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Abstract

Phosphorylation of specific substrates by protein kinases is a key control mechanism for

vital cell-fate decisions and other cellular processes. However, discovering specific kinase-

substrate relationships is time-consuming and often rather serendipitous. Computational

predictions alleviate these challenges, but the current approaches suffer from limitations like

restricted kinome coverage and inaccuracy. They also typically utilise only local features

without reflecting broader interaction context. To address these limitations, we have devel-

oped an alternative predictive model. It uses statistical relational learning on top of phos-

phorylation networks interpreted as knowledge graphs, a simple yet robust model for

representing networked knowledge. Compared to a representative selection of six existing

systems, our model has the highest kinome coverage and produces biologically valid high-

confidence predictions not possible with the other tools. Specifically, we have experimen-

tally validated predictions of previously unknown phosphorylations by the LATS1, AKT1,

PKA and MST2 kinases in human. Thus, our tool is useful for focusing phosphoproteomic

experiments, and facilitates the discovery of new phosphorylation reactions. Our model can

be accessed publicly via an easy-to-use web interface (LinkPhinder).

Author summary

LinkPhinder is a new approach to prediction of protein signalling networks based on

kinase-substrate relationships that outperforms existing approaches. Phosphorylation

networks govern virtually all fundamental biochemical processes in cells, and thus have

moved into the centre of interest in biology, medicine and drug development. Fundamen-

tally different from current approaches, LinkPhinder is inherently network-based and

makes use of the most recent AI developments. We represent existing phosphorylation

data as knowledge graphs, a format for large-scale and robust knowledge representation.
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Training a link prediction model on such a structure leads to novel, biologically valid

phosphorylation network predictions that cannot be made with competing tools. Thus

our new conceptual approach can lead to establishing a new niche of AI applications in

computational biology.

Introduction

Nearly all aspects of cell behaviour are controlled by phosphorylation events and intricate net-

works of kinases-substrate relationships mediating these phosphorylations [1]. Depending

on the phosphorylation site, the attachment of a phosphate group can alter the activity of a

substrate, its interaction with other proteins or its subcellular localization. This diversity of

phosphorylation mediated processes control important cellular functions such as signal trans-

duction, differentiation, migration, cell division and apoptosis. Dysregulation of these kinase-

substrate relationships can have devastating consequences and are regularly observed in preva-

lent diseases, such as cancers or immune diseases. Therefore, kinases have emerged as attrac-

tive drug targets and have become the mainstay of targeted therapies with nearly fourty kinase

inhibitors approved for clinical use as of 2018 [2] and over 150 in clinical trials since 2012

[3, 4].

In order to improve the design of kinase inhibitors, understand their mode of action and

potential side effects, a better understanding of kinase-substrate relationships and the net-

works they form is necessary. With the advent of modern high-throughput mass-spectrometry

based phosphoproteomics, many thousands of phosphorylation sites in substrate proteins can

be identified [5]. However, large scale and reliable prediction of which kinase can phosphory-

late which substrates at which sites remains challenging. High-throughput experiments are not

informative in this case, because they cannot establish these detailed functional relationships,

and addressing this issue in a one-by-one fashion is prohibitively expensive and time-consum-

ing due to the large number of candidate interactions to be tested [6].

Reliable automated prediction of phosphorylation candidates is therefore much desired,

because it can substantially reduce the number of possibilities that have to be tested experi-

mentally. During the last decade, several tools for predicting phosphorylations have become

available. The most widely used and recently described include: Scansite [7], GPS [8], NetPhos

[9], NetPhorest [10], NetworKin [6, 10], PhosphoPredict [11]. Each of these tools, however,

covers only a limited fraction of over 500 known human kinases [12], with 33, 217, 17, 178,

and 6 kinases covered, accordingly. In addition to the limited coverage, existing approaches

also suffer from an important conceptual limitation. Only intrinsic features of proteins (such

as sequence, structure or functional annotations) are primarily used in training the predictive

models. Phosphorylations, however, are inherent parts of complex interaction networks, and

this type of information is largely neglected by current models.

Here, we show that predicting kinase-substrate relationships can be formulated as finding

missing links in a knowledge graph (i.e. a relational, machine-readable knowledge base con-

structed from known phosphorylation networks). Knowledge graphs are a powerful way to

organise descriptions of properties of objects and their connections [13]. However, they have

not been widely used yet to analyse biological relationships. We show that using such a rela-

tional representation enables models that have superior generalisation power and precision

when compared to existing approaches, lead to increased phosphoproteome coverage and pro-

duce biologically valid predictions. This can be explained by the fact that our approach fully

utilises latent patterns in phosphorylation networks that are neglected by existing approaches
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(e.g. long-range relational dependencies and implicit hierarchical structure). Moreover, the

relational representation is not critically dependent on local features, which means our

approach can make predictions even for under-researched proteins where existing approaches

fail to provide results.

To test this concept, we have built a predictive model based the known phosphorylation

network in PhosphoSitePlus [14] interpreted as knowledge graph. This model uses statistical

relational learning to address the kinase-substrate prediction problem. We show that our

model has superior predictive power based on a comparative validation trial following stan-

dard machine learning evaluatuion protocols. The model also outperforms existing tools in

the total number of human kinases covered (327, nearly twice as many as the next best tool),

which substantially increases the number of potential discoveries that can be made using our

tool. The biological relevance of our approach is evidenced by the discovery and experimental

validation of previously unknown kinase-substrate relationships for the AKT1, LATS1, PKA

and MST2 kinases.

Results

The concept of our approach in comparison with related existing techniques is illustrated in

Fig 1 and details are given in the Materials and Methods section. Where existing tools use

Fig 1. a) Sequence-based approaches aim to identify linear amino acid motifs that are phosphorylated by certain kinases. This is done based on known motif

preferences of kinases, their groups or families. Each site and substrate is examined in isolation. Only limited numbers of well-studied kinases can typically be

associated with substrates this way, and network context is largely ignored in such predictions. b) The LinkPhinder approach aims at learning regular patterns in a

knowledge graph that represents the known kinase-substrate links as motif-based abstractions of the associated consensus sites. Based on the global, latent properties of

the knowledge graph, the system can predict unknown, site-specific interactions between any kinase and substrate present in the input data.

https://doi.org/10.1371/journal.pcbi.1007578.g001
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primarily local features based on sequence of particular proteins (left-hand side), our approach

also considers the network information in training the model. Our predicitons are effectively

based on explicit and implicit functional links between kinases and substrates represented as

knowledge graphs. Briefly, we used a PhosphoSitePlus, a highly curated database of experi-

mentally confirmed phosphorylation sites [14], to construct a knowledge graph where links

between kinases and substrate corresponded to shared characteristics of kinase consensus

sites. This knowledge graph represented a training set of known kinase-substrate relationships

that was used for learning our predictive model (effectively, a multi-variate probability distri-

bution function fitted to the input data). This model can consequently be used for predicting

unknown kinase-substrate relationships with high coverage and precision.

The workflow of our methodology is illustrated in Fig 2. Details on training the computa-

tional model and the data used are provided in the Materials and Methods section. The main

steps of constructing the LinkPhinder model are: (i) Generation of a phosphorylation network

based on kinase-substrate pairs reported in PhosphoSitePlus (albeit any other database could

be used). (ii) Inference of phosphorylation site motifs for kinase families based on quantifying

the contribution of each amino acid in a set of consensus sequences to the likelihood that this

sequence is phosphorylated. (iii) Conversion of the phosphorylation network into a knowledge

graph using the phosphorylation motifs as generalised links to connect compatible kinase-sub-

strate pairs while preserving the site information. (iv) Learning of new links based on both

explicit and latent relationships in the input network data. The learning process is supervised

and thus requires negative kinase-substrate relationships. These were generated using random

Fig 2. The model is first trained on phosphorylation network data that has been converted to a knowledge graph representation. Such a

representation can be readily processed by link prediction algorithms (contrary to the original phosphorylation data). In the training stage, an optimal

combination of model parameters is found and computationally validated. The optimal model is then trained on full phosphorylation network data and

used for providing probabilistic ranking scores for all possible predictions that can be made using the input. Finally, reverse conversion technique is applied

to the computed predictions to present them to users as residue-specific kinase-substrate relationships.

https://doi.org/10.1371/journal.pcbi.1007578.g002
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perturbations of the positive examples. (v) Selection of the best performing model. (vi) Genera-

tion of all possible kinase-substrate combinations using the input data and using our trained

model for computing ranking scores for each kinase-substrate link. This ranking effectively

allows to select most likely, previously unknown phosphorylations a kinase or substrate of

interest can be involved in. (vii) Conversion of kinase-substrate links back to phosphorylation

site sequences that provide the user exact information about the amino acid sequence phos-

phorylated by the given kinase in the substrate.

In the following, we present the performance of the LinkPhinder model. First, we bench-

mark LinkPhinder against six commonly used existing tools. Then, we present results of bio-

logical validation experiments focused on selected kinases of clinical relevance and their

substrates. Finally, we introduce a web interface that allows the scientific community conve-

nient access to LinkPhinder.

Computational validation of LinkPhinder shows superior precision and

kinome coverage

While the LinkPhinder model learns its parameters from the input data automatically, the

optimal model configurations (also called hyperparameters) cannot be inferred that way and

need to be determined empirically. In order to find these hyperparameters that optimise the

performance of our model, we used the knowledge graph generated from PhosphoSitePlus

[14] and evaluated several link prediction techniques across a range of their possible settings as

described in the Materials and Methods section. The best method was ComplEx [15], which

can handle large networks and generalises well for anti-symmetric relationships (of which the

directed kinase-substrate links are an example). The optimal hyperparameters were identified

by a grid search [16] and the best performing model was selected for the experiments described

in this section. This model was trained on the entire network of phosphorylations contained in

PhosphoSitePlus to produce unknown phosphorylation candidates for laboratory validation

experiments described in the following sections.

The trained model can predict the likelihood of phosphorylation reactions that exist in the

training dataset but have not been observed yet. In principle, any phosphorylation dataset can

be used, but we chose PhosphoSitePlus because it is widely considered the most comprehen-

sive and accurate dataset on known phosphorylations in many different organisms including

human [17].

The computational validation experiments compared our approach to a selection of six

existing and commonly used phoshorylation prediction techniques: Scansite [7], GPS [8], Net-

Phos [9], NetPhorest [10], NetworKin [6, 10] and PhosphoPredict [11]. For running this

benchmarking trial, we generated 100 random train/test splits (90% train, 10% test) of true

positives from the subset of PhosphoSitePlus human phosphorylations (i.e., kinase-phosphory-
lation site-substrate triples). A pool of negative statements was generated by random associa-

tions between all human kinases and (phosphorylation site, substrate) pairs available in

PhosphoSitePlus. This pool was used for sampling as many negatives as there were positives in

each train/test split. For each of the 100 splits, we trained our model on the 90% of the data

and validated it on the unseen 10%. For the existing techniques, we generated all their predic-

tions relevant to the proteins in the PhosphoSitePlus dataset and assessed them using the test

splits.

Note that to make sure the presented relative differences between the methods are not

merely due to the specific way we prepared the benchmarking data, we have also experimented

with different train-test split and positive-negative ratios. The relative performances of the

compared methods have not, however, changed from what is presented here. More
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information on the benchmarking methodology and results corresponding to the different

ratios can be found in the Materials and Methods section.

The results are summarised in Table 1. The corresponding charts with the PR and ROC

curves are given in Fig 3. The table presents means and standard deviations for each of the per-

formance metrics computed across the 100 experimental runs with random train/test splits.

Our model outperforms the existing techniques in all validated metrics, often by rather large

margins. The narrower confidence margins of LinkPhinder results (about 1.8-42 times less

than for the related works) mean that even if the experiment was done just once, it is still very

likely the relative performance differences between the tools would be the same as presented in

the table.

To gain additional insights into the presented results, we analysed to what extent each tool

covered the phosphorylations in the test splits. The coverage is an important factor influencing

the results since we assign zero scores to phosphorylations which the systems are not able to

process (i.e., those for which no ranking scores can be produced). Therefore, a tool that does

not produce scores for negative examples will have these annotated with zeros automatically

and thus they will be at the bottom of their ranking lists. This is a possible advantage over tools

that do produce scores for such negative phosphorylations, as any positive scores can only

move the negatives up in the ranking, resulting in more false positive assignments.

Table 1. Comparative validation results. AU-PR, AU-ROC refer to the area under the precision-recall and ROC curve, respectively. These metrics are widely used for val-

idating predictive models based on ranking across their whole operating range [18]. P@K refers to the precision at K metric that gives the ratio of true positive statements

ranked among top K results (e.g., P@10 refers to precision at 10; precision at 10 equal to 0.9 would mean that the corresponding tool typically returns 9 true positives

among the top 10 results).

Model AU-PR AU-ROC P@10 P@50

GPS 0.741±0.011 0.731±0.011 0.862±0.108 0.857±0.049

NetworKin 0.688±0.010 0.619±0.011 0.981±0.046 0.961±0.027

NetPhorest 0.650±0.012 0.598±0.011 0.905±0.091 0.905±0.041

Scansite 0.605±0.012 0.573±0.013 0.727±0.143 0.777±0.059

Phosphopredict 0.504±0.011 0.503±0.168 0.539±0.168 0.523±0.081

Netphos 0.612±0.012 0.563±0.013 0.865±0.105 0.863±0.048

LinkPhinder 0.973±0.004 0.968±0.004 0.994±0.024 0.993±0.012

https://doi.org/10.1371/journal.pcbi.1007578.t001

Fig 3. The average precision-recall and ROC curves as per the experimental results reported in Table 1 (left and

right part of the figure, respectively).

https://doi.org/10.1371/journal.pcbi.1007578.g003
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The coverage of the different tools, i.e., their ability to make predictions for proteins repre-

sented in PhosphoSitePlus, is given in Table 2. This table shows that our model has the highest

coverage of the test splits, especially when it comes to positive statements. However, the per-

centage of missed negative phosphorylations is still the lowest for our model, which means

that the other tools are not disadvantaged by the setup of this benchmarking test.

Thus, LinkPhinder outperforms existing popular tools in terms of sensitivity and specificity

(by means of the area-under-the-curve and precision metrics used), but also in terms of the

number of predictions it can make. Importantly, LinkPhinder also covers a larger fraction of

the human kinome than the other tools. Comprehensive visualisation of this fact is given in

Figs 4 and 5.

The results diplayed in Fig 4 clearly illustrate the superior potential of LinkPhinder for dis-

covering new phosphorylations relevant to under-researched kinases, which is currently con-

sidered one of the most pressing challenges in phosphoproteomics [17]. This is complemented

by Fig 5 that shows, among other things, the relative advantages LinkPhinder presents in num-

bers of kinase-substrate and site-specific kinase-substrate interactions for which it can provide

predictions (having the second best and best coverage, respectively). While higher coverage of

possible predictions may not mean much on its own, we believe it is a reassuring sign when

combined with the presented data on the superior performance of LinkPhinder in terms of the

quality of the prediction scores it can associate with such an unprecedented range of kinase-

substrate interaction candidates.

To provide a complementary computational validation using a dataset independent of the

one we trained our model on, we have used a very recent data on site-specific interactions of

103 human kinases with their substrates in cancer cells [19]. Table 3 presents the performance

of LinkPhinder and the six related tools when using this data for validation in the same fashion

as in the previously reported computational experiment.

While the performance of all tools is substantially weaker than when using the PhosphoSite-

Plus benchmark (i.e. only slightly above the random baseline for both area-under-the-curve

metrics), LinkPhinder is still the best in three out of four metrics, and close second in the

remaining one. The overall poor performance can be attributed to a relatively small coverage

of the [19] gold standard exhibited by most tools when compared to the PhosphoSitePlus [14]

one (detailed overlap statistics are provided in section Training of the LinkPhinder Model). In

such a situation, the relative ranks of the true positives among the rather large sets of all candi-

date predictions provided by the tools would tend to fluctuate quite widely, which can provide

at least partial explanation of the differences in the predominantly ranking-based metrics

between the two benchmark datasets. Another part of the explanation may be the fact that

while [14] covers a broad range of cell lines and tissues, [19] only covers three cell lines. Tools

that are presumably trained using existing knowledge covering as many cell/tissue types as

Table 2. Coverage of the tools in per cents. Total, positive and negative coverage is given in the first three columns with data, respectively. The last column gives the per-

centage of missed negatives (i.e., negatives that are assigned the default zero score).

Model Tot. coverage Pos. coverage Neg. coverage Missed neg.

GPS 38.6±1.0% 60.6±1.5% 16.6±1.2% 83.4%

NetworKin 34.1±1.0% 40.6±1.5% 27.7±1.3% 72.3%

NetPhorest 34.1±1.0% 40.6±1.5% 27.7±1.3% 72.3%

Scansite 10.8±0.6% 18.0±1.1% 3.6±0.5% 99.5%

Phosphopredict 1.1±0.2% 1.3±0.3% 1.0±0.3% 99.0%

Netphos 28.8±1.1% 33.0±1.7% 24.7±1.2% 75.3%

LinkPhinder 64.2±0.8% 97.0±0.5% 31.4±1.5% 68.6%

https://doi.org/10.1371/journal.pcbi.1007578.t002
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possible (like ours) may thus be expected to perform relatively poorly on a dataset that specifi-

cally covers a limited number of cell lines and corresponding kinases. That being said, this

issue may point to an interesting research avenue to be addressed by future studies in this

area that would further investigate the cell line-specific performance of models for predicting

kinase-substrate interactions.

Targeted experiments confirm two previously unknown phosphorylation

sites targeted by LATS1 and AKT1

The rich dataset of over 11 million candidate predictions was assessed regarding its potential

for discovering new phosphorylation sites for kinases that have biomedical relevance, such as

AKT and LATS1. Both kinases regulate cell survival, growth, proliferation, and are frequently

altered in cancer [20–22]. AKT has now become a leading drug target in cancer research, but

the long term application of AKT inhibitors is still considered problematic because of AKT’s

essential roles in regulating glucose homeostasis [23]. The situation is similar with LATS1.

Originally described as tumor suppressor, it also can have growth promoting roles [22]. In

Fig 4. Coverage of the human kinome and kinase families as per PhosphoSitePlus. The “not_processed” category reflects the number of

kinases for which a tool cannot produce any predictions. Note that NetPhorest and NetworKin only differ in scores assigned to predictions, while

the set of phosphorylations they can produce scores for is identical. Therefore, they are grouped under a common KinomeExplorer [10] in the

plot.

https://doi.org/10.1371/journal.pcbi.1007578.g004
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order to resolve unwanted from desired effects a better and more comprehensive understand-

ing of the substrate spectrum of these kinases is needed.

To this end, we have extracted high-stringency predictions for the LATS1 and AKT1

kinases. By visual inspection of this list, we were able immediately pinpoint several known and

promising substrates of these kinases. YAP1 for example is the best characterized substrate of

LATS1, and our tool predicted that LATS1 would phosphorylate YAP at serine 127, which is

the best studied phosphorylation site that contributes to YAP inactivation [21]. Additionally,

the list of the top 200 predictions for AKT contained eight bona-fide AKT substrates [24], for

which several phosphorylation reactions were predicted. This means that our tool generated

interesting, biologically relevant predictions.

Therefore, we decided to validate some of the new substrates experimentally. In order to

select the most promising candidates we selected three proteins that are part of the wider

LATS1 signaling network and for which antibodies were commercially available. To

Fig 5. Complementary statistics of the coverage of different systems in terms of number of kinases, substrates, sites per substrate, etc.

https://doi.org/10.1371/journal.pcbi.1007578.g005

Table 3. Complementary computational validation of LinkPhinder using the recent dataset published in [19] as a benchmark independent of the primary training

dataset (i.e. PhosphoSitePlus [14]).

Model AUPR AUROC P@10 P@50

GPS 0.518 ± 0.008 0.509 ± 0.010 0.675 ± 0.171 0.663 ± 0.059

NetworKin 0.519 ± 0.008 0.511 ± 0.010 0.682 ± 0.132 0.616 ± 0.062

NetPhorest 0.519 ± 0.007 0.510 ± 0.008 0.731 ± 0.135 0.659 ± 0.056

Scansite 0.504 ± 0.008 0.502 ± 0.009 0.561 ± 0.170 0.563 ± 0.066

Phosphopredict 0.502 ± 0.008 0.502 ± 0.009 0.519 ± 0.137 0.507 ± 0.069

Netphos 0.508 ± 0.009 0.505 ± 0.009 0.551 ± 0.149 0.554 ± 0.074

LinkPhinder 0.540 ± 0.009 0.532 ± 0.010 0.713 ± 0.153 0.671 ± 0.061

https://doi.org/10.1371/journal.pcbi.1007578.t003
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experimentally validate predicted LATS1 substrates we used the following strategy. HEK293

cells were transfected with two specific siRNAs against LATS1 in order to downregulate

LATS1 protein levels (knockdown). Following this LATS1 knockdown, we would expect to see

a decrease in the phosphorylation of LATS1 substrates. For confirmation, we used a positive

control where we measured the phosphorylation of the known LATS1 substrate YAP1-S127,

and indeed observed a decrease in YAP1-S127 phosphorylation in total cell lysates (c.f. S1A

Fig). This control experiment demonstrated that our LATS1 knockdown works as expected

and can be used to confirm potential LATS1 substrates.

One of the proteins that we selected for validation was CREB which is transcription factor

that is regulated by phosphorylation [25]. This transcription factor is one of the best character-

ized effectors of the MAPK ad PKA pathways. Evidence in the literature indicates that CREB

modulates important LATS1 pathway functions by direct interaction with YAP1 and regula-

tion of transcription [26]. Our tool predicted serine 133 of CREB (CREB-S133) as a putative

substrate of LATS1. To confirm this, we used a specific antibody against CREB-S133, and saw

that downregulation of LATS1 resulted in about 50% decrease of CREB-S133 phosphorylation

(Fig 6, S1B Fig). This result clearly indicated that CREB is a physiological LATS1 substrate and

highlights the potential of our tool to identify previously unknown kinase substrates.

In the case of AKT we decided to monitor putative substrates by manipulating the level of

AKT activation using two strategies. Firstly, we inhibited endogenous AKT activity by using

the specific chemical inhibitor AKTi IV. Secondly, we increased AKT activity by transfecting a

kinase hyperactive form of AKT with gag-AKT [27]. One of the predicted AKT substrates is

MST2 (MST2), which is an important protein kinase in the Hippo pathway that can phosphor-

ylate and activate LATS1 [21], and which according to the prediction should be phosphory-

lated at serine 18. Unfortunately, no commercially available antibody exists that could measure

this phosphorylation site. Therefore, we employed an indirect approach to validate this predic-

tion. We used an antibody that specifically binds to phosphorylated AKT substrates, which

will immunoprecipitate (IP) all the proteins that are phosphorylated by AKT. Next, we blotted

this IP using a specific antibody against MST2 (S1C Fig). The inhibition of AKT resulted in a

slight, but consistent decrease of MST2 phosphorylation (0.75 fold), while expression of active

AKT resulted in a 10 fold increase (Fig 6). The results validate the prediction that AKT1 phos-

phorylates MST2.

Fig 6. Experimental validation of model predictions. A) HEK293 cells were transfected with non targeted siRNA (Scr) of the indicated siRNA against

LATS1. Phosphorylation of CREB or p53 was measured using specific antibodies and normalised to the level of expression of the corresponding proteins.

The graph shows the fold change of the phosphorylation of the specific residues with respect to the Scr control. B) HEK293 were transfected with empty

vector (EV) or GAG-AKT or treated with AKTi IV (10μM) for 1 hour. Phosphorylated proteins were immunoprecipitated using an anti-AKT antibody and

the immunoprecipitates were blotted with anti-MST2. The bars show the fold change with respect to the control. The experiments were repeated at least 2

times. Error bars represent standard variations.

https://doi.org/10.1371/journal.pcbi.1007578.g006
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After confirming the new site-specific kinase-substrate relationships involving the LATS1

and AKT1 kinases as reported above, we found out that none of the six existing systems used

in our comparative validation could predict these phosphorylations on high stringency set-

tings. This further demonstrates the unique power of LinkPhinder in the context of computa-

tional phosphorylation prediction.

Mass spectrometry experiments confirm seven previously unknown

phosphorylations by LATS1

To extend the targeted validation experiments we cross-referenced our predictions with high-

throughput phospho-proteomic data on the LATS1 interactome (Fig 7A). This strategy is

based on the fact that in order to phosphorylate a substrate, the kinase needs to bind to it.

Based on our previous observations, kinases tend to be associated with their substrates in com-

plexes that can be isolated and characterized by mass spectrometry [28]. Thus, by isolating all

proteins that are bound to LATS1 by immunoprecipitation (IP) and analyzing this interactome

using mass-spectrometry based proteomics, we should be able to identify a large number of

LATS1 phosphorylation targets.

Using this approach, we obtained phospho-proteomic data on the LATS1 interactome from

cells treated with two proapoptotic signals: FAS and etoposide, which both activate LATS

kinase activity [29]. To identify the LATS1 interactome we transiently expressed GFP-LATS1

in HeLa cells, immunoprecipitated GFP-LATS1 with anti-GFP antibodies and identified the

associated proteins using mass-spectrometry. Unspecific binding proteins were discarded by

comparing with the control GFP IP. This approach identified seven proteins that were bound

to LATS1 and phosphorylated on at least one residue (Fig 7B, S1 Data). These proteins are

potential LATS1 substrates, but it is important to note that not all of these phosphoproteins

are LATS1 targets, because LATS1 also binds to proteins that are phosphorylated by other

kinases. Therefore, we cross-referenced this list of phosphorylated LATS1 interactors with our

list of predicted LATS1 phosphorylation targets from LinkPhinder (Fig 7C, S1 Data). This con-

firmed 7 previously unknown phosphorylations on three substrates; five residues were phos-

phorylated on LATS1 (S613, S278, S464, S181, T17), one on MAP4 (S5), and one on ZMYM2

(T1253). Importantly, stimulation with FAS caused reduction of the phosphorylation of phos-

phorylation of LAST1-S464, MAP4-S5 and ZMYM2-T1253 (Fig 7D) indicating that regulation

of these residues are specifpicaly regulated by the death receptor pro-apoptotic signal.

After confirming the new site-specific kinase-substrate relationships involving the LATS1

kinase as reported above, we searched for these in the prediction data provided by the existing

tools. However, on high stringency settings, only GPS could predict one of the seven predic-

tions made by us (LATS1-S464, GPS Score = 8.8, S2 Data). This further demonstrates the

enhanced prediction capabilities of LinkPhinder.

Kinase assays based on mass spectrometry confirm the sensitivity of

LinkPhinder

One of the challenges to show the sensitivity of our tool and how it compares with existing

tools is the lack of experimental methods to validate substrates systematically on a large scale.

In order to further validate LinkPhinder predictions we decided to extend our validation

experiments and use an in vitro kinase assay system that can identify multiple substrates for a

given kinase. This method is based on the purification of proteins that have been phosphory-

lated by the kinase using an ATP analogue modified with a biotin group [30]. Briefly, all the

endogenous kinases are inhibited with FSBA, a pan-kinase inhibitor, and the recombinant

kinase is added to protein lysates together with ATP-biotin. ATP-biotin allows the purification
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Fig 7. Mass-spectrometry validation of a subset of LinkPhinder predicted phosphorylations. A) Overview of the experimental

design. B) Mass-spectrometry result: Specific LATS1 interactors and their phopshorylations. Bold rows indicate phosphorylation

that were predicted by LinkPhinder. (�There is a risk that ZMYM2 binding might be unspecific. Some samples show high

intensities in the GFP1 control, see panel D.) C) LinkPhinder predictions for the results in panel B. D) Mass-spec raw intensity

values (dots) of the detected phosphorylation sites in GFP-LATS1 associated proteins under the indicated conditions (n = 6

replicates), and corresponding box plots indicating median (red line), upper and lower quartile (grey box), whiskers (most

extreme values not defined as outliers), and outliers (plus marks) defined as values outside 1.5 times the interquartile range.

https://doi.org/10.1371/journal.pcbi.1007578.g007
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of phosphorylated proteins using streptavidin and the subsequent identification of these pro-

teins as substrates using mass-spectrometry. In order to test the method we replicated the

Pflum study using PKA as kinase in HeLA cells [30] in a different cell line (HEK-293). From a

total of 834 identified proteins, 34 proteins were identified as putative substrates of PKA by

comparing with the PKA deficient control samples (Table 4, and supplementary experimental

information). Five of these proteins were previously identified in the Pflum study, and 11 of

them were isoforms or proteins of the same protein family. We also identified 18 new putative

substrates. These additional 18 proteins that did not occur in the Pflum study using HeLa cells

may be cell-specific substrates in the here used HEK-293 cells. The overlap in the results clearly

indicated that the global kinase assay is an additional tool that could be used to validate our

predictions.

We then extended our validation experiments using this global kinase assay to LATS1 and

MST2. First, we used LATS1 as kinase. We identified 240 putative LATS1 substrates from a

total of 1397 identified proteins by comparing to the LATS1 deficient controls (Table 4, and

detailed description in Section on Experimental Model and Subject Details). Secondly, we

used MST2 as kinase. MST2 is another core kinases of the MST2/Hippo pathway with poorly

characterised substrates. Our results identified 211 proteins as putative MST2 substrates.

Strengthening our confidence into the validity of these results, five of the identified putative

substrates have been described as MST2 interactors previously.

The experimentally validated PKA, MST2 and LATS1 substrate predictions made by Link-

Phinder are listed in Table 4. The table also provides the sensitivity (S) of these predictions in

the context of each specific kinase assay. The sensititivy was computed as

S ¼
SUBSpredicted
SUBStotal

;

where SUBSpredicted is the number of substrates for which LinkPhinder provided at least one

site-specific phosphorylation prediction with a score above the high confidence threshold, and

SUBStotal is the number of substrates that were identified in the kinase assay and that are also

present in the PhosphoSitePlus knowledge graph. Identified substrate proteins that were not in

the knowledge graph were excluded for this analysis, because no predictions can be generated

for those proteins.

The sensitivity of the PKA predictions was 0.57, which we consider a good result given that

they were validated in an unbiased approach that has inherent technical limitations. For the

poorly characterised MST2 and LATS1 kinases the sensitivities were lower, 0.13 and 0.17

respectively. It must be noted that generating predictions for MST2 and LATS1 is challenging

because only a few substrates have been described experimentally, and most of the existing

predictions tools could not generate predictions for MST2 and LATS1. Together these results

indicate that LinkPhinder can be used to predict kinase-substrates interactions for poorly

characterised kinases.

Finally, we wanted to benchmark LinkPhinder performance against the exsisting tools.

However, we found this was not an easy task. Comparing LinkPhinder with existing tools

Table 4. Sensitivity (S) of LinkPhinder substrate predictions per each of the kinase assay.

Kinase Predicted substrate gene names S

PKA PKA, TGM2, PSMC5, PA2G4 0.57

MST2 MST2, MOB1A, NUP153, SNAPIN 0.13

LATS1 LATS1, RHOA, VCP, SNAP25, CCT2, HNRNPK, RPS6, HSP90AA1 0.17

https://doi.org/10.1371/journal.pcbi.1007578.t004
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using the results of these experiments is not as straightforward as in the cases reported before.

The main reasons are conceptually different methods for determining the decision threshold

employed by each of the tools. This does not allow for direct comparisons in terms of sensitiv-

ity as defined above. However, one high-level observation can be made: Only GPS matches the

coverage of LinkPhinder as it can produce predictions for all the three kinases we assayed. Net-

worKin and NetPhorest cannot compute any predictions for LATS1, NetPhos and Phospho-

predict only cover PKA, and Scansite covers none of the assayed kinases.

LinkPhinder web interface

In order to facilitate usage of LinkPhinder by the community we have developed an online

interface available at https://LinkPhinder.insight-centre.org/.

A typical interaction with LinkPhinder is depicted in Fig 8. The corresponding instruction

video is available in the About tab of the tool’s web page. Briefly, the protein of interest can be

entered into a search box with auto-completion (box A). Gene names and UniProt accession

numbers are supported. The search is performed for high-stringency statements by default.

However, all predicted statements can be searched as well (cf. the radio buttons in A). The

query protein is evaluated by the system in two different ways, as a kinase and as a substrate

and each type of predictions can be browsed independently (box B). The results can be filtered,

and the predicted kinase-substrate pairs can be expanded to see the list of corresponding phos-

phorylation sites and prediction scores. Export of the predictions into a CSV file is also

Fig 8. The LinkPhinder web interface. Shown is a typical search and browse interaction.

https://doi.org/10.1371/journal.pcbi.1007578.g008
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possible. Further, users can easily access contextual information from a comprehensive protein

database (UniProt) by clicking on the proteins in the results (box C).

Discussion

In this work, we have overcome several limitations of the current phosphorylation prediction

tools by representing phosphorylation networks as knowledge graphs. Knowledge graphs are

a relatively new approach to representing relational knowledge in the Machine Learning,

Artificial Intelligence and Semantic Web communities. They have quickly gained popularity

for two main reasons. First, they can represent diverse types of knowledge in a simple format.

Secondly, they are amenable to robust techniques of statistical relational machine learning,

that can for example be used to discover new facts. The discovery naturally makes use of the

entire structure of the knowledge graph (i.e. latent features and long range, implicit relation-

ships instead of just local, explicit features). This makes the representation very useful in

domains where complex network dependencies are critical. Kinase-substrate relationships

are a good example of such a domain. Our results show that knowledge graphs enabled phos-

phorylation predictions that were not possible with existing tools that are primarily based on

local features.

In particular, we have shown that phosphorylation networks can be meaningfully captured

by knowledge graphs with kinases and substrate entities linked by relationships based on phos-

phorylation site motifs. Therewith, modern link prediction methods can be used to predict

novel phosphorylation reactions and estimate their probability based on the entire network

context. The resulting predictive model allows for making predictions about any protein pres-

ent in the input data. This is a substantial advantage when compared with the existing tools.

These tools typically focus on substrates as initial queries and include only a limited number of

kinases. LinkPhinder not only covers a much broader range of possible kinase-substrate rela-

tionships than existing tools, but also shows very high generalization power and desirable

ranking properties not exhibited by other, currently gold standard approaches. This aspect has

been validated in experiments showing that our tool can generate numerous biologically valid

predictions. Crucially, these predictions were not possible with a representative range of state-

of-the-art tools (Scansite [7], GPS [8], NetPhos [9], NetPhorest [10], NetworKin [6, 10], Phos-

phoPredict [11]), demonstrating the utility of our tool.

More specifically, none of the LATS1 and AKT1 discoveries validated in targeted experi-

ments were predicted with four out of six related tools starting with LATS1 or AKT1 as kinase

queries. Only GPS and PhosphoPredict support such queries, but for less than 66.4% and 1.8%

of the kinases covered by LinkPhinder, respectively. Furthermore, querying for the substrates

directly did not predict any of the validated discoveries using any of the existing tools using

their high stringency settings (if applicable; if controlling the stringency was not offered by a

particular tool, we used all predictions made by the given tool). On medium stringency, the

GPS tool could identify one prediction; the CREB1 phosphorylation by LATS1. On low strin-

gency, the NetPhosK tool could also identify one prediction; the MST2 phosphorylation by

AKT1. No existing tool could identify both predictions. The LATS1 predictions validated by

the mass spectrometry experiments were not be predicted by any of the existing tools but one.

Specifically, the GPS tool could predict one out of the seven predictions we made (LATS1

auto-phosphorylation at S464) on high stringency (and no further ones on lower stringencies).

The other five tools could not identify any of our validated predictions. When cross-referenc-

ing the list of LATS1 predictions from other tools with our predictions, no additional predic-

tions were made, demonstrating that our tool has the best coverage. Together, these results

clearly illustrate the advantages of our tool.
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Experimental validation using the global PKA, MST2 and LATS1 kinase assays showed

promising results in terms of LinkPhinder’s sensitivity for identifying new substrates. Direct

comparison with the existing tools was not possible due to disparate methods employed by

each tool in determining their decision/high-stringency threshold. However, the results recon-

firmed one significant benefit of LinkPhinder. We were able to produce substrate predictions

for all three kinases studied, which was not possible with five of the six existing tools, with the

exception of GPS, again demonstrating that LinkPhinder’s increased kinase covarage is an

important contribution.

To build on the work presented here, we intend to incorporate more contextual data (e.g.,

relevant protein interactions from STRING or pathway data from Reactome) to see whether

they can bring new and/or more accurate predictions pertinent to clinically relevant pathways.

We also want to develop predictive models that would utilize the biology of phosphorylation

directly in the training process and not only in the knowledge graph conversion and negative

example generation. As demonstrated, incorporating more network context and biological

knowledge into the prediction process has great potential to further increase the coverage, pre-

dictive power, and usefulness of the resulting tools.

Another research direction to explore in future is the applicability of our predictive model

to improving the accuracy and scope of methods for predicting downstream effects of kinase

signalling or the kinase activity profiles. An example of such method that could benefit from

our results is described in [31]. We believe follow-up experiments combining focused phos-

phoproteomics studies like this with our model will further demonstrate the practical rele-

vance of the work presented here.

Materials and methods

Computational model and validation details

Datasets and tools used. To compile the phosphorylation network that is the primary

input for building the LinkPhinder model, we used the PhosphoSitePlus dataset in a version

available on 26th of June 2017 (c.f. https://www.phosphosite.org/staticDownloads.action).

There were 10,173 phosphorylation statements on 362, 7,302 and 2,377 distinct kinases, sub-

strate-site combinations and substrates in the compiled phosphorylation network, respectively.

Note that in the construction of all datasets, we have focused only on the Homo Sapiens species,

unless specified otherwise.

In order to convert the phosphorylation statements extracted from PhosphoSitePlus into a

knowledge graph, we had to compute motifs characteristic to the context sequences of phos-

phorylation sites. For that task, we used the MEME tool, version 4.11.2 (c.f. http://meme-suite.

org/doc/download.html?man_type=web).

We used three state of the art knowledge graph embedding and link prediction methods to

train a model that can discover new links in the phosphorylation knowledge graph. The meth-

ods are TransE [32], DistMult [33] and ComplEx [15].

The PhosphoSitePlus dataset, together with UniProt (c.f. http://www.uniprot.org/) was also

used for generating a mapping between substrates and their possible phosphorylation sites.

This mapping was used in the conversion of the internal, motif-based knowledge graph state-

ments to phosphorylation statements when computing scores of possible phosphorylations

that have not been known before. We focused only on substrates present in our knowledge

graph, which resulted in 74,142 distinct substrate-site pairs that can be used for generating

candidate phosphorylations (i.e. potential discoveries).

To assess LinkPhinder in comparison with related state of the art systems, we downloaded

and/or generated full sets of phosphorylation predictions that can be made with the following
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tools: Scansite 3 (c.f. http://scansite3.mit.edu), KinomeExplorer (predictions produced by two

tools, NetworKIN and NetPhosK, c.f. http://kinomexplorer.info/), Netphos (c.f. http://www.

cbs.dtu.dk/services/NetPhos/), GPS (c.f. http://gps.biocuckoo.org/index.php) and Phospho-

Predict (c.f. http://phosphopredict.erc.monash.edu/). The numbers of predictions that can be

made with the corresponding tools are as follows: 6,130,542 (GPS), 5,192,235 (KinomeEx-

plorer), 3,614,271 (Netphos), 2,006,185 (PhosphoPredict), 311,196 (Scansite 3). The numbers

of high-stringency predictions are not straightforward to determine using the set of all predic-

tions available, since some tools allow for stringency settings just at the level of manual, single-

protein queries. Thus we were only able to establish the number of high-stringency predictions

for Scansite, NetPhos and PhosphoPredict: 12,346, 212,107 and 132, respectively.

Construction of the phosphorylation network and knowledge graph for training the

model. The construction of the phosphorylation network requires data sources containing

relation information of kinase, substrate and substrate’s amino acid phosphorylation site. In

our experiment, we used PhosphoSitePlus kinase-substrate dataset, an experimentally deter-

mined substrates, sequences, cognate kinases, and metadata curated from the literature [14].

Only relations involving a kinase and substrate protein for the human species were considered

(KIN_ORGANISM == SUB_ORGANISM == ‘human’). Although the dataset includes phos-

phorylation site’s amino acids context sequence of size 7, we did not use that information as

we wanted to experiment with different and potentially larger context sequence sizes. Instead

we extract the context sequence from UniProt (Universal Protein Resource) and more specifi-

cally from the reviewed (Swiss-Prot) main protein sequence (uniprot_sprot.fasta) and from

isoform sequences (uniprot_sprot_varsplic.fasta). We discard any relation in the kinase-sub-

strate dataset for which the phosphorylation site does not match the UniProt sequence.

Table 5 presents some statistics about the phosphorylation network.

The knowledge graph conversion makes use of kinase family consensus motifs to transform

phosphorylation network statements to knowledge graph relations. The kinase families classi-

fication is extracted from UniProt’s human and mouse protein kinases: classification and

index. Only information about human kinases which are part of the phosphorylation network

are kept.

The conversion of phosphorylation network data into knowledge made use of the MEME

tool in a pipeline graphically described in Fig 9.

To realise the step 3 of the above pipeline we used specifically the meme command line

utility for sequence motif discovery, version 4.11.2. MEME was applied in parallel on batches

of site context sequences drawn from substrates targeted by kinases of the same family. The

size of the batches was a configurable hyper-parameter of the conversion and model training

process. We used values ranging over the set {50, 100}. The static parameters used for every

invocation of the MEME tool were: -text, -protein, -mod zoops, -x_branch,

-minw 2.

Table 5. Phosphorylation network components statistics.

No. of elements in the phosphorylation network

Phosphorylation relations 9,802

Kinases 327

Substrates 2,350

Phosphorylation sites 7,083

Avg. No. of substrate/kinase 7.19

Avg. No. of substrate’s site/kinase 21.66

https://doi.org/10.1371/journal.pcbi.1007578.t005
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The MEME parameters that were dependent on the specific properties of the sequence

batch and/or hyper-parameters of the whole model were: ’-maxw MW, -maxsize MS,

-nmotifs NM, -bfile BF where MW was the maximum width of a sequence in the batch,

MS was the maximum width multiplied by the number of sequences in the batch, NM was the

maximum number of motifs to be generated (set conservatively to 10 in the reported experi-

ments as no batch generated more motifs than that number under any tested settings) and BF
was a background Markov model of order 5 generated from the sequence batch.

Table 6 presents some statistics about the generated knowledge graph.

Training of the LinkPhinder model. Generating a phosphorylation knowledge graph.

Before we could train a statistical relational learning model, we had to construct a knowledge

graph representing the known phosphorylation information. As the primary input into the

knowledge graph, we chose a phosphorylation network compiled from the PhosphoSitePlus

[14] data set (focusing on Homo Sapiens species only). In principle, any phosphorylation data

can be used, but PhosphoSitePlus is well curated and comprehensive making it an ideal start-

ing point. There were 10,173 site-specific phosphorylation statements on 363 and 2,377 dis-

tinct kinases and substrates, respectively, in the compiled phosphorylation network. The

network consists of statements hK, L, Si where K, L, S are kinase, phosphorylation site and sub-

strate, respectively. The biological meaning of such statements is that the kinase K phosphory-

lates the substrate S by binding to it and attaching a phosphoryl group to the site L.

To convert the phosphorylation network into a knowledge graph, we utilised motifs of

phosphorylation sites preferred by specific kinase families. For each kinase family as defined in

[34], we computed a set of consensus sequence motifs using the MEME tool run with parame-

ters described in the previous section. The input to the tool were sets of sequences representing

the local context of 2k + 1 amino acids surrounding all phosphorylation sites in substrates tar-

geted by the kinases in each family. The value of k was a configurable hyperparameter of the

conversion algorithm representing the context size, i.e. the number of amino acids on the left

and right side of the phosphorylation site. See section on Finding the Optimal Hyperpara-

meters of the Model for details on the other hyperparameters. The output of the conversion

process were motifs that characterise the local context of the kinase-substrate interaction using

Fig 9. High-level workflow of generating predicate labels for the phosphorylation knowledge graph based on motifs extracted from the context

sequences of phosphorylation sites by means of the MEME tool.

https://doi.org/10.1371/journal.pcbi.1007578.g009

Table 6. Knowledge graph components statistics.

No. of elements in the knowledge graph

Motif-based relations 9,956

Kinase families 12

Kinase family motifs (relation types) 24

Avg. No. of motif/kinase family 2.00

https://doi.org/10.1371/journal.pcbi.1007578.t006
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a position-specific scoring matrix, that quantifies the relative contribution of each amino acid

in the substrate sequence. The scoring matrices were extracted from the text output of the

MEME tool executed as described above. The motifs were consequently used for converting

the hK, L, Si statements coming from the input phosphorylation network to labeled knowledge

graph edges hK, M, Si, where M is a link label (also called a typed relation) that corresponds to

a motif compatible with the family of K and the site L in the substrate S. Here, compatibility

means a positive score of the site’s context sequence with respect to the position-specific scor-

ing matrix of the motif M.

The end result of the conversion is a knowledge graph consisting of true positive statements

hK, M, Si. Here, a protein may act as kinase in several statements and as substrate in several

other statements. Therewith, these statements describe entire known phosphorylation network

from PhosphoSitePlus.

Generating negative statements based on the phosphorylation biology. The knowledge

graph generated from the phosphorylation network can be used for discovering new kinase-

substrate relationships by means of link prediction [35], which is a technique for estimating

likelihood of existence of a typed relationship between two entities based on other observed

relationships in the data. The typical intention is discovering new relations that are not explic-

itly present in a knowledge graph. Training a link prediction model is a supervised machine

learning process, and therefore requires negative examples in addition to the positive state-

ments in the phosphorylation knowledge graph. Such negative examples are typically created

by corruption of the positive statements by introducing random entities as part of the positive

relation statements [35]. In our case, this technique could lead to correct kinase-substrate rela-

tionships being treated as negatives because kinases are promiscuous (i.e. one kinase can phos-

phorylate many substrates and one phosphorylation site can be targeted by many kinases).

Hence, random corruptions of true statements may generate many false negative statements.

Such false negatives would adversely affect the discriminative power of the model. Therefore,

we need to impose specific restrictions when generating negative statements. We based these

constraints on biological knowledge as follows. Firstly, most kinases belong to families that

usually share substrates, while different families tend to phosphorylate different substrates

[34]. Secondly, substrates are unlikely to be phosphorylated by a kinase if they have highly

incompatible phosphorylation sites with respect to the kinase consensus motif. This incompat-

ibility directly motivates two types of corruptions. For a statement hK, M, Si, valid corruptions

are: i) statements h�K ;M; Si such that �K is from a different family than K; ii) statements

hK;M; �Si such that all phosphorylation sites in �S score negatively with respect to the scoring

matrix of the motif M.

Training the model on the full input dataset to maximise its generalisation power. The

model with best-performing hyper-parameters was retrained on the entire knowledge graph

derived from PhosphoSitePlus. This is appropriate due to the excellent numerical stability

reported in Table 1. The main reason for training the model on the entire dataset is that such a

strategy is preferable for making new discoveries because it uses all available information.

The model can be used for computing probabilistic ranking scores (with values between 0

and 1) of predictions ranging across all possible combinations of kinases, sites and substrates

present in PhosphoSitePlus, and thus contribute to the discovery of previously unknown

phosphorylations.

As described in Fig 2 and the prior parts of this section, the core link prediction model

works on the converted knowledge graph, which means that it can only deal with relationships

that abstract the site information using motifs. Putative phosphorylations for which the model

is supposed to compute scores, therefore, have to be converted to the same form. After the
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converted phosphorylation statements are scored, they have to be transformed back to the

form that contains the specific phosphorylation site. This conversion is dual to the knowledge

graph conversion—each statement hK, M, Si corresponds to statements hK, L, Si such that L is

a known phosphorylation site in S (as per the PhosphoSitePlus [36] and UniProt data sets) that

scores positively with respect to the position-specific scoring matrix of the motif M.

Given a single protein as a query, the model can produce a ranked set of candidate phos-

phorylation sites that involve the protein either as a substrate or as a kinase. The ranked list

can optionally be filtered using high- or medium-stringency thresholds. We apply a threshold

derived from the manually curated phosphorylation network we use as an input—the high-

stringency threshold is a value such that 99.5% of the known phosphorylations score above it

(the value is 0.672 in the reported model). The medium-stringency threshold is 0.5 (i.e. a score

that indicates higher-than-random plausibility of the given statement). The ranking of the

results reflects the global network context of all known phosphorylation sites and kinase-sub-

strate relationships represented in the input knowledge graph, which is a type of information

that is not incorporated by any other existing tool. Moreover, the predictions can be generated

on any protein, be it a kinase or substrate.

This coverage and flexibility makes our model more powerful than most existing phosphor-

ylation prediction tools that can only be queried for substrate proteins (in the GPS and Phos-

phoPredict tools, one can generate predictions associated with a kinase, but the systems

combined still cover only about half of the kinases covered by LinkPhinder).

In total, LinkPhinder can produce 11,581,940 predictions when applied to all putative phos-

phorylations that can be generated from the proteins and phosphorylation sites present in the

input data (PhosphoSitePlus). Out of these, 2,009,171 and 7,232,636 are of high and medium

stringency, respectively. We can make predictions for 327 human kinases, nearly twice as

many predictions than the next best among six related methods we have tested (GPS [8], with

217). This shows substantial improvement in the kinome and also general proteome coverage.

Further details and information about the coverage of LinkPhinder compared to other sys-

tems can be found in Table 7.

Finding the optimal hyperparameters of the model. Prediction of phosphorylation reac-

tions is based on models trained on the knowledge graph data consisting of positive and nega-

tive statements. Negative statements are computed via perturbation of positive statements by

means of ad-hoc operators. In our experiments, two negative statements are generated from

each positive statement. Data is split into training+validation and testing. In particular, eighty

percent of the available data is used for training and validating the models and the remaining

part is used for testing. This data is used to evaluate multiple link prediction techniques with

the aim of optimising prediction performance. For each of these, a grid search within the space

Table 7. Statistics of the coverage of the different predictive systems and their overlap with the [19] gold standard. The letters S and K in the column headers denote

substrates and kinases respectively.

Model Triplets Kinases Substrates K-S pairs S-S pairs S per K Sites per S

Cutilass20 19066 (100.0%) 103 (100.0%) 2556 (100.0%) 15178 (100.0%) 6090 (100.0%) 147.4 2.4

GPS 6130543 (5.3%) 218 (62.1%) 2531 (35.9%) 516158 (23.7%) 293070 (42.8%) 2367.7 115.8

Netphos 3614272 (2.8%) 18 (5.8%) 2531 (35.9%) 42957 (2.7%) 293354 (43.2%) 2386.5 115.9

Networkin 5192236 (0.0%) 206 (55.3%) 6676 (70.0%) 986494 (35.1%) 40737 (0.0%) 4788.8 6.1

Phosphopredict 2006186 (0.0%) 13 (1.0%) 40624 (99.7%) 252509 (0.1%) 1332427 (25.1%) 19423.8 32.8

Scansite 311197 (0.7%) 34 (16.5%) 2530 (35.9%) 61268 (5.3%) 157214 (36.5%) 1802.0 62.1

netphorest 5192236 (0.0%) 206 (55.3%) 6676 (70.0%) 986494 (35.1%) 40737 (0.0%) 4788.8 6.1

LinkPhinder 11581940 (26.2%) 327 (84.5%) 2350 (33.2%) 738518 (35.7%) 63509 (39.7%) 2258.5 27.0

https://doi.org/10.1371/journal.pcbi.1007578.t007
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of available hyperparameter values of the models is performed. For each configuration, 10-fold

cross validation is run. The combination of prediction technique and parameters that delivers

the best performance is selected and this information is used to train a model on all the avail-

able data in order to exploit the entire knowledge about the phosphorylation reactions that

have been experimentally validated.

Three link prediction techniques have been used, they are: TransE, DistMult and ComplEx
[15, 32, 33]. TransE is one of the earliest techniques to have been proposed and its simplicity

makes it a valid reference to learn about embeddings. In our case these embeddings are entities

and relation types that are represented by means of vectors of the same length. A true state-

ment is expected to satisfy the vectorial expression subject + relation type� object. DistMult

adopts a different approach, the score is the sum of the element-wise products between the

subject vector, a diagonal matrix representing the relation type and the object vector:

score ¼
Xd

i¼1

subjecti � relationi � objecti

This denotes that the score is not built considering inter-relations between different latent fea-

tures. ComplEx follows the same approach as DistMult, with the difference that complex num-

bers are used in place of real values. The score is the real part of the score formula used in

DistMult.

The hyperparameters that control model generation are, in this order: number of negatives

generated for each positive statement; number of training epochs through which the model

parameters are optimised; number of batches in which data for model training is divided;

batch size of amino acid sequences for motif generation (it affects the number of relation

types); number of dimensions of vectors; margin of the hinge loss; distance function for com-

puting similarity (only for TransE); learning rate of the model and, ultimately, context size,

namely, the number of amino acids to consider on the left and on the right of the binding site.

While for some hyperparameters values are selected from a set, for others the values are fixed

as they were determined by means of independent experiments. Their respective values are

listed in Table 8.

The link prediction technique that delivers the best performance is ComplEx with vectors

of size 50 and context size equal to 15. This configuration was used to train a model on the

entire network of phosphorylations and their associated negatives. The trained model is used

to predict the likelihood of unobserved phosphorylation reactions actually existing in nature.

Table 8. Hyperparameters space used by grid search to identify the best model (L1, L2 stand for Manhattan and

Euclidean distance norms, respectively).

hyperparameter values

number of negatives 2

number of epochs 100

number of batches for model training 10

batch size for motif generation 50

embedding size {50, 100, 150, 250, 500}

margin 1

similarity (only TransE) {L1, L2}

learning rate 0.1

context size {7, 15}

https://doi.org/10.1371/journal.pcbi.1007578.t008
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Construction of the state of the art prediction data sets. The following paragraphs

describe the construction of sets of predictions computed by existing tools that are used in

comparative validation of the LinkPhinder model.

Scansite 3. Scansite searches for motifs within protein substrates that are likely to be phos-

phorylated by a specific protein kinase. It takes as input a protein substrate ID and sequence

and gives as output a confidence score for given substrate amino acid sites to be phosphory-

lated by one of 70 kinases handled by the system. We queried the system with all substrates

contained in our phosphorylation network and separately accepted results with low and high

stringency leveld.

NetworKIN and NetPhorest. KinomeXplorer framework contains results of both Net-

worKIN and NetPhorest systems with only the score changing. The KinomeXplorer dataset

uses gene identifiers to refer to protein phosphorylation. In order to compare the results

with the validation set we had first to use UniProt gene query to recover the protein identi-

fier. After downloading the dataset, we queried UniProt using both EmbID and gene name

to resolve a protein ID. In case a query did not yield any result or multiple proteins were

returned, the original statement was omitted. Finally, we keept only the system protein iden-

tifier-based statement responses that pertained to the proteins contained in our phosphoryla-

tion network.

NetPhos 3.1. The NetPhos 3.1 system predicts serine, threonine or tyrosine phosphoryla-

tion sites in eukaryotic proteins using ensembles of neural networks. The system can provide

predictions for 17 kinases only. Using the stand-alone software package, we queried the system

with all substrates and associated sequences contained in our phosphorylation network. The

results obtained ar low and high stringency levels were used seperately.

GPS 3.0. Group-based Prediction System (GPS) predicts phosphorylation sites with their

cognate protein kinases using a four level kinase hierarchical structure in multiple species. We

used the batch predictor of the desktop application to pull out results for all substrates and

associated sequences contained in our phosphorylation network.

PhosphoPredict. The PhosphoPredict system reportedly predicts kinase-specific substrates

and the corresponding phosphorylation sites for 12 human kinases, including CSNK1A1,

CSNK2A1, PRKACA, ATM, AKT1 (aka. PKB), SRC, GRK, PKC, GSK, CaMK, CDKs and

MAPKs. However, only six of these actually correspond to single kinases, whereas the other

seven are often rather diverse families of different proteins (CDKs, MAPKs, PKC, GRK, GSK,

CaMK), and thus we focused on them in our comparison. PhosphoPredict employs a feature

selection method based on the minimum Redundancy and Maximum Relevance (mRMR) to

select the most informative feature subsets that contribute to the prediction success of each

kinase families. We keept only those system statements which referred to the proteins present

in our phosphorylation network.

Comparative computational validation. A comparative evaluation was performed with

the purpose of assessing the performance of LinkPhinder in the context of existing phosphory-

lation prediction methods (i.e. GPS, NetworKin, NetPhorest, NetPhosK, Scansite and Phos-

phopredict). Since the process of training LinkPhinder is stochastic, the performance changes

slightly every time a new model is trained. To minimise the variability of the results, and allow

for comparison and repeatability of the experiment, the results we reported in the main part of

this work were averaged over 100 runs of the experiment. The dataset generated for each run

consists of positive triples, extracted from PhosphoSitePlus, and negative triples, generated by

randomly combining kinases with (site,substrate) pairs that appear in PhosphoSitePlus. The

training split accounts for 90% of the data, the remaining 10% is used for testing. Both training

and test set contain equal numbers of positive and negative instances.
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To evaluate LinkPhinder, training data are used to learn a model in each run and its perfor-

mance is evaluated on the test set. Triples in the test set are assigned the prediction score if this

is available, otherwise a zero score is assigned.

One note to be taken into account regarding prediction score assignment is this. As stated

in the main text, a very accurate model that generates predictions only on a small subset of the

triples may be of limited use in phosphorylation prediction. Hence, we also assessed the rate of

predictions a model is able to generate by measuring the percentage of triples in the test set for

which the model is able to generate a prediction (i.e. non-zero score). We refered to this value

as coverage in the Results section.

Concerning the existing methods to which we compare ourselves, scores are extracted from

the predictions provided by each method (created as described in the previous section). This

does not exclude that part of the testing triples may have been used to train the comparative

models. Assuming that this is the case, this would represent a disadvantage in terms of perfor-

mance for our model. Similarly to the LinkPhinder case, coverage is therefore computed over

the test data and zero scores are assigned to triples for which a prediction is not available.

Verifying the stability of LinkPhinder under different conditions of the computational

experiments. To make sure various decisions made in preparation of the benchmarking data

do not influence the presented results in terms of comparing the performance of LinkPhinder

and related existing tools, we have first experimented with a different positive-negative ratio

(ten negatives per one positives, see Table 9), and then with various different train-test split

ratios (Table 10).

The increase in the number of negatives per a positive typically hampers performance of

ranking-based models, and Table 9 clearly shows that our experiments are no exception. How-

ever, one can also immeditaly notice that LinkPhinder remains by far the best tool, and is sig-

nificantly less affected by the change. This demonstrates the superior stability of our tool in the

context of changing experimental conditions.

The results in Table 10 clearly show that while the performance of LinkPhinder decreases with

increasing proportion of testing over the training data, it is still superior to the corresponding

Table 9. LinkPhinder performance compared to other systems on our benchmark with 1:10 positive to negative ratio in the testing split where the training/testing

splits are 90% and 10% respecitvely.

Model AUPR AUROC P@10 P@50

GPS 0.259 ± 0.007 0.731 ± 0.006 0.337 ± 0.145 0.416 ± 0.063

NetworKin 0.281 ± 0.009 0.618 ± 0.007 0.798 ± 0.122 0.756 ± 0.055

NetPhorest 0.199 ± 0.007 0.597 ± 0.007 0.542 ± 0.137 0.520 ± 0.071

Scansite 0.149 ± 0.004 0.571 ± 0.006 0.132 ± 0.099 0.210 ± 0.048

Phosphopredict 0.091 ± 0.002 0.500 ± 0.006 0.029 ± 0.050 0.050 ± 0.029

Netphos 0.166 ± 0.006 0.563 ± 0.007 0.426 ± 0.149 0.390 ± 0.064

LinkPhinder 0.875 ± 0.010 0.982 ± 0.002 0.993 ± 0.025 0.981 ± 0.024

https://doi.org/10.1371/journal.pcbi.1007578.t009

Table 10. Relative LinkPhinder performance across different training-testing splits where the positive to negative ratio of the testing set is 1:10 (the relative perfor-

mance results were substantially less variable for the 1:1 ratio, therefore we do not report them here).

Model AUPR AUROC P@10 P@50

Train 60%, Test 40% 0.768 ± 0.006 0.969 ± 0.001 0.987 ± 0.034 0.981 ± 0.017

Train 70%, Test 30% 0.797 ± 0.006 0.974 ± 0.001 0.960 ± 0.049 0.968 ± 0.018

Train 80%, Test 20% 0.835 ± 0.005 0.978 ± 0.001 0.990 ± 0.030 0.984 ± 0.012

Train 90%, Test 10% 0.875 ± 0.010 0.982 ± 0.002 0.993 ± 0.025 0.981 ± 0.024

https://doi.org/10.1371/journal.pcbi.1007578.t010
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results of the related works given in Table 9. This further corroborates our claim of LinkPhinder’s

stability with respect to different experimental conditions.

Generating phosphorylation data for the web interface of LinkPhinder. In order to pre-

pare data of phosphorylation reactions for prediction, a list of known kinases and a list of

known substrates with their corresponding phosphorylation sites are extracted from the phos-

phorylation network. The elements of the lists are combined using their Cartesian product to

generate every possible combination of kinase and phosphorylation site of each substrate.

These are converted into knowledge graph phosphorylation statements and are then scored

using the previously trained best-performing prediction model (i.e. the result of the grid search

described previously). Finally, knowledge graph statements with their associated scores are

converted back to phosphorylation site-specific statements. If there are duplicate statements

after the conversion process that only differ in the scores assigned to them by the conversion

and the model, we only keep the one with the highest score determined by the model. This

is motivated by the fact that the model utilises more information on the actual phosphoryla-

tions than the conversion process and therefore its scores override the scores assigned after

conversion.

Experimental model and subject details

Cell culture experiments for targeted validation. Hek-293 cells were regularly grown in

Dulbecco’s modified medium supplemented with 10% foetal serum. Subconfluent cell were

transfected with Lipofectamine (Invitrogene) following manufacturer’s instructions. pSG5-

gag-AKT was previously described [37]. LATS1 siRNA and AKT siRNA were from Dharma-

corn and sequences have been described before [29]. Twentyfour hours after tranfection

HEK293 cells were serum deprived for 16 hours. Subsiquently, cell were lysed in 20mM

HEPES (pH 7.5), 150 mM NaCl, 1% NP-40, phosphatase inhibitors (2mM NaF, 10mMb-Gly-

cerolphosphate, 2 MM Na4P2O4) and protease inhibitors (5 μg/ml Leupeptin and 2.2 μg/ml

aprotinin). Cell lysates were separated by SDS-PAGE analysed by western blotting. Phosphory-

lated proteins were immunoprecipitated with pAKT-Substrate specific antibody. Briefly, the

lysates were incubated with 1μl of antibody and 5μl of protein-G sepharose beads for 1 hour at

4C in an orbital wheel. The immunoprecipitates were washed 3 times with lysis buffer. 2 bed

volumes of denaturing laemli buffer were added to the dry pelleted beads and immunocom-

plex were eluted by boiling the samples at 100C for 5 minutes. Anti-creb, anti-LATS1 anti-P53

anti-tub, p-YAP-S127 were obtained from commercial sources.

Mass-spectrometry experiments for extended validation. HeLa cells were transiently

transfected with a GFP-tagged LATS1 construct or a GFP construct as control. After 2 days

they were serum starved over-night and left untreated (control) or were treated with FasL

(50nM) or Etoposide (50muM) for 16 hours. Then, cells were lysed with Lysis buffer (20mM

4-(2 hydroxyethyl)-1piperazineethanesulfonic acid (HEPES) pH7.5, 150mM NaCl, 1% NP-40,

phosphatase inhibitors (10 mMβ-Gycerolphosphate, 1 mM Na3VO4, 2mM Na4P2O7, 2 mM

NaF) and protease inhibitors (5 μg/ml Leupeptin and 2.2 μg/ml Aprotinin), and proteins were

immunoprecipitated using GFP-trap_A (Chromotek) according to the manufacturer’s instruc-

tions. The beads were washed 3 times with lysis buffer followed by two washes with the same

buffer not containing NP-40. The proteins immunoprecipitated onto GFP-beads were pre-

pared for masss-spectrometry analysis as previously described [38]. Briefly, the immunopre-

cipitates were digested in two steps. Firstly, by adding 60μl of elution buffer-1 (2M urea,

50mM Tris-HCl pH7.5, 5μg/ml Trypsin), to each sample and incubation at 27˚C on a shaker.

After 30 minutes initial digestion the samples were centrifuged at 13,000 rpm in a table top

centrifuge for 30 seconds and the supernatant was collected into a new Eppendorf tube. In the
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second step 25μl of elution buffer-2 (2M urea, 50mM Tris-HCL pH7.5, 1mM Dithiothreitol)

was added per sample followed by centrifugation as above. The supernatant was collected into

a new Eppendorf tube. The elution step was repeated, and both supernatants were combined

and incubated overnight at room temperature to allow trypsin digestion to go to completion.

The, samples were alkylated by adding 20 μl iodoacetamide (5mg/ml), and incubation for 30

min in the dark at room temperature. The reaction was stopped by adding 1 μl 100% Trifluora-

cetic acid (TFA) to each sample. 100 μl of each sample was immediately loaded into equili-

brated handmade C18 StageTips containing Octadecyl C18 disks (Supelco) for desalting. Tips

were previously activated by washing with 50μl of 50% AcN and 0.1%TFA. After a quick cen-

trifugation the tips were washed with 50μl of 0.1%TFA. 100μl samples was loaded onto the tip

washed twice with 50μl of 0.1% TFA and eluted twice with 25μl of 50% AcN and 0.1% TFA

solution. The eluates were combined and concentrated until the volume was reduced to 5μl

using a CentriVap Concentrator (Labconco). Samples were diluted to obtain a final volume of

15μl by adding 0.1% TFA and centrifuged for 10 minutes at 13000rpm. 12μl of the samples

were analysed by MS. The samples were analysed by liquid Chromatography-Tandem Mass

Spectrometry (Nanoflow Ultimate 3000 LC and Q-Exactive mass spectrometer [Thermo]). A

10 cm long, 75 μm inner diameter, HLPC c18-reversed pahes column was used. Samples were

loaded at 600nl/min and peptides were eluted at a constant flow rate of 250nl/ min for 40 min.

A multisegment linear gradient of 2-135% buffer (98% Acetonitrile and 0.1% formic acid) in

positive ion mode was used. Data were acquired with the mass spectrometer operating in auto-

matic data dependent switching mode selecting the 12 most intense ions prior to MS/MS anal-

ysis. Mass spectra were analysed by MaxQuant. Label-free quantitation was performed using

MaxQuant.

PKA Kinase assay. Serum straved HEK293T were lysed in a Nonidet P-40 buffer (50 mM

Tris-HCl, pH 7.8, 150 mM NaCl, 1% (vol/vol) Nonidet P-40, protease inhibitors and phospha-

tase inhibitors). Lysates were treated at 1 mg/ml with 10 mM 5’-4-fluorosulphonylbenzoylade-

nosine (FSBA) solubilised in DMSO and then incubated at 31˚C for 2 hour. Samples were

spun down at 200 x g to remove any precipitate. Sample were diluted down with 2 ml of PKA

kinase buffer (50 mM Tris pH 7.5, 10 mM MgCl2, 0.1 mM EGTA and 2 mM DTT) and

desalted using a Millipore Amicon ultrafiltration columns with a 3 kDa molecular weight cut-

off. Following concentration, the samples were incubated with PKA kinase buffer (50 mM Tris

pH 7.5, 10 mM MgCl2, 0.1 mM EGTA and 2 mM DTT), 500 uM ATP-biotin and 1250 units

of recombinant PKA (New England Biolabs) in a total volume of 60 μl. Control samples with-

out recombinant PKA and ATP-biotin were also made up. The controls and kinase-added

samples were incubated at 31˚C for 2 hours. 300 μl of phosphate buffer was added to the sam-

ples. Streptavidin resin (100 μl of a 50% slurry) was incubated with the samples overnight at

4˚C. Samples were spun down samples at 2000 x g for 1 minute and the supernatant was

removed. Samples were washed 5 times with 1 ml of phosphate buffer. Samples were analysed

by mass spectrometry.

The full results of the assay are given in the kinase assays supplement (S1 Table).

MST2 Kinase assay. Serum straved HEK293T cells were treated with 3 μM of the MST2

kinase specific inhibitor, XMU-MP-1 or DMSO for 3 hours. Cells were lysed in a Nonidet P-

40 buffer (50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 1% (vol/vol) Nonidet P-40, protease inhib-

itors and phosphatase inhibitors). Lysates were treated at 1 mg/ml with 10 mM 5’-4-fluorosul-

phonylbenzoyladenosine (FSBA) solubilised in DMSO and then incubated at 31˚C for 2 hour.

Samples were spun down at 200 x g to remove any precipitate. Sample were diluted down with

2 ml of MST2 kinase buffer (40 mM HEPES pH 8.0, 10 mM MgCl2, 0.5 mM EGTA) and

desalted using a Millipore Amicon ultrafiltration columns with a 3 kDa molecular weight cut-

off. Following concentration, the samples were incubated with MST2 kinase assay buffer (40
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mM HEPES pH 8.0, 10 mM MgCl2, 0.5 mM EGTA), 500 uM ATP-biotin and 32 ng of recom-

binant MST2 (made in house) in a total volume of 60 μl. Control samples without recombinant

MST2 and ATP-biotin were also made up. The controls and kinase-added samples were incu-

bated at room temperature for 3 hours. 300 μl of phosphate buffer was added to the samples.

Streptavidin resin (100 μl of a 50% slurry) was incubated with the samples for 1 hour at room

temperature. Samples were spun down samples at 2000 x g for 1 minute and the supernatant

was removed. Samples were washed 5 times with 1 ml of phosphate buffer. Samples were ana-

lysed by mass spectrometry.

The full results of the assay are given in the kinase assays supplement (S2 Table).

LATS1 Kinase assay. Serum straved HEK293T cells were lysed in a Nonidet P-40 buffer

(50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 1% (vol/vol) Nonidet P-40, protease inhibitors and

phosphatase inhibitors). Lysates were treated at 1 mg/ml with 10 mM 5’-4-fluorosulphonyl-

benzoyladenosine (FSBA) solubilised in DMSO and then incubated at 31˚C for 2 hour. Sam-

ples were spun down at 200 x g to remove any precipitate. Sample were diluted down with 2

ml of LATS1 kinase buffer (25 mM HEPES pH 7.4, 50 mM NaCl, 5 mM MgCl2 and 5 mM

MnCl2, 5 mM β-glycerophosphate and 1 mM dithiothreitol) and desalted using a Millipore

Amicon ultrafiltration columns with a 3 kDa molecular weight cutoff. Following concentra-

tion, the samples were incubated with LATS1 kinase assay buffer (25 mM HEPES pH 7.4, 50

mM NaCl, 5 mM MgCl2 and 5 mM MnCl2, 5 mM β-glycerophosphate and 1 mM dithiothrei-

tol), 500 uM ATP-biotin and 100 ng of recombinant LATS1 (Abcam) in a total volume of 60

μl. Control samples without recombinant LATS1 and ATP-biotin were also made up. The con-

trols and kinase-added samples were incubated at 30˚C for 30 minutes. 300 μl of phosphate

buffer was added to the samples. Streptavidin resin (100 μl of a 50% slurry) was incubated with

the samples for 1 hour at room temperature. Samples were spun down samples at 2000 x g for

1 minute and the supernatant was removed. Samples were washed 5 times with 1 ml of phos-

phate buffer. Samples were analysed by mass spectrometry.

The full results of the assay are given in the kinase assays supplement (S3 Table).

Mass spectrometry sample preparation. The streptavidin resin containing the bound pro-

teins were incubated with 400 μl of elution buffer I (50 mM Tris-HCl ph 7.5, 2 M Urea, 181

ng/μl trypsin) at 37˚C for 30 minutes. The samples were spun at 2000 x g and the superntant

was retained. To the streptavidin resin 330 μl of elution buffer II (50 mM Tris-HCl ph 7.5, 2 M

Urea, 1 mM DTT) at 37˚C for 1 hour. The samples were spun at 2000 x g and the superntant

was retained. The two supernatant of elution buffers I and II were combined and incubated

overnight at 37˚C. After the incubation 130 μl of 5 mg/ml Iodocetamide was added to each

and the samples were incubated for 30 minutes at room temperature in the dark. C18 stage

tips that were previously prepared were mounted into a 1.5 ml eppendorf were activated by

adding 50 μl of 50% acetonitrile (AcN) and 0.1% Trifluoroacetic acid (TFA). The samples were

spun at 5000 rpm for 1 minute. 50 μl of 1% TFA was added to the C18 stage tips and the sam-

ples were spun at 5000 rpm. After the Iodocetamide incubation the reaction was stopped by

adding 1 μl of 100% TFA. The samples were loaded onto the C18 stage tips and they were spun

at 5000 rpm. The C18 stage tips were then washed by adding 50 μl of 1% TFA and then the

samples were spun at 5000 rpm, this was done twice. Before elution of the samples, the C18

stage tips were mounted into fresh 1.5 ml eppendorfs. The peptides were eluted of the C18

stage tips by adding 25 μl of 50% AcN and 0.1% TFA and spinning the samples at 5000 rpm,

this was repeated twice. Samples were evaporated for 10-15 in a CentriVap concentrator until

5 μl was left. The sample was then respuspended in 20 μl of TFA. The samples were then ana-

lysed by mass spectrometry.

Mass spectrometry. Mass spectrometry was performed using a Ultimate 3000 RSLC system

that was coupled to an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific).
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Following tryptic digest, the peptides were loaded onto a nano-trap column (300 μM i.d x

5mm precolumn that was packed with Acclaim PepMap100 C18, 5 μM, 100 Å; Thermo Scien-

tific) running at a flow rate of 30 μl/min in 0.1% trifluoroacetic acid made up in HPLC water.

The peptides were eluted and separated on the analytical column (75 μM i.d. × 25 cm, Acclaim

PepMap RSLC C18, 2 μM, 100 Å; Thermo Scientific) after 3 minutes by a linear gradient from

2% to 30%of buffer B (80% acetonitrile and 0.08% formic acid in HPLC water) in buffer A (2%

acentonitrile and 0.1% formic acid in HPLC water) using a flow rate if 300 nl/min over 150

minutes. The remaining peptides were eluted using a short gradient from 30% to 95% in buffer

B for 10 minutes. The mass spectrometry parameters were as follows: for full mass spectrome-

try spectra, the scan range was 335-1500 with a resolution of 120,000 at m/z = 200. MS/MS

acquisition was performed using top speed mode with 3 seconds cycle time. Maximum injec-

tion time was 50 ms. The AGC target was set to 400,000, and the isolation window was 1 m/z.

Positive Ions with charge states 2-7 were sequentially fragmented by higher energy collisional

dissociation. The dynamic exclusion duration was set at 60 seconds and the lock mass option

was activated and set to a background signal with a mass of 445.12002.

Analysis of mass spectrometry data. Analysis was performed using MaxQuant (version

1.5.3.30). Trypsin was set to be the digesting enzyme with maximal 2 missed cleavages. Cyste-

ine carbmidomethylation was set for fixed modifications and oxidation of methionine and N-

thermal acetylation were specified as variable modifications. The data was then analysed with

the minimum ratio count of 2. The first search peptide was set to 20, the main search peptide

tolerance to 5 ppm and the “re-quantify” option was selected. For protein and peptide identifi-

cation the Human subset of the SwissProt database (Release 2015_12) was used and the con-

taminants were detected using the MaxQuant contaminant search. A minimum peptide

number of 1 and a minimum of 6 amino acids was tolerated. Unique and razor peptides were

used for quantification. The match between run option was enabled with a match time window

of 0.7 minutes and an alignment window of 20 minutes.

Quantification and statistical analysis

Peptide identification. MaxQuant (version 1.3.0.5.) was used to analyse raw mass spec-

trometric data files from LC-MS/MS for protein quantification. Default settings were used

unless stated otherwise, including the following parameters: Trypsin/P digest allowing for 2

misscleavages; variable modifications included oxidation and acetylation; fixed modification

included carbamidomethylation (at Cysteine); to detect phosphopeptides we included phos-

pho (STY) as a modification; first search at 20 ppm: main search at 6 ppm mass accuracy (MS)

and 20ppm mass deviation for the fragment ions. The MS data were searched against a human

database (Uniprot HUMAN) with a minimum peptide length of 6, unfiltered for labelled

amino acids, at a false discovery rate (FDR) of 0.01 for peptides and proteins. The results were

refined through the re-quantify option; also “match between runs” was selected with a 1 min

time window, and label free quantification was selected with the minimum ratio count set at 1.

Supporting information
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S1 Data. Full set of LinkPhinder predictions (a single bzip2-archived CSV file; c.f. https://
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(BZ2)

S2 Data. Full set of predictions computed by the related works (a bzip2-archive of 6 CSV

files for each of the related tools; c.f. https://doi.org/10.6084/m9.figshare.12173109).

(TBZ)

S1 Fig. Supporting details on the experimental validation of the LATS1/YAP1 phosphoryla-

tion: (A-B) HEK293 were transfected with the indicated siRNAs. 48 hours after transfection

the cells were lysed and blotted with the indicated antibodies. (C) HEK293 were transfected

with empty vector (EV) or GAG-AKT or treated with AKTi IV (10M) for 1 hour. Phosphory-

lated proteins were immunoprecipitated using an anti-AKT antibody and the immunoprecipi-

tates were blotted with the indicated antibodies (a PDF figure, c.f. https://doi.org/10.6084/m9.

figshare.13118561).

(PDF)

Author Contributions
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31. Hernandez-Armenta C, Ochoa D, Gonçalves E, Saez-Rodriguez J, Beltrao P. Benchmarking substrate-

based kinase activity inference using phosphoproteomic data. Bioinformatics. 2017; 33(12):1845–

1851. https://doi.org/10.1093/bioinformatics/btx082

32. Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O. Translating embeddings for modeling

multi-relational data. In: Advances in neural information processing systems; 2013. p. 2787–2795.

33. Yang B, Yih Wt, He X, Gao J, Deng L. Embedding entities and relations for learning and inference in

knowledge bases. arXiv preprint arXiv:14126575. 2014;.

34. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the

human genome. Science. 2002; 298(5600):1912–1934. https://doi.org/10.1126/science.1075762

35. Nickel M, Murphy K, Tresp V, Gabrilovich E. A Review of Relational Machine Learning for Knowledge

Graphs. Proceedings of the IEEE. 2016; 104(1):11–33. https://doi.org/10.1109/JPROC.2015.2483592

36. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek Ez, Murray B, et al. PhosphoSitePlus: a

comprehensive resource for investigating the structure and function of experimentally determined post-

translational modifications in man and mouse. Nucleic acids research. 2011; 40(D1):11–22. https://doi.

org/10.1093/nar/gkr1122 PMID: 22135298

37. Boudewijn MT, Coffer PJ, et al. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal

transduction. Nature. 1995; 376(6541):599. https://doi.org/10.1038/376599a0

38. Turriziani B, Garcia-Munoz A, Pilkington R, Raso C, Kolch W, von Kriegsheim A. On-beads digestion in

conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction

proteomics. Biology. 2014; 3(2):320–332. https://doi.org/10.3390/biology3020320

PLOS COMPUTATIONAL BIOLOGY Accurate prediction of kinase-substrate networks using knowledge graphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007578 December 3, 2020 30 / 30

https://doi.org/10.1126/scisignal.aau8645
https://doi.org/10.3109/07853890.2014.912836
https://doi.org/10.3109/07853890.2014.912836
https://doi.org/10.3390/genes7060028
https://doi.org/10.1146/annurev-med-062913-051343
https://www.cellsignal.com/contents/resources-reference-tables/pi3k-akt-substrates-table/science-tables-akt-substrate
https://www.cellsignal.com/contents/resources-reference-tables/pi3k-akt-substrates-table/science-tables-akt-substrate
https://doi.org/10.1002/bies.201100133
https://doi.org/10.1002/bies.201100133
https://doi.org/10.1002/hep.26420
https://doi.org/10.1002/hep.26420
http://www.ncbi.nlm.nih.gov/pubmed/23532963
https://doi.org/10.1038/ncb1994
https://doi.org/10.1038/ncb1994
http://www.ncbi.nlm.nih.gov/pubmed/19935650
https://doi.org/10.1016/j.molcel.2007.08.008
http://www.ncbi.nlm.nih.gov/pubmed/17889669
https://doi.org/10.1002/cbic.201600511
https://doi.org/10.1093/bioinformatics/btx082
https://doi.org/10.1126/science.1075762
https://doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1093/nar/gkr1122
https://doi.org/10.1093/nar/gkr1122
http://www.ncbi.nlm.nih.gov/pubmed/22135298
https://doi.org/10.1038/376599a0
https://doi.org/10.3390/biology3020320
https://doi.org/10.1371/journal.pcbi.1007578

