
1.  Introduction
Heatwaves remain one of the deadliest geophysical events (Hoegh-Guldberg et al., 2018; Koppe et al., 2004; 
Yaghmaei, 2020) and are projected to increase in magnitude and frequency with climate change (Lopez et al., 2018; 
Perkins et al., 2012; Perkins-Kirkpatrick & Lewis, 2020; Watanabe et al., 2013). A thorough understanding of the 
physical driving mechanisms is necessary to improve their prediction and to identify regions at risk under future 
emission scenarios. High impact extreme weather events in the Northern Hemisphere midlatitudes can be associ-
ated with slow moving, that is, quasi-stationary, and high-amplitude Rossby waves, which can remain in place for 
several days to weeks (Petoukhov et al., 2013). Most notable examples include the European heatwaves of 2003 
(Kornhuber, Petoukhov, Petri, et al., 2017), 2015 (Duchez et al., 2016) and 2018 (Drouard et al., 2019; Kornhuber 
et al., 2019; Vogel et al., 2019; Wehrli et al., 2020), the Russian heatwave of 2010 (Di Capua et al., 2021; Lau & 
Kim, 2012), and the recent North American heatwave of 2021 (Philip et al., 2021). Such extreme weather events 
often do not occur in isolation, but are a regional imprint of a hemispheric pattern with extreme heat and rainfall 
extremes occurring almost simultaneously in different longitudinal locations (Coumou et al., 2014; Kornhuber 
et al., 2020). For instance, the circumglobal wave pattern that contributed to the 2018 European heatwave also 
promoted extreme rainfall and flooding in Greece, a heatwave in the Caspian Sea region and extreme rainfall 
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in Japan (Kornhuber et al., 2019), as well as a concurrent heatwave in California (Domeisen et al., 2022). The 
amplified wave pattern that fueled the extreme heat over northwestern North America in late June 2021 occurred 
almost simultaneously with an extreme heatwave in Scandinavia and Siberia.

Topography and thermal contrast, for example, across land—ocean boundaries, act on the atmospheric circula-
tion and favor particular wave patterns of regional and hemispheric extent that exhibit a strong seasonal cycle 
(Chang, 2009; Charney & Eliassen, 1949; Held et al., 2002). For example, the Rocky Mountains force a station-
ary ridge over the North American continent (e.g., Brayshaw et al., 2009; Saulière et al., 2012), which might have 
strengthened in recent winters (Singh et al., 2016). Similarly, the subtropical jet over Eurasia is influenced by the 
Tibetan plateau and Mongolian mountains (White et al., 2017) and exhibits a recurrent flow pattern called the Silk 
road pattern, which is associated with co-variability ranging from Europe to east Asia (Boers et al., 2019; Ding & 
Wang, 2005; Kosaka et al., 2009; Lu et al., 2002). Given sufficiently strong forcing and suitable background condi-
tions (also known as “waveguidability,” see Manola et al. (2013); Wirth (2020); Wirth and Polster (2021); White 
et al. (2021)), Rossby waves can form circumglobal teleconnections (Branstator, 2002; Teng & Branstator, 2019). 
As the location and strength of the background flow changes seasonally, different circumglobal teleconnec-
tion patterns have been identified in summer and winter (Branstator,  2002; Ding & Wang, 2005; Kornhuber 
et al., 2020). In summer, recurrent wave 5 and 7 patterns have been identified that cause concurrent heatwaves 
in specific regions in the Northern Hemisphere midlatitudes (Kornhuber et al., 2020). These wave patterns have 
been detected during some of the most extreme heat events of recent years: The European heatwaves of 2003 and 
2018 have been diagnosed as a wave 7 pattern (Kornhuber et al., 2019), while the 2010 heatwave was associated 
with a wave 5–6 pattern (Figure 2 in Petoukhov et al. (2013) and Di Capua et al. (2021)).

Several mechanisms have been suggested to cause such amplified wave patterns. Quasi-resonant amplification of 
planetary waves (Petoukhov et al., 2013) describes the process during which a waveguide forms under specific 
zonal mean flow conditions (Manola et al., 2013), which allows waves to amplify given sufficient forcing. Studies 
investigating the amplification of circumglobal wave patterns and phase-locking behavior, that is, the fact that 
under stationary forcing waves of certain wavenumbers exhibit preferred longitudinal locations, so far are based 
on reanalysis data (e.g., Kornhuber, Petoukhov, Karoly, et al., 2017; Kornhuber, Petoukhov, Petri, et al., 2017; 
Petoukhov et al., 2018) or more complex atmospheric general circulation models (Huntingford et al., 2019), for 
which it can be challenging to isolate specific dynamical mechanisms. Thus the analysis of wave amplification 
and phase-locking of amplified waves under more idealized conditions is still needed for process understanding 
(White et al., 2022). Here, we investigate the role of topographic forcing in idealized model experiments, where 
only basic atmospheric dynamics are represented together with topography. This model setup allows us to focus 
on how localized topography affects the propagation of midlatitude Rossby waves and influences the preferred 
location where troughs and ridges associated with circumglobal patterns amplify and lead to an increased like-
lihood of temperature extremes. This approach further clarifies the interaction between orographically forced 
Rossby waves and transient Rossby waves originating from baroclinic instability.

2.  Data and Methods
2.1.  Model Setup

We use an idealized configuration of the ICOsahedral Nonhydrostatic (ICON) atmospheric model (Zängl 
et al., 2015) on a R2B4 triangular grid, with an equivalent ∼158 km grid spacing, and 41 vertical levels. We turn 
off all the physical parameterizations and substitute them by a simple zonal mean Newtonian temperature relaxa-
tion parameterization as in Held and Suarez (1994). A more detailed description of the model setup can be found 
in Jiménez-Esteve and Domeisen (2022).

Idealized topography is introduced in the form of a 2-dimensional Gaussian mountain with a maximum height H 
at a latitude and longitude of (ϕ0, λ0 = 90°E). The half-widths of the mountain are fixed to σx = σy = 1,500 km. 
The mathematical formulation for the topography follows Cook and Held  (1992), except that in our case the 
half-widths are given in km (instead of °), which preserves the volume of the mountain when changing its latitude. 
We use three topography configurations: (H, ϕ0) = (4 km, 45°N), (H, ϕ0) = (8 km, 45°N), and (H, ϕ0) = (8 km, 
25°N). Each simulation is run for a total of 30 years (360 days a year) using the same equilibrium temperature 
and relaxation timescale as in Held and Suarez (1994).
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The zonal wind climatology at 300  hPa (u300) of the model simulations and ERA-Interim reanalysis (Dee 
et al., 2011) are shown in Figure S1 in Supporting Information S1. It is important to note that our model does not 
simulate a seasonal cycle, and background conditions are close to the observed annual mean conditions.

2.2.  Zonal Wavenumber Decomposition, Phase-Locking, and Hayashi Spectra

We use the meridional wind at 300 hPa (v300) to identify Rossby waves in the midlatitude troposphere. In an 
idealized framework a Rossby wave can be mathematically written as a perfect zonal sinusoidal circumglobal 
wave:

𝑣𝑣300(𝜆𝜆𝜆 𝜆𝜆) = 𝐴𝐴(𝑡𝑡) cos(𝑘𝑘𝑘𝑘 + Φ(𝑡𝑡))� (1)

where λ is the longitude in radians, t the time, A(t)  > 0 is the amplitude of the wave, k  =  1, 2, 3, … the 
non-dimensional zonal wavenumber, Φ(t) is the phase of the wave in radians at time t.

At every given time t the v300 field can be decomposed into a range of superimposed cosine waves of differ-
ent wavenumbers k, with amplitudes Ak and phases Φk. We first calculate the area-weighted latitudinal mean 
between 60° and 30°N and then apply a 7-day running mean to the v300 field in order to filter out medium- and 
high-frequency transient waves. Then, a Fast Fourier Transformation in the longitude dimension is applied to 
obtain the amplitude (Ak) and the phase (Φk) for each wavenumber k. It is important to highlight that for our wave 
amplitude and phase calculation we do not subtract the model climatology. Temporal wave anomalies cannot have 
a phase preference as by definition the time average must be zero at all points. The climatology and percentiles 
of the obtained amplitudes for each simulation and reanalysis can be found in Figure S2 in Supporting Informa-
tion S1 for reference. We focus on wavenumbers k = 4–8, since synoptic-scale waves are commonly involved in 
circumglobal wave amplification events, for example, k = 4 (Petoukhov et al., 2018), k = 5 (Harnik et al., 2016; 
Teng et al., 2013), or k = 6–8 (Mann et al., 2017; Petoukhov et al., 2013, 2016), and exhibit phase locking behav-
ior in reanalysis (Kornhuber, Petoukhov, Petri, et al., 2017).

To study the high-amplitude episodes that are characterized by single (phase-locked) wavenumbers, we calcu-
late composites by averaging the unfiltered v300 anomalies, temperature at 1,000 hPa (T1000) anomalies (with 
respect to the same model run) and heatwave frequency anomalies (see Section 2.3 for definition) over time steps 
when Ak > 1.5 standard deviations (SDs) for each specific wavenumber k. To analyze the temporal evolution of 
high-amplitude events, we define the onset of a wave amplification event as the first day of at least three consec-
utive days of Ak > 1.5SD for each wavenumber k.

To quantify phase-locking we define the index δm as the narrowest window that contains half of the probability 
density of the phase distribution. Lower values of δm correspond to stronger phase-locking. To estimate the phase 
speed c of the waves, we compute the Hayashi spectrum (Hayashi, 1979) using the methodology by Randel and 
Held (1991). For an application of this diagnostic see Domeisen et al. (2018) and Riboldi et al. (2021). A more 
detailed description of these two methodologies can be found in Supporting Information S1. In this study we use 
the term “quasi-stationary” waves to refer to wave anomalies that are slow moving, that is, their phase-speed is 
close to zero, while the term “stationary” waves is used to refer to the climatological waves.

2.3.  Heatwave Definition

Heatwaves are identified as periods of three or more consecutive extreme heat days, which are defined as days 
when the temperature at the 1,000 hPa pressure level (T1000) is above the 95th percentile. Other pressure levels 
close to the surface yield comparable results. The 95th percentile is computed independently for each grid point 
and for each model experiment using unfiltered data. We do not consider a minimum temporal separation between 
events. The heatwave frequency is defined as the fraction of days that belong to heatwaves.

3.  Results
To quantify which wavenumbers exhibit stronger phase-locking when topography is included in the model, we 
look at the 2-dimensional distribution of the amplitude versus phase for each zonal wavenumber (Figure 1). See 
Section 2.2 for details on the calculation. For the simulation without topography (no-topo) (Figures 1a–1e) zonal 
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wavenumbers k = 4–8 indicate no preference for phase-locking. In other words, when waves amplify, that is, 
when their wave amplitude increases to above average values, their maxima can occur with equal probability in 
any longitudinal location. In contrast, in the experiments with an 8 km mountain located in midlatitudes (45°N, 
Figures 1k–1o) or in the subtropics (25°N, Figures 1p–1t) waves are more likely to amplify for a specific phase, 
that is, longitudinal location, meaning that they are phase-locked. The same effect but of weaker intensity can 
be observed for the smaller 4-km mountain (Figures 1f–1j). Phase-locking does not occur with the same ampli-
tude for the different synoptic wavenumbers, and it is particularly strong for wavenumbers 4, 5 and 6 (see lower 
values of δm in Figure 1 and Figure S3 in Supporting Information S1). Large amplitude events (Ak > 1.5SD) tend 
to exhibit higher values of phase-locking for extreme amplitude events compared to climatology, consistent with 
results found by Kornhuber et al. (2020) using reanalysis data. For the remainder of this study we will predomi-
nantly focus on wavenumbers 5 and 6, as those wavenumbers exhibit higher amplitudes than wavenumber 4 in our 
model configuration, while other wavenumbers are discussed in less detail. Larger synoptic wavenumbers (k > 6)  

Figure 1.  Two-dimensional histograms of wave amplitude versus phase of the meridional wind at 300 hPa (v300) for the model experiment (a–e) without topography 
(no-topo), (f–j) with 4 km topography centered at (45°N, 90°E), (k–o) with 8 km topography centered at (45°N, 90°E), and (p–t) 8 km topography centered at (25°N, 
90°E). Each column shows a different zonal wavenumber (k = 4–8). The mean and the 1.5 SD amplitude threshold are indicated as horizontal red lines. The vertical 
dashed line indicates the phase of maximum probability for all amplitudes. The phase-locking index (δm in radians) is displayed in the upper-right corner of each panel, 
also for the high-amplitude cases (a lower δm indicates a stronger phase-locking for a particular zonal wavenumber). A total of 10,794 values (30 years of 360 days each, 
where the first and last 3 days are disregarded due to the 7-day running mean window) are used to produce each of the histograms. No smoothing is applied.
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usually exhibit weaker phase locking and maximum amplitudes and thus their impact on extreme heat events is 
expected to be less important. Note that the higher amplitudes for waves 5 and 6 can also be observed for the 
no-topo experiment (Figures 1b and 1c, Figure S2 in Supporting Information S1), and is probably a consequence 
of baroclinic instability in our model configuration (Grotjahn, 2015). Note that there is no asymmetric forcing 
that can force waves in the no-topo run and thus the largest amplitudes found for wavenumbers 5 and 6 are inde-
pendent of topographic forcing.

As a next step, we examine how topography impacts the phase speed of waves. The Hayashi spectrum (see 
Section 2.2 and Supporting Information S1) allows us to quantify the distribution of the power spectrum for 
the midlatitude flow in terms of zonal wavenumber and phase speed (Figure 2). Note that we do not apply any 
temporal filter to the data in order to represent the full spectrum of waves. For the no-topo run the spectral density 
is maximized for synoptic wavenumbers k = 4–7 with a peak around k = 5, 6 (Figure 2a), consistent with the 
maximum amplitudes observed in Figure 1 and Figure S2 in Supporting Information S1. A similar spectrum is 
found for reanalysis during equinoxes (Riboldi et al., 2021), which highlights the ability of our model to simulate 
realistic atmospheric conditions. Figure 2a also shows how larger wavenumbers tend to be associated with faster 
eastward propagation, which is a consequence of the Rossby wave dispersion relation (c = U − β/(k 2 +  l 2)). 
Thus, small wavenumbers (k < 7) can more often become quasi-stationary (slow-moving) if the mean flow in the 
midlatitude troposphere slows down sufficiently.

We now investigate the effect of localized topographic forcing on the Hayashi spectra (Figures 2b–2d). Already a 
moderate forcing (4 km, 45°N) has an effect on the spectra, with an increasing power of quasi-stationary waves, 

Figure 2.  Hayashi spectra of v300 anomalies (m/s) as a function of phase speed (m/s) relative to the ground and zonal wavenumber k for (a) the no-topography 
simulation (shading) and (b–d) three different topographic forcings (black contours). The difference between the spectral densities of each topography experiment and 
the no-topo experiment is shown as color shading in panels (b–d). The black line in panel (a) indicates a constant period of 7 days for reference.
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especially for wavenumbers 6–8, and decreasing eastward propagating synoptic waves with respect to the no-topo 
run (Figure 2b). This effect is stronger for a doubled mountain height located at the same latitude (8 km, 45°N), 
with a clear decrease in the eastward phase speed spectral density (Figure 2c). For a subtropical topography forc-
ing (8 km, 25°N) there is also a decrease in eastward propagating synoptic waves, while slow-moving westward 
propagating waves are more common than in the no-topography simulation (Figure 2d).

To analyze the impact on near-surface temperature and persistent heat extremes associated with amplification 
of phase-locked waves we show composites of the unfiltered v300, T1000 and the heatwave frequency relative 
anomaly for all days when a high amplitude of a specific wavenumber is identified in the (8 km, 25°N) topog-
raphy simulation (Figure 3). Note that the waves shown in Figure 3 are anomalies with respect to the model's 
zonally varying climatology, that is, they are in addition to the stationary waves excited by topography. Qualita-
tively similar results are obtained for the midlatitude forcings (Figures S4 and S5 in Supporting Information S1), 
although we find that the response for the subtropical mountain exhibits a more pronounced wave pattern of 
near-hemispheric extent. Figure 3 confirms the circumglobal and phase-locked character of the high-amplitude 
events identified in our simulations, which can be seen as a series of wind anomalies of alternating sign extending 
to the full longitude circle in midlatitudes (Figure 3a). Note that the circumglobal characteristic for wavenumbers 

Figure 3.  Mean composites of (a) anomalies of meridional wind at 300 hPa (v300), (b) anomalies of air temperature at 1,000 hPa (T1000), and (c) heatwave frequency 
relative anomaly (note the nonlinear colorbar [−100 to 0 in 20% intervals; 0 to 200 in 50% intervals]) for high-amplitude (A > 1.5 SD) days of zonal wavenumbers 
k = 4–7 (top to bottom) identified in the 8 km and 25°N topography experiment. In each panel, the geopotential height at 300 hPa is displayed as black contours (8,800, 
9,000, and 9,200 m) and topographic elevation in purple contours (1, 3, and 5 km). Note that geopotential height contours at smaller distances correspond to a stronger 
geostrophic wind. The heatwave frequency relative anomaly shown in panel (c) is the percentage change in heatwave frequency relative to the climatological frequency 
of heatwaves in each model simulation. Only statistically significant anomalies above the 95% confidence level are shown according to a two-tailed t-test.
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5 and 6 is not just a result of the multi-event average (see Figure S8 in Supporting Information S1). The same anal-
ysis with the no-topo run (not shown) leads to negligible anomalies, as although the maximum amplitudes can be 
similar they do not occur with a preferred phase (Figures 1a–1e). The composited anomalies have approximately 
twice the magnitude for k = 5 and 6 as compared to k = 4 and 7, consistent with Figures 1 and 2. Associated with 
the upper level troughs and ridges (black contours in Figure 3) T1000 anomalies show a circumglobal pattern, 
which is approximately 90° out of phase with the v300 anomaly field. Interestingly, T1000 and v300 anomalies 
are stronger upstream than downstream of the topography (less clear for k = 7). This weaker response downstream 
is likely a consequence of a stronger zonal jet speed (Figure S1 in Supporting Information S1), which is related 
to the stronger meridional temperature gradients downstream of large-scale topography (e.g., Lutsko et al., 2019).

The effect of circumglobal wave amplification on heatwave occurrence is also shown in Figure 3c. Consistent 
with the temperature anomalies near the surface, heatwave frequency increases in the regions with atmospheric 
ridges, associated with a relative increase of up to 300% mainly for wavenumbers 5 and 6. This means a heatwave 
is four times more likely to occur during a wave amplification event than for climatological conditions in this 
specific longitudinal location. In locations where troughs amplify we observe a clear decrease in the probability 
of having a heatwave of up to a 100%.

To gain a deeper insight into the dynamical evolution of wave amplification events, we compute the multi-event 
average of v300 and T1000 with respect to the onset date (see Section 2.2). Figure 4 displays the temporal evolu-
tion of the v300 and T1000 anomalies averaged over 30°–60°N for amplification events of k = 5 and 6 in the 
three model simulations. We display the results for wavenumbers 5 and 6 as those show the strongest amplitudes 
and more phase-locking in our model simulations (Figure 1). The results for k = 4,7 are shown in Figure S6 in 
Supporting Information S1. The amplitudes of wavenumber 5 and 6 strongly dominate the signal during amplifi-
cation events, while this is not the case for the amplification of other zonal wavenumbers, as their amplitudes are 
in general much weaker than the amplitudes of the dominant wavenumbers (k = 5, 6) (see Figure S8 in Supporting 
Information S1).

The Hovmöller diagram (Figure 4) shows that wave amplification events tend to last on average 6–7 days for 
both k = 5 and 6 (see also Figure S9 in Supporting Information S1). The quasi-stationary wave anomalies (with 
respect to the zonally varying model climatology) show a similar phasing as the climatological stationary waves 
generated by topography (Figure S7 in Supporting Information S1). It is interesting to note the westward phase 
speed for the disturbances located upstream of the mountain peak (mainly for k = 5 in the TOPO [8 km, 45°N] 
experiment). This westward phase speed is likely due to slower zonal winds upstream than downstream of the 
mountain (Figure S1 in Supporting Information S1) and due to the Rossby wave dispersion relation, which states 
that wavenumber 5 propagates faster westward with respect to the mean flow than wavenumber 6. Note that the 
stronger v300 anomalies in the averaged composite for TOPO (8 km, 45°) compared to TOPO (4 km, 45°) result 
from a more intense phase-locking for the stronger forcing (Figure 1). When the topography is located south of 
the jet axis (Figures 4e and 4f), v300 anomalies associated with k = 5, 6 wave amplification tend to be more 
circumglobal (a similar magnitude for all longitudes) than for the midlatitude mountain. The phase speed (tilt of 
the v300 anomalies) during these events tends to be close to zero, especially for k = 5 and upstream of the moun-
tain, where zonal winds tend to be weaker (Figure S1 in Supporting Information S1).

Another important question is whether there are clear precursors to wave amplification events. Rossby wave 
packets (Wirth et al., 2018) of limited longitudinal extent develop up to 15–20 days before the onset of some wave 
amplification events, with energy propagating eastwards (positive group velocity). These precursors are clearer in 
some of the composites, see for example, Figures 4a and 4d (between 90°W and 90°E and 0–10 days before the 
onset). For k = 6 and a subtropical mountain (Figure 4f) v300 anomalies emerge even earlier and amplify 15 days 
before the onset near the location of the mountain before the initiation of the circumglobal response. Future work 
should investigate the relationship between the Rossby wave packets and the circumglobal wave amplification.

4.  Discussion and Conclusions
In this study, we show evidence that localized topography leads to phase-locked amplification of quasi-stationary 
synoptic-scale waves. We base our analysis on idealized simulations using only thermal forcing and Rayleigh 
surface drag as in (Held & Suarez, 1994), with no other physical parameterizations, which allows us to demon strate 
that very few “ingredients” are needed to produce phase-locked and amplified waves and associated concurrent 
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heatwaves. Observed phase-locking events have been shown to be associated with simultaneous extreme events 
over major crop regions across the globe (e.g., Kornhuber et al., 2020). Our results confirm that a similar connec-
tion between heatwaves and phase-locked amplified waves exists in a simple model configuration, originating 
solely from topographic forcing and dry atmospheric dynamics.

These experiments highlight that changes in the relative position of the mean flow with respect to the topographic 
disturbance can lead to different responses in terms of the amplitude of circumglobal phase-locked waves, which 

Figure 4.  Hovmöller diagram (time vs. longitude) of daily mean v300 anomalies (shading) and T1000 anomalies (blue 
contours: from −2.5 to 2.5 in 1 K intervals, negative dashed) averaged over 30°–60°N and composited with respect to the 
onset of high-amplitude (a, c, d) k = 5 and (b, d, f) k = 6 events. (a and b) 4 km mountain at 45°N, (c and d) 8 km mountain at 
45°N, and (e and f) 8 km mountain at 25°N. Only statistically significant v300 anomalies above the 95% confidence level are 
shown according to a two-tailed t-test.
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impacts the frequency and location of heatwave hotspots (cf., Figure 3 and Figure S3 in Supporting Informa-
tion S1). Observations show a weak poleward shift of the midlatitude jet (Osman et al., 2021) that is projected to 
continue under high emission warming scenarios (Harvey et al., 2020). This shift results in a different location 
of the jet with respect to the topographic forcing, although this relative shift between the jet and the topography 
is considerably smaller on average than in our idealized simulations. Nevertheless, our results suggest that a 
jet shift might lead to a change in future heatwave hotspots. While past discussions on atmospheric circula-
tion changes and impacts on summer weather extremes have put a primary focus on changes in the jet speed 
(Coumou et al., 2015; Kornhuber & Tamarin-Brodsky, 2021) and its ability to support resonant waves (Mann 
et al., 2018), our results suggest that changes in jet latitude relative to important mountains should be given simi-
lar attention. Apart from the location, the shape and height of the topographic forcing can impact the stationary 
wave response (Brayshaw et al., 2009; Valdes & Hoskins, 1991). In this study, we keep the shape of the moun-
tain fixed to a half-width of 1,500 km, which is comparable to the scale of the Tibetan plateau or the Rocky 
mountains (see Figure S1 in Supporting Information S1). Moreover, nonlinear interactions with other mountain 
ranges (Narinesingh et al., 2020) and diabatic forcing originating from land-sea contrast and tropical convection 
(Garfinkel et al., 2020; Kaspi & Schneider, 2011) modulate the total stationary wave response. Using a simplified 
version of topography allows us to clearly identify the main role of topographic forcing.

While this analysis focuses on the relationship between topographic forcing and phase-locking, the forcing lead-
ing to circumglobal teleconnections can be more diverse under real-world conditions (Branstator, 2002; Teng 
& Branstator, 2019). Apart from the topographic forcing investigated here, thermal forcing, for example, from 
land-sea thermal contrast, can be responsible for preferred positions of Rossby waves. In addition, phase-locked 
wave trains can arise from SST anomalies (Beverley et al., 2021) or dry soil conditions over large continental 
areas (Teng et al., 2019).

Our work relies on a constant thermal forcing throughout the experiments, and thus there is no long-term trend 
or seasonal cycle. However, it has been suggested that waveguide characteristics might change in a warmer 
climate potentially favoring wave amplification (Mann et al., 2017, 2018). Although a recent review by Teng 
and Branstator (2019) concludes that changes in the diabatic heating are a more probable candidate for more 
high-amplitude circumglobal planetary wave events in the future, reported changes in the zonal mean circulation 
for example, from an overall slow-down (Coumou et al., 2015) or strengthening of the jet in certain latitudes (Xu 
et al., 2020) will likely affect the waveguiding ability of the zonal jet.

Impacts of heatwaves are strongly amplified with their increased persistence. While topography plays an essential 
role in determining the longitudinal structure of circumglobal wave patterns, its presence does not lead to a higher 
persistence of the high-amplitude events and might even lower their persistence in some cases (Figure S9 in 
Supporting Information S1). Hence, other components of the climate system not included in our idealized exper-
iments may be responsible for an increased persistence of heatwaves associated with amplified wave patterns. 
Important mechanisms include land-surface feedbacks (Miralles et  al.,  2019; Schumacher et  al.,  2019; Teng 
et al., 2019) and diabatic heating maintaining upper level blocking anticyclones (Pfahl et al., 2015; Zschenderlein 
et al., 2020). Further work is required to improve our understanding of the relative importance of the different 
processes that drive amplification, phase-locking and maintenance of amplified waves. Models struggle with 
an accurate simulation of circumglobal wave patterns (e.g., Luo et al., 2021) and the magnitude of associated 
weather extremes. Understanding how the stationary components of the climate system (such as topography) 
interact with those components that might be affected by climatic change (such as land-atmosphere interactions 
and the circulation itself) is important for reducing model biases in order to improve our ability to predict and 
project changes in concurrent extreme events such as heatwaves in current and future climates.

Data Availability Statement
The ERA-Interim reanalysis (Dee et al., 2011) has been obtained from the ECMWF server (https://apps.ecmwf.
int/datasets/data/interim-full-daily/levtype=pl/, last access: 27 September 2021). All analyses and visualizations 
were carried out using the Python packages NumPy (https://numpy.org/, last access: 21 June 2022), Matplot-
lib (https://matplotlib.org/, last access: 21 June 2022), xarray (https://docs.xarray.dev/en/stable/, last access: 21 
June 2022), and SciPy (https://scipy.org/, last access: 21 June 2022). The code to reproduce the analysis and 
the main figures of this paper can be found in GitHub (https://github.com/bernatj/paper_GRL_phase_locked_
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circumglobal_heat_extremes.git). The daily mean model output is available in zenodo (https://doi.org/10.5281/
zenodo.7270361).
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