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Shifted boundary polynomial corrections for compressible flows:
high order on curved domains using linear meshes

Mirco Ciallellaa,∗, Elena Gaburroa, Marco Lorinia, Mario Ricchiutoa

aInria, Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, 200 Avenue de la Vieille Tour, 33405 Talence cedex, France

Abstract

In this work we propose a simple but effective high order polynomial correction allowing to enhance the consistency
of all kind of boundary conditions for the Euler equations (Dirichlet, characteristic far-field and slip-wall), both in 2D
and 3D, preserving a high order of accuracy without the need of curved meshes. The method proposed is a simplified
reformulation of the Shifted Boundary Method (SBM) and relies on a correction based on the extrapolated value
of the in cell polynomial to the true geometry, thus not requiring the explicit evaluation of high order Taylor series.
Moreover, this strategy could be easily implemented into any already existing finite element and finite volume code.
Several validation tests are presented to prove the convergence properties up to order four for 2D and 3D simulations
with curved boundaries, as well as an effective extension to flows with shocks.

Keywords: Compressible flows, Curved boundaries, Unstructured linear meshes, Shifted Boundary Method,
Discontinuous Galerkin

1. Introduction

The potential of high order methods in providing drastic error reductions in flow simulations with considerable
savings in computational costs is well established [66]. A key element in this respect is the proper treatment of bound-
ary conditions. This involves two independent aspects: an appropriate geometrical representation of the boundaries
and a high order approximation of the boundary condition itself. When dealing with finite elements, the most classi-
cal approach is to work with an iso-parametric approximation in which the geometry as well as the flow solution are
approximated by some high order polynomial [68]. Standard approaches range from the use of various maps based on
some local interpolated or modal polynomial approximation of the curved geometry, to the more recent use of rational
B-spline or NURBS approximations used in the so called iso-geometric analysis (IGA) [41]. In both cases, a crucial
role is played by the availability of a high quality curved mesh. Progress has been made on methods to obtain such
meshes, either via curving straight faced meshes [21, 48, 56, 31, 53, 65], or by using some optimization or variational
approach [37, 63, 64]. Despite the advances in this domain, obtaining easily a high quality curved mesh for a complex
geometry remains a complex task, still object of intense research both for dominant simplex meshes, and for coarse
multiblock quad/hex meshes required in NURBS analysis (cf e.g. [46, 20] and references therein).

In alternative to high order meshing, one can improve the boundary conditions by accounting, on a straight faced
mesh, for the local features of the true geometry. Early work on curvature corrected wall boundary conditions can be
found e.g. in [67], while the specific case of high order schemes and wall boundaries in two space dimensions has
been thoroughly treated in the well known paper by Krivodonova and Berger [43]. The last reference in particular
proposes an approach to correct the direction used when prescribing the slip-wall condition, which shows a recovery
of third and, for some cases, fourth order of accuracy on 2D geometries. However, this method can be formulated
only for slip-wall conditions, and the work is limited to 2D geometries.
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More recent developments addressing this problem can be found in [18, 19, 30]. The authors first presented a
reconstruction off-site data (ROD) approach, in a high order finite volume framework, to apply Dirichlet boundary
conditions [18]. Afterwards, the work has also been extended to other boundary conditions [19], which represents an
important improvement for real applications. Due to the finite volume framework, the approach is built on the least-
squares method, which is used to handle several constraints from scattered mean values associated to the elements.
Due to the linear system arising from the constrained least-squares problem, a matrix should be inverted locally and
this may introduce some issues for ill-conditioned problems.

In this work, we propose an alternative path to achieve a similar result. Our idea relies on a simplified reformula-
tion of the Shifted Boundary Method (SBM) [49, 50, 57, 54, 45, 14, 1, 17] that enhances the consistency of all kinds of
boundary conditions for the Euler equations (Dirichlet, characteristic far-field and slip-wall), both in 2D and 3D. Orig-
inally, SBM has been introduced to cope with embedded boundary problems and it consists in retaining the designed
order of accuracy of the discretization method by using modified boundary conditions based on truncated Taylor series
expansions. Here we propose a simplified version which allows to avoid the cumbersome explicit evaluation of all
the Taylor development terms [54, 2], and directly exploits the available (nodal or modal) polynomial expansion of
a physical, linear element. The approach has been easily implemented for steady problems using indifferently nodal
and modal bases on simplex meshes, and its extension to time dependent problems is based on the ADER space-time
formulation. The ADER methodology has been introduced by Toro and collaborators in [60, 61, 62] and it has been
substantially simplified and generalized in [24]. Then, the ADER approach has been widely used in the last 15 years:
we recall here only some of its main developments, as the extension to staggered meshes [58, 59] to unstructured
2D and 3D moving meshes [47, 9, 34, 33], to semi-implicit and implicit schemes [52, 10, 40], its coupling with the
MOOD a posteriori finite volume limiter [7, 35] and its application in the modeling of quite complex PDE systems,
as MHD in [3, 29], GRMHD and CCZ4 in [28, 26, 25] and multiphase models and the recent first order hyperbolic
unified model for continuum mechanics, known as GPR system, in [55, 13, 32, 6]. Although the extensive use of
ADER schemes, the problems related to high accurate treatment of boundary conditions have been only marginally
considered, see for example the work [42] that however treats the topic from a completely different approach em-
ploying indeed a diffuse interface technique. Finally, for a formulation of ADER schemes employing a genuinely
space-time modal expansion, as the one adopted in this work, we refer to [34, 36].

The paper is organized as follows. First, in Section 2 we describe the physical model of interest in this work,
represented by the Euler equations of gasdynamic on curved domains. Due to the generality of the approach, it should
be noticed that the method proposed here can be easily applied to other systems of equations [49, 50]. Next, in
Section 3 we briefly recall the general framework of Discontinous Galerkin (DG) schemes, used here to discretize
the governing PDEs system with high order of accuracy in space and time on conformal meshes; in particular, a
brief overview on the standard treatment of boundary conditions, involving the necessity of using curved meshes for
curved domain, is given in Section 3.5. Then, the core of the paper is represented by Section 4, where we present
the polynomial correction to be applied to general high order numerical schemes directly on linear fitted meshes for
modeling compressible flows on curved domains. We would like to remark that the presented approach is simple,
independent on the underlying type of high order discretization and on the space dimension and allows to retrieve
the formal order of accuracy of the original method for arbitrary domain and obstacles shapes. Finally, a large set of
numerical simulations, allowing to validate the proposed polynomial correction, is presented in Section 5, for both far-
field and slip-wall boundary conditions, steady and unsteady problems, on two and three dimensional curved domains.
The paper is closed by some conclusive remarks and an outlook to future works is given in Section 6.

2. Governing equations

We consider the numerical approximation of solutions of the Euler equations in d space dimensions reading:

∂tU + ∇ · F (U) = 0, on ΩT = Ω × [0,T ] ⊂ Rd × R+, (1)
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with U the vector of conserved variables and F the non linear flux respectively defined as

U =

 ρ
ρu
ρE

 , F =

 ρu
ρu ⊗ u + pI

ρHu

 , (2)

having denoted by ρ the mass density, by u the velocity, by p the pressure, and with E = e + u · u/2 the specific total
energy, e being the specific internal energy. Finally, the total specific enthalpy is H = h + u · u/2 with h = e + p/ρ the
specific enthalpy. For simplicity in this paper we work with the classical perfect gas equation of state

p = (γ − 1)ρe, (3)

with γ the constant ratio of specific heats.

In order to perform convergence analysis, we use the manufactured solution method which needs the discretization
of an additional source term in Equation (1) which thus reads as follow

∂tU + ∇ · F (U) = S(U). (4)

For this reason we are going to include S in the discretization presented in Section 3.

3. High order Discontinuous Galerkin discretization

3.1. Computational domain and data representation
The spatial domain Ω is discretized by means of a tessellation T composed of N non-overlapping simplicial

elements (triangles in 2D, tetrahedra in 3D). We denote by K the generic element, so that Ωh =
⋃N

j=1 K j. Note that
in general Ωh , Ω and in particular ∂Ωh , ∂Ω for most approximations, even conformal, with the exception of very
simple geometries or of iso-geometric approaches [41].

The numerical solution U is approximated by Uh, which belongs to a space of piece-wise polynomials within each
triangle K and discontinuous across faces, such that in each element K j we have

Uh(x, t)|K j =

D∑
i=1

Uk(t)ψk(x), (5)

where {ψk, k = 1, . . . ,D} is a basis of polynomials of degree p. On simplex elements, the number of degrees of freedom
D can be shown to be D =

∏d
l=1(p + l)/l. The discontinuous finite element data representation (5) leads to a Finite

Volume (FV) scheme if p = 0.

3.2. Discontinuous Galerkin discretization in space
The elemental semi-discrete discontinuous Galerkin (DG) weak formulation is classically written by projecting

each component of (4) on the relevant basis and integrating by parts [16, 5].∫
K
ψi

dUh

dt
dx +

∫
∂K
ψi F̂(U−h ,U

+
h ) · ndS −

∫
K
∇ψi · F(Uh)dx =

∫
K
ψi S(Uh)dx, 1 ≤ i ≤ D, (6)

with F̂(U−h ,U
+
h ) a consistent numerical flux which depends on the face values of the internal state U−h , of the neighbor-

ing element state U+
h and on the face normal n. We recall in particular that a consistent flux is a Lipschitz continuous

function of each of its arguments which also veryfies

F̂(u,u) · n = F(u) · n (7)

In this work we have used a simple and robust Rusanov-type flux:

F̂(U−h ,U
+
h ) · n =

1
2

(
F(U+

h ) + F(U−h )
)
· n −

1
2

smax

(
U+

h−U−h
)
, (8)

where smax is the maximum eigenvalue of the Jacobians of the flux An
(
U+

h

)
and An

(
U−h

)
.
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3.3. High order time integration
In this Section we briefly recall two classical different strategies, both employed in this work, to achieve high order

of accuracy during the time integration with a discontinous Galerkin scheme.

3.3.1. Method of lines for steady problems
For steady state computations, we use a classical method of lines. Assembling all the contributions (6), we obtain

in each element K a system of ODEs [5] reading

dU
dt

+ M−1R(U) = 0, (9)

where the array U contains the d + 2 vector of unknowns corresponding to the degrees of freedom, R is the array of
size D, made up by the second, third, and fourth integrals in (6), and M denotes the elemental mass matrix with D×D
block diagonal entries, whose components are given by

[M]ik =

∫
K
ψiψkdx . (10)

For steady problems, we simply integrate (9) with explicit Euler or classical Runge-Kutta methods with improved
time step constraints [11, 39].

3.3.2. High order explicit ADER approximation with local space-time predictors
For time accurate simulations, we have used a high order explicit one-step predictor-corrector ADER approach,

that we are going to briefly describe in this section. For further details we refer to [24, 34]. The temporal domain is as
usual discretized in temporal slabs [tn, tn+1]. With the same notation used before, on fixed meshes the ADER method
can be succinctly written as

Un+1 = Un − M−1
∫ tn+1

tn
R(qh)dt, (11)

where qh = qh(x, t) is a high order space-time predictor of the solution in the time slab [tn, tn+1]. In practice, (11) is
replaced by some high order quadrature formula in time (with αi and ωi, 1 ≤ i ≤ r, the quadrature points and weights)

Un+1 = Un − M−1∆t
r∑

i=1

ωiR
(
qh(tn+αi )

)
, (12)

and qh(x, t) is defined as a polynomial of degree N in space and time, with N ≥ p. This polynomial is obtained by
means of a genuinely local space-time procedure. In the current implementation this local problem is formulated by
means of a modal expansion

qh(x, t) =

Q−1∑
`=0

θ`(x, t)qn
` , (x, t) ∈ K × [tn, tn+1], Q = L(N, d + 1), (13)

where θ`(x, t) being L(N, d) =
∏d

m=1(N + m)/m space-time modal basis of the polynomials of degree N in d + 1
dimensions (d space dimensions and time), defined as

θ`(x, y, t)|K×[tn,tn+1] =
(x − xn

K)p`

p`!hK
p`

(y − yn
K)q`

q`!h
q`
K

(t − tn)r`

r`!h
r`
K

, ` = 0, . . . ,L(N, d + 1), 0 ≤ p` + q` + r` ≤ N, (14)

with (xK , yK) the gravity center of element K, and (p`, q`, r`) being the terms associated to the taylor series expansion.
The values of the predictor qn

h are computed by means of an iterative procedure that seeks the solution for any space-
time element K × [tn, tn+1] of the local space-time weak formulation∫

K
θk(x, tn+1)qn

h(x, tn+1)dx −
∫

K
θk(x, tn)Un

h(x, tn)dx−∫ tn+1

tn

∫
K

∂θk

∂t
(x, t)qn

h(x, t)dxdt +

∫ tn+1

tn

∫
K
θk(x, t)∇ · F(qn

h)dxdt =

∫ tn+1

tn

∫
K
θk(x, t) S(qn

h)dxdt, (15)
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where Un
h is the known initial condition at time tn.

Equation (15) is fully local, in the sense that it involves no communication between K and its neighbouring
control volumes. The solution to this equation can be obtained independently within each element K by means of
some iterative procedure. In this work a simple discrete Picard iteration for each space-time element is used.

3.4. A posteriori sub-cell finite volume limiter and CFL constraint
To handle discontinuous solutions in the time dependent case we use the MOOD approach [15, 22, 23], which

has already been effectively applied in the ADER framework [47, 8, 35].
The algorithm is based on an a posteriori technique. The solution is first evolved from tn to tn+1 using the high

order ADER-DG method. Then several admissibility criteria are checked and the solution in all troubled cells (i.e.
the cells not satisfying the admissibility criteria) is recomputed a posteriori using a MUSCL-Hancock TVD finite
volume (FV) scheme, but working on a sub-triangulation of the initial grid in order to preserve the accuracy of the
high order DG scheme also when passing to a lower order but more robust second order FV scheme. All aspects of
the implementation of this technique are provided in [35] to which we refer for details.

Concerning the choice of the time step, we have implemented the usual explicit CFL condition

∆t < CFL
(

|hmin|

(2N + 1)|λmax|

)
, (16)

where |hmin| is the minimum characteristic mesh-size and |λmax| is the maximum eigenvalue of the Jacobian of the flux.
For DG on unstructured meshes the CFL stability condition requires the inequality CFL < 1/d to be satisfied (cf.
discussion in [12]). We underline that the time step constraint does not need to be modified in presence of troubled
cells, because we subdivide each troubled triangle in exactly (2N +1)d sub-triangles and then we employ a FV scheme
for which (16) holds with N = 0. We refer again to [35] for details.

3.5. Boundary conditions on conformal meshes
When the boundary ∂K of element K belongs to ∂Ωh, the normal flux function F(Uh) · n must account for the

appropriate boundary conditions. The flux consistent with such conditions will be denoted by Fbc
n . In this work, the

boundary flux function Fbc
n is obtained by defining a ghost state Ubc, and introducing a numerical flux Fbc

n = F̂(U−h ,U
bc)

defined by some approximate Riemann solver based on the internal state U−h and on Ubc. Depending on the condition
to be enforced, different definitions of the ghost state are used:

• for far-field, which can be seen as a Dirichlet-type BC enforced weakly through fluxes, all the components of
Ubc are set to prescribed values;

• at inflow/outflow boundaries Ubc is obtained by imposing the Riemann invariants associated to characteristics
entering the domain values obtained from prescribed reference values of density, pressure and Mach number;

• for slip walls we wish to set
u · n = w. (17)

In this case Ubc has the same density, internal energy and tangential velocity of U−h , and the opposite normal
relative velocity component u · n − w. For this condition, an alternative way consists in defining directly the
boundary flux function by setting u · n = w, meaning that

Fbc
n = Fn(Ubc) = (ρw, ρu w + p n, ρH w) . (18)

When doing so, the value of the total enthalpy should be consistently modified as

H =
γ

γ − 1
p
ρ

+
1
2

(
w2 + u2

t

)
, (19)

with ut = u · t the tangent velocity. For static walls this reduces to w = 0 and Fbc
n = (0, p n, 0).

5



ξn

ξ2

ξ1

ξ = (ξ1, ξ2) ∈ Ωst

standard element

yn

y=(y1,y2)∈ Ωe
I

ideal element

xn

x=(x 1,x 2)∈ Ωe

curvilinear element

φI

φM

φ

Figure 1: We give here a visual idea of the necessary transformations to be employed when dealing with curved meshes. First, one needs the map
from a standard reference element Ωst (left) onto the straight-sided element Ωe

I (top right), i.e. the mapping φI : Ωst → Ωe
I , and the one onto

the curvilinear element (bottom right), i.e. φM : Ωst → Ωe. Finally, the deformation mapping φ : Ωe
I → Ωe is defined through the composition

φ = φM ◦ φ
−1
I .

For high order methods, one of the key aspects in order to achieve a genuinely high order of accuracy is repre-
sented by the ability of simultaneously control the error on the geometry and the flow variables. This also includes
approximating boundary integrals using consistent quadrature rules. To this end, an obvious, but also complex and
expensive, solution consists in the use of a curved high order approximation of the boundary of the domain, which
usually entails the use of some iso-parametric approximation of the boundary and the generation of a valid curved
volume mesh [66]. Curvilinear grids represent geometric boundaries with far superior accuracy allowing the use of
larger elements than would be possible with linear elements. Several approaches exist to obtain valid high order
meshes, either based on curving existing linear meshes [21, 48, 56, 31, 53], or on some optimization or variational
method [37, 63, 64]. Moreover, these approaches always require the definition and evaluation of mappings between
the curvilinear elements and the reference elements (see Figure 1), and despite the recent progress, while the gen-
eration of linear meshes for complex geometries has reached a very high level of maturity, the robust generation of
curved meshes remains a relatively complex issue.

In this work we employ linear and curved meshes generated by the open source mesh generator Gmsh [38], and
in the next Section, which represents the core of this work, we will show a novel technique to retrieve high order of
accuracy for curved domain using linear meshes.

4. High order boundary conditions on linear meshes via polynomial corrections

In this work we aim at side stepping the need of generating curved meshes allowing to use directly conformal
linear ones. The idea is to use a simplified formulation of the Shifted Boundary Method (SBM), originally introduced
to handle non-conformal meshes within second order of accuracy for elliptic, parabolic and hyperbolic problems [49,
50, 57], in order to compensate geometrical errors and retain the desired high order of accuracy.

For the sake of clarity, we recall briefly the notation employed at boundaries. Let Ωh be a linear conformal mesh
discretizing the physical domain Ω, and Γ̃ := ∂Ωh the linear approximation of the curved boundary Γ = ∂Ω. In
particular, we refer to Γ̃ as to the surrogate boundary. Moreover, for any point on Γ̃ we assume to be able to define a
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x

y

0 0.5 1 1.5
0

0.5

1

ñ

n

n

n

x̃

x

Γ
Γ̃

Figure 2: The SBM: the surrogate and actual boundaries with correspondent normals.

map to a unique point on the true boundary Γ, s.t.

R : Γ̃ → Γ

x̃ → x.

The mapR can be built in several ways, for example using a closest point projection, or using level sets, or equivalently
using distances along directions normal to the true boundary Γ, as shown in Figure 2. Since the gap between Γ̃ and Γ

is going to be of crucial importance, in terms of accuracy of the solution, the map R will be characterized by a distance
vector function:

d(x̃) = x − x̃ = [R − I](x̃). (20)

In our case, R is built using distances along normals to Γ, the vector d(x̃) is parallel to n(x) (the vector normal to Γ in
x = R(x̃)) such that

x = x̃ + d(x̃), d(x̃) = n(x)‖d(x̃)‖.

Following the shifted boundary approach, we now modify the boundary conditions to retain the appropriate con-
sistency order. We give a detailed description of the basic method for Dirichlet conditions. Let ρD be the prescribed
value of the density (similar expressions can be written for all variables). The main idea is that a smooth exact solution
of the problem will verify the estimate

ρD(x̃ + d) = ρ(x̃) + ‖d‖
d∑

j=1

n j ∂x jρ(x̃) + ‖d‖2
d∑

j=1

d∑
k=1

1
2!

n jnk ∂
2
x j xk

ρ(x̃) (21)

+ ‖d‖3
d∑

j=1

d∑
k=1

d∑
`=1

1
3!

n jnkn` ∂3
x j xk x`ρ(x̃) + . . . .

The idea is thus to modify the boundary condition on Γ̃ to account for all the corrective terms, which boils down to

7



use a modified prescribed value ρSBM which, for different accuracy orders, is given by

ρSBM(x̃) = ρD(x̃ + d) − ‖d‖
d∑

j=1

n j ∂x jρ(x̃) second order (22)

− ‖d‖2
d∑

j=1

d∑
k=1

1
2!

n jnk ∂
2
x j xk

ρ(x̃) third order

− ‖d‖3
d∑

j=1

d∑
k=1

d∑
`=1

1
3!

n jnkn` ∂3
x j xk x`ρ(x̃) fourth order

. . . .

Note that for an explicit method all the terms involved in the right hand side of the last expression are known. For
implicit schemes, they will modify the structure of the algebraic equations obtained. Also note that all the derivative
terms are evaluated starting from the available finite element approximation, and sampled at the appropriate quadrature
points. Please refer to [2, 54] for more details.

4.1. Derivative free formulation via polynomial corrections

The correction terms in (22) become more and more cumbersome and costly as the order of accuracy is increased,
especially in three space dimensions. We propose here a different formulation that somehow simplifies the evaluation
of these terms, especially on straight-sided simplicial meshes for which both nodal and modal bases can be easily
evaluated in physical space, without the needing of a map to the reference space, which would be instead required for
curved elements.

Starting from a Taylor series expansion of arbitrary order of accuracy, for a generic variable P, centered in x̃

P(x̃ + d) = P(x̃) + ∇P(x̃) · d +
1
2

dᵀ ·H (P(x̃)) · d + . . . ,

and moving P(x̃) in the left-hand-side of the equation, we are left with

P(x̃ + d) − P(x̃) = ∇P(x̃) · d +
1
2

dᵀ ·H (P(x̃)) · d + . . . .

Therefore, by simply evaluating the polynomial P in x̃ + d and by calculating the difference with that evaluated in x̃ we
get all the necessary correction terms in only one polynomial evaluation. A more interesting way to see our approach
is to realize that the Taylor series expansion truncated to the same degree as the underlying elemental polynomial
corresponds to a change of basis for the finite element space, passing to the local point wise Taylor basis. In this
respect, the original SBM uses a different basis in different quadrature points, which is expensive and unnecessary.

In practice, the data required in all quadrature points can be evaluated using the unique basis available in the im-
plementation, whatever that may be. Note also that the use of linear meshes, makes the finite element mapping fully
linear, thus passing from the reference to the physical space can be done with no ambiguity for any type of basis, and
for all degrees of approxmation.

For example, in practice the modified Dirichlet condition for the density ρ, introduced in (22), can be rewritten as

ρSBM(x̃) = ρD(x̃ + d) −
[
ρ(x̃ + d) − ρ(x̃)

]
= ρ(x̃) +

[
ρD(x̃ + d) − ρ(x̃ + d)

]
, (23)

which shows that the correction of the SBM method can be also seen as a direct shift on the surrogate boundary of the
extrapolated polynomial error on the true boundary.

This much simpler formulation only requires one extra polynomial evaluation and thus it can be readily imple-
mented on straight sides simplex elements for which the basis functions are easily expressed in the physical space. As
we mentioned above, these extrapolated variables are then used to compose a ghost state Ubc that will be used, along
with the internal state U−h , as input for the numerical flux F̂(U−h ,U

bc) to obtain the consistent boundary flux Fbc
n .
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4.2. Treatment of slip wall boundary conditions
A similar approach can be applied in order to impose the slip wall boundary condition (17) on the surrogate

boundary x̃. An important issue to take into account in this case is that, besides the position of the surrogate wall
boundary Γ̃w, also its normal ñ does not coincide with n, the normal to the true wall boundary Γw. This difference
affects both the magnitude and the rate of the convergence of the error as shown e.g. in [43, 5, 4]. To overcome this
issue, here we start from the formulation used in [57]. We start by decomposing the unit normal vector ñ at x̃ as

ñ = (ñ · n) n +

d−1∑
k=1

(ñ · tk) tk,

where tk are the vector tangent to Γw. By doing so, Fbc
ñ can be recast as

Fbc
ñ = (ñ · n)Fn +

d−1∑
k=1

(ñ · tk)Ftk . (24)

Then we can apply the Taylor expansion to the normal velocity appearing in the flux terms, while the other terms like
ρ and p are taken from x̃ without any corrections,

Fn =

 ρwSBM
ρwSBM u + p n
ρwSBM H

 , Ftk =

 ρ utk

ρ utk u + p tk

ρ utk H

 , (25)

such that,

wSBM = w − ‖d‖
d∑

i=1

ni

d∑
j=1

n j ∂x j ui(x̃) second order (26)

− ‖d‖2
d∑

i=1

ni

d∑
j=1

d∑
k=1

1
2!

n jnk ∂
2
x j xk

ui(x̃) third order

− ‖d‖3
d∑

i=1

ni

d∑
j=1

d∑
k=1

d∑
`=1

1
3!

n jnkn` ∂3
x j xk x`ui(x̃) fourth order

. . . ,

having set n = {n j} j=1,...,d and u = {u j} j=1,...,d.

As done before, we use the fact that the Taylor series development on the right hand side of (26) is exact when
applied to a polynomial of degree lower or equal to the employed expansion, and thus we simplify it and we recast
the correction as

wSBM = u(x̃) · n + [w − u(x̃ + d) · n] . (27)

It should be noticed that, without the formulation in Eq. (27), in order to perform the extrapolation given in Eq. (26),
high order derivatives of the velocity components would have been needed. However, since all derivatives are usually
computed with respect to the conserved variables, either the chain rule or some kind of linearization would have been
to be implemented to recover the necessary higher order derivatives.

Remark 1 (Boundary flux and penalty term). When using the numerical flux (18) instead of a classical numerical
flux F̂(U−h ,U

bc
Γ̃

) (as the Rusanov flux), for high (third, fourth, etc) order schemes, in order to obtain the correct
convergence rates we had to include a penalty term similar to the diffusion term of the Rusanov flux. For slip walls
this term reads

Pw := αw

(
U − Ubc

Γ̃

)
= αw ρ


0

u · n − wSBM

(u · n)2

2
−

w2
SBM

2

 , (28)
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where αw = ‖u‖ +
√
γp/ρ.

Finally, for non moving walls with w = 0 we consider the simpler strategy consisting in imposing directly W :=
(ρu · n)|Γw = 0. This allows to work with derivatives and variations of the momentum variable. We thus replace (26)
by

WS BM = − ‖d‖
d∑

i=1

ni

d∑
j=1

n j ∂x j (ρu)i(x̃) second order

− ‖d‖2
d∑

i=1

ni

d∑
j=1

d∑
k=1

1
2!

n jnk ∂
2
x j xk

(ρu)i(x̃) third order (29)

− ‖d‖3
d∑

i=1

ni

d∑
j=1

d∑
k=1

d∑
`=1

1
3!

n jnkn` ∂3
x j xk x` (ρu)i(x̃) fourth order

. . . ,

and (27) by
WSBM = (ρu)(x̃) · n − (ρu)(x̃ + d) · n. (30)

As discussed before a fully consistent definition of the flux is obtained by consistently correcting the value of the
total enthalpy as in (19), by replacing w with wS BM or with WS BM/ρ depending on the case.

4.3. Other existing approaches
The corrections proposed in the previous paragraph will be compared to the approach proposed by Krivodonova

and Berger in [43], referred to as algorithm I in the cited reference. The aforementioned approach, along with two
more algorithms, was introduced by the Krivodonova and Berger to provide improved solutions for two-dimensional
slip-wall boundary conditions. Even though, their corrections are limited to two-dimensional domains and slip-wall
boundary conditions, we recall for completeness the one that we used herein to make comparisons. More details can
also be found in [43].

We start by defining in each quadrature point a special state of primitive variables Ub and a corresponding numer-
ical flux:

Ub =

 ρb

ub

pb

 =

 ρ
ut t
p

 , Fbc
ñ (Ub) =

 ρb (ub · ñ)
ρb (ub · ñ) ub + p ñ
ρb (ub · ñ) Hb

 . (31)

Note that [43] contains a typo in the flux expression which does not include the pressure term. Even though the
modification introduced in (31) already allows a fair improvement of the discretization error and convergence rate, we
will see that this shows some limitations when increasing the accuracy already beyond third order [18].

Remark 2 (Shock limiting). For simulations with shocks, when the a posteriori limiter marks a cell on the wall
boundary as troubled, the boundary conditions must be applied differently since the high order modes are discarded
and the solution is updated with a second order finite volume scheme. In this case, we adopt the flux modification (31).

5. Numerical results

In this Section, we test the new modified boundary treatments with several academic test-cases proving that the
new method is able to provide high-order convergence for both far-field and wall boundary conditions on 2D and
3D unstructured meshes. We also show the numerical results obtained on a problem that involves shocks, correctly
captured in the framework of ADER-DG methods thanks to our a posteriori subcell FV limiting technique. The
results are provided with convergence analysis performed with classical and modified boundary conditions, and, when
possible, with curvilinear meshes.
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5.1. 2D tests with smooth solutions
We start our suite of benchmarks with 2-dimensional tests involving smooth solution profiles; this easily allows to

asses the claimed properties of the proposed SBM formulation.

5.1.1. Manufactured solution on 2D curved domains: far-field BC
In order to assess the capability of our new flux correction, we start from a manufactured solution by considering

the two-dimensional inhomogeneous Euler equations:

Ut + ∇ · F(U) = S, with S =


0.4 cos(x + y)
0.6 cos(x + y)
0.6 cos(x + y)
1.8 cos(x + y)

 . (32)

This system has the following exact steady state solution, as given in [51],

ρ = 1 + 0.2 sin(x + y), u = 1, v = 1, p = 1 + 0.2 sin(x + y), (33)

which is imposed on the real curved domain as far-field boundary conditions. A very coarse mesh was generated
and then refined by splitting. The four nested grids described in Table 1 have been used to perform grid-convergence
analysis.

The boundary where the far-field condition is applied will be referred to as ΓD. We tested the new SBM flux
correction on a complicated geometry, taken from [18], that can be described with the following equation written in
polar coordinates:

ΓD :
(

x
y

)
= r(α, θ)

(
cos θ
sin θ

)
, where r(α, θ) = r0

(
1 +

1
10

sin(αθ)
)
, r0, α ∈ R, (34)

where r0 = 1 and α = 3. We refer to Figure 3 for a visual representation.
Since the standard far-field boundary condition is enforced onto a curved boundary, discretized with a polygonal

mesh, we expect to have second order of accuracy at best no matter what the degree of the polynomial is and this is
well-observed in the top part of Table 2. This problem can be cured with the, however expensive, use of iso-parametric
elements and curved meshes. For the sake of completeness we provide throughout this paper also some results on
curved meshes, see for example the central part of Table 2, but we underline that our technology for curved meshes
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Figure 3: Test case setup for the 2D manufactured solution test case presented in Section 5.1.1. We plot the coarsest employed mesh on the left and
the initial density profile on the right.
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Figure 4: Test case setup for the supersonic vortex bounded by two circular walls presented in Section 5.1.2. We plot the coarsest employed mesh
on the left and the initial density profile on the right.

allows to obtain third order accurate results with DG-P2/Q2 and slightly better results when using DG-P3/Q3, but
without achieving the expected fourth order (however the improvement of curved meshes techniques is not the scope
of this work).

Finally, the best results, in terms of error magnitude, convergence rates and reduced computational complexity, are
obtained with the shifted boundary correction, as one can see by comparing the previous results with those reported in
bottom part of Table 2. Convergence plots1 until order four, for the conserved variable ρ, are presented in Figure 9a.
Although the paper is oriented towards polynomials of degree four, for this test case, we also presented the results
obtained using polynomials of degree five to show that, the accuracy of the correction theoretically depends only on
the order of the polynomial itself. With the SBM correction, all convergence trends are correctly recovered until order
five.

5.1.2. Supersonic vortex bounded by two circular walls: slip wall BC
In order to test the new flux corrections for wall boundary conditions, we now consider an isentropic supersonic

flow between two concentric circular arcs of radii ri = 1 and ro = 1.384. The exact density in terms of radius r is
given by

ρ = ρi

(
1 +

γ + 1
2

M2
i

(
1 −

( ri

r

)2)) 1
γ−1

. (35)

The velocity and pressure are given by

‖u‖ =
ciMi

r
, p =

ργ

γ
, (36)

where ci is the speed of sound on the inner circle. The Mach number on the inner circle Mi is set to 2.25 and the
density ρi to one. The fluid’s velocity vector components in (x, y) can be computed as follows:(

u
v

)
= ‖u‖

(
y/r
−x/r

)
, (37)

where r =
√

x2 + y2.
A set of refined meshes is obtained by means of conformal refinement of an initial triangulation shown in Figure 4;

the mesh characteristics are given in Table 3. For this test case, we first performed the convergence test by enforcing

1For all convergence plots, we draw the dashed lines close to each result (P1, P2, P3) to represent the optimal rate (2, 3, 4) for comparisons.
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Figure 5: Test case setup for the subsonic flow over a circular cylinder presented in Section 5.1.3. We plot the mesh on the left, the density profile
computed with DG-P3 in the middle, and the density profile computed with DG-P3/SBM-P3 on the right.

the standard weak wall boundary condition (given by Equations (17) and (18)) on the polygonal boundary. Table 4
points out the grid-convergence analysis showing that the method is not even able to converge with a full second order
rate. It can also be noticed that, for each mesh, the higher is the degree of the polynomial, the larger the error is. This
is due to the fact that the scheme is trying to better approximate a solution that is indeed wrong because the boundary,
which should be curved, is approximated by a polygon (see Figure 2).

The same test, with the same boundary conditions, has also been run with high order curvilinear meshes showing
that when increasing the order of the polynomial used to approximate the boundary we are able to recover the formal
order of accuracy of the method, as visible on Table 4. Note that this result is only possible when using iso-parametric
elements, so the degree of the polynomial Q that approximates the geometry and the mesh has to increase with
the polynomial P of the scheme (e.g. DG-P1/Q1, DG-P2/Q2, and DG-P3/Q3). Convergence plots obtained with
curvilinear element are shown in Figure 11a for the density variable ρ.

Finally, the results obtained using the SBM corrections on straight sided meshes are reported in Table 6 and shown
in Figure 11. The top part of the Table shows the results obtained by using the truncated Taylor series development
for the velocity; instead, the bottom part concerns the simplified polynomials correction (30) based on the momentum
variables which does not require complex derivative evaluations. We observe the expected rates and low error levels
in both cases, with a slight improvement with the simplified approach which may be related to the fact that we are
extrapolating the whole ρun term, rather than only un, as done for the classical SBM formulation (with ρ taken from
the quadrature point).

For the sake of completeness, we present in Table 5 and Figure 11b the results obtained with the correction (31).
It should be noticed that even for this simple case, considering quadratic geometries, we have an order-of-accuracy
degradation for finer meshes when using polynomials of degree higher than two (P3).

5.1.3. Subsonic flow over a circular cylinder: slip wall BC
This test case has the same goal of that presented in [67]: the validation of the new boundary treatment. The free-

stream Mach number used in this simulation is 0.3. The comparison was carried by running the most accurate scheme
used in this work, DG-P3, with and without the SBM correction to assess the influence of the present approach on this
benchmark. We performed the computations with an unstructured Delaunay mesh made by 1,096 nodes and 2,087
triangles. To impose consistent far-field conditions, we have a setup with an outer boundary 20 radiuses away from
the cylinder. In order to test the new boundary conditions we studied the symmetry of iso-contours for both density, in
Figure 5, and Mach number, in Figure 6. For both variables, a clear improvement of the solution is pointed out by the
resuls performed with the SBM correction. Note that, when slip-wall conditions without corrections are considered,
the flow is characterized by separation behind the body (see Figure 6a). Instead, a much better prediction of the field
is given by the results obtained with the polynomial correction. Finally, in Figure 7, we plot the spurious entropy
production generated by the two boundary conditions, indicating a remarkable result also in this case.
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Table 1: Characteristics of the employed meshes for the test case of Section 5.1.1, the 2D manufactured solution.
Grid level Nodes Triangles h

0 61 98 1.5450E-1
1 219 392 7.7252E-2
2 829 1,568 3.8626E-2
3 3,225 6,272 1.9313E-2
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Figure 6: Test case setup for the subsonic flow over a circular cylinder presented in Section 5.1.3. We plot the Mach number profile computed with
DG-P3 on the left, and the Mach number profile computed with DG-P3/SBM-P3 on the right.
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Figure 7: Test case setup for the subsonic flow over a circular cylinder presented in Section 5.1.3. We plot the entropy levels computed with DG-P3
on the left, and the entropy levels computed with DG-P3/SBM-P3 on the right.
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Table 2: Convergence analysis for the test case of Section 5.1.1, the 2D manufactured solution. We provide the results obtained without the SBM
correction on linear meshes (top part), with curved mesh (central part), and with SBM correction on linear meshes (bottom part). One can notice
that the SBM correction allows to retrieve the expected high order convergence rate when working with methods of order greater than 2 on linear
meshes.

Convergence analysis without SBM correction on linear meshes
ρ ρu ρv ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1

0 1.7293E-3 – 2.3514E-3 – 2.2344E-3 – 6.6466E-3 –
1 4.4790E-4 1.95 6.0925E-4 1.95 5.7869E-4 1.95 1.7138E-3 1.96
2 1.1276E-4 1.99 1.5358E-4 1.99 1.4579E-4 1.99 4.3195E-4 1.99
3 2.8241E-5 2.00 3.8473E-5 2.00 3.6512E-5 2.00 1.0820E-4 2.00

DG-P2
0 1.6583E-3 – 2.3344E-3 – 2.2040E-3 – 6.4258E-3 –
1 4.2195E-4 1.97 5.9156E-4 1.98 5.5908E-4 1.98 1.6308E-3 1.98
2 1.0522E-4 2.00 1.4777E-4 2.00 1.3975E-4 2.00 4.0791E-4 2.00
3 2.6187E-5 2.01 3.6855E-5 2.00 3.4867E-5 2.00 1.0170E-4 2.00

DG-P3
0 1.6817E-3 – 2.3809E-3 – 2.2562E-3 – 6.5431E-3 –
1 4.3095E-4 1.96 6.0642E-4 1.97 5.7430E-4 1.97 1.6640E-3 1.98
2 1.0768E-4 2.00 1.5092E-4 2.01 1.4280E-4 2.01 4.1580E-4 2.00
3 2.6792E-5 2.01 3.7467E-5 2.01 3.5428E-5 2.01 1.0345E-4 2.01

DG-P4
0 1.6950E-3 – 2.4059E-3 – 2.2813E-3 – 6.5915E-3 –
1 4.3318E-4 1.96 6.1215E-4 1.97 5.8031E-4 1.98 1.6714E-3 1.98
2 1.0849E-4 2.00 1.5293E-4 2.00 1.4497E-4 2.00 4.1861E-4 2.00
3 2.6976E-5 2.00 3.7944E-5 2.01 3.5943E-5 2.01 1.0416E-4 2.00

Convergence analysis on curved meshes
ρ ρu ρv ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1/Q1

0 1.7293E-3 – 2.3514E-3 – 2.2344E-3 – 6.6466E-3 –
1 4.4790E-4 1.95 6.0925E-4 1.95 5.7869E-4 1.95 1.7138E-3 1.96
2 1.1276E-4 1.99 1.5358E-4 1.99 1.4579E-4 1.99 4.3195E-4 1.99
3 2.8241E-5 2.00 3.8473E-5 2.00 3.6512E-5 2.00 1.0820E-4 2.00

DG-P2/Q2
0 7.8113E-5 – 4.9287E-5 – 6.0091E-5 – 2.3914E-4 –
1 1.1494E-5 2.76 6.1144E-6 3.01 7.9719E-6 2.91 3.4731E-5 2.78
2 1.5902E-6 2.85 7.8242E-7 2.97 1.0271E-6 2.96 4.7828E-6 2.86
3 2.1096E-7 2.91 1.0184E-7 2.94 1.3078E-7 2.97 6.3447E-7 2.91

DG-P3/Q3
0 5.2248E-6 – 4.7012E-6 – 4.6229E-6 – 1.5742E-5 –
1 5.6390E-7 3.21 4.7322E-7 3.31 4.7014E-7 3.29 1.6226E-6 3.28
2 6.1309E-8 3.20 4.7773E-8 3.31 4.8063E-8 3.29 1.7095E-7 3.25
3 1.0299E-8 2.57 9.2506E-9 2.36 1.0123E-8 2.25 3.6478E-8 2.23

Convergence analysis with SBM correction on linear meshes
ρ ρu ρv ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1/SBM-P1

0 1.0784E-3 – 1.2139E-3 – 1.2479E-3 – 3.3758E-3 –
1 2.3747E-4 2.18 2.4029E-4 2.34 2.4644E-4 2.34 7.2503E-4 2.22
2 5.5268E-5 2.10 5.3230E-5 2.17 5.4522E-5 2.18 1.6929E-4 2.10
3 1.3351E-5 2.05 1.2599E-5 2.08 1.2898E-5 2.08 4.1189E-5 2.04

DG-P2/SBM-P2
0 7.5258E-5 – 5.0257E-5 – 5.8531E-5 – 2.2711E-4 –
1 1.1105E-5 2.76 5.6058E-6 3.16 7.1750E-6 3.03 3.2987E-5 2.78
2 1.5701E-6 2.82 7.2761E-7 2.95 9.2582E-7 2.95 4.6465E-6 2.83
3 2.1377E-7 2.88 1.0003E-7 2.86 1.1793E-7 2.97 6.3270E-7 2.88

DG-P3/SBM-P3
0 1.7331E-6 – 2.8523E-6 – 2.9879E-6 – 6.3787E-6 –
1 7.0445E-8 4.62 9.8935E-8 4.85 1.0298E-7 4.86 2.3519E-7 4.76
2 3.2654E-9 4.43 3.9178E-9 4.66 4.0466E-9 4.67 1.0200E-8 4.53
3 1.7487E-10 4.22 1.8709E-10 4.39 1.9248E-10 4.39 5.3564E-10 4.25

DG-P4/SBM-P4
0 4.4808E-8 – 4.9888E-8 – 5.3190E-8 – 1.4804E-7 –
1 1.2360E-9 5.18 9.2420E-10 5.75 1.0080E-9 5.72 3.8553E-9 5.26
2 4.0526E-11 4.93 2.5906E-11 5.16 2.7614E-11 5.19 1.2496E-10 4.95
3 – – – – – -- – –
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Table 3: Characteristics of the employed meshes for the test case of Section 5.1.2.
Grid level Nodes Triangles h

0 238 376 1.024E-01
1 852 1,504 5.121E-02
2 3,208 6,016 2.560E-02
3 12,432 24,064 1.280E-02

Table 4: Convergence analysis for the test case of Section 5.1.2, the supersonic vortex bounded by two circular walls in 2D, performed with linear
and curved elements without the SBM correction.

Convergence analysis without SBM correction on linear meshes.
ρ ρu ρv ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1

0 4.0507E-2 – 5.9773E-2 – 6.0006E-2 – 1.7033E-1 –
1 1.3141E-2 1.62 1.9227E-2 1.64 1.9330E-2 1.63 5.6565E-2 1.59
2 4.4645E-3 1.56 6.5585E-3 1.55 6.5822E-3 1.55 1.9499E-2 1.54
3 1.5786E-3 1.50 2.3646E-3 1.47 2.3684E-3 1.47 6.9664E-3 1.48

DG-P2
0 7.5758E-2 – 1.3956E-1 – 1.4152E-1 – 3.3516E-1 –
1 2.7584E-2 1.46 5.1868E-2 1.43 5.1990E-2 1.44 1.2308E-1 1.45
2 9.6935E-3 1.51 1.8547E-2 1.48 1.8548E-2 1.49 4.3649E-2 1.50
3 3.4687E-3 1.48 6.5731E-3 1.50 6.5656E-3 1.50 1.5548E-2 1.49

DG-P3
0 1.9104E-1 – 2.2847E-1 – 2.2992E-1 – 7.2469E-1 –
1 8.3972E-2 1.19 9.9892E-2 1.19 1.0244E-1 1.17 3.2130E-1 1.17
2 3.5508E-2 1.24 4.0370E-2 1.31 4.1040E-2 1.32 1.3453E-1 1.26
3 1.5314E-2 1.21 1.6278E-2 1.31 1.6507E-2 1.31 5.7225E-2 1.23

Convergence analysis on curved meshes
ρ ρu ρv ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1/Q1

0 4.0507E-2 – 5.9773E-2 – 6.0006E-2 – 1.7033E-1 –
1 1.3141E-2 1.62 1.9227E-2 1.64 1.9330E-2 1.63 5.6565E-2 1.59
2 4.4645E-3 1.56 6.5585E-3 1.55 6.5822E-3 1.55 1.9499E-2 1.54
3 1.5786E-3 1.50 2.3646E-3 1.47 2.3684E-3 1.47 6.9664E-3 1.48

DG-P2/Q2
0 1.2075E-3 – 1.7408E-3 – 1.7527E-3 – 4.8709E-3 –
1 1.9156E-4 2.66 2.6389E-4 2.72 2.6721E-4 2.71 7.7666E-4 2.65
2 2.5831E-5 2.89 3.3546E-5 2.98 3.3662E-5 2.99 1.0323E-4 2.91
3 3.0727E-6 3.07 4.1031E-6 3.03 4.0812E-6 3.04 1.2467E-5 3.05

DG-P3/Q3
0 7.0183E-5 – 8.8438E-5 – 8.9166E-5 – 2.7348E-4 –
1 4.8983E-6 3.84 6.7326E-6 3.72 6.7616E-6 3.72 1.9264E-5 3.83
2 4.0876E-7 3.58 5.9445E-7 3.50 5.9936E-7 3.50 1.6698E-6 3.50
3 3.2822E-8 3.64 5.1193E-8 3.54 5.1593E-8 3.54 1.3795E-7 3.60

Table 5: Convergence analysis for the test case of Section 5.1.2, the supersonic vortex bounded by two circular walls in 2D, with the modified flux
introduced in (31).

ρ ρu ρv ρE
Grid level L2 ñ L2 ñ L2 ñ L2 ñ

DG-P1 with correction (31)
0 1.9580E-2 – 4.1681E-2 – 4.1868E-2 – 8.9637E-2 –
1 5.3355E-3 1.88 1.1620E-2 1.84 1.1676E-2 1.84 2.4676E-2 1.86
2 1.1690E-3 2.19 2.5781E-3 2.17 2.5983E-3 2.17 5.3291E-3 2.21
3 2.4711E-4 2.24 5.5186E-4 2.22 5.5738E-4 2.22 1.0988E-3 2.28

DG-P2 with correction (31)
0 1.2764E-3 – 1.8543E-3 – 1.8656E-3 – 5.2077E-3 –
1 1.9749E-4 2.69 2.6604E-4 2.80 2.6928E-4 2.79 7.9744E-4 2.71
2 2.5994E-5 2.92 3.3359E-5 2.99 3.3458E-5 3.00 1.0360E-4 2.94
3 3.0959E-6 3.06 4.1008E-6 3.02 4.0776E-6 3.03 1.2531E-5 3.04

DG-P3 with correction (31)
0 8.3269E-5 – 1.0748E-4 – 1.0489E-4 – 3.2138E-4 –
1 5.3483E-6 3.96 6.6779E-6 4.00 6.5981E-6 3.99 2.0358E-5 3.98
2 4.6348E-7 3.52 5.0053E-7 3.73 5.0276E-7 3.71 1.7297E-6 3.55
3 4.5383E-8 3.35 4.3567E-8 3.52 4.3975E-8 3.51 1.6679E-7 3.37
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Table 6: Convergence analysis for the test case of Section 5.1.2, the supersonic vortex bounded by two circular walls in 2D, performed with the use
of SBM corrections on linear meshes. We provide the results obtained with the entire Taylor series evaluation of Eq. (26) (top part of the Table)
and those obtained with the simplified formula of Eq. (30) (bottom part of the Table).

Convergence analysis with SBM correction, as given in Eq. (26)
ρ ρu ρv ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1/SBM-P1

0 1.6446E-2 – 3.5594E-2 – 3.5415E-2 – 7.7895E-2 –
1 4.5403E-3 1.86 9.9195E-3 1.84 9.9279E-3 1.84 2.1613E-2 1.85
2 9.5300E-4 2.25 2.0713E-3 2.26 2.0770E-3 2.26 4.5047E-3 2.26
3 1.9068E-4 2.32 4.1246E-4 2.33 4.1396E-4 2.33 8.9777E-4 2.33

DG-P2/SBM-P2
0 1.2652E-3 – 1.8623E-3 – 1.8779E-3 – 5.2247E-3 –
1 1.9622E-4 2.69 2.6306E-4 2.82 2.6695E-4 2.81 7.9217E-4 2.72
2 2.5770E-5 2.93 3.3068E-5 2.99 3.3222E-5 3.01 1.0284E-4 2.95
3 3.0587E-6 3.08 4.0533E-6 3.03 4.0349E-6 3.04 1.2390E-5 3.05

DG-P3/SBM-P3
0 6.2321E-5 – 9.0618E-5 – 8.7148E-5 – 2.4363E-4 –
1 2.9113E-6 4.42 4.9355E-6 4.20 4.7997E-6 4.18 1.1976E-5 4.35
2 1.5293E-7 4.25 2.6814E-7 4.20 2.6463E-7 4.18 6.3695E-7 4.23
3 8.5252E-9 4.17 1.4884E-8 4.17 1.4727E-8 4.17 3.5447E-8 4.17

Convergence analysis with SBM correction, as given in Eq. (30)
ρ ρu ρv ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1/SBM-P1

0 1.6335E-2 – 3.5355E-2 – 3.5183E-2 – 7.7374E-2 –
1 4.5259E-3 1.85 9.8900E-3 1.84 9.8996E-3 1.84 2.1548E-2 1.84
2 9.5188E-4 2.25 2.0689E-3 2.26 2.0748E-3 2.26 4.4993E-3 2.26
3 1.9058E-4 2.32 4.1225E-4 2.33 4.1376E-4 2.33 8.9728E-4 2.33

DG-P2/SBM-P2
0 1.2604E-3 – 1.8419E-3 – 1.8568E-3 – 5.1834E-3 –
1 1.9606E-4 2.69 2.6221E-4 2.82 2.6608E-4 2.81 7.9063E-4 2.72
2 2.5765E-5 2.93 3.3039E-5 2.99 3.3192E-5 3.01 1.0279E-4 2.95
3 3.0584E-6 3.08 4.0524E-6 3.03 4.0340E-6 3.04 1.2388E-5 3.05

DG-P3/SBM-P3
0 6.2289E-5 – 9.1157E-5 – 8.7853E-5 – 2.4332E-4 –
1 2.8518E-6 4.45 4.9380E-6 4.20 4.7981E-6 4.19 1.1777E-5 4.37
2 1.4569E-7 4.29 2.6571E-7 4.22 2.6206E-7 4.19 6.1275E-7 4.26
3 7.9556E-9 4.20 1.4647E-8 4.18 1.4496E-8 4.18 3.3523E-8 4.19
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Table 7: Characteristics of the employed meshes for the test case of Section 5.2.1, the 3D manufactured solution.
Grid level Nodes Tetrahedra h

0 169 778 2.8274E-01
1 971 5,072 1.4137E-01
2 6,437 35,968 7.0686E-02

(a) Grid level 0 (b) Grid level 1 (c) Grid level 2

Figure 8: Test case setup for the 3D manufactured solution test case presented in Section 5.2.1.

5.2. 3D tests with smooth solutions

We repeat the same study of the previous Section in the three-dimensional case.

5.2.1. Manufactured solution on 3D curved domains: far-field BC
First, we consider the three-dimensional inhomogeneous Euler equations:

Ut + ∇ · F(U) = S, with S =


0.6 cos(x + y + z)
0.8 cos(x + y + z)
0.8 cos(x + y + z)
0.8 cos(x + y + z)
3.0 cos(x + y + z)

 . (38)

This system has the following exact steady state solution, recovered using the manufactured solution technique,

ρ = 1 + 0.2 sin(x + y + z), u = 1, v = 1, ω = 1, p = 1 + 0.2 sin(x + y + z), (39)

which is imposed on the domain boundaries as far-field boundary conditions.
A sphere is now considered as boundary of the domain which introduces an error when using linear meshes

due to the curvature. The employed linear meshes are shown in Figure 8. As expected when applying the far-field
condition on the real curved boundary, the geometrical error given by the linear mesh overcomes by far that given
by the discretization technique with the outcome that no better than second order of accuracy can be achieved (see
Table 8). As before better results are obtained when using the SBM correction, indeed high order convergence is well
recovered, as shown in Table 8. Again, convergence plots for the conserved variable ρ are presented in Figure 9b.

5.2.2. Supersonic vortex bounded by two cylindrical walls: slip wall BC
We consider a 3D isentropic supersonic flow between two concentric cylindrical surfaces of radii ri = 1 and

ro = 1.384. The exact density, velocity and pressure in terms of radius r are given by Eqs. (35) and (36) and the
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Table 8: Convergence analysis for the test case of Section 5.2.1, the 3D manufactured solution. We provide the results obtained without the SBM
correction on linear meshes (top part) and with SBM correction on linear meshes (bottom part).

Convergence analysis without SBM correction on linear meshes
ρ ρu ρv ρω ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1

0 8.7027E-3 – 8.8173E-3 – 8.8456E-3 – 8.7977E-3 – 3.3551E-2 –
1 2.4345E-3 1.84 2.4372E-3 1.86 2.4416E-3 1.86 2.4330E-3 1.85 9.3166E-3 1.85
2 6.7942E-4 1.84 6.7824E-4 1.85 6.8014E-4 1.84 6.7829E-4 1.84 2.6093E-3 1.84

DG-P2
0 7.6027E-4 – 9.1039E-4 – 8.9306E-4 – 8.4296E-4 – 3.2308E-3 –
1 1.7566E-4 2.11 2.1977E-4 2.05 2.1528E-4 2.05 1.9975E-4 2.08 7.8918E-4 2.03
2 4.2006E-5 2.06 5.4457E-5 2.01 5.3289E-5 2.01 4.8978E-5 2.03 1.9422E-4 2.02

DG-P3
0 6.9598E-4 – 8.7766E-4 – 8.5810E-4 – 7.9330E-4 – 3.1103E-3 –
1 1.6687E-4 2.06 2.1777E-4 2.01 2.1300E-4 2.01 1.9540E-4 2.02 7.7173E-4 2.01
2 4.1490E-5 2.01 5.4856E-5 1.99 5.3567E-5 1.99 4.9074E-5 1.99 1.9345E-4 2.00

Convergence analysis with SBM correction on linear meshes
ρ ρu ρv ρω ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1/SBM-P1

0 9.0767E-3 – 9.1066E-3 – 9.1410E-3 – 9.1148E-3 – 3.5055E-2 –
1 2.4981E-3 1.86 2.4841E-3 1.87 2.4895E-3 1.88 2.4859E-3 1.87 9.5724E-3 1.87
2 6.9067E-4 1.85 6.8601E-4 1.86 6.8798E-4 1.86 6.8738E-4 1.85 2.6541E-3 1.85

DG-P2/SBM-P2
0 3.2537E-4 – 3.3772E-4 – 3.4049E-4 – 3.3983E-4 – 1.2000E-3 –
1 4.5765E-5 2.83 4.5417E-5 2.89 4.5165E-5 2.91 4.5562E-5 2.90 1.8400E-4 2.71
2 7.8831E-6 2.54 7.4985E-6 2.60 7.4576E-6 2.60 7.5288E-6 2.60 2.9674E-5 2.63

DG-P3/SBM-P3
0 2.0810E-5 – 2.3072E-5 – 2.3226E-5 – 2.2280E-5 – 8.4229E-5 –
1 1.3956E-6 3.90 1.4671E-6 3.98 1.4566E-6 4.00 1.4633E-6 3.93 5.5552E-6 3.92
2 1.3372E-7 3.38 1.3562E-7 3.44 1.3579E-7 3.42 1.3562E-7 3.43 5.1363E-7 3.44
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Figure 9: Manufactured solution (2D/3D): results obtained with and without the SBM correction.
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(a) Grid level 0 (b) Grid level 1 (c) Grid level 2

Figure 10: Supersonic vortex bounded by two cylindrical walls (3D): density contours.

solution in the inner surface is taken as that in Section 5.1.2. The fluid’s velocity vector components in (x, y, z) can be
computed as follows:  u

v
ω

 = ‖u‖

 y/r
−x/r

0

 , (40)

where r =
√

x2 + y2 because the cylindrical surfaces are developed along the z–axis.
Simulations are first run with classical reflecting wall boundary conditions applied on the approximated boundary.

The results presented in Table 10 show convergence trends of rates between 1.5 and 1 for all high order polynomials.
Finally, Table 10 presents the results obtained using the SBM wall flux correction: already a little improvement is
shown for P1 and for higher order all convergence trends are properly recovered (see Figure 11d for the convergences
plot for the density variable ρ).

Table 9: Characteristics of the employed meshes for the test case of Section 5.2.2, the supersonic vortex bounded by two cylindrical walls in 3D.
Grid level Nodes Tetrahedra h

0 3,071 13,059 1.0382E-01
1 20,929 104,472 5.2221E-02
2 153,242 835,776 2.6112E-02

5.3. Shock-cylinder interaction
The last test case we want to address here consider the interaction of a shock wave with a two-dimensional cylinder.

The computational domain is [−2, 6]×[−3, 3] discretized with an unstructured triangulation made by 7,761 grid points
and 15,198 elements. The employed ADER-DG scheme is supplemented with the a posteriori sub-cell finite volume
limiter. The cylinder is centered in (0, 0) and has radius 0.5. The initial condition consists in a shock wave traveling at
Mach number Ms = 1.3 and is then given via the Rankine-Hugoniot conditions. The flow upstream the shock is at rest
and is characterized by density and pressure, respectively being ρ = 1.4 and p = 1. The simulation has been run with
polynomials P1, P2 and P3 comparing the implemented wall boundary conditions, with and without the SBM flux
correction. Figure 12 shows the initial condition for the Mach number distribution. The time evolution is then shown
in Figure 13 where again we plot the Mach number distribution computed with the DG-P3 polynomials comparing
the results obtained with and without the SBM correction. We already observe a notable improvement in the iso-
contours close to the cylinder in Figure 13. Regarding the limiter activations, it should be noticed that no fundamental
difference is observed for the classical and new wall boundary conditions. Finally, in Figure 14 we present a summary
of the obtained solutions around the body with different methods. We can observe that by increasing the order of the
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Figure 11: Supersonic vortex bounded by two walls (2D/3D): convergence tests performed with (a) linear and curvilinear 2D grids; (b) wall
correction provided in (31); (c) polynomial corrections for 2D grids; (d) polynomial corrections for 3D grids.
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Table 10: Convergence analysis for the test case of Section 5.2.2, the supersonic vortex bounded by two cylindrical walls in 3D. We provide the
results obtained without the SBM correction on linear meshes (top part) and with SBM correction on linear meshes (bottom part).

Convergence analysis without SBM correction on linear meshes
ρ ρu ρv ρω ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1

0 3.7322E-2 – 6.4933E-2 – 6.5061E-2 – 1.1475E-2 – 1.6600E-1 –
1 1.4081E-2 1.41 2.0592E-2 1.65 2.0796E-2 1.65 5.0424E-3 1.18 6.0193E-2 1.46
2 5.0733E-3 1.47 6.6189E-3 1.64 6.7225E-3 1.63 1.9803E-3 1.35 2.1242E-2 1.50

DG-P2
0 5.2040E-2 – 5.9910E-2 – 6.1607E-2 – 1.6668E-2 – 2.0989E-1 –
1 2.2376E-2 1.22 2.3548E-2 1.35 2.4191E-2 1.35 8.6415E-3 0.95 8.6540E-2 1.28
2 9.0045E-3 1.31 8.8598E-3 1.41 9.1564E-3 1.40 3.8322E-3 1.17 3.4325E-2 1.33

DG-P3
0 8.0027E-2 – 8.787E-2 – 8.9290E-2 – 2.5696E-2 – 3.0165E-1 –
1 4.1512E-2 0.94 3.931E-2 1.16 4.0139E-2 1.15 1.5240E-2 0.75 1.5087E-1 1.00
2 2.0451E-2 1.02 1.729E-2 1.18 1.7731E-2 1.18 8.3006E-3 0.87 7.3682E-2 1.03

Convergence analysis with SBM correction on linear meshes
ρ ρu ρv ρω ρE

Grid level L2 ñ L2 ñ L2 ñ L2 ñ
DG-P1/SBM-P1

0 1.9580E-2 – 5.4668E-2 – 5.3611E-2 – 5.8383E-3 – 9.1443E-2 –
1 6.1094E-3 1.68 1.5653E-2 1.80 1.5334E-2 1.80 2.0797E-3 1.49 2.7820E-2 1.72
2 1.8376E-3 1.73 4.4901E-3 1.80 4.4063E-3 1.80 7.0284E-4 1.57 8.2183E-3 1.76

DG-P2/SBM-P2
0 1.3668E-3 – 2.4856E-3 – 2.4388E-3 – 6.4125E-4 – 6.3670E-3 –
1 1.9656E-4 2.80 3.6385E-4 2.77 3.5349E-4 2.79 9.7458E-5 2.72 9.2034E-4 2.79
2 3.0200E-5 2.70 5.3739E-5 2.76 5.2281E-5 2.75 1.5670E-5 2.64 1.3566E-4 2.76

DG-P3/SBM-P3
0 6.3903E-5 – 1.0992E-4 – 1.0858E-4 – 2.7024E-5 – 2.6291E-4 –
1 5.8075E-6 3.46 1.0098E-5 3.44 9.9331E-6 3.45 2.3153E-6 3.54 2.3666E-5 3.47
2 5.8223E-7 3.32 1.0373E-6 3.28 1.0171E-6 3.29 2.3309E-7 3.31 2.3781E-6 3.31

polynomials the results obtained with classical wall boundary conditions get worse and the SBM flux correction really
introduces a notable improvement.

6. Conclusions

In this work we have provided a novel effective approach to handle boundary conditions with arbitrary high order
of accuracy for curved domain discretized through DG schemes on simple linear meshes. The proposed strategy relies
on the shifted boundary method that allows to overcome the second-order geometrical error due to the inconsistent
treatment of curved boundaries thanks to a polynomial correction of the boundary condition and the boundary flux,
without being obliged to manage curvilinear meshes and the difficulties that go with that (mesh generation process,
isoparametric transformation and special quadrature formulas).

In particular, as remarked in section 4.1, the original SBM approximation corresponds to a local change in basis
functions at each quadrature point which is expensive when increasing the approximation order, and moreover un-
necessary. The approach used here is based on the use of the available polynomial bases, whatever they are, at all
quadrature points. The new approach has been tested over a large set of benchmarks in 2D and 3D and with both
steady and unsteady flows. The formal order of accuracy provided by the employed DG-PN schemes has been nu-
merically retrieved in all the performed test cases, and furthermore, the boundary corrections have also been coupled
with the a posteriori subcell FV limiter, thus allowing the effective simulation of shocks and discontinuities.

Further extensions of the present work will concern first of all its application in the context of moving meshes
and moving interfaces [34], and then the additional development necessary for its usage in fully embedded compu-
tations [54, 44], which do not require any conformal meshing of internal boundaries. Finally, we also plan to use a
similar approach in the context of more complex models as Navier-Stokes equations, for which the extension should
be straightforward, the MHD equations [29] where also the magnetic field should be correctly handled, up to the GPR
unified model of continuum mechanics [27] for which also the distortion field should be taken into account.
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Figure 12: Test case setup for the shock-cylinder interaction of Section 5.3. We show the initial Mach number profile at time t = 0.
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Figure 13: Shock-cylinder interaction of Section 5.3. We show the Mach number iso-contours at different time steps (simulation run with DG-P3
on the left and DG-P3/SBM-P3 on the right).
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Figure 14: Shock-cylinder interaction of Section 5.3. Mach number iso-contours at the final time t = 2 (simulations run with several schemes).
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[47] R. Loubere, M. Dumbser, and S. Diot. A new family of high order unstructured MOOD and ADER finite volume schemes for multidimen-

sional systems of hyperbolic conservation laws. Communications in Computational Physics, 16(3):718–763, 2014.
[48] X.-J. Luo, M. S. Shephard, R. M. O’bara, R. Nastasia, and M. W. Beall. Automatic p-version mesh generation for curved domains. Engi-

neering with Computers, 20(3):273–285, 2004.

26



[49] A. Main and G. Scovazzi. The shifted boundary method for embedded domain computations. part I: Poisson and Stokes problems. Journal
of Computational Physics, 372:972–995, 2018.

[50] A. Main and G. Scovazzi. The shifted boundary method for embedded domain computations. part II: Linear advection–diffusion and incom-
pressible Navier–Stokes equations. Journal of Computational Physics, 372:996–1026, 2018.

[51] A. Mazaheri, C.-W. Shu, and V. Perrier. Bounded and compact weighted essentially nonoscillatory limiters for discontinuous Galerkin
schemes: Triangular elements. Journal of Computational Physics, 395:461–488, 2019.

[52] G. I. Montecinos and E. F. Toro. Reformulations for general advection–diffusion–reaction equations and locally implicit ADER schemes.
Journal of Computational Physics, 275:415–442, 2014.
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