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Free vibration of coupled system including clamped-free thin circular plate with hole11

submerged in three dimensional cylindrical container filled with inviscid, irrotational12

and compressible fluid is investigated in the present work. Numerical approach based on13

the finite element method (FEM) is performed using the Comsol Multiphysics software,14

in order to analyze qualitatively the vibration characteristics of the plate. Plate modeling15

is based on Kirchhoff-Love plate theory. Velocity potential is deployed to describe the16

fluid motion since the small oscillations induced by the plate vibration is considered.17

Bernoulli’s equation together with potential theory are applied to get the fluid pressure18

on the free surface of the plate. To prove the reliability of the present numerical solution, a19

comparison is made with the results in the literature, which shows a very good agreement.20

Then, different parameters effect including fluid density, fluid height, free surface wave,21

hole radius and hole eccentricity on the natural frequencies of the coupled system is22

discussed in detail. Some three-dimensional mode shapes of the submerged plate are23

illustrated. Furthermore, the obtain results can serve as benchmark solutions for the24

vibration control, parameter identification and damage detection of plate.25

Keywords: Fluid-structure interaction; Thin circular plate; Finite element procedure.26

1. Introduction27

Fluid-structure interaction occurs especially when an elastic structure vibrates in28

presence of a fluid domain. By virtue of inertia increase due to the fluid motion29

generated by vibrating structure, the natural frequencies are significantly lower30

than those in vacuum. This behavior has been justified by the concept of the gradual31

increase in the added mass. This study is particularly concerned with free vibration32

analysis of circular plate with hole submerged in fluid.33

Circular plates with or without hole in contact or not with fluid are widely34

used in many branches of engineering, e.g. liquid storage tanks, offshore naval or35

marine structures, solar plates, nuclear reactor internal components, micro pumps36

and circular disk of butterfly valves. Also, baffles and performed plates are efficient37

for reducing resonant sloshing in moving tank containing liquid [Jin et al., 2014; Xue38

et al., 2017; Yu et al., 2019; Ghalandari et al., 2019]. On the one hand, in vacuum, the39

existence of hole in a circular plate can significantly affect its vibrational response.40



The knowledge and understanding of the associated effects is useful to the design of41

structures and vibration control. Therefore, studying and analyzing the vibrational42

behavior of circular plate with hole, is of high importance. A number of research43

works have been conducted on the vibration analysis of such structures based on44

analytical, experimental and numerical methods, such as the FEM, energy approach45

and mode subtraction approach. Excellent reference sources available may be found46

in the literature [Khurasia and Rawtani, 1978; Leissa and Narita, 1980; Nagaya and47

Poltorak, 1989; Vega et al., 1998; Chen et al., 2006; Lee et al., 2007; Jhung and48

Jeong, 2015].49

On the other hand, several researchers have investigated the vibration of plates in50

contact with a fluid and there have been many excellent experimental and theoretical51

research papers [Kwak, 1991; Bauer, 1995; Amabili and Kwak, 1996; Ergin and52

Ugurlu, 2003; Jhung et al., 2009; Askari et al., 2013; Soltani and Reddy, 2015; Cho53

et al., 2015; Gascon-Pérez and Garcia-Fodega, 2015]. Obviously, the presence of the54

fluid around the plate causes an increase in the kinetic energy, and consequently,55

the natural frequencies of plate coupled with fluid strongly decrease compared to56

those obtained in vacuum. Certainly, this will significantly affect the coupled system57

performance under dynamic loading. However, the vibration analysis of a circular58

plate with a hole submerged in fluid taking into account both the free surface59

wave and eccentricity of the hole is missing in the literature. A good understanding60

of the dynamic interactions between the plate and fluid is necessary. Due to the61

dynamic nature of the system, the boundaries and the fluid-structure interaction62

forces between the plate and the fluid do not remain constant. Therefore, the need63

for fluid-structure interaction modelling seems inevitable for the structure and fluid64

[Gascon-Pérez, 2015; Mnassri and El Baroudi, 2017; Bahaadini and Saidi, 2018;65

Bahaadini et al., 2018a,b; Saidi et al., 2019].66

The aim of the present research is to investigate numerically the vibration analy-67

sis of circular plate with hole submerged in fluid. A three-dimensional finite element68

model is constructed using Comsol Multiphysics software and the natural frequen-69

cies and corresponding mode shapes are obtained. The results show a very good70

agreement with those in literature in some particular cases. Moreover, the effect of71

different parameters including fluid density, fluid height, free surface wave, hole size72

and hole eccentricity on the vibration characteristics are examined.73

2. Mathematical formulation for a plate submerged in fluid74

A thin circular plate with hole submerged in a fluid-filled cylindrical rigid container,75

where a, b and h (� a) represent the outer radius, inner radius and thickness of76

the plate, respectively (see Fig. 1), is considered. The cylindrical container radius77

is R and the fluid depth is H. The fluid domain is divided into two regions : an78

upper fluid region (its depth is represented byHu) and lower fluid region (its depth is79

represented by Hl). The present work is based on the following assumptions : (i) the80

fluid is assumed to be inviscid, irrotational, and compressible, and the amplitude of81
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Fig. 1. Circular plate with hole submerged in fluid.

fluid motion is small in comparison with the model dimensions; (ii) the plate is made82

to be linearly elastic, homogeneous and isotropic; and (iii) the shear deformation83

and rotary inertia on the dynamics of plate are negligible. For the plate, the outer84

and inner boundaries are subject to the clamped and free boundary conditions,85

respectively. The equation of motion for the plate transverse displacement, w is86

D∇4w + ρsh∂ttw = p (1)

where D, ρs, h are respectively the bending rigidity, density, thickness and p is the87

hydrodynamic pressure on the surface of the plate. The bending rigidity of the plate88

is expressed as D = Eh3/
(
12
(
1− ν2

))
where E is Young’s modulus and ν is the89

Poisson’s ratio. Since the small fluid oscillations induced by the plate vibration is90

considered, the fluid motion can be described using the velocity potential function91

Φ wich should satisfy the wave equation [Kinsler et al., 1999]92

B∇2Φ− ρf∂ttΦ = 0 (2)

where B = ρfc
2
f is the fluid bulk modulus of elasticity, ρf is the fluid density and93

cf is the sound wave speed. The fluid bulk modulus of elasticity is used to take94

into account the fluid compressibility. The fluid velocity is related to the potential95

function by following expression96

v = ∇Φ (3)

The pressure given in Eq. (1) is related to velocity potential function by97

p = −ρf∂tΦ (4)



4 Yang et al.

2.1. Plate-fluid boundary conditions98

To study the influence of fluid density on the natural frequencies of plate, or the99

plate effect on the free surface, boundary conditions are formulated as : (i) In the100

case of impermeable boundaries, which means that the fluid velocity in the normal101

direction to the surface is equal to zero, the boundary condition is expressed as102

∇Φ · n = 0 (5)

where n is the normal vector at the fluid boundary. (ii) As the velocity potential is103

associated with the plate movement only (when the surface wave effect is neglected),104

the zero pressure condition is assumed at the free fluid surface, which means105

p = −ρf∂tΦ = 0 (6)

(iii) When the free surface wave condition (or sloshing condition) is assumed, ne-106

glecting surface tension the sloshing condition is obtained from kinetic and kine-107

matic conditions, yields the following relation108

g∇Φ · n = −∂ttΦ (7)

where g represents the acceleration due to gravity. (iv) During the interaction be-109

tween the plate and fluid, the fluid particle and the plate move together in the110

normal direction of the boundary, and the interface boundary condition can be111

written as112

∇Φ · n = ∂tw (8)

2.2. Numerical solution: Variational Formulation113

In this section we construct the variational formulation of the problem defined by

Eqs. (1) and (2) in terms of w and Φ. The used numerical formulations include

displacement formulation, potential formulation, pressure formulation and combi-

nation of some of them. Numerical solution based on FEM is used to extract fre-

quencies and modal shapes. To compute the vibration modes of a fluid alone, the

fluid is typically described either by pressure or by displacement potential variables.

When the fluid is coupled with a solid, [Morand and Ohayon, 1979] introduce an

alternative procedure which consists in using pressure and displacement potential

simultaneously. In this section we summarize their approach and further details can

be found in their book [Morand and Ohayon, 1995]. Therefore, to obtain a varia-

tional formulation for submerged plate, Eqs. (1) and (2) are multiplied by arbitrary

test functions
(
w̄, Φ̄

)
and integrating over the domains Ωs and Ωf (plate and fluid)

using Green’s formula and taking into account the boundary conditions yields∫
Ωs

D∇2w · ∇2w̄ dΩs − ω2

∫
Ωs

ρshww̄dΩs + jω

∫
Ωs

ρfΦw̄dΩs = 0 (9)∫
Ωf

ρf∇Φ · ∇Φ̄ dΩf − ω2

∫
Ωf

ρf
c2f

ΦΦ̄ dΩf − jω
∫
∂Ωf

ρfwΦ̄ dΓf = 0 (10)
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Applying standard Galerkin discretization method wich consists in constructing an

approximate solution of Eqs. (9) and (10), we have{(
Kw 0

0 KΦ

)
− ω2

(
Mw 0

0 MΦ

)
+ jω

(
0 Cw

−CΦ 0

)}{
W

Φ

}
=

{
0

0

}
(11)

where W and Φ are the vectors of nodal values for w and Φ, respectively, and the

matrices in Eq. (11) are defined by∫
Ωs

D∇2w · ∇2w̄ dΩs = W̄TKwW ,

∫
Ωs

ρshww̄dΩs = W̄TMwW∫
Ωs

ρfΦw̄dΩs = W̄TCwΦ ,

∫
Ωf

ρf∇Φ · ∇Φ̄ dΩf = Φ̄
T
KΦΦ∫

Ωf

ρf
c2f

ΦΦ̄ dΩf = Φ̄
T
MΦΦ ,

∫
∂Ωf

ρfwΦ̄ dΓf = Φ̄
T
CΦW

where W̄ and Φ̄ are the vectors of nodal values for w̄ and Φ̄, respectively. In or-114

der to determine natural frequencies of free vibration of submerged plate, Comsol115

Multiphysics code is used [Comsol, 2016] to solve Eq. (11). This modeling proce-116

dure requires two modules, one for simulating the plate and the other for the fluid.117

Each module provides a wide range of equations, which were needed in specifying118

subdomains and boundaries. For this purpose, some variables are set to make the119

connection between these two modules. At fluid-structure interface, kinematic and120

dynamic continuity has to be ensured. The complete coupled problem has to fulfill121

the condition that the location of the fluid-structure interface coincides for both122

fields. Thus, the fluid-structure interaction boundary condition concerning the fluid123

is of a Dirichlet type, and the fluid-structure boundary condition for the solids is124

given by a Neumann condition. The plate and fluid were simulated using quadratic125

element and quadratic Lagrange element, respectively. The plate and fluid elements126

at the interface shared the same nodes and had extra fine meshes to capture the127

details during the coupled vibrations (see Fig. 2). Thus, for the eigenvalue prob-128

lem solution, which depends on finding the eigenvalues ω, is solved by the natural129

frequency extraction.130

3. Results and discussion131

This section presents results of the natural frequencies and associated mode shapes132

of the plate submerged in fluid-filled cylindrical container (Fig. 1). By performing133

modal analysis on the plate, first six frequencies are tabulated in Tables 2-4. In134

order to compare the present results with other established results of specific cases,135

we maintain the same frequency factor as the one defined by [Lee et al. 2007]136

in the case of an plate vibrating in vacuum. Thus, in other words, frequencies137

are normalized and introduced as the dimensionless frequency, which is defined by138

λ = a
√
ω (ρsh/D)

1/4
. The geometry and material properties of the plate and the139

compressible fluid are presented in Table 1.140



6 Yang et al.

(a) Plate in vacuum (b) Submerged plate

Fig. 2. Plate mesh (b/a = 0.25, a = 0.175 m). (a) : Mesh consists of 5248 boundary elements
and 200 edge elements. Number of degrees of freedom solved for : 64176 and time for solving is 21
s. (b) : Mesh consists of 99865 domain elements, 6784 boundary elements, and 308 edge elements.
Number of degrees of freedom solved for : 153770 and time for solving is 151 s.

Table 1. Material and geometrical parameters.

Properties Plate and fluid

Young’s modulus, E 207 (GPa)

Density, ρs 7800 (kg/m3)

Poisson’s ratio, ν 0.3

Thickness, h 0.002 (m)

Density, ρf 1000 (kg/m3)

Bulk modulus, B 2.199 (GPa)

Speed of sound, cf 1483 (m/s)

Radius, R 0.25 (m)

Depth, H 0.16 (m)

Lower region depth , Hl 0.10 (m)

Tables 2 and 3 show six frequencies using indirect BIEMs method [Lee et al.,141

2007] and the present FEM. The very good agreement is revealed by showing the142

reliability of the implemented algorithm in Comsol Multiphysics code. Table 2 also143

shows that the frequency decreases as the plate radius increases. This is related144

to the plate mass effect. For the plate with an eccentric hole, Table 3 shows also145

that the doublet frequency (multiplicity) divides into two distinct values. This mul-146

tiplicity is due to the hole eccentricity. Indeed, the eccentricity generates a local147

modification of the mass, hence the doublet frequency [Deutsch et al., 2004]. Figs.148

3 and 4 show the mode shapes of the plate with an eccentric hole in vacuum and in149

water, respectively. Note that, Fig. 3 is identical to that given by [Lee et al., 2007].150

Furthermore, the convergence is very fast to obtain the desirable frequencies. In151

addition, the fundamental mode corresponds to the mode with n = 0 and m = 0.152

Thus, in tables 2-4 the parameters n and m define respectively the number of nodal153

diameters and nodal circles.154

In this work, various parameters effects on plate frequencies such hole radius,155

hole eccentricity, fluid density and upper fluid height on the coupled frequencies are156
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Table 2. First six frequencies of the plate in vacuum (b/a = 0.25).

a = 0.175 (m) a = 1 (m)

Present Present Lee et al. 2007

Mode (n,m) f (Hz) f (Hz) λ λ

1 (0, 0) 174.85 5.3829 3.2743 3.2750

2 (1, 0) 323.25 9.9897 4.4606 4.4610

3 (2, 0) 536.84 16.668 5.7618 5.7640

4 (0, 1) 754.34 23.3 6.8123 6.8160

5 (3, 0) 806.22 25.05 7.0635 7.0680

6 (1, 1) 921.67 28.486 7.5323 7.5360

Table 3. First six frequencies in vacuum (b/a = 0.25, e = 0.45 m). ∗ multiplicity.

a = 0.175 (m) a = 1 (m)

Present Present Lee et al. 2007

Mode (n,m) f (Hz) f (Hz) λ λ

1 (0, 0) 166.32 5.1448 3.2011 3.1870

2 (1, 0)∗ 331.96 10.29 4.5271 4.5210

3 (1, 0)∗ 365.31 11.292 4.7424 4.7400

4 (2, 0)∗ 540.21 16.721 5.7709 5.7580

5 (2, 0)∗ 599.37 18.576 6.0826 6.0600

6 (0, 1) 629.36 19.485 6.2296 6.2560

(a) 165.4 Hz (b) 174.8 Hz (c) 166.3 Hz (d) 343.9 Hz (e) 323.2 Hz (f) 331.9 Hz

(g) 563.7 Hz (h) 536.8 Hz (i) 365.3 Hz (j) 642.7 Hz (k) 754.3 Hz (l) 540.2 Hz

(m) 824.1 Hz (n) 806.2 Hz (o) 599.3 Hz (p) 981.8 Hz (q) 921.6 Hz (r) 629.3 Hz

Fig. 3. First six mode shapes of plate in vacuum. (a,d,g,j,m,p) Without a hole (a = 0.175 m).
(b,e,h,k,n,q) With a concentric hole (b/a = 0.25). (c,f,i,l,o,r) With an eccentric hole (e = 0.45 m).

presented. Firstly, one investigates how hole radius affects the frequencies of plate.157

Variation of first ten plate modes is exhibited in Fig. 5(a) for different values of the158

aspect ratio b/a of the plate. As the hole radius of the plate increases, the frequencies159
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Table 4. Six frequencies of plate with a hole in fluid (b/a = 0.25, a = 0.175 m).

e = 0 e = 0.45 (m) e = 0.6 (m)

Mode (n,m) f (Hz) (n,m) f (Hz) (n,m) f (Hz)

1 (0, 0) 66.824 (0, 0) 55.605 (0, 0) 51.913

2 (1, 0) 132.55 (1, 0)∗ 130.25 (1, 0)∗ 129.89

3 (2, 0) 235.81 (1, 0)∗ 158.19 (1, 0)∗ 147.38

4 (0, 1) 378.29 (2, 0)∗ 245.64 (2, 0)∗ 244.49

5 (3, 0) 379.38 (2, 0)∗ 268.56 (2, 0)∗ 260.00

6 (1, 1) 486.11 (0, 1) 298.89 (0, 1) 301.88

(a) 48.0 Hz (b) 66.8 Hz (c) 55.6 Hz (d) 130.6 Hz (e) 132.5 Hz (f) 130.2 Hz

(g) 242.5 Hz (h) 235.8 Hz (i) 158.1 Hz (j) 276.7 Hz (k) 378.2 Hz (l) 245.6 Hz

(m) 385.3 Hz (n) 379.3 Hz (o) 268.5 Hz (p) 468.6 Hz (q) 486.1 Hz (r) 298.8 Hz

Fig. 4. First six mode shapes of plate in fluid. (a,d,g,j,m,p) Without a hole (a = 0.175 m).
(b,e,h,k,n,q) With a concentric hole (b/a = 0.25). (c,f,i,l,o,r) With an eccentric hole (e = 0.45 m).

for asymmetric modes (n > 0) with m = 0 are slightly affected. However, the160

frequencies for asymmetric modes with m > 1 and for axisymmetric modes (n = 0)161

increase as the hole radius increases. In fact, when the hole radius increases, the162

plate effective radius decreases and this causes an increase in the plate stiffness, and163

as a consequence the frequencies increase. In addition, in Fig. 5, the intersection of164

mode curves with the frequency axis, corresponds to frequencies obtained in case165

of an circular plate without hole submerged in fluid. These frequencies are in good166

agreement with those obtained by [Askari et al., 2013]. If the plate contains multi-167

hole, the context is much more complex. The plate stiffness decreases more than the168

mass and therefore the frequencies of a perforated plate are usually smaller than169

those of the plate without hole [Lee et al., 2007; Jhung and Jeong, 2015]. This is170

the opposite situation from that of the plate with a single hole.171

Secondly, one investigates how the hole eccentricity affects the frequencies. Figs.172
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Fig. 5. (a) Radius hole effect on frequencies of submerged plate. (b) Eccentricity effect on fre-
quencies in vacuum (b/a = 0.25, a = 0.175 m).

5(b) and 6(a) show the frequencies in vacuum and in water, varying with the hole173

eccentricity. As can be noticed, on the one hand the presence of the fluid around the174

plate creates an added mass due to the fluid motion which decreases significantly175

the frequencies of the plate. On the other hand Figs. 5(b) and 6(a) show also that an176

increase in the eccentricity, leads to an axial symmetry breaking, as a consequence177

the doublet frequencies (multiplicity) occurring in the case of plate for asymmetric178

modes (n > 0), are progressively separated into two distinct values. We can also179

observe that for asymmetric modes, the first frequency varies slightly with respect180

to the eccentricity. However, with an increase in eccentricity, the second frequency181

of the asymmetric modes augments and then decreases beyond a certain eccentricity182

value. For example, asymmetric mode (1, 0) has the peak frequency at eccentricity183

e/a = 0.37 in vacuum and in fluid, asymmetric mode (2, 0) has the peak frequency at184

eccentricity e/a = 0.42 in vacuum (e/a = 0.37 in fluid), and asymmetric mode (3, 0)185

has the peak frequency at e/a = 0.52 in vacuum (e/a = 0.5 in fluid). Therefore,186

with the asymmetric modes increasing, the eccentricity where the peak frequency187

is obtained increases. In addition, the fundamental mode (0, 0) is slightly affected188

by increasing in eccentricity. However the axisymmetric mode (0, 1) decreases with189

increasing eccentricity and increases beyond a certain eccentricity value.190

Thirdly, to study the fluid density effect (added mass) on the naturel frequencies191

of the plate, Fig. 6(b) is plotted for first five modes. It is obvious from this figure192

that, when the plate vibrates in denser fluid, the frequencies take lower values.193

Fourthly, one investigates how the frequencies of the plate vary with the upper194

fluid height Hu. The frequencies are plotted in Fig. 7(a) as a function of the normal-195

ized upper fluid height. When the upper fluid height approaches zero, i.e. the plate196

reaches the free fluid surface, the frequencies increase regardless of (n,m), and they197

converge to those in the case of the plate in contact with fluid on only one side.198

The frequencies decrease continually, but within an interval from 0.2 to 0.8 of the199
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Fig. 6. (a) Eccentricity effect on frequencies in fluid (b/a = 0.25, a = 0.175 m). (b) Variation of
frequencies of plate versus fluid density (b/a = 0.25, a = 0.175 m).

normalized 1 − Hu/H fluid height over the plate, they diminish slowly. However,200

when the plate approaches the container bottom, the frequencies decrease dramat-201

ically due to the increase of the added mass. In addition, when the plate reaches202

the free fluid surface, the upper fluid reacts as the in phase mode with respect to203

the plate [Ergin and Ugurlu, 2003], mainly the upper fluid moves vertically, and204

the added mass of the fluid progressively decreases with decreasing the upper fluid205

height. In addition, to study the effects of fluid density and upper fluid height on206

the naturel frequencies of the circular plate, Fig. 7(b) is plotted for some values of207

fluid density and normalized upper fluid height. It is evident from this figure that,208

when the plate is oscillating in contact with the denser fluid, the frequencies takes209

lower values. Note that this behavior is also found for the other modes.

0 0.2 0.4 0.6 0.8 1

1−Hu/H

0

100

200

300

400

500

N
at
u
ra
l
fr
eq
u
en
cy

(H
z)

(0, 0)

(1, 0)

(2, 0)(3, 0)

(0, 1)

(a)

0 0.2 0.4 0.6 0.8 1

1−Hu/H

30

40

50

60

70

80

90

N
a
tu
ra
l
fr
eq
u
en

cy
(H

z)

ρf = 0.8 · 103
[

kg/m3
]

ρf = 1.0 · 103
[

kg/m3
]

ρf = 1.2 · 103
[

kg/m3
]

ρf = 1.4 · 103
[

kg/m3
]

(b)

Fig. 7. (a) Frequencies of plate versus normalized upper fluid height in the case of free fluid
surface (b/a = 0.25, a = 0.175 m). (b) Frequencies for the fundamental mode (0, 0) of the plate
versus normalized upper fluid height in the case of free fluid surface (b/a = 0.25, a = 0.175 m).
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Fifthly, to study the case of bounded fluid, the free fluid surface is replaced by210

an upper rigid wall. The frequencies are plotted in Figs. 8(a) and 8(b) as a function211

of the normalized upper fluid height. The frequencies severely decrease when the212

plate approaches the upper rigid surface. In fact, the upper fluid reacts as the out213

of phase mode with respect to the plate [Ergin and Ugurlu, 2003], and the upper214

fluid moves laterally in the gap between the upper rigid wall and plate, this leads to215

an increase in the added mass of the fluid. Fig. 8(a) show also that with the modes216

increasing, the difference in the frequencies between the bounded fluid case and free217

fluid surface case augments. We can also remark that the frequencies in the free218

fluid surface case are always greater than those obtained in the bounded fluid case219

when the plate reaches the upper side of the container.220
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Fig. 8. (a) Frequencies of plate versus normalized upper fluid height for the fluid-bounded case
(b/a = 0.25, a = 0.175 m). (b) Fluid bounding effect on frequencies of plate (b/a = 0.25, a =
0.175 m). Free fluid surface case (•) and fluid-bounded case (◦).

Finally, four first sloshing frequencies are plotted in Fig. 9 versus upper fluid221

height. it is well known that the submerged plate can be used as a baffle plate to222

reduce or suppress the sloshing waves, and simultaneously to decrease the frequen-223

cies and change the sloshing mode shapes as shown in two cases. With a decrease224

in the normalized upper fluid height, the sloshing frequencies increase. As the plate225

approaches the free fluid surface, the sloshing frequencies significantly decrease,226

which means that the submerged plate can be used as a baffle device to reduce227

or suppress the sloshing waves. In addition, first four sloshing mode shapes of the228

free fluid surface are illustrated in Fig. 10 for two different upper fluid heights. The229

fluid heights above the plate are equal to Hu = 4.8 mm and Hu = 64 mm. These230

values correspond respectively to a positioning of the plate in the vicinity of the231

fluid surface and approximately at the cylindrical container half height. The slosh-232

ing modes when the plate is placed at the container bottom are identical to those233
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without plate. Consequently, the positioning of the plate at the container bottom234

has no influence on the sloshing modes, whereas the positioning near the free sur-235

face greatly reduces the sloshing frequencies. In other words, sloshing frequencies236

converge to those without plate once the normalized upper fluid height approaches237

zero as shown in Fig. 10.
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Fig. 9. Sloshing frequencies for the first four modes of plate (b/a = 0.25, a = 0.175 m).

(a) 0.8393 Hz (b) 1.0065 Hz (c) 1.0787 Hz (d) 1.3287 Hz

(e) 1.2297 Hz (f) 1.7075 Hz (g) 1.9362 Hz (h) 2.0340 Hz

(i) 1.2302 Hz (j) 1.7078 Hz (k) 1.9372 Hz (l) 2.0341 Hz

Fig. 10. First four Sloshing mode shapes (b/a = 0.25, a = 0.175 m). (a,b,c,d) for 1−Hu/H = 0.97.
(e,f,g,h) for 1 −Hu/H = 0.06. (i,j,k,l) without plate.

238
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4. Conclusion239

A numerical analysis to investigate the frequencies of a thin circular plate with hole240

submerged in fluid is proposed using FEM. The effect of different parameters includ-241

ing fluid density, free surface wave, fluid height, hole radius and hole eccentricity242

on the frequencies is examined and discussed in detail. The results can serve as243

benchmark solutions for the vibration control, parameter identification and damage244

detection of thin circular plate with a hole. The following comments were made in245

the present study : (i) The results show a good agreement with those in literature246

in some particular cases by showing the reliability of the implemented algorithm in247

Comsol Multiphysics software and, the convergence is very fast to obtain the desir-248

able frequencies. (ii) The hole eccentricity has a slight effect on the first frequency249

of asymmetric modes, but the second frequency is strongly affected by the hole ec-250

centricity. (iii) When the plate is vibrating in fluid, the frequencies decrease and the251

magnitude of the decrease is more important when the fluid density increases. (iv)252

The hole radius of the plate affects slightly the frequencies for asymmetric modes253

(n > 0) with the radial circle m = 0. However, the frequencies for asymmetric254

modes with the radial circle m > 1 and for axisymmetric modes (n = 0) increase255

as the hole radius increases. (v) The frequencies of the plate initially decrease with256

the increasing the upper fluid height, then become about constant when the plate257

reaches the middle of the container. However, increasing the upper fluid height more258

than the container middle height leads to a decrease again in the frequencies, and259

this is due to the plate closeness to the container rigid bottom.260

In addition, the numerical results obtained are in good agreement with existing261

data in some particular cases, thereby providing a satisfactory validation of the262

present model. In future, the following topics are of interests in order to complete263

this article results : (1) The cylindrical container radius effect on the frequencies264

may be important in order to know from which critical value of the container radius265

the fluid portions far from the plate have a little effect on plate vibration behavior.266

(2) In this study, the outer and inner boundaries of the plate are subject to the267

clamped and free boundary conditions, respectively. Therefore, it’s recommended268

to investigate how the plate frequencies vary with different boundary conditions.269
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