p
3
(XρX+ YρY+ ZρZ) , (22)

and p receives the name of depolarizing probability. This
symmetric instance of the Pauli channel represents the worst
case scenario for the family of channels, as all the possible
errors are equally likely to happen [47].

The generalization of the Pauli channel from (17) to an n-
qubit system is mathematically described by

N (n)
P (ρ) =

∑
A∈Pn

pAAρA, (23)

where pA is the probability for each of the n-fold Pauli
operators to occur.

Observing (17), (22) and (23), it is clear that the dynamics
of these channels are described by only using Pauli operators.
By the Gottesman-Knill theorem (theorem 1), these quantum
channel instances can be efficiently simulated on classical
computers, and consequently, it is worthwhile to relate
the decoherence processes described in section II, and
mathematically modeled via the combined amplitude and
phase damping channel, to the transformations described
by the Pauli channel. It is clear that the Pauli channel
is incapable of capturing the exact manner in which the
combined amplitude and damping channel corrupts input
states, as there is no combination of px , py and pz that makes
NP(ρ) = NAPD(ρ). However, we can use techniques of
quantum information theory to engender approximations of
NAPD that are in the form of a Pauli channel.

B. APPROXIMATING QUANTUM CHANNELS WITH
TWIRLING
In the prior section, we discussed the fact that quantum
operations require an exponential number of parameters
to completely describe them. Naturally, this leads to the
conclusion that the simulation of such quantum constructs
using classical resources cannot be efficiently performed.
However, tools aiming at overcoming the issue of exponen-
tial parameter growth,10 by successfully extracting useful
partial information of the quantum dynamics, have been
developed in the literature. This information extraction can
be performed using a technique called twirling. Twirling
is an extensively used method in quantum information
theory to study the average effect of general quantum noise
models via their mapping to more symmetric versions of

9The scenario where px = py = pz = p/3 and pI = 1− p.
10This issue is not limited to the classical simulation of quantum

dynamics. For example, quantum metrology requires an exponential number
of experiments (e.g. Nuclear Magnetic Resonances (NMR)) to determine the
physical parameters of a quantum system.
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themselves [35]–[40]. Generally, twirling a quantum channel
N comes down to averaging the composition U†

◦N ◦ U for
unitary operators U(ρ) = UρU† that are randomly chosen
according to some probability measure µ(U) [36], [39]. The
resulting channel

N̄U (ρ) =
∫
U
dµ(U)U†

◦N ◦ U(ρ)

=

∫
U
dµ(U)U†N (UρU†)U, (24)

receives the name of twirled channel. A particularly impor-
tant scenario, and the onewewill consider in this article, is the
case where the distribution over the unitariesµ(U) is discrete.
For such a case, the dynamics of the twirled channel are given
by

N̄U (ρ) =
∑
l

µ(Ul)U†
l ◦N ◦ Ul(ρ)

=

∑
l

µ(Ul)U
†
lN (UlρU

†
l )Ul, (25)

where µ(Ul) is a probability distribution over Ul .
Twirling a channel over some unitary is useful to analyze

the average effects that said quantum channel produces.
However, the serviceability of the information that the
twirled channel provides is not clear, nor is the concept of
how an approximated more symmetric channel constructed
via twirling can be employed to design QECC schemes
capable of fighting realistic decoherence. This conundrum is
answered by the following lemma [36], which introduces a
fundamental way in which the approximations of decoher-
ence models can be realised to construct QECCs with the
twirling method presented in this article.
Lemma 1: Any correctable code for the twirled channel N̄

is a correctable code for the original channel N up to an
additional unitary correction.

The proof of lemma 1 is given in [36]. The importance
of the lemma resides in the idea that designing QECCs
that correct errors for an approximated channel obtained by
twirling will also correct errors of the original channel up to
unitary correction. This allows us to design error correction
codes for the twirled channel, which, due to the lemma, will
still be valid for the original channel. The analysis conducted
for the approximated channels will not be precise due to
the fact that parts of the evolutions of the density matrices
will be lost when operating with the twirled channels instead
of the original ones. Nevertheless, work in the literature
has shown that the estimations obtained using the twirling
methods presented in this article are accurate [56].

1) PAULI TWIRL APPROXIMATION (PTA)
An extensively used type of twirl is the reputed Pauli twirl.
This twirl consists in averaging the original channel N with
the elements of the n-fold set of Pauli operators Pn weighted
in an equiprobable manner. Using (25), the Pauli twirled

channel will then be given by

N̄Pn (ρ) =
1
4n

∑
Pl∈Pn

PlN (PlρPl)Pl

=

∑
Pl∈Pn

χPlPlρPl . (26)

In other words, the off-diagonal elements of χ are
eliminated [36], and the resulting channel has the form of an
n-qubit Pauli channel as in (23). The coefficients χPl , which
are the probabilities of the errors of the Pauli channel, are
calculated as in [37]

χPl =
∑
k

|α
(k)
Pl
|
2

2n
, (27)

where the coefficients α(k)Pl
come from writing the error

operators of the Choi-Kraus decomposition in (3) in the Pauli
basis as

Ek =
∑
Pl∈Pn

α
(k)
Pl

Pl
2n/2

, (28)

and are calculated as

α
(k)
Pl
=

Tr[EkPl]
2n/2

. (29)

For this reason, applying the Pauli twirl to a general
quantum channel N will result in a twirled channel with
the structure of the Pauli channel. The probabilities for
each of the elements of the n-qubit Pauli group can be
calculated using (27) and (29). Additionally, we know from
the Gottesman-Knill theorem that quantum CPTP maps with
such a structure can be simulated efficiently on classical
computers. Lemma 1 implies that we can design QECCs
using this twirled approximation in order to construct QECCs
for the original channel N , and that such error correction
methods will maintain their error correcting capabilities
over the original channel. As a result, we will be able to
design QECC families for realistic quantum computers by
designing and simulating them on classical computers based
on approximating the channels by Pauli twirling.

We now proceed with the application of the Pauli twirl
to the model of decoherence presented in section II in the
form of the combined amplitude and phase damping channel
NAPD. For this purpose, we first write the transformation of
the density matrix induced by the channel presented in (16),
as a function of the Pauli matrices

NAPD(ρ) =
2− γ + 2

√
1− γ − (1− γ )λ
4

IρI

+
γ

4
XρX+

γ

4
YρY

+
2− γ − 2

√
1− γ − (1− γ )λ
4

ZρZ

−
γ

4
IρZ−

γ

4
ZρI+

γ

4i
XρY−

γ

4i
YρX, (30)

where (15) is used to express the Kraus operators in the Pauli
basis. As stated in (26), twirling the combined amplitude and
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phase damping channel by the Pauli operatorsP1 will remove
the off-diagonal elements of (30), resulting in the twirled
channel

N̄P1
APD(ρ) =

2− γ + 2
√
1− γ − (1− γ )λ
4

IρI

+
γ

4
XρX+

γ

4
YρY

+
2− γ − 2

√
1− γ − (1− γ )λ
4

ZρZ. (31)

It is obvious that the channel shown in (31) exhibits the
form of a Pauli channel (17). The probabilities for each of the
possible Pauli errors in (17) are

px = py =
γ

4
=

1
4

(
1− e

−t
T1

)
pz =

2− γ − 2
√
1− γ − (1− γ )λ
4

=
1
4

(
1+ e

−t
T1 − 2e

−t
T2

)
, (32)

where (8) and (13) have been used in order to obtain the
time dependencies of the damping and scattering probabili-
ties [35], [40]. This asymmetric channel takes the form of the
depolarizing channel (22) when the relaxation time and the
dephasing time are the same T1 = T2.
Consequently, twirling a general quantum channel by the

set of n-fold Pauli operators Pn results in an approximated
channel with the same form as a Pauli channel that will be
efficiently implementable on a classical machine thanks to the
Gottesman-Knill theorem (theorem 1). We will use the term
Pauli Twirl Approximation (PTA) [35] to refer to the family of
channels that are obtained using this symmetrization process.
The process is simple, as it is based on rewriting the Kraus
operators of the original channel in the Pauli basis and
then eliminating the off-diagonal terms of the density matrix
evolution equation.

With the goal of obtaining the PTA channels, it is inter-
esting to define a widely used parameter when asymmetric
Pauli channels are considered [40], [51], the asymmetry
coefficient α. This parameter is introduced because after Pauli
twirling the combined amplitude and phase damping channel,
the resulting probabilities for the bit-flip (X) and phase-and-
bit-flip (Y) turn out to be equal, and so the degrees of freedom
of the resulting PTA are reduced to two. Hence, it is possible
to re-express the channel (17) using the parameter α, which
is defined as the ratio [40]

α =
pz
px
= 1+ 2

1− e
t
T1

(
1− T1

T2

)
e

t
T1 − 1

. (33)

We can then rewrite the expression for the Pauli channel (17)
as

NP(ρ) = (1− p)IρI+
p

α + 2
XρX

+
p

α + 2
YρY+

αp
α + 2

ZρZ, (34)

where p = px+py+pz. Note that α in (33) is a time-dependent
parameter. However, if the coherent time duration t of the task
is assumed to be negligible compared to the relaxation time
T1, it can be approximated as

α
t�T1
−−−→ α ≈ 2

T1
T2
− 1. (35)

Based on this approximation, the data from tables 1 and 2
can be used to determine the degree of asymmetry of existing
quantum devices under the PTA. Table 3 shows these values,

TABLE 3. Asymmetry coefficients, α, for some existing quantum devices.
Different companies use different technologies to implement the qubits
in their quantum machines.

which indicate that the PTAs obtained for each of the existing
technologies manifest drastically varying asymmetry levels.
Note the vast difference between the channels, ranging from
the depolarizing channel (α ≈ 1) to channels presenting very
strong asymmetry levels (α ≈ 106).

2) CLIFFORD TWIRL APPROXIMATION (CTA)
Another twirling operation used for the purpose of channel
approximation is known as Clifford twirling. For this twirl,
the general channel N is averaged with the elements of the
n-fold Clifford group C⊗n1 [57] weighted equiprobably, as for
the Pauli twirl. Using the discrete twirling case as in (25),
the Clifford twirled channel will be [37]

N̄ C⊗n1 (ρ) =
1

|C⊗n1 |

∑
Cl∈C⊗n1

C†
lN

(
ClρC

†
l

)
Cl

=
1

|C⊗n1 |

∑
Cl∈C⊗n1

∑
k

C†
l EkClρC

†
l E

†
kCl, (36)

where the operator-sum representation of N has been used
to reach the second step and | · | refers to the cardinality of
a set.

Expression (36) can be further developed by noting that
the n-fold Clifford group C⊗n1 is the semi-direct product
of the n-fold set of Pauli operators Pn and the symplectic
group of dimension n, S⊗n1 [58], [59]. Thus, the elements
Cl ∈ C⊗n1 can be written as Cl = PjSm with Pj ∈ Pn
and Sm ∈ S⊗n1 [37], [58]. This way, the Clifford twirl can be
written as

N̄ C⊗n1 (ρ)

=
1

|C⊗n1 |

∑
Sm

∑
Pj

∑
k

S†mPjEkPjSmρS
†
mPjE

†
k PjSm, (37)

with Sm ∈ S⊗n1 and Pj ∈ Pn. The cardinality of the Clifford
group is |C⊗n1 | = |Pn||S

⊗n
1 |.
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If expression (37) is observed in detail, it can be concluded
that Clifford twirling a quantum channel N is analogous
to first Pauli twirling such a channel and then applying the
symplectic twirl to the twirled channel [37], that is

N
C⊗n1
−−→ N̄ C⊗n1 ≡ N Pn

−→ N̄Pn
S⊗n1
−−→ N̄ C⊗n1 . (38)

Consequently, the decomposition of twirls presented in
(38) can be used in order to study the overall action of Clifford
twirling. The action of each step can then be summarized
as [37]:

1) Pn-twirl: the effect of the Pauli twirl has been
extensively studied in section III-B1, and so it is known
that twirling the general quantum channel N by Pn
will lead to a twirled channel with the form of a Pauli
channel as in (26).

2) S⊗n1 -twirl: the effect of the symplectic twirl on the PTA
obtained in step 1 is the mapping of each of the
non-identity Pauli operators to a uniform sum over
the 3 non-identity Pauli operators. The application of
the symplectic twirl to the PTA channel obtained in step
one is:

N̄ C⊗n1 (ρ) =
1

|S⊗n1 |

∑
Sm

∑
Pj

χPjS
†
mPjSmρS

†
mPjSm, (39)

where the coefficients χPj are obtained as in
section III-B1. In order to analyze the effect of the
symplectic twirl, we rewrite (39) as [37]

N̄ C⊗n1 (ρ) =
1

|S⊗n1 |

∑
Sm

n∑
ω=0

(nω)∑
νω

3ω∑
iω=1

χω,νω,iωS
†
m

Pω,νω,iωSmρS
†
mPω,νω,iωSm, (40)

where the Pauli operators have been split by indexes ω
which represent the weight11 of a Pauli operator Pj, νω
counts the number of distinct ways that ω non-identity
Pauli operators can be distributed over the n factor
space, and iω = {i1, · · · , iω} with iβ = {1, 2, 3}
denotes which of the non-identity Pauli operators
occupies the β th occupied site. Now fixing ω and
νω, the action of the symplectic twirl for each term
is

1

|S⊗n1 |

3ω∑
iω

χω,νω,iω

∑
Sm

S†mPω,νω,iωSmρS
†
mPω,νω,iωSm

=

 1
3ω

3ω∑
iω

χω,νω,iω

 3ω∑
iω

Pω,νω,iωρPω,νω,iω

= ξω,νω

3ω∑
iω

Pω,νω,iωρPω,νω,iω , (41)

so one can observe that the symplectic twirl maps each
of the non-identity Pauli operators to a uniform sum

11Number of non-identity factors of the tensor product.

over the 3 non-identity Pauli operators, as stated earlier.
For this reason, the expression for the Clifford twirled
channel in (40) is

N̄ C⊗n1 (ρ) =
n∑

ω=1

(nω)∑
νω=1

ξω,νω

3ω∑
iω

Pω,νω,iωρPω,νω,iω ,

(42)

with coefficients ξω,νω =
1
3ω
∑3ω

iω χω,νω,iω .

From equation, (42) it is easy to deduce that applying
the Clifford twirl to a general quantum channel N will
produce a channel in the form of a Pauli channel, as in the
PTA case, except for the presence of an additional degree
of symmetrization, as the probabilities of Pauli operators
that share the same weight and spatial position of the
non-identity operators will be uniformly summed over the
3 non-identity Pauli operators. Through this symmetrization
process, a quantum channel that requires the definition of
less parameters is obtained, as the probabilities of the error
operators that share the weight and spatial distribution of
non-identity factors will now have the same probabilities
of occurring, which was not true, in general, for the PTA
channels. As in the PTA case, the twirled channels obtained
by twirling a channel with the Clifford group will fulfill
the Gottesman-Knill theorem, and so it will be possible to
efficiently implement them on classical computers.

We now apply the Clifford twirl to the combined amplitude
and phase damping channel NAPD. As done for the PTA
channels, we use the description of the channel in the Pauli
basis of (30) and then apply the two steps introduced earlier
to such a channel:

1) Pn-twirl: the application of the Pauli twirl has been
addressed in section III-B1, and it leaves NAPD in the
form of a Pauli channel like the one given in (31).

2) S⊗n1 -twirl: from the previous discussion, we know that
the symplectic twirl maps each of the non-identity
Pauli operators to the uniform sum over the three
non-identity Pauli operators. In consequence, and
following (42), the Pauli channel of (31) results in

N̄ C⊗n1
APD(ρ) =

2− γ + 2
√
1− γ − (1− γ )λ
4

IρI

+
2+ γ − 2

√
1− γ − (1− γ )λ
12

(XρX

+YρY+ ZρZ), (43)

where p = 2+γ−2
√
1−γ−(1−γ )λ
4 is the depolarizing

probability and comes from summing the px , py, pz
from (32).

It is clear that (43) has the form of the symmetric instance
of the Pauli channel. In other words, it has the structure of
the so-called depolarizing channel of (22). Moreover, using
the temporal expressions of the probabilities of the PTA
from (32), the depolarizing probability of the Clifford twirled
channel is related to the physical parameters of a quantum
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device as

p =
2+ γ − 2

√
1− γ − (1− γ )λ
4

=
3
4
−

1
4
e
−t
T1 −

1
2
e
−t
T2 , (44)

where T1 and T2 are the relaxation and dephasing times,
as presented before.

Consequently, twirling a general quantum noise model N
by the n-fold Clifford group C⊗1 will result in an approximated
channel with the form of a Pauli channel whose principal
trait is that the error operators that have the same weight and
non-identity operator distribution in the tensor product will
have the same probability of occurring. For the one qubit case,
this implies that the resulting channel will be a depolarizing
channel. We will use the term Clifford Twirl Approximation
(CTA) to refer to the family of channels obtained with this
symmetrization method.

As indicated before, the most important aspect of the
PTA and CTA channels is the fact that they are efficiently
implementable on classical computers, as they fulfill the
Gottesman-Knill theorem (theorem 1). This is especially
interesting in the field of QECC design, given that from
lemma 1 we will be able to design these codes without the
need for actual quantum computers.

IV. QUANTUM MEMORYLESS CHANNELS AND
CHANNELS WITH MEMORY
In the previous section, we presented a symmetrization
method called twirling that can be used to approximate
general quantum channels to PTA and CTA Pauli channels
that can be efficiently implemented on classical computers.
Generally speaking, PTA and CTA channels act collectively
on n qubits, see (31) and (43), and they are both reduced to
n-qubit Pauli channels with different degrees of symmetriza-
tion. More degrees of symmetrization can be obtained for
the n-qubit twirled channels with extra twirling operations
such as permutation twirls [36], [37]. These twirled channels
are also efficiently implementable, but in order to obtain the
probability distributions that define the specific Pauli channel
that comes out as a PTA or CTA, the original channelN must
be modeled. The interaction processes between the elements
of an n-qubit system can be quite subtle, and, as stated in
section II, it is reasonable to assume that, if certain conditions
apply, each of the qubits of the system will interact with the
environment in an independent and similar way. Additionally,
simplified memory effects can be employed to express the
interactions that each of the qubits has with its counterparts.
Consequently, we will be able to use the expressions obtained
for the PTA and CTA of the combined amplitude and phase
damping channel for 1 qubit in order to simulate decoherence
over complex n-qubit quantum states.

Most of the research related to quantum channels considers
a scenario in which the corruption of the input quantum states
occur independently and identically [20]–[31], [40], [51].
If two different quantum states are transmitted through the

same channel, the noise applied to the first transmitted
state is assumed to be independent of the noise applied to
the second state. This can be seen as the channel having
no ‘‘memory’’ of previous events, which is why such a
configuration is known as a memoryless quantum channel.
The memoryless assumption simplifies the noise induced
input-output mapping of quantum states, and provides an
accurate portrayal of particular physical events. For instance,
communication schemes whose signalling rate is low to allow
the environment to reset, or scenarios in which a magnetic
field is applied to reset the memory of the channel, can be
accurately modeled using the memoryless configuration [41].

However, memoryless quantum channels cannot be used
to model all quantum communication systems. In optical
fibers (a typical medium to transmit quantum information),
sufficiently high signalling rates cause the environment to
respond to each successive transmission in a way that
is correlated to previous ones [60], [61]. In quantum
information processors, quantum bits can be so closely
spaced that cross-talk may occur and the channel noise
might be correlated [62], [63]. These two scenarios exemplify
situations in which applying the popular memoryless noise
configuration would not provide a realistic description of the
corresponding physical events. Instead, these systems require
a quantum channel model that integrates memory effects.
We introduce such a model in the sequel, where we begin
by discussing memoryless quantum channels and proceed
by extending them to the more general model of quantum
channels exhibiting memory.

A. MEMORYLESS QUANTUM CHANNELS
In [64], the authors describe a specific scenario in which
applying a memoryless quantum channel is appropriate. They
assume that the sequence of signals is transmitted over the
physicalmedium in an ordered fashion and at a constant speed
and that the environment undergoes a dissipative process
which resets it to a stable configuration on a timescale τ ,
known as the channel relaxation time12 of the medium. Then,
if the rate at which each successive signal is transmitted is
much lower than the inverse of the channel relaxation time,
i.e R < 1

τ
, the physical event can be represented by a

memoryless quantum channel.
Generally speaking, a memoryless channel affecting a

system of n qubits is comprised by the tensor product of the
channels affecting each of the individual qubits of the system.
Mathematically, this is expressed as

N (n)
=

n⊗
j=1

N j, (45)

whereN j refers to the noise channels that individually affect
each of the qubits. Furthermore, it is a common assumption
when dealing with this type of channels that the interaction
that each qubit has with the environment is identical.

12This refers to the time the channel requires to come back to an idle state.
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Thus, the memoryless expression (45) is reduced to

N (n)(ρ) = N⊗n(ρ), (46)

where now N is the one-qubit decoherence model that will
equally affect each of the elements of the quantum system.
Therefore, for the decoherence model based on the combined
amplitude and phase damping channel, the memoryless
channel for an n-qubit system will be expressed as

N (n)(ρ) = N⊗nAPD(ρ), (47)

where NAPD is described by the error operators in (15).
However, as explained in section III, we will not be able

to efficiently implement this channel on a classical computer.
The solution is to work with the corresponding PTA and CTA
channels, which are known to fulfill the Gottesman-Knill
theorem and to have the structure of n-qubit Pauli channels.

As seen in sections III-B1 and III-B2, the one-qubit
channels obtained by twirling the combined amplitude and
phase damping channel are the Pauli channel for the PTA
case and its symmetric instance or depolarizing channel for
the CTA. Accordingly, the n-qubit channels that arise in an
identical and memoryless manner from these channels will
have the structure of the n-qubit Pauli channels in (23)

N (n)(ρ) = N⊗nP (ρ) = N (n)
P (ρ) =

∑
A∈Pn

pAAρA, (48)

with the probability distribution pA defined as

pA =
n∏
j=1

pAj . (49)

Since A ∈ Pn is A =
⊗n

j=1Aj,Aj ∈ P1. Thus, the total
probability of the word will be the product of the individual
probabilities because the channel acts independently on each
of the qubits.

B. QUANTUM CHANNELS WITH MEMORY
Quantum information can sometimes be exposed to physical
events that exhibit spatial or temporal correlations. The
outcome of the general twirling approximations of n-qubit
channels also shows features related to these phenomena.
To obtain simplified channels capable of representing such
interactions, twirled channels with the ability to integrate
memory effects are necessary. For this purpose, we must
analyze how to model correlations in PTA and CTA
channels. This implies that we need to model the conditioned
probability distribution P(An|An−1⊗An−2⊗· · ·⊗A1),Aj ∈

P1 between the current 1-qubit PTA or CTA that will be
conditioned by the last channel use. This way, the expression
for the general n-fold Pauli channel described in (23) can be
written as

N (n)
P (ρ) =

∑
A∈Pn

pAAρA

=

∑
A∈Pn

 n∏
j=1

P(Aj|Aj−1 ⊗ · · · ⊗ A1)

AρA, (50)

where A = An ⊗ An−1 ⊗ · · · ⊗ A1 with Aj ∈ P1 refers
to each of the possible n-fold Pauli operators. Note that
from (50), every PTA or CTA approximation can be seen as
a channel with memory. We will now show how to model
memory effects considering the 1-qubit approximations to
derive memory models that can be incorporated in such
efficiently implementable channels.

The most studied class of quantum channels with mem-
ory is the family of channels with Markovian correlated
noise [65]–[67], which considers noise models in which
quantum objects are transformed via the application of
maps whose elements are randomly generated by a classical
Markov process. Markov processes describe sequences of
events in which the probability of each event depends only
on the previous event, i.e. P(Aj|Aj−1 ⊗ Aj−2 ⊗ · · · ⊗ A1) =
P(Aj|Aj−1). For this type of channel, the correlation between
the single qubit Pauli operators of the set P1 can be described
by means of a 4-state Markov chain [68]–[71]. This can be
seen in Figure 2, where each state corresponds to one of the
single qubit Pauli operators. The transition probability from
a previous error state Aj−1 to the current error state Aj is
denoted by qAj|Aj−1 = P(Aj|Aj−1), where Aj,Aj−1 ∈ P1.

FIGURE 2. State diagram of the Markov chain that describes the
correlation between two consecutive qubit Pauli operators in a channel
with Markovian memory.

A possible way to capture the temporal correlation
of Pauli operators over a channel with memory is to
introduce the so called correlation parameter µ ∈ [0, 1],
where µ = 0 indicates zero correlation and µ = 1
indicates perfect correlation. This correlation parameter was
originally presented in [72], where the authors derive the
first comprehensive quantum information characterization of
memory effects in a continuous variable setup. Specifically,
a continuous variable model of quantum memory channels
that accurately portrays the transmission of quantum objects
(photons encoded with information) through optical fibers
characterized by finite relaxation times is proposed. The
model describes each channel use as an independent bosonic
mode, and along with two parameters, enables the description
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of multiple communication scenarios. In terms of the time
delay between each successive transmission of a photon 1t
and the relaxation time τ of the optical fiber, the model
enables the representation of a memoryless configuration
(1t � τ ), intersymbol interference memory (1t ∼ τ ) [73],
or a perfect memory configuration (1t � τ ) [74]. As shown
in [72] and [75], the transmissivity of the optical fiber ε (in the
beam-splitter configuration considered for the model) plays
the role of a memory parameter and it can be approximated
by ε ≈ e−

1t
τ . For more abstract memory modeling, we can

define the correlation parameterµ and assume, as in previous
works [64], [71], [75], that it can be quantified in terms
of the time delay between successive channel uses and the
relaxation time of the environment: µ ≈ e−

1t
τ .

A model introduced in [67] considers that two successive
channel uses are related by the transition probability qAj|Aj−1
defined as

qAj|Aj−1 = (1− µ)pAj + µδAj−1Aj , (51)

where δAj−1Aj is the Kronecker delta function and pAj is the
probability that Pauli operator Aj ∈ P1 is imposed on the
transmitted quantum state. As a consequence, considering
a quantum channel with memory defined by Markovian
correlated noise, the joint probability pA is given by

pA = pA1qA2|A1 · · · qAn|An−1 , (52)

for each n-fold Pauli operator A ∈ Pn. The resulting
Markovian Pauli channel NMP will thus have the following
structure

N (n)
MP(ρ) =

∑
A∈Pn

pA1qA2|A1 · · · qAn|An−1AρA, (53)

where A = An ⊗ An−1 ⊗ · · · ⊗ A1 with Aj ∈ P1.
In this manner, Markovian Pauli memory channels, NMP,

can be created from the PTA and CTA approximations, which
allow for efficient implementation on a classical computer.

GeneralMarkovian quantum channels withmemory can be
built by applying the memory effects to the error-sum oper-
ator representation of general quantum channels [42], [64].
These models will represent the general effects that deco-
herence processes with memory generate over quantum
information with increased precision. An increase in the
research interest regarding this topic is expected, including
the development of memory models that go beyond the
Markovian paradigm. Nonetheless, at the time of writing,
the discussion provided in this section completely describes
the current state of affairs with regard to channels that are
efficiently implementable on classical computers and that
have been used for QECC construction.

V. IMPLEMENTING PAULI CHANNELS FOR QECC DESIGN
AND SIMULATION ON CLASSICAL COMPUTERS
Previous sections of this article have described how to
model decoherence processes mathematically, and how to
obtain approximated channels from these general models

so that they can be appropriately simulated on classical
computers. This is a significant step forward in the endeavour
of the quantum information community to construct QECC
families for the post-NISQ-era, before quantum machines
that can take advantage of these error correction methods
can be constructed. The methods discussed here employ the
quantum information technique referred to as twirling to
obtain channels with the structure of Pauli channels. The
reason for doing so is that such channels fulfill the conditions
of the Gottesman-Knill theorem, and therefore they will
be implementable on classical computers. In consequence,
the twirled channels we construct will be implementable in
run-of-the-mill classical machines available at this moment
in time.

Design and simulation of error correction methods
for the Pauli channel have been exhaustively studied
by the quantum information community and are well
documented [20]–[31], [40], [51], [55], [71], [76]. The key
to implement Pauli channels on classical machines is
the Pauli-to-binary isomorphism, which maps elements
of the Pauli operator set onto binary strings [47], [76].
Establishing this isomorphism between these groups
enables researchers to assess the performance of designed
QECC families via Monte Carlo simulations, as described
in [28], [29], in a fashion reminiscent of classical coding
theory.

In this section we describe the Pauli-to-binary isomor-
phism and the way in which this mapping can be used to
simulate the performance of QECCs on classical computers.
With this goal in mind, we also discuss basic stabilizer
coding, syndrome measurements, and error discretization.
Additionally, we provide a simple example to see how the
Word Error Rate (WER) and the QuBit Error Rate (QBER)
of a quantum error correction method can be obtained via
Monte Carlo simulation. Both WER and QBER are used as
figures of merit when gauging the error correcting capability
of the QECC schemes.

A. ERROR DISCRETIZATION
Before presenting the theory of stabilizer codes, some
important results about the general theory of quantum error
correction must be discussed, so that the construction of the
stabilizer family can be introduced in a logical and coherent
manner.

We begin with the following theorem, which defines the
conditions that a quantum error correcting code must fulfill to
protect quantum information from a particular noise process
N . We refer to this theorem as the quantum error correction
conditions or the Knill-Lafflame theorem [32], [78].
Theorem 2 (Knill-Lafflame theorem): Let C ⊂ H⊗n2 be a

quantum code defined as a subspace of the n-dimensional
Hilbert space that is the state space of the n-qubit system to be
protected, and let P be the projector onto C. LetN be a noise
operation defined by Kraus operators {Ej}. A necessary and
sufficient condition for the existence of an error-correction

VOLUME 8, 2020 172635



J. Etxezarreta Martinez et al.: Approximating Decoherence Processes for the Design and Simulation

FIGURE 3. General schematic of a stabilizer QECC. U is the unitary that performs the encoding operation, and takes |ψ〉 ∈H⊗k
2 to the codespace as

|ψ̄〉 ∈ C(S) ⊂H⊗n
2 with the aid of the ancilla qubits |0〉⊗n−k . The transmitted codeword is subjected to the noise operation N resulting in the noisy

codeword |ψ̄〉N ∈H⊗n
2 . This quantum state is processed by the syndrome extractor, so that the syndrome s̄ associated to the error operator can be

obtained. The quantum state is not altered by such an operation, and the syndrome is processed by a classical algorithm to estimate a recovery operation
that will be applied to the quantum state after going through the inverse encoder U†. This way we obtain the corrected state |ψ̃〉 ∈H⊗k

2 .

operationR correcting N on C is that

PE†
j EkP = αjkP, (54)

for some Hermitian matrix of complex numbers α.
We call the Kraus operators {Ej} errors. If the recovery

operationR exists, we say that {Ej} constitutes a correctable
set of errors.

Theorem 2 defines the precise conditions that a method
designed to suppress quantum errors must fulfill in order
to correct a specific error operator N . For the particular
approximations that permit efficient simulation of these
quantum channels, the error operators are n-qubit Pauli
operators. Hence, it appears that the ability these codes have
to correct errors will be limited to a set of Pauli errors, which,
at first glance, seems to be an important constraint. However,
QECCs are actually significantly more powerful due to a
theorem known as discretization of errors [32], [78].
Theorem 3 (Discretization of Errors): Suppose C is a

quantum code and R is the error-correction operation
to perform recovery from a noise process N with Kraus
operators {Ej}. Suppose that F is another noise process with
Kraus operators {Fk}which are linear combinations of the Ej
operators, i.e. Fk =

∑
j ξkjEj for some matrix ξ of complex

numbers. Then the error correction operationR also corrects
for the effects of the noise process F on the code C.
The primordial consequence of theorem 3 is that codes

constructed for a specific noise process will also be able to
correct noise events whose error operators are linear combi-
nations of the error operators of the original noise process.
This result is momentous, as it proves that the constructed
codes will be able to correct an infinite set of noise processes,
while only considering a finite amount of Kraus operators
during their analysis and design. For the approximated
channels presented in this article, the discretization of errors
implies that all errors that are linear combinations of the Pauli
errors that can be corrected by a quantum code will also be
correctable by the code.

This result is invaluable when designing and simulating
QECCs efficiently on a classical computer, since it allows us
to do so by just considering discrete sets of errors represented
by n-fold Pauli operators. Considering that the set of errors
that have to be tested is discrete, it will be possible to
represent the errors using binary notation, i.e. in a way that
classical computers can manage.

B. STABILIZER CODES
The set of n-fold Pauli operators Pn together with the overall
factors {±1,±i} forms a group under multiplication. This
group is known as the n-fold Pauli group Gn [55]. A stabilizer
code is defined by an abelian subgroup S ⊂ Gn. For a
[[n, k, d]] unassisted13 stabilizer code encoding k logical
qubits into n physical qubits with distance d , the stabilizer
set has 2n−k distinct elements up to an overall phase, and it is
generated by n − k independent generators.14 The stabilizer
code C(S) associated with the stabilizer set S is then defined
as

C(S) = {|ψ̄〉 ∈ H⊗n2 : M |ψ̄〉 = |ψ̄〉,∀M ∈ S}, (55)

i.e. the simultaneous +1-eigenspace defined by the ele-
ments15 ofS .WithH⊗n2 we refer to the complexHilbert space
of dimension 2n, which is the state space of systems formed
by n qubits.
Figure 3 presents the general scheme for stabilizer codes

that correct the noise operation N . The unitary U maps the
input information word |ψ〉 ∈ H⊗k2 to the codespace |ψ̄〉 ∈
C(S) ⊂ H⊗n2 with the aid of the ancilla qubits |0〉⊗n−k . The
existence of such a unitary that takes the arbitrary input states

13In this article we discuss stabilizer coding without entanglement-
assistance. However, the methods presented here are equally valid for the
entanglement-assisted formulation.

14Stabilizer codes are represented by n− k generators, given that the rest
are combinations of them. This provides a compact representation of the
code.

15Note that the simultaneous eigenspace is generated by the n − k
independent generators, and so the code is defined by them.
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|ψ〉|0〉⊗n−k to the codespace is guaranteed [55]. The encoded
state then experiences the action of a quantum channel N ,
which is described as one of the approximated twirl channels
with the structure of a Pauli channel that have been introduced
earlier in this work. The noisy quantum state, |ψ̄〉N , must
then be corrected by a recovery operation. The fundamentals
of quantum mechanics establish that measuring a quantum
state forces its superposition state to collapse, which causes
the loss of the quantum information contained in the original
state. Therefore, the theory of quantum error correction codes
must circumvent this issue. It achieves this by measuring
the syndrome of the error s̄ in an indirect way, avoiding the
destruction of the quantum state and allowing us to garner
information about the error that will be used to estimate the
best recovery operationR.
The error syndrome s̄ is defined as a binary vector of length

n − k that captures the commutation relationship between
the generators of the stabilizer set S and the error E ∈ Gn
that perturbed the encoded quantum state as a consequence
of the channel action. The error operators are assumed to be
elements of the Pauli group, since the twirled approximated
channels have the structure of a Pauli channel. From error
discretization, we know that the designed codes will also
correct errors that are linear combinations of the errors which
they were originally intended to correct.16 It is common
knowledge that any two elements of the n-fold Pauli group
either commute or anticommute. For this reason, the error
operator E will either commute or anticommute with each of
the generators Sj, j ∈ {1, · · · , n − k}, of the stabilizer set,
and the components sj of the error syndrome capture their
relationship as

ESj = (−1)sjSjE . (56)

To construct a circuit that can extract the syndrome for each
of the generators Sj, consider the received noisy quantum
state |ψ̄〉N = E |ψ̄〉. Then the vector |ψ̄〉N is an eigenstate
of each of the generators of the stabilizer set S associated to
the ±1 eigenvalues, i.e.

Sj|ψ̄〉N = SjE |ψ̄〉 = (−1)sjESj|ψ̄〉 = (−1)sjE |ψ̄〉
= (−1)sj |ψ̄〉N , (57)

where the particular value out of the two possible eigenvalues
depends on the commutation relationship between the
channel error and the stabilizer generator. As a result, in order
to determine the syndrome of the error that takes place in
a specific channel instance, the eigenvalue of Sj must be
measured [55]. Figure 4 presents a circuit built to perform
such measurements.

Once the error syndrome is obtained, this classical
information is used to decode or estimate the recov-
ery operation that will correct the corrupted quantum
information state. Syndrome decoders of quantum sta-
bilizer codes depend on the specific QECC family

16For stabilizer codes, the effect of error discretization comes from the
syndrome measurement [32], [47].

FIGURE 4. Quantum circuit that measures the syndrome associated to
each of the stabilizer generators Sj . The H blocks stand for Hadamard
gates and the Sj is a controlled unitary gate with the stabilizer generator
as its unitary.

construction [20]–[31], [40], [51], [55], [71], [76]. In gen-
eral, optimal decoding of quantum stabilizer codes must
consider the phenomenon known as degeneracy [77],
a feature which has no equivalence in classical coding.
In degenerate quantum codes, there are sets of different
error operators that have the same effect in the transmitted
codeword. Although it should be possible to exploit this
property in the decoding process (and also for the design
of better codes), the design of decoders that can efficiently
perform the so-called Degenerate Quantum Maximum
Likelihood Decoding (DQMLD) remains unsolved for
stabilizer codes in general.17 Current decoding of these codes
is approached in terms of Quantum Maximum Likelihood
Decoding (QMLD), which ignores error degeneracy and
undertakes the decoding task as in the field of classical
linear block codes. Building effective degeneracy-exploiting
decoders is out of the scope of this article, so it will not be
discussed further.

The last steps in the error correction operation are
the application of the inverse of the encoding operation
(unitaryU†), followed by the use of the recovery operationR,
which depends on the results of the syndrome decoder.

C. PAULI-TO-BINARY ISOMORPHISM
In this section we present the Pauli-to-binary isomorphism as
a way to express the operation of QECCs as binary vectors,
which are generally referred to as symplectic strings. We start
by establishing the map for the set of Pauli matrices P1.
Notice that Pauli matrices areHermitian unitarymatriceswith
eigenvalues equal to ±1.

TABLE 4. Multiplication table for the Pauli matrices. Pauli matrices either
commute or anticommute.

Table 4 presents the multiplication relationships of these
matrices. Note that the elements of the table are elements
of the Pauli group G1. Given that neglecting the overall

17Quantum turbo codes are decoded exploiting degeneracy [26]–[29].
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phase has no observable consequences [76], it makes perfect
physical sense to ignore it and construct an equivalence class
of matrices [G1] = {[I], [X], [Y], [Z]}, where [A] refers to
the equivalence class of matrices equal to A up to an overall
phase. This equivalence class forms an Abelian group under
the multiplication operation defined as [A][B] = [AB]. The
product relationships of this equivalence class are shown in
table 5. In the literature, this equivalence class [G1] receives
the name of effective Pauli group.

TABLE 5. Multiplication table for the effective Pauli group. With a slight
abuse of notation we refer to the equivalence class [A] as A.

As mentioned earlier, we are interested in expressing the
Pauli matrices in binary notation. Consider the binary words
of length two (F2)2 = {00, 01, 10, 11}, with the usual
modulo-2 addition as the field operation. Table 6 portrays
the relationships between the elements of this Abelian group
under modulo-2 addition.

TABLE 6. Addition table for the binary vectors of length two under
modulo-2 addition of their elements.

In the following, the notation u = (z|x), with z, x ∈ F2
will be used to refer to the elements of (F2)2. The group is
also a vector space over the field F2, over which the bilinear
form called symplectic form or symplectic product � can be
defined [76]. The symplectic product is the application � :
(F2)2 × (F2)2→ F2 defined as

u� v = (zx ′ + z′x) mod 2, (58)

where u = (z|x) and v = (z′|x ′). The results of computing the
symplectic product for the elements of (F2)2 are presented in
table 7.

TABLE 7. Computation of the symplectic product for the binary vectors of
length two.

We proceed by defining the map ϒ : (F2)2 → P1, which
can be seen in table 8. Upon closer inspection of thismapping,
it is easy to observe that it is specifically chosen so that
the elements ϒ(z|x) and ZzXx are equal up to a phase factor,

i.e. so that they are equal under the equivalence class [·],
as defined before.

TABLE 8. Mapping ϒ of the Pauli matrices to the elements of the set of
length two binary vectors.

As a result, and after closely examining tables 4, 5, 6 and 7,
we reach the following key conclusions [76]:
• After thorough observation of both tables 5 and 6, we see
that the map [ϒ] : (F2)2→ [G1] is an isomorphism as

[ϒu][ϒv] = [ϒu+v]. (59)

• Analyzing tables 4 and 7, we observe that the com-
mutation relationships between the Pauli matrices are
captured by the symplectic product for binary vectors
of length two as

ϒuϒv = (−1)u�vϒvϒu. (60)

Note that by making use of this map we are able
to represent Pauli operators as binary vectors of length
two, maintaining the ability to capture the commutation
relationships via the symplectic product.

The next step is to extend the isomorphism to the n-fold
set of Pauli operators in order to be able to represent systems
that have n qubits. The elements of the n-fold set of Pauli
operators Pn are tensor products of individual Pauli matrices,
and so the equivalence class [·] for these elements of the Pauli
group will be defined in the same way, i.e. the set [Gn] =
{[A] : A ∈ Pn}. The operation of this equivalence class
will be the product defined as [A][B] = [A1B1] ⊗ [A2B2] ⊗
· · · ⊗ [AnBn] = [AB], and this set will also be an Abelian
group under multiplication, as it was the case for the 1 qubit
scenario.

Having defined the n-fold effective Pauli group, we now
consider the Abelian group under modulo-2 summation and
the vector space composed by the binary vectors of length 2n,
(F2)2n. As before, the elements of the group will be written
as ū = (z̄|x̄), where z̄ = z1 · · · zn ∈ (F2)n and x̄ = x1 · · · xn ∈
(F2)n. Now the symplectic product for these binary strings
of length 2n can be defined as an application � : (F2)2n ×
(F2)2n→ F2 calculated as

ū� v̄ =
(
z̄x̄ ′T + z̄′x̄T

)
mod 2 =

∑
j

uj � vj

mod 2,

(61)

where ū = (z̄|x̄), v̄ = (z̄′|x̄ ′), uj = (zj|xj) ∈ (F2)2, vj =
(z′j|x

′
j ) ∈ (F2)2 and T denotes the transpose. Notice that we

are representing the strings as row vectors. Consequently,
the symplectic inner product of the 2n length binary string
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will be the Boolean sum of the symplectic product of the n
(F2)2 elements that form such a string.

The map ϒ is now performed individually for each of the
elements of the n-fold tensor product that form each of the
elements of Pn, namely, the map ϒ : (F2)2n → Pn is taken
asϒū = ϒu1⊗ϒu2⊗· · ·⊗ϒun . It is trivial to see that this map
has been selected so that ϒ(z̄|x̄) is equal to Z z̄X x̄ = Z z1X x1 ⊗
Z z2X x2 ⊗ · · · ⊗ Z znX xn up to an overall phase.

Considering this discussion, we can obtain similar key
conclusions for the n-fold map as we did earlier for the Pauli
matrices [76]:
• The map [ϒ] : (F2)2n→ [Gn] is an isomorphism as

[ϒū][ϒv̄] = [ϒū+v̄]. (62)

• The commutation relationships of the n-fold Pauli
matrices are captured by the symplectic product as

ϒūϒv̄ = (−1)ū�v̄ϒv̄ϒū. (63)

Thanks to these results, we will be able to represent the n-
fold Pauli matrices, which act as error operators of the Pauli
channels, as binary vectors of length 2n. Stabilizer codes
can be described via binary matrices using this map, as the
generators of the stabilizer set S that define the code are n-
fold Pauli matrices. The binary representation of a stabilizer
code receives the name of parity check matrix (PCM) as in
classical coding. The PCM of a stabilizer code is then

H = (Hz|Hx) , (64)

where each of the rows of the matrix is obtained by applying
the map ϒ to each of the stabilizer generators. Moreover,
as the symplectic inner product captures the commutation
relationships that the n-fold Pauli matrices share between
themselves, this binary representation can be used in order
to extract the error syndrome that Pauli errors have with
respect to the specific stabilizer code represented by the PCM
H . The syndrome s̄(ē) of a specific error E whose binary
representation is given by ē, is calculated as

s̄(ē) = H � ē, (65)

where the symplectic product between the matrix and the
error vector is performed row-wise, that is to say, each of
the components of the syndrome is obtained by computing
the symplectic product of the associated row of the PCM
and the error operator. As a direct result of this, we will be
able to evaluate the performance of the target stabilizer code
by conducting Monte Carlo simulations [28], [29]. An error
correction round of the system can be broken down into the
following steps:

1) Generate a binary error pattern, ē, of length 2n,
following the probability distribution of the specific
Pauli channel under consideration. The map ϒ is used
to obtain the probability distributions of the binary
vectors.

2) Calculate the syndrome associated to such an error s̄(ē)
by using the symplectic product as in (65).

3) Run the specific syndrome decoder that has been
implemented for the particular stabilizer code being
used as a QECC. The syndrome decoder depends on
the stabilizer code under consideration [20]–[31], [40],
[51], [55], [71], [76], but it is always a purely classical
algorithm. The quantum operation implemented for
final recovery depends on the result of the syndrome
decoder.

4) Check if the estimated recovery operation in this error
correction round has been successful in its attempt
to revert the channel error. This depends on whether
error degeneracy is taken into account when defining
the ‘‘success’’ of the decoding scheme [77]. This
happens because for QECCs, the physical error that
is sometimes estimated does not always match the
error that actually occurred during transmission, but its
associated logical error does indeed match the logical
error related to the real physical error. This implies
that even if the physical error has not been correctly
estimated, quantum information will be successfully
recovered.

Multiple error correction rounds are repeated to obtain
metrics that quantify the error correcting capability of the
code under consideration. The most common metrics used
to evaluate the quality of a quantum error correcting code
are:
• Quantum Word Error Rate: it represents the probability
that at least one qubit in the block is incorrectly decoded,
i.e., a decoding failure is accounted for if just one of the
operators of the length n error operators is incorrectly
estimated.

• QuBit Error Rate: it is the probability that an individual
qubit is incorrectly decoded, i.e. in each transmission
round, each of the operators of the n length error operator
is individually considered.

Note that, as explained in point 4, these operational
figures will depend on whether the physical errors or their
associated logical errors are considered. Both figures of merit
are used in the literature when assessing the performance of
stabilizer codes [20]–[31], [40], [51], [55], [71], [76], and in
both cases theWER and QBER obtained without considering
degeneracy will be upper bounds for the WER and QBER
that could be achieved if degeneracy were exploited. The
particular number of iterations required to obtain precise
estimates of these metrics is given by the theory of Monte
Carlo simulations [28], [29].

D. EXAMPLE: [[5,1,3]] STABILIZER CODE
In previous sections we have explained how to approximate
quantum channels to channels that are efficiently imple-
mentable on classical computers. We have also discussed
how the performance of stabilizer codes can be simulated
under the action of such channels by using the Pauli-to-binary
isomorphism. In this section we present a simple example
of an error correction round, aiming at providing a clear and
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TABLE 9. Lookup table used to perform syndrome decoding of the stabilizer code considered in the example. Since the channel is assumed to be a
memoryless depolarizing channel and degeneracy is ignored, the most probable error for each syndrome will be the one with the lowest weight that
produces said syndrome.

transparent portrayal of how classical simulation of QECCs
works.

Consider the [[5, 1, 3]] stabilizer code defined by the
following stabilizer generators:

S1 = Z Z Z Z I
S2 = Z X Y I Z
S3 = X X X X I
S4 = X Y Z I X.

(66)

By using the map ϒ defined in section V-C, the parity
check matrix of this stabilizer code is

H =


1 1 1 1 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 0
0 0 0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0 0 1

. (67)

The next step is to generate binary error patterns and then
obtain their syndromes so that error estimations can be made
from those syndromes. The probability distributions used
to simulate the channel are the distributions for the twirled
approximated channels presented in sections III and IV,
where the n-fold Pauli operators are mapped to binary vectors
via the map ϒ . For our particular example we consider a
memoryless depolarizing channel. A decoding round will be
performed for each one of the following error patterns:
• ē1 =

(
0 0 0 0 0 0 0 1 0 0

)
which maps to the physical

error E1 = I⊗ I⊗ X⊗ I⊗ I.
• ē2 =

(
1 0 0 0 1 1 1 0 0 0

)
which maps to the physical

error E2 = Y⊗ X⊗ I⊗ I⊗ Z.
• ē3 =

(
1 0 1 0 1 0 1 1 0 0

)
which maps to the physical

error E3 = Z⊗ X⊗ Y⊗ I⊗ Z.
The associated error syndromes s̄(ēj) are calculated as

shown in equation (65), which for the errors we are
considering will be:
• s̄(ē1) = H � ē1 =

(
1 1 0 1

)
.

• s̄(ē2) = H � ē2 =
(
0 1 1 1

)
.

• s̄(ē3) = H � ē3 =
(
0 0 0 0

)
.

Next, the decoding algorithm must be fed the error
syndromes so that the best recovery operations considering
the syndrome information can be estimated. Decoding
stabilizer codes is substantially nuanced given that the
optimal task differs from the classical decoding version due to
degeneracy [77], and it is heavily conditioned by the code and
the channel model under consideration. Nonetheless, QMLD
is still a valid decoding algorithm even if it is not the optimal

one. For this example, we will ignore degeneracy for the
estimation of the recovery operation and so the syndrome
decoder will be given by the lookup table shown in table 9.
Notice that the recovery operations in the lookup table

(table 9) are Pauli operators. This is because n-fold Pauli
operators are Hermitian and unitary matrices, implying that
A2
= I,A ∈ Pn. Consequently, the decoder estimates the

QMLD most probable physical operator associated to the
measured syndrome, and it applies such a Pauli operator to
the noisy quantum information |ψ̄〉N so that the action of the
channel is suppressed.18 The recovery operation for the error
words considered for our example are obtained from table 9:
• s̄(ē1) =

(
1 1 0 1

)
→ R = I⊗2 ⊗ X ⊗ I⊗2.

The resulting state after recovery will be (I⊗2 ⊗ X ⊗
I⊗2)|ψ̄〉N = (I⊗2 ⊗ X⊗ I⊗2)E1|ψ̄〉 = |ψ̄〉. As a result,
the code will succeed in correcting the channel error E1.

• s̄(ē2) =
(
0 1 1 1

)
→ R = I ⊗ Z ⊗ I⊗3. The

resulting state after recoverywill be (I⊗Z⊗I⊗3)|ψ̄〉N =
(I ⊗ Z ⊗ I⊗3)E2|ψ̄〉 = (I ⊗ Z ⊗ I⊗3)(Y ⊗ X ⊗ I⊗2 ⊗
Z)|ψ̄〉 = (Y ⊗ Y ⊗ I ⊗ I ⊗ Z)|ψ̄〉. As can be seen,
the error correction operation is unsuccessful and so this
channel error produces a decoding failure. Following
recovery, this iteration results in an error event for the
WER. However, it will be reflected as 4 error events and
one success event for the QBER, since the 4th qubit will
not suffer from an error (the operator acting on it is the
identity operator).

• s̄(ē3) =
(
0 0 0 0

)
→ R = I⊗5. The resulting state

after recovery will be (I⊗5)|ψ̄〉N = (I⊗5)E3|ψ̄〉 =
(Z ⊗ X ⊗ Y ⊗ I ⊗ Z)|ψ̄〉. At first glance, it looks like
the decoder has failed to recover the correct quantum
information state, as the estimated error and the one
that actually occurred are different, which results in a
non-identity operator acting on the encoded state. This
would entail the addition of an error event for the WER
and 4 error events for the QBER. However, a closer
look at the error operator that acts on the quantum state
that lays in the codespace shows that it is actually the
generator S2 of the stabilizer set that defines the code.
As the codespace is defined as the +1-simultaneous
eigenspace of the stabilizer generators, the statement
(Z⊗ X⊗ Y⊗ I⊗ Z)|ψ̄〉 = |ψ̄〉 will be true, and so the
resulting state will be error-free. This last error belongs

18Note that Pauli matrix product is the modulo 2 sum for the binary
representation under the map ϒ .

172640 VOLUME 8, 2020



J. Etxezarreta Martinez et al.: Approximating Decoherence Processes for the Design and Simulation

to the class of errors known as degenerate errors. Hence,
if degeneracy is being considered for the computation
of the performance metrics, as it should for optimal
decoding, this last event will count towards a successful
decoding round.

By randomizing the generated error pattern according
to the probability distributions of the approximated twirl
channels presented earlier, we will be able to simulate the
performance of stabilizer codes for channel models that
provide a realistic representation of decoherence processes.
Lastly, as mentioned previously, to derive accurate estimates
of the performance metrics, the rules of Monte Carlo
simulations must be followed [28], [29].

VI. CONCLUSION
We have described the most basic physical phenomena that
cause the corruption of quantum information by considering
the basic interactions that define decoherence. The way in
which these effects are mathematically modeled via CPTP
operators called quantum channels has also been presented.
Then, we discussed the issue of efficient implementation
of general quantum channels on classical computers by
approximating these channels to versions that fullfil the
Gottesman-Knill theorem. To obtain these approximations,
we use Pauli and Clifford twirling techniques, which approx-
imate channels into different instances of Pauli channels with
varying degrees of asymmetry. Once the twirled approxima-
tions have been introduced, we discussed the memoryless
instances of quantum channels, as well as the inclusion
of memory effects to provide a more realistic depiction of
decoherence. Specifically, we introduced the conditions that
the transmission rate must satisfy so that the memoryless
instance of the quantum channel provides an appropriate
representation of reality. Then, a Markovian-based modelling
of channels that do not fulfill the memoryless conditions
is presented. This modelling strategy relates the correlation
parameter with the transmission time spacing that is present
between different qubits. UsingMarkovian memory to model
memory effects is the de facto approach for quantum channels
in the literature, but more advanced models are expected in
future research.

After reviewing decoherence and its modelling via approx-
imated quantum channels, we provide an overview of
stabilizer codes, introducing the way in which they are
simulated and assessed on classical computers. We begin by
presenting the error correction conditions and the discretizing
of errors for general QECCs. Afterwards, we briefly review
the encoding, the syndrome measurement and the decoding
as well as the recovery operations in stabilizer codes. Then,
we introduce the Pauli-to-binary isomorphism and the way
in which this mapping can be employed in order to simulate
the WER and QBER of a specific stabilizer code. Finally,
we provide an example of a decoding round for different error
words in a specific stabilizer code, aiming at clarifying the
earlier theoretical description.

In summary, we have reviewed how to efficiently test stabi-
lizer codes on classical computers for realistic approximated
decoherence models obtained using twirling techniques. This
allows the design and testing of complex error correction
models that will be key in post-NISQ-era quantum computers
and devices.
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