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Abstract. Game boards are described in the Ludii general game sys-
tem by their underlying graphs, based on tiling, shape and graph opera-
tors, with the automatic detection of important properties such as topo-
logical relationships between graph elements, directions and radial step
sequences. This approach allows most conceivable game boards to be
described simply and succinctly.
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1 Introduction

The Digital Ludeme Project (DLP) is a five-year research project using Arti-
ficial Intelligence techniques to improve our understanding of the development
of games throughout history [2]. We are modelling the 1,000 most “important”
traditional strategy games in a consistent digital format, to provide a playable
database of the world’s traditional games for comparative analysis.

The Ludii general game system1 [5] is a software tool developed specifi-
cally for this task, for modelling the full range of possible board games (950+
games implemented in version 1.2.8). Games are described in terms of simple
ludemes assembled into structures to define arbitrarily complex behaviour, where
each ludeme is a game-related concept implemented as a Java class (or enum
attribute) in the Ludii code base [4].

A key challenge in this task is to allow the user to describe arbitrarily complex
game boards in a simple and intuitive way. This paper outlines our method for
describing game boards in the Ludii grammar for general games.

2 Game Graphs

In Ludii, the board shared by all players is represented internally as a finite
graph defined by a triple of sets G = 〈V,E,C〉 in which V is a set of vertices,
E a set of edges, and C a set of cells. In graph theory, a cell is more commonly
1 Ludii is available at ludii.games and the source code at github.com/Ludeme/Ludii.
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called face and represents a region bounded by a set of edges and that contains
no other vertex or edge.2 Vertex, edge and cell are all graph elements which
can refer to each other, and denote playable sites at which players can place
components during the game:

– Let v ∈ V denote a vertex. Then v is an endpoint to each edge in E(v), C(v)
gives the set of cells that v is part of, and V (v) = {v}.

– Let e ∈ E denote an edge. Then V (e) is a set of 2 vertices that are the
endpoints of e, C(e) gives the set of cells e is bounding, and E(e) = {e}.

– Let c ∈ C denote a cell. Then E(c) is the set of all the edges bounding c, V (c)
gives the set of the vertices which are the endpoints of the edges bounding c,
and C(c) = {c}.

(a) (b)

Fig. 1. A game played on vertices, edges and cells (a) and a game played on cells (b).

For example, Fig. 1a shows a game with pieces played on the vertices, edges
and cells of the board graph. Figure 1b shows a board game played only on the
cells but in which pieces may stack.

In any single game, components (or a stack of components) can be placed
on any graph element. For this reason, we define a playable site as a triple
〈Type, Index, Level〉 in which the Type can be (Vertex, Edge or Cell), the Index
is the number of the element and the Level is the index of the element in the
stack (0 meaning the ground).

Any ludeme referring to a playable site has to specify each of these data.
However, for convenience, Ludii uses default values. The default type of a loca-
tion is Cell, except if the description of the game specifies another default site
type. For levels, the default value is the top Level of the location specified, as
stacked site are typically owned by the player with a piece on top.

2 We sometimes use “game design” terms or definitions in lieu of stricter mathematical
equivalents, in keeping with Ludii’s primary purpose as a game design tool.
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2.1 Dimensions: Cells or Vertices

The graph is generated based on the specified board dimensions and default
site type. For example, a Chess board described (board (square 8)) (see
Fig. 2a) produces a square grid with 8 cells per row and column. However, a
Go board described as (board (square 19) use: Vertex) (see Fig. 2b) pro-
duces a square grid with 19 vertices per row and column. If the default site type
is Vertex or Edge then the board dimensions are based on the number of vertices
rather than cells.

(a) (b)

Fig. 2. (a) Chess (8 × 8 Cells). (b) Go (19 × 19 Vertices).

3 Game Board Description

Game boards are described in the Ludii grammar [3] using the following basic
EBNF syntax: <board> ::= (board <graph>) where the underlying <graph>
object defines the vertices, edges and cells that make up the game board.

The user can specify the location of each vertex (and adjacencies between
them as edges) to allow the description of arbitrarily complex graphs, or they
can take advantage of a range of predefined tilings, shapes and graph operators
for more concise descriptions (described more fully in Sect. 5). For example, the
three game boards shown in Fig. 3 are described by the following graphs (the
poly field describes the polygonal shape of the board):

(hex 4)

(tiling T3464 2)

(celtic (poly {{3 0}{3 4}{0 4}{0 7}{3 7}{3 11}{6 11}
{6 7}{10 7} {10 5} {6 5}{6 0}}))
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(a) (b) (c)

Fig. 3. Boards from tilings: hexagonal (a), semi-regular 3.4.6.4 (b) and celtic (c).

4 Graph Relations

For a graph G = 〈V,E,C〉, two different graph elements g1 and g2 can have
different relations:

– Adjacent: g1 and g2 are adjacent if and only if (∃e ∈ E(g1) ∩ E(g2)) ∨
(∃v ∈ V (g1) ∩ V (g2)) ∨ (∃c ∈ C(g1) ∩ C(g2)). In other words, two graph ele-
ments are adjacent if they share any graph element they are referring.

– Orthogonal: g1 and g2 are orthogonal if and only if ∃e1 ∈ E(g1),∃e2 ∈
E(g2), e1 = e2. In other words, two graph elements are orthogonal if they
share an edge.

E

Fig. 4. Adjacent diagonals (left) and non-adjacent diagonals (right).

– Diagonal: Two cells are considered diagonal if and only if:3
1. They share a vertex (but not an edge) and the bisectors of the angles

at that vertex in each cell are maximally opposed. Note that a cell can
have multiple diagonal neighbours through a vertex if all satisfy this prop-
erty. Or:

3 This definition differs slightly from the actual implementation, but it captures the
general understanding of diagonality between cells on a game board.
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2. If a cell has no such adjacent neighbour through a given vertex, then we
allow a non-adjacent diagonal neighbour through that vertex if the two
cells are coincident with the end points of some edge E (which does not
belong to either cell) and the bisectors of the angles at the end point in
each cell are maximally opposed.

These two diagonal relationships are shown in Fig. 4.
Diagonality is defined similarly for vertices, but transposing “cell” and “ver-
tex” in the above definitions.

– Off Diagonal: g1 and g2 are off diagonal if and only if g1 ∈ C, g2 ∈ C,∃v1 ∈
V (g1),∃v2 ∈ V (g2), v1 = v2,�e1 ∈ E(g1),�e2 ∈ E(g2), e1 = e2. In other
words, two cells are off diagonal if they are not diagonal, not orthogonal and
they share a vertex.

– All: g1 and g2 are related if they are orthogonally, adjacently, diagonally or
off diagonally related to each other.

These relationships are summarised for the regular tilings in Table 1.

4.1 Directions

Ludii supports the following direction types:

– Intercardinal directions: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW,
SW, WSW, W, WNW, NW, NNW.

– Rotational directions: In, Out, CW (clockwise), CCW (counter-clockwise).
– Spatial directions for 3D games: D, DN, DNE, DE, DSE, DS, DSW, DW,
DNW and U, UN, UNE, UE, USE, US, USW, UW, UNW.

– Axial directions subset (for convenience): N, E, S, W.
– Angled directions subset (for convenience): NE, SE, SW, NW.

Each graph element g has a corresponding set of absolute directions Ad and
relative directions Rd to associated graph elements of the same type. Absolute
directions can be any of the above direction types in addition to any relation
type (Adjacent, Orthogonal, Diagonal, Off Diagonal, or All).

Relative directions from an element g are defined by Rd(g, facing, rotation,
relation) where facing describes the direction in which a component at g is
facing, rotation describes the number of rightward steps of the component at
g, and relation describes the graph relation to use at each step (Adjacent by
default). Relative directions are: Forward, Backward, Rightward, Leftward,
FR, FRR, FRRR, FL, FLL, FLLL, BR, BRR, BRRR, BL, BLL or BLLL.

For example, consider a piece on a square board (which involves only the
eight major compass directions as adjacent relations). If the piece is facing N
(North) with a rotation of 0, the relative direction Forward is the graph element
immediately to the North (upwards) if such an element exists. However, if that
piece is facing E (East) and its current rotation is 1, the relative direction FR
(meaning “Forward Right”) is the graph element to its South East (if such an
element exists).
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Table 1. Relations for the regular tilings.

Relation Square Triangular Hexagonal

All

Adjacent

Orthogonal

Diagonal

Off-Diagonal
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4.2 Steps and Walks

A step is a record of two related graph elements (from and to) which can be
of different types and the absolute directions that describe their relationship.
For example, a cell A directly above another cell B on a Chess board could be
described as an Adjacent, Orthogonal or N step away.

Ludii also provides three relative step types (F, L and R) that allow users to
define walks within the board graph. These correspond the standard “forward”,
“left” and “right” commands used in turtle graphics [1], as shown in Fig. 5.

RL

F

RL
R,R

R

L,L

L

R,R

R

F

L

L,L

Fig. 5. Relative steps from various cell types.

This representation allows descriptions of piece movements to be easily trans-
ferred between different board topologies. For example, a knight move in Chess
may be described as the walk {F,F,R} as shown in Fig. 6 (left) ans this walk
may be directly used on a board based on the semi-regular 3.4.6.4 tiling (Fig. 6,
right). Note, however, that different topologies may introduce ambiguities such
as whether both right turns in the 3.4.6.4 knight move (dotted lines) should
be considered valid moves or only one of them (probably the furthest reaching
one). Such ambiguities should be resolved by the game designer according to the
behaviour they want.

Fig. 6. Walk {F,F,R} describes knight moves on square and 3.4.6.4 tilings.
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4.3 Radials

Many games involve piece movement through contiguous lines of cells in a direc-
tion, such as slide moves by the queen, rook and bishop pieces in Chess. Such
lines of play are called radials. Ludii automatically pre-generates all possible
steps between playable sites on the board and all possible radials derived from
them, for convenient game description and efficient processing.

For each playable site on the board S, each valid step to a neighbouring
graph element of the same type in an absolute direction d is extended as far as
possible, to produce a radial from S in direction d. For example, Fig. 7 shows
Orthogonal radials from the shaded cell on a circular Chess board, such as a
rook would move in the game Shatranj ar-Rumiya. Note that radials may bend
to follow the board topology.

Fig. 7. Orthogonal radials on a circular Chess board (Shatranj ar-Rumiya).

Radials extend step-by-step in the given absolute direction that minimises
deviation in the radial’s current heading. If the next step would deviate by 90◦

or more, then the radial terminates.
Radials can branch where two or more steps in the current direction are

equally as good.4 For example, Fig. 8 shows how an Orthogonal step into a
triangular cell may validly continue either L (left) or R (right), and thereafter
alternate {L,R,L,R,...} to produce branching zig-zagging radials in which the
direction of each individual step is less important than the average direction of
the radial overall.

4 Still to be implemented in Ludii.
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RL

R

L

RL

R

L

RL

RL

R

L

RL

R

L

RL

Fig. 8. Branching radial on a triangular grid.

5 Graph Operators

Graphs are initially defined by a tiling and/or shape but can then be further
modified using a range of graph operators. The complete set of tilings, shapes
and graph operators defined in the Ludii grammar is shown in Table 2. These
can be used in combination to define thousands of different boards types quickly
and easily. Greyed out items indicate planned future work not implemented yet.

For example, the very useful dual operator converts a source graph into its
weak dual defined by edges whose end points are the centroids of its adjacent
cells. Figure 9 shows a dual operation applied to a small graph based on tiling
3.3.4.3.4 to produce the well known Cairo tiling:

(dual (tiling T33434 2))

(a) (b) (c)

Fig. 9. A 3.3.4.3.4 tiling (a), its cell adjacencies (b) and its weak dual (c).
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Another useful operator is subdivide, which subdivides all faces with N or
more sides into triangular sub-faces that share a central vertex (default N =
1). Figure 10 shows a sequence of subdivide and dual operations applied to a
rhombitrihexahedral 3.4.6.4 tiling to produce a novel and exotic board design:

(dual (subdivide (dual (subdivide (tiling T3464 2) min:6))))

Table 2. Keywords in the Ludii grammar for describing game boards.

Tiling Shape Operator

Regular square add

square rectangle clip

hex hexagon complete

tri triangle dual

wedge hole

Semi-Regular regular (polygon) intersect

T488 (i.e. 4.8.8) poly (any polygon) keep

T4612 (i.e. 4.6.12) layers

T3464 (i.e. 3.4.6.4) Attribute makeFaces

T3636 (i.e. 3.6.3.6) Star merge

T31212 (i.e. 3.12.12) Diamond recoordinate

T33336 (i.e. 3.3.3.3.6) Prism remove

T33344 (i.e. 3.3.3.4.4) renumber

T33434 (i.e. 3.3.4.3.4) Modifier rotate

diagonals:<DiagType> scale

Custom pyramidal:<boolean> shift

concentric limping:<boolean> skew

spiral fractal/recursive splitCrossings

quadhex lattice subdivide

brick projective trim

celtic union

repeat
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(a) (b) (c)

(d) (e)

Fig. 10. A 3.4.6.4 tiling (a) subdivided at N ≥ 6 (b), its dual (c), all subdivided (d)
and its dual (e).

6 Conclusion

The Ludii grammar provides a simple way to describe most conceivable game
boards by their underlying graphs, using tiling, shape and graph operators. This
approach has allowed us to model the boards of over a thousand games for
the Ludii general game system, and continues to produce interesting new board
designs based on simple operations.

Future work will include improvements to symmetric board colourings (for
games in which cell colour is relevant) and adaptive coordinate labelling that
follows the contours of exotic boards. But the inclusion of a freeform graph
ludeme means that almost any game board that can described as a combination
of vertices, edges and/or cells can be defined, making this approach ideal for the
wide range of game boards to be modelled for the Digital Ludeme Project.
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