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France

Abstract

A generalized analytical approach for the propagation of Bleustein-Gulyaev
wave in a piezoelectric material loaded on its surface with a viscoelastic fluid
is established in this paper. The Bleustein-Gulyaev waveguide surface is
subjected to various glycerol concentrations. The Maxwell and Kelvin-Voigt
models are used to describe the viscoelasticity of this fluid. Exact dispersion
equation is obtained in the cases of both electrically short circuit and open
circuit by solving the equilibrium equations of piezoelectric materials and
the Stokes equation of viscoelastic fluid. The effect on the phase velocity
and attenuation for several frequencies is highlighted. The influence of key
parameters such as substrate thickness and fluid thickness is also studied.
These investigations can serve as benchmark solution in design of Bleustein-
Gulyaev wave sensors.

Keywords: Bleustein-Gulyaev waves, piezoelectric materials, Viscoelastic
liquids, Analytical approach.

1. Introduction

Surface acoustic waves sensors have been widely used for sensing appli-
cations in both gas and liquid environments. For liquid sensing applications,
acoustic waves which have the particle displacement parallel to the device
surface and normal to the wave propagation direction are preferred. These
waves called shear horizontal waves include Love waves [1, 2, 3, 4, 5, 6] and
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Bleustein-Gulyaev waves [7, 8, 9, 10, 11, 12, 13, 14, 15]. The Bleustein-
Gulyaev waves have a single component transverse to the propagation di-
rection. The Bleustein-Gulyaev sensor is basically formed by a piezoelectric
ceramic covered with a very thin metallic layer [11]. This sensor does not
require an aditionnal guiding layer to trap the wave energy to the surface as
in the case of the Love Wave sensor [5, 6]. Consequently, the fabrication of
the Bleustein-Gulyaev sensors is easier than the contruction of the Love wave
sensors. The Bleustein-Gulyaev sensors are used to detect and investigate
high pressure phase transitions in food products [16, 17] and Biofuels [18].

The study of the Bleustein-Gulyaev wave interaction with a viscous fluid
was conducted [13, 15] by employing the exact theory of continuum mechan-
ics. Nevertheless the exact solution for viscoelastic fluid is still missing. A
novel analytical approach of the propagation of Bleustein-Gulaev wave in a
piezoelectric material loaded on its surface with a viscoelastic fluid is consid-
ered in this paper. The effect of fluid viscoelasticity on the phase attenuation
is investigated for several frequencies. The explicit dispersion equations for
both open circuit and metallized surface boundary conditions are given. This
paper is intended to provide essential data for liquid sensors design and de-
velopment.

2. Theoretical analysis

2.1. Bleustein-Gulyaev wave

Consider a finite-thickness piezoelectric substrate (ceramic) covered with
a finite-thickness layer of viscoelastic fluid, as shown in Figure 1. The
Bleustein-Gulyaev wave may exist in piezoelectric materials. It is an elec-
tromechanical coupled shear type surface wave, in which the direction of
particle motion is perpendicular to the propagating direction and parallel
to the surface of piezoelectric substrate. If there is no piezoelectric effect,
Bleustein-Gulyaev wave degenerates to the shear bulk wave. The ceramic
material is poled in the x3 direction determined by the right-hand rule from
the x1 and x2 axes. The structure allows the following anti-plane motion [8]

u1 = u2 = 0 , u3 = u3 (x1, x2, t) , φ = φ (x1, x2, t)

where u1, u2 and u3 are the mechanical displacement components and φ the
electric potential. The constitutive relations of 6 mm piezoelectric materials
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that relate the stress components σij and the electric displacement Di to the
mechanical displacement u3 are given by Royer and Dieulesaint [9]

σ13 = c55
∂u3
∂x1

+ e15
∂φ

∂x1
, σ23 = c44

∂u3
∂x2

+ e24
∂φ

∂x2
(1)

D1 = e15
∂u3
∂x1
− ε11

∂φ

∂x1
, D2 = e24

∂u3
∂x2
− ε22

∂φ

∂x2
(2)

where (c44, c55), (e24, e15) and (ε11, ε22) are elastic, piezoelectric, and dielectric
constants, respectively. Furthermore, the equation of motion and Gauss
equation of piezoelectric materials without body force and free charge are

∂σ31
∂x1

+
∂σ32
∂x2

= ρs
∂2u3
∂t2

,
∂D1

∂x1
+
∂D2

∂x2
= 0 (3)

where ρs is the mass density. By substituting Eq. (1) and Eq. (2) into Eq.
(3), and using the macroscopic symmetry, the governing equations can be
obtain by letting c55 = c44, e24 = e15, and ε22 = ε11 in Eq. (3), i.e.

c44∇2u3 + e24∇2φ = ρs
∂2u3
∂t2

(4)

e24∇2u3 − ε11∇2φ = 0 (5)

where ∇2 = ∂2

∂x21
+ ∂2

∂x22
is the two dimensional Laplace operator.

Figure 1: A finite-thickness piezoelectric substrate covered with a finite-thickness layer of
viscoelastic fluid.
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2.2. Viscoelastic fluid
The fluid occupying −hf < x2 < 0 is assumed to be viscoelastic and

nonconductive. To describe the viscoelasticity of the fluid, the Maxwell and
Kelvin-Voigt models are employed (see Figure 2). The Maxwell model intro-
duces the viscoelastic response of the fluid at high frequencies and that of
Kelvin-Voigt at low frequencies. The Maxwell model consists of a spring and
a damper connected in series, and for the Kelvin-Voigt model, the spring and
the damper are connected in parallel. The damper represents energy losses
and is characterized by the viscosity η, whereas the spring represents the en-
ergy storage and is characterized by the elastic shear modulus µ. These two
quantities are related through the relaxation time δ = η/µ, which is the char-
acteristic time for the transition between viscous and elastic behavior [19].
Thus, suppose the motion of the fluid is induced only by wave propagation
in the piezoelectric material and also propagates in the form of a harmonic
wave. In regard to this problem, the inertial term in the Navier-Stokes equa-
tion can be omitted. Moreover, the pressure gradient can also be ignored
since only shear deformation occurs during wave propagation [13]. In other
words, the total stress in fluid is equal to the shear stress. Therefore, the
governing equation for the viscoelastic fluid is simplified to the following

ρf
∂v3
∂t

=
∂τ13
∂x1

+
∂τ23
∂x2

(6)

where ρf is the density, v3 is the velocity and (τ13, τ23) are the shear stress
components. Thus, the constitutive equations which relate the shear stress
tensor to velocity are

τ13 + δ
∂τ13
∂t

= η
∂v3
∂x1

, τ23 + δ
∂τ23
∂t

= η
∂v3
∂x2

(7)

∂τ13
∂t

=
µ

2

∂v3
∂x1

+ η
∂2v3
∂t∂x1

,
∂τ23
∂t

=
µ

2

∂v3
∂x2

+ η
∂2v3
∂t∂x2

(8)

The relation (7) is suggested by Maxwell for the characterization of viscous
fluids with elastic properties, and the relation (8) is proposed by Kelvin-Voigt
for the description of elastic solids with viscous properties. Moreover, Eqs.
(6)-(8) can be combined to give the following viscoelastic fluid equations

∇2v3 −
ρf
η

(
∂v3
∂t

+ δ
∂2v3
∂t2

)
= 0 (9)

∇2v3 + 2δ
∂

∂t
∇2v3 −

2δρf
η

∂2v3
∂t2

= 0 (10)
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Equation (9) describes the fluid motion according to the Maxwell behavior
and Eq. (10) to that of Kelvin-Voigt behavior. The solution of these equa-
tions and those of Eqs. (1) and (2) are to be substituted in the relevant
boundary conditions.

Figure 2: Schematic of (a) Newtonian (b) Kelvin-Voigt and (c) Maxwell models.

2.3. Boundary conditions

The solution of the Bleustein-Gulyaev wave propagation must satisfy the
boundary conditions on the piezoelectric substrate and fluid, and the conti-
nuity conditions along the interface between the piezoelectric substrate and
the fluid. At the interface x2 = 0, the mechanical conditions are continuity
of velocity and stress components, i.e.

v3 =
∂u3
∂t

, τ23 = σ23 at x2 = 0 (11)

The surface of the fluid is open boundary. This requires

τ23 = 0 at x2 = −hf (12)

The surface of the substrate is traction free and electrically open. This
requires

σ23 = 0 , D2 = 0 at x2 = hs (13)

Assume that the fluid is electrically insulated and its permittivity is much
less than that of the piezoelectric substrate material. The electrical boundary
conditions at the substrat-fluid interface can thus be classified into two cases

(i) an electrically open circuit (no density of charges) : D2(x2 = 0) = 0.

(ii) an electrically short circuit (matching to an external electric field) :
φ(x2 = 0) = 0.
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2.4. Solution of Bleustein-Gulyaev wave equations and dispersion relation

For this plane wave propagation problem in the x1-direction, with dis-
placement in x3-direction only, the displacement component u3, electric po-
tential φ and velocity component v3 can be assumed to take the following
form

u3 = U (x2) e
j(kx1−ωt) , φ = Φ (x2) e

j(kx1−ωt) , v3 = V (x2) e
j(kx1−ωt) (14)

where k is the wavenumber along the propagation direction, ω is the angular
frequency, and U (x2) ,Φ (x2) and V (x2) are the unknown functions of x2.
Bleustein-Gulyaev wave propagating in the piezoelectric substrate undergoes
attenuation due to viscoelastic fluid, hence, the wavenumber becomes com-
plex k = kr + jki, its real part kr describes the Bleustein-Gulyaev wave
velocity, and its imaginary part ki, is the Bleustein-Gulyaev wave attenua-
tion induced by the viscoelastic fluid. After substitution of the expression
(14) into Eqs. (4), (5), (9) and (10), the x2 dependence can be expressed as

U (x2) = Ase
−βsx2 +Bse

βsx2

Φ (x2) =
e24
ε11

(
Ase

−βsx2 +Bse
βsx2
)

+ Cse
−kx2 +Dse

kx2

V (x2) = Afe
−βfx2 +Bfe

βfx2

(15)

where As, Bs, Cs, Ds, Af and Bf are arbitrary amplitudes and the wavenum-
bers βs and βf are given in the following form

β2
s = k2 − ω2

c2t
, β2

f = k2 − jωρf
η∗

Here, on the one hand we have defined the piezoelectrically stiffened elastic
speed ct =

√
c̄44/ρs, the piezoelectrically stiffened shear elastic coefficient

c̄44 = c44 (1 + κ2) in the case of an electrically open circuit, and the elec-
tromechanical coupling factor κ = e24/

√
c44ε11. Note that in the case of an

electrically short circuit the piezoelectrically stiffened shear elastic coefficient
thakes the following form c̄44 = c44 (1 + κ2/ (1 + κ2)). On the other hand, the
complex dynamic viscosity η∗ present in the wavenumber βf can be defined
according to the used viscoelastic fluid behavior as

η∗ =


η

1− jωδ
Maxwell model

η − η

2jωδ
Kelvin-Voigt model

(16)
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The shear stress component and electric displacement that will be used in
boundary conditions are given by

D2 = kε11
(
Cse

−kx2 −Dse
kx2
)
ej(kx1−ωt)

σ23 =
[
βsc̄44

(
Bse

βsx2 − Ase−βsx2
)
− ke24

(
Cse

−kx2 −Dse
kx2
)]
ej(kx1−ωt)

τ23 = βfη
∗ (Bfe

βfx2 − Afe−βfx2
)
ej(kx1−ωt)

(17)

Substitution of the Eqs. (15) and (17) into the boundary and continuity
conditions (11)-(13) yields a system of six linear algebraic equations in six
undetermined amplitudes. For nontrivial solutions of the undetermined am-
plitudes to exist, the determinant of this system has to equal zero, which
leads to the following dispersion relation of the Bleustein-Gulyaev waves in
the case of an electrically short circuit :

c̄44βs tanh (βshs)− jωη∗βf tanh (βfhf )−
e224
ε11

k tanh (khs) = 0 (18)

and in the case of an electrically open circuit :

c̄44βs tanh (βshs)− jωη∗βf tanh (βfhf ) = 0 (19)

Since these relations contains k, ω, as well as all material and geometrical
parameters of the viscoelastic fluid and piezoelectric substrate, Eqs. (18) and
(19) represent the explicit complex dispersion relation of Bleustein-Gulyaev
waves propagating in a piezoelectric substrate loaded with a viscoelastic
fluid. Eqs. (18) and (19) were solved using Mathematica software. Once
the wavenumber is obtained, the phase velocity is calculated by vp = ω/kr.
While the imaginary part of wavenumber ki represents the attenuation per
unit length in the propagation direction. Furthermore, the critical term δω
present in the complex dynamic viscosity η∗ depends both on δ and ω. The
three following regimes may be highlighted in the case of :

• Maxwell fluid: (i) For δω � 1 the oscillation time (= 1/ω) is greater
than the relaxation time and, the liquid exhibits purely Newtonian
behavior. (ii) For δω � 1 the oscillation time is smaller than the
relaxation time and, the liquid exhibits viscoelastic behavior. (iii) For
δω = 1 the transition from Newtonian to Maxwell regime takes place.
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• Kelvin-Voigt fluid: (i) For δω � 1 the oscillation time is greater than
the relaxation time and, the liquid exhibits viscoelastic behavior. (ii)
For δω � 1 the oscillation time is smaller than the relaxation time and,
the liquid exhibits purely Newtonian behavior. (iii) For δω = 1 the
transition from Newtonian to Kelvin-Voigt fluid regime takes place.

2.4.1. Some particular cases

For the special case when hs → ∞ (piezoelectric substrate half-space),
we can separately degenerate Eqs. (18) and (19) into the following

c̄44βs − jωη∗βf tanh (βfhf )−
e224
ε11

k = 0 (20)

c̄44βs − jωη∗βf tanh (βfhf ) = 0 (21)

In the case of a Newtonian fluid (η∗ = η), Eqs. (20) and (21) are exactly the
same as those obtained previously by Qian et al. [14]. When hf →∞ (fluid
half-space), the Eqs. (20) and (21) become

c̄44βs − jωηβf −
e224
ε11

k = 0 (22)

c̄44βs − jωηβf = 0 (23)

which were previously obtained by Guo and Sun [13].

3. Numerical results and discussion

The material properties given in Table 1 for the PZT-5H piezoelectric
ceramic substrate [14, 20], and in Table 2 for viscoelastic fluid [21] are con-
sidered. In this work, numerical calculation is performed in the glycerol con-
centrations range from 15.4% to 88.0%. In addition, the Bleustein-Gulyaev
wave velocities in the PZT-5H piezoelectric ceramic substrate ct are obtained
from the work of Bleustein [8].

The Bleustein-Gulyaev surface waves are defined in plates of an infinite
thickness and therefore have only one fundamental mode (n = 1). The
high order plate modes (n = 2, 3, 4, ...) occur in piezoelectric plates of finite
thickness. Figure 3 shows the Bleustein-Gulyaev wave (n = 1) and higher
order SH plate waves versus substrate thickness. It is seen that when the
substrate is very thin, the first mode velocity tends to the substrate shear
wave velocity for a short circuit (csc = ct = 2039.445, see Table 1). When
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c44 (GPa) ρs (kg/m3) e24 (C/m2) ε11 (F/m) ct (m/s)

Short circuit 23 7500 17 227 · 10−10 2039.445
Open circuit 23 7500 17 227 · 10−10 2182.697

Table 1: Material parameters used for PZT-5H piezoelectric ceramic substrate.

χ (%) η (mPa · s) ρf (kg/m3) δ (ps)
15.4 1.4 1017 28
25.6 1.7 1029 38
32.9 2.7 1038 54
37.3 3.1 1044 62
42.3 3.8 1050 76
46.7 4.6 1055 92
52.2 5.9 1062 118
62.1 10.2 1075 204
72.0 21.9 1087 438
75.9 33.2 1093 664
80.0 49.5 1098 990
84.0 81.8 1104 1636
88.0 128.1 1109 2562

Table 2: Material parameters used for water-glycerol mixtures. χ is the concentration of
glycerol in water and ps defines the picosecond.

increasing the layer thickness, the velocity of the higher order modes assymp-
totically reaches the first mode velocity. Thus, in this work, the attention
is focused on the properties of the fundamental mode. In addition, the first
mode phase velocity in the substrate was calculated in Table 3 in the case
of a short and an open circuits for both Newtonian and viscoelastic fluids.
The numerical calculations are performed for three Glycerol concentrations
(15.4%, 52.2%, 88%) and two frequencies (100 MHz, 200 MHz). In each case,
it is shown that the velocity varies little with glycerol concentration and with
frequency and remains very close to the substrate shear wave velocity. Note
that similar behavior was observed by [13, 14].

The water glycerol mixture behaves like a viscoelastic solid for high con-
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Figure 3: Phase velocity versus the piezoelectric substrate thickness in the case of ”short”
circuit and Maxwell model with χ = 37.3 %, hf = 0.05 mm and f = 200 MHz.

Short circuit Newtonian Maxwell Kelvin-Voigt

χ (%) 100 MHz 200 MHz 100 MHz 200 MHz 100 MHz 200 MHz

15.4 2038.441 2038.026 2038.450 2038.052 2039.428 2039.291

52.2 2037.341 2036.471 2037.424 2036.718 2038.993 2038.435

88.0 2029.553 2025.626 2036.828 2038.049 2031.120 2026.843

Open circuit Newtonian Maxwell Kelvin-Voigt

χ (%) 100 MHz 200 MHz 100 MHz 200 MHz 100 MHz 200 MHz

15.4 2182.648 2182.663 2182.649 2182.664 2182.726 2182.725

52.2 2182.595 2182.626 2182.599 2182.633 2182.706 2182.708

88.0 2182.228 2182.466 2182.620 2182.731 2182.341 2182.544

Table 3: First mode phase velocity with hs = 0.1 mm and hf = 0.05 mm.

centration of glycerol. Therefore, the Kelvin-Voigt model is suitable for high
viscosity. Otherwise, the Maxwell model can be used to calculate the atten-
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uation for low glycerol concentration.

3.1. Influence of the glycerol mass fraction

In this paragraph, we investigate how the phase velocity and attenuation
vary with the glycerol mass fraction (i.e., shear viscosity) for a short and for
an open circuits in both Newtonian and viscoelastic fluids. In Figures 4 and
5, increasing the glycerol mass fraction, Newtonian and Kelvin-Voigt models
predicted a monotonically decreasing relationship between the vibrations re-
sponses and the glycerol mass fraction. However, Maxwell model highlighted
a non-monotonically behavior wich manifested the intrinsic viscoelastic prop-
erties of fluid. The elastic effects are significant for glycerol concentration
greater than 52% (100 MHz) and 37% (200 MHz). For glycerol concentration
values less than theses critical values, the elasticity can be neglected and
the behavior is Newtonian. This is due to the time constant value less than
118 ps and 62 ps corresponding to δω less than 0.0741 and 0.0779 negligible
compared to 1. Otherwise, as expected, the gap between the Newtonian
and Kelvin-Voigt models decreases with increasing viscosity. Thus, the con-
vergence of these two models is stronger in the case of an open circuit at
high frequencies. In conclusion, the water glycerol mixture behaves like a
viscoelastic solid for high concentration of glycerol. Therefore, the Kelvin-
Voigt model is suitable for high viscosity. Otherwise, the Maxwell model can
be used to calculate the attenuation for low glycerol concentration.

3.2. Substrate thickness effect

Figures 6 and 7 illustrate the influence of substrate thickness on the at-
tenuation for two glycerol mixtures and different frequencies values. These
figures highlight that the attenuation decresases rapidly for low substrate
thickness and then reaches a plateau region. The substrate thickness allow-
ing access to the plateau region are equal to 0.02 mm (short circuit) and
0.03 mm (open circuit). Theses values are much lower than the typical thick-
ness (10 mm) used in design of Bleustein-Gulyaev wave sensors [3, 11]. Fig-
ures 6 and 7 also show that the attenuation incresases with frequency and
glycerol mass fraction. Moreover, the attenuation values in the case of the
short circuit are stronger than those in the open circuit case. Otherwise, the
numerical results obtained with the Maxwell and Newtonian models converge
for low frequencies (see Figure 6). The similar phenomenon appears on the
Figure 7 for Kelvin-Voigt fluid but the difference between the two models is
less significant.
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Figure 4: First mode velocity and attenuation versus the glycerol mass fraction in the case
of ”short” circuit with hs = 0.1 mm and hf = 0.05 mm.

3.3. Fluid thickness effect

The wave attenuation with respect to the fluid thickness is shown in
Figures 8 and 9. It can be seen that the attenuation increases with fluid
thickness, then reaches a maximum and keeps a constant value. The attenu-
ation increases with frequency and glycerol concentration. Comparing these
Figures, we can see that attenuation in the short ciruit condition is much
larger than for open circuit. This is coherent with the fact that the metal-
lization decreases the penetration depth in the substrate [14]. Hence, in short
circuit condition the wave energy is confined in the vicinity of the surface.
Consequently, the velocity and attenuation are very sensitive to fluid loading.
Otherwise, it is highlighted that the results obtained with the Maxwell and
Newtonian models converge for low frequencies. The same phenomenon (far
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Figure 5: First mode attenuation versus the glycerol mass fraction in the case of ”open”
circuit with hs = 0.1 mm and hf = 0.05 mm.
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Figure 6: First mode attenuation versus piezoelectric substrate thickness for a glycerol
mass fraction of χ = 52.2% with hf = 0.05 mm. Maxwell fluid (solid lines); Newtonian
fluid (dashed lines).

less significant) is observed in the case of short circuit. The gap between the
Kelvin-Voigt and Newtonian curves decreases with frequency. The opposite
behavior is shown for open circuit, the Kelvin-Voigt curves join the Newton
ones for high frequencies.

3.4. Frequency effect

The frequency effect on the attenuation is depicted in Figures 10 and
11 for a short and for an open circuits. The attenuation due to Newtonian
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Figure 7: First mode attenuation versus piezoelectric substrate thickness for a glycerol
mass fraction of χ = 88.0% with hf = 0.05 mm. Kelvin-Voigt fluid (solid lines); Newtonian
fluid (dashed lines).
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Figure 8: First mode attenuation versus fluid thickness for a glycerol mass fraction of
χ = 52.2% with hs = 0.1 mm. Maxwell fluid (solid lines); Newtonian fluid (dashed lines).

model increases with the frequency and is much larger for short circuit condi-
tion. It is seen that the attenuation values obtained with the Maxwell model
converge towards those obtained with the Newtonian model for low frequen-
cies. Otherwise, Figure 11 (open circuit) highlights another phenomenon, the
Kelvin-Voigt and Newtonian curves diverge at low frequencies and converge
for high frequencies. It is seen from Figure 11(b) that the difference between
Kelvin-Voigt attenuation values is negligible for high glycerol concentration
(88%) and high frequency (200 MHz). This last result can be explained by
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Figure 9: First mode attenuation versus fluid thickness for a glycerol mass fraction of
χ = 88.0% with hs = 0.1 mm. Kelvin-Voigt fluid (solid lines); Newtonian fluid (dashed
lines).

a negligible difference between Kelvin-Voigt and Newtonian viscosities for
high glycerol concentration and high frequency.
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Figure 10: First mode attenuation versus frequency in the case of a short circuit with
hs = 0.1 mm and hf = 0.05 mm.

4. Conclusion

Propagation of Bleustein-Gulyaev waves in a finite-thickness piezoelectric
ceramic substrate loaded with a viscoelastic fluid is investigated using a new
original approach based on the exact theory. The Maxwell and Kelvin-Voigt
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Figure 11: First mode attenuation versus frequency in the case of an open circuit with
hs = 0.1 mm and hf = 0.05 mm.

models were employed to describe the viscoelasticity of the fluid. The ex-
plicit dispersion equations for both open circuit and short circuit were given.
Those equations were used to study the influence of the substrate thickness,
fluid thickness, glycerol concentration and frequency on the wave propaga-
tion. It was highlighted that the electrically short circuit is more sensitive
than the open circuit to surrounding disturbance. This is due to the con-
finement of the wave in the vicinity of the surface. It is also shown that the
Maxwell and Newtonian curves converge for low frequency or low glycerol
concentration. Furthermore, the gap between the Kelvin-Voigt and Newton
curves decreases when frequency or glycerol concentration increases. Finally
the new dispersion equations proposed in this work can be used to develop
and design Bleustein-Gulyaev sensors waves loaded with a viscoelastic fluid.
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