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Abstract

Love waves propagation in a viscoelastic waveguide loaded on its surface
with viscoelastic fluids of finite thickness is investigated in this paper. The
Maxwell and Kelvin-Voigt constitutive equations are employed in order to
describe the fluid viscoelasticity. By solving the equations of motion in the
different media (viscoelastic fluid, viscoelastic waveguide and elastic sub-
strate) and imposing the suitable boundary conditions, an accurate and sim-
ple generalized complex dispersion equation is established for Love waves.
Subsequently, a comparison is made with the published complex dispersion
equations in the literature in some particular cases, and a very good agree-
ment is showed. A detailed study was conducted by varying key parameters
such as operating frequency, waveguide thickness and fluid thickness. The
waveguide surface was subjected to various glycerol concentrations, with a
wide range of dynamic viscosity, representing both Newtonian and viscoelas-
tic behaviors. Theoretical analysis shows that to reasonably predict the
characteristics responses of Love waves, the Maxwell fluid is more appropri-
ate for low glycerol concentration and, the Kelvin-Voigt fluid is more suitable
for high glycerol concentration and at high frequency. Results also evaluated
the influence of layer thickness on the dispersion curves. The obtained results
can be very useful in the design and optimization of Love wave fluid sensors.

Keywords: Love wave, Viscoelastic fluid, Viscoelastic waveguide,
Analytical modeling.
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1. Introduction

There is an increasing demand of highly sensitive analytical techniques
in the fields of biotechnology [1], medical diagnostics [2] and chemistry [3].
Optical and acoustic waves sensing technologies are currently used [4]. In
particular, the Love wave acoustic sensors have attracted increasing atten-
tion from the scientific community during the last two decades, due to their
reported high sensitivity in liquid. Love wave is a transverse surface wave
having one component of mechanical displacement, which is parallel to the
surface and perpendicular to the direction of wave propagation. The Love
wave sensor is a layered structure formed by a piezoelectric substrate and a
guiding layer [5, 6, 7]. In addition, the condition for the existence of Love
waves is that the bulk transverse wave velocity in the layer is lower than
that in the substrate. The difference between the mechanical properties of
the guiding layer and the substrate creates an entrapment of the acoustic
energy in the guiding layer keeping the wave energy near the surface [8]. The
confinement of the wave in the guiding layer makes Love wave devices very
sensitive towards any changes occurring on the sensor surface [9].

The interaction with a viscous fluid was firstly studied in 1992. An exact
solution was used to correlate the velocity and attenuation with the fluid
viscosity [10, 11]. This article describes a detailed analytical study to pre-
dict the propagation of Love wave in viscoelastic waveguide loaded on its
surface with a viscoelastic fluid. In this study we will determine how the
characteristics of Love waves are affected by loading viscoelastic fluids with
finite thickness. These characteristics are very important in a design and
optimization of Love wave fluid sensors. To date, the theory of Love wave
propagation has been developed for elastic waveguide loaded on the surface
with the Newtonian fluid [6, 12], and elastic waveguide loaded on the sur-
face with the Maxwell fluid [13]. In the present work, we investigate a more
general situation, i.e. we consider a case in which the viscoelasticity of fluid
and waveguide is taken into account. To this end, the coupled differential
problem which describes the propagation of the Love wave in the viscoelastic
waveguide structure loaded on its surface with viscoelastic fluids (see Fig-
ure 1) was formulated and solved analytically. Love wave fluid sensors can
be used to determine the viscosity of various fluids processed in the plastics
and chemical industries. Moreover, the obtained dispersion equation can be
very useful in nondestructive investigations of composite materials in order
to interpret the obtained experimental measurements.



2. Physical model description

To describe the waveguide structure that guides Love waves, we consider
a three-layer system consisting of a viscoelastic fluid (index f), a viscoelastic
elastic surface layer (i.e. waveguide, index v) and an elastic solid substrate
(index e), see Figure 1. The waveguide is designed to support shear hori-
zontal surface waves of the Love type. The waveguide structure consists of
a viscoelastic layer (0 < x2 < hv), which is rigidly bonded to a semi-infinite
elastic substrate occupying the lower half-space (x2 > hv). In addition, top of
the surface layer of the waveguide (x2 = 0) is loaded with a viscoelastic fluid
(−hf < x2 < 0) of finite thickness hf . All material parameters of the waveg-
uide structure change only along the x2 axis. Love surface waves have only
one non zero shear horizontal component of the mechanical displacement u3,
which is directed along the x3 axis, parallel to the surface (x2 = 0) of the
waveguide and perpendicular to the direction of the Love wave propagation
along the x1 axis. Note that the Love waves exhibit a multimode character,
the fundamental mode plays an important role in many application such as
non destructive testing and sensors [11]. Accordingly, in this work, the at-
tention is focused on the properties of the fundamental mode of Love waves.
In addition, losses in the viscoelastic waveguide are considered.

From the experimental point of view, phase and amplitude characteristics
of Love surface waves can be measured in a closed loop configuration by
placing Love wave delay line in a feedback circuit of an electrical oscillator.
Another possibility is to use a network analyzer. This apparatus provides
phase shift and insertion loss of the Love wave sensor due to the load of the
sensor with a measured viscoelastic fluid. The typical frequency range used
by Love wave sensors is from 50 MHz to 500 MHz [14].

2.1. Viscoelastic waveguide

In this section, we derive the differential equations describing wave prop-
agation in terms of the displacements of the material using continuum me-
chanics. The conservation of linear momentum in the absence of the body
forces implies [15]

ρv
∂2u(v)

∂t2
= ∇ · σ(v) (1)

where u(v) is the displacement vector, ρv is the density and σ(v) is the total
stress tensor. A viscoelastic model commonly used to describe anelastic
effects is the Kelvin-Voigt stress-strain relation, which consists of a spring



Figure 1: The model geometry. The surface layer (index v) is viscoelastic medium and
the substrate (index e) is elastic medium. ρv, µv and ηv correspond to the density, shear
modulus and viscosity of the viscoelastic layer. ρe and µe the density and shear modulus of
the elastic substrate. The viscoelastic surface layer is loaded by a viscoelastic fluid. Love
wave propagates in the x1-direction and displacement in the x3-direction. For viscoelastic
fluid, ρf , η and δ are, respectively, density, dynamic viscosity and relaxation time.

and a dashpot connected in parallel. Therefore, the total stress is composed
of an elastic stress and a viscous stress as follow [16]

σ(v) = 2µvε
(v) + 2ηv

∂ε(v)

∂t
(2)

where µv is the storage shear modulus (spring constant), ηv is the viscosity of

the viscoelastic layer (dashpot constant), and ε(v) =
{
∇u(v) +

[
∇u(v)

]T}
/2

is the total strain of the system.
The Love wave is taken to propagate in the x1-direction, with shear

displacement in the x3-direction. A plane wave in the x1-direction is con-

sidered, with displacement in x3-direction only, u(v) =
(

0, 0, u
(v)
3

)
. Ow-

ing to symmetry, the mechanical displacement should be independent of x3,
u
(v)
3 = u

(v)
3 (x1, x2). Applying the divergence operator to both sidesof Eq. (2)

and taking into account Eq. (1), we get the following viscoelastic waveguide
equation expressed in terms of the component of the displacement along the
x3 axis

µv∇2u
(v)
3 + ηv

∂

∂t
∇2u

(v)
3 − ρv

∂2u
(v)
3

∂t2
= 0 (3)



where ∇2 is the Laplacian operator in Cartesian coordinates.

2.2. Elastic substrate

In this work the substrate is considered to be a semi-infinite medium [13,

17], and mechanical displacement u
(e)
3 is governed, using the elastodynamic

theory by the Navier’s equation [15]

µe∇2u
(e)
3 − ρe

∂2u
(e)
3

∂t2
= 0 (4)

where µe is the storage shear modulus and ρe the density. Note that Eq. (4)
can easily be obtained by setting ηv = 0 in Eq. (3).

2.3. Viscoelastic fluid

The fluid occupying −hf < x2 < 0 is assumed to be viscoelastic and
nonconductive. To describe the viscoelasticity of the fluid, the Maxwell and
Kelvin-Voigt models are employed. The Maxwell model introduces the vis-
coelastic response of the fluid at high frequencies and that of Kelvin-Voigt
at low frequencies. The Maxwell model consists of a spring and a damper
connected in series. The damper represents energy losses and is character-
ized by the viscosity η, whereas the spring represents the energy storage and
is characterized by the elastic shear modulus µ. These two quantities are
related through the relaxation time δ = η/µ, which is the characteristic time
for the transition between viscous and elastic behavior [18]. Thus, suppose
the motion of the fluid is induced only by wave propagation in the waveguide
material and also propagates in the form of a harmonic wave. Therefore, the
governing equation for the fluid is described by the Cauchy’s equation :

ρf

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+∇ · τ (5)

where ρf is the density, v is the velocity vector, p is the pressure and τ is
the shear stress tensor. Therefore, the constitutive equations which relate
the shear stress tensor to deformation are [20]

τ + δ
∂τ

∂t
= 2ηD (6)

∂τ

∂t
= 2µD + 2η

∂D

∂t
(7)



where D =
[
∇v + (∇v)T

]
/2 is the strain rate tensor. The stress-strain

relation (6) is suggested by Maxwell for the characterization of viscous flu-
ids with elastic properties, and the stress-strain relation (7) is proposed by
Kelvin-Voigt for the description of elastic solids with viscous properties. Sim-
ilarly the mechanical displacement, since a plane wave in the x1-direction is
considered, with displacement in x3-direction only, the velocity field can be
expressed as v = [0, 0, v3 (x1, x2)]. Moreover, the pressure gradient can also
be ignored since only shear deformation occurs during wave propagation [19].
In regard to this problem, the inertial term in the Cauchy’s equation (5) can
be neglected. Therefore, applying the divergence operator to both sides of
Eqs. (6) and (7), and taking into account the Eq. (5), we get the following
viscoelastic fluid equation expressed in terms of the axial component v3 of
the velocity field

∇2v3 −
ρf
η

(
∂v3
∂t

+ δ
∂2v3
∂t2

)
= 0 (8)

∇2v3 + δ
∂

∂t
∇2v3 −

δρf
η

∂2v3
∂t2

= 0 (9)

Equation (8) describes the fluid motion according to the Maxwell behavior
and Eq. (9) to that of Kelvin-Voigt behavior. The solution of these equations
and those of equations (3) and (4) are to be substituted in the relevant
boundary conditions.

2.4. Analytical solutions for the equations of motion

A general plane harmonic wave solution for the equations of motion (3),
(4), (8) and (9) is sought in the following form :

u
(v)
3

u
(e)
3

v3

 (x1, x2, t) =


Uv (x2)
Ue (x2)
V (x2)

 ej(kx1−ωt) (10)

where ω represents the angular frequency. Love wave propagating in the
viscoelastic layer undergoes attenuation, hence, the wavenumber k along the
propagation direction of the Love wave becomes complex, k = kr + jki,
the real part kr determines the Love wave velocity, the imaginary part ki,
is the Love wave attenuation. Moreover, the x2 dependence represents the
distribution of the mechanical displacement and velocity as a function of



depth x2. Substitution of Eq. (10) into Eqs. (3), (4), (8) and (9) gives rise
to the following differential equations of the second order :

U ′′v (x2) + β2
vUv (x2) = 0

U ′′e (x2)− β2
eUe (x2) = 0

V ′′ (x2)− β2
fV (x2) = 0

(11)

where the wavenumbers βv, βe and βf are given in the following form

βv =

√
ω2

c2v −
jωηv
ρv

− k2 , βe =

√
k2 − ω2

c2e
, βf =

√
k2 − jωρf

η∗
(12)

and cv =
√
µv/ρv and ce =

√
µe/ρe are the shear waves velocities in the

layer and substrate, respectively. The complex dynamic viscosity η∗ present
in the fluid wavenumber βf can be defined according to the used viscoelastic
fluid behavior as

η∗ =


η

1− jDe
for Maxwell fluid

η − η

jDe
for Kelvin-Voigt fluid

(13)

where De = ωδ is the Deborah number. Note that when De � 1 (Maxwell
fluid), or De� 1 (Kelvin-Voigt fluid), the fluid exhibits a purely Newtonian
(viscous) behavior and the fluid wavenumber βf becomes ξ =

√
k2 − jωρf/η.

Since the amplitude of Love surface waves must tend to zero for x2 → ∞,
the solution of Eq. (11) can be written in the form of

Uv (x2) = Av cos (βvx2) +Bv sin (βvx2)
Ue (x2) = Aee

−βex2

V (x2) = Afe
−βfx2 +Bfe

βfx2

(14)

where Av, Bv, Ae, Af and Bf are unknown arbitrary amplitudes.

2.5. Boundary conditions

The solution of the Love wave propagation must satisfy the boundary
conditions on the fluid (x2 = −hf ), the continuity conditions along the in-
terface between the waveguide layer and the fluid (x2 = 0), and between
the substrate and the waveguide layer (x2 = hv). At the interface x2 = 0,



the mechanical conditions are continuity of displacement, velocity and stress
components, i.e.

v3 =
∂u

(v)
3

∂t
, τ23 = σ

(v)
23 (15)

The surface of the fluid is open boundary (x2 = −hf ). This requires

τ23 = 0 (16)

At the interface x2 = hv, the mechanical conditions are continuity of dis-
placement and stress components, i.e.

u
(v)
3 = u

(e)
3 , σ

(v)
23 = σ

(e)
23 (17)

Furthermore, the shear stress component displacement that will be used in
these boundary conditions are given by

σ
(v)
23 = (µv − jωηv)

∂u
(v)
3

∂x2
, σ

(e)
23 = µe

∂u
(e)
3

∂x2
, τ23 = η∗

∂v3
∂x2

(18)

2.6. Complex dispersion equation

Substitution of the Eqs. (10) and (18) into the boundary conditions (15)-
(17) yields a system of five linear algebraic equations in five undetermined
amplitudes. For nontrivial solutions of the undetermined amplitudes to exist,
the determinant of this system has to equal zero, which leads to the following
dispersion equation of the Love waves :

jωη∗βf
βv (µv − jωηv)

tanh (βfhf ) +
βv (µv − jωηv) tan (βvhv)− µeβe
µeβe tan (βvhv) + βv (µv − jωηv)

= 0 (19)

Since this relation contains k, ω, as well as all material and geometrical
parameters of the viscoelastic fluid, viscoelastic waveguide and elastic sub-
strate, Eq. (19) represents the implicit complex dispersion equation of Love
waves propagating in a viscoelastic waveguide loaded with a viscoelastic fluid.
Eq. (19) was solved using Mathematica software. Once the wavenumber is
obtained, the phase velocity is calculated by vp = ω/kr. While the imagi-
nary part of wavenumber ki represents the attenuation per unit length in the
propagation direction. Furthermore, the Deborah number De present in the
complex dynamic viscosity η∗ depends both on ω and δ. The three following
regimes may be highlighted in the case of :



• Maxwell fluid: (i) For De � 1 the oscillation time (= 1/ω) is greater
than the relaxation time and, the fluid exhibits a purely viscous behav-
ior. (ii) For De� 1 the oscillation time is smaller than the relaxation
time and, the fluid exhibits an elastic behavior. (iii) For De = 1 the
transition from Newtonian to Maxwell regime takes place.

• Kelvin-Voigt fluid: (i) For De� 1 the oscillation time is greater than
the relaxation time and, the fluid exhibits an elastic behavior. (ii) For
De� 1 the oscillation time is smaller than the relaxation time and, the
fluid exhibits a purely viscous behavior. (iii) For De = 1 the transition
from Newtonian to Kelvin-Voigt fluid regime takes place.

2.7. Some particular cases

For the special case when hf → ∞ (semi-infinite viscoelastic fluid), the
complex dispersion equation (19) becomes

jωη∗βf − µeβe +

[
jωη∗βfµeβe
βv (µv − jωηv)

+ βv (µv − jωηv)
]

tan (βvhv) = 0 (20)

Moreover, if the Maxwell fluid is considered and assuming an elastic waveg-
uide (i.e. ηv = 0), the complex dispersion equation (20) takes the following
form

µvβv

(
jωηβf

1− jDe
− µeβe

)
+

(
jωηβf

1− jDe
µeβe + µ2

vβ
2
v

)
tan (βvhv) = 0 (21)

which was previously obtained by [13]. In addition, for a Newtonian fluid,
the complex dispersion equation (21) can be rearranged to give

µvβv (jωηξ − µeβe) +
(
jωηξµeβe + µ2

vβ
2
v

)
tan (βvhv) = 0 (22)

which was previously obtained by [6, 13, 21]. A last comparison can be drawn
between the present generalized complex dispersion equation (19) and those
of literature in the case of Love waves propagating in viscoelastic waveguide
without any fluid on its surface. Therefore, the complex dispersion equation
(19) becomes :

βv (µv − jωηv) sin (βvhv)− µeβe cos (βvhv) = 0 (23)

which was previously obtained by [22].



3. Comparison with other studies

In this paragraph, we check the accuracy and numerical robustness of the
dispersion equation developed in this work in some particular cases. Firstly,
a comparison study is performed for a viscoelastic waveguide without a fluid
loaded on its surface. To compare the results derived from the equation (19)
with other theoretical established results, the same dimensionless parame-
ters that were used by Kielczynski [22] are introduced. Figure 2 illustrates
the dispersion curves of the Love wave attenuation as function of waveg-
uide thickness. Figure 2 shows a non monotonic behavior of the Love wave
attenuation with the waveguide thickness. Indeed, the attenuation has a
pronounced maximum as a function of waveguide thickness. For increas-
ing frequencies of the Love wave the maximum occurs for lower thicknesses
of the waveguide, i.e., for frequencies f = 100, 200 and 300 MHz the maxi-
mum occurs, respectively, for hv = 2.9, 1.46 and 0.97µm. Moreover, when
the frequency increases, the Love wave attenuation is stronger. In addition,
the results in the Figure 2 agree exceptionally well with those obtained by
Kielczynski [22].
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Figure 2: Love wave attenuation versus the layer thickness without fluid loading in the
case of a viscoelastic waveguide (ηv = 10−3 Pa · s). This Figure is identical to that of Ref.
[22].



A second and last comparison can be drawn between the present disper-
sion equation and that of Kielczynski et al. [12] in the case of an elastic
waveguide, loaded with a Newtonian liquid layer of finite thickness. Varia-
tions of Love wave attenuation versus liquid layer thickness are investigated.
If the Newtonian liquid thickness hf is finite, a strong dependence of the
attenuation on the actual value of hf is observeed in the Figure 3. Initially,
for the thickness hf of the loading Newtonian liquid growing from zero the
attenuation increases monotonically and reaches a maximum for the thick-
ness hf equaled approximatelly to the fluid penetration depth [27] defined
as d =

√
2ηf/ρfω (hf ≈ d). Increasing further the thickness hf > d, we ob-

serve that the attenuation drops monotonically and attains a local minium
at hf ≈ 2d. Next, (for hf ≈ 2d) the attenuation slightly grows and enters
a plateau for hf ≈ 4d. It means that if thickness of the Newtonian liquid
is hf ≈ 4d, we can consider practically such a layer of Newtonian liquid
as infinite (or semi-infinite). Note that a similar behavior is obtained by
Kielczynski et al. [12].
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Figure 3: Love wave attenuation versus the fluid thickness in the case of Newtonian fluid
(η = 10 Pa · s) and elastic waveguide (i.e. ηv = 0) with hv = 0.1 mm.

4. Numerical results and discussion



Having established the accuracy through the comparison study illustrated
in Figures 2 and 3, further numerical results are given in this section. The
material properties given in Table 1 for the viscoelastic waveguide and elastic
substrate [22], and in Table 2 for viscoelastic fluids [5], are taken to construct
this numerical example. In this work,numerical calculation is performed in
the glycerol concentrationsrange from 15.4 to 88.0% and for three values of
frequency 50, 100 and 150 MHz.

Waveguide Substrate

Shear waves velocity cv = 1100.85 (m/s) ce = 5060.02 (m/s)
Storage shear modulus µv = 1.43 (GPa) µe = 67.85 (GPa)
Density ρv = 1180 (kg/m3) ρe = 2650 (kg/m3)

Table 1: Material parameters used for waveguide and substrate.

4.1. Phase velocity and attenuation versus waveguide thickness

Figure 4 shows the plot of the phase velocity and attenuation of the Love
wave versus the layer thickness hv (waveguide thickness), for various waveg-
uide viscosity (ηv = 0.001, 0.01, 0.1 Pa · s) and frequencies (50, 100, 150 MHz).
As it is seen in Figures 4(a) and 4(b) the phase velocity vp of the Love wave
begins at vp = cv for hv = 0 and decreases monotonically to the substrate
shear wave velocity vp = ce. In other words, for thicker waveguide surface,
properties of the Love wave are more influenced by properties of the sub-
strate. Figures 4(a) and 4(b) show also that the viscosity of the viscoelastic
waveguide has insignificant effect on the phase velocity. In contrast to the
phase velocity, the attenuation of Love waves depends strongly on viscosity
ηv of the viscoelastic waveguide.

The influence of the waveguide thickness on the Love wave attenuation
is illustrated in Figures 4(c) and 4(d). These Figures show that the Love
wave attenuation ki has a pronounced maximum as a function of waveg-
uide thickness hv. For increasing frequencies the maximum occurs for lower
thicknesses of the waveguide, i.e., for frequencies f = 50 and 100 MHz the
maximum occurs, respectively, for hv = 5.7 and 2.84µm. This maximum
was also observed in the case of an elastic waveguide [13]. The obtained
curves are similar to those of sensitivity to the mass effect obtained for a
Love wave sensor [11]. To interpret these results, the energy confinement



χ (%) η (mPa · s) ρf (kg/m3) δ (ps)
15.4 1.4 1017 28
25.6 1.7 1029 38
32.9 2.7 1038 54
37.3 3.1 1044 62
42.3 3.8 1050 76
46.7 4.6 1055 92
52.2 5.9 1062 118
62.1 10.2 1075 204
72.0 21.9 1087 438
75.9 33.2 1093 664
80.0 49.5 1098 990
84.0 81.8 1104 1636
88.0 128.1 1109 2562

Table 2: Material parameters used for water-glycerol mixtures. χ is the concentration of
glycerol in water.

in the waveguide has to be taken into account. Thus, when the waveguide
thickness increases, the energy of the Love wave increases while the energy
present in the substrate decreases [8]. This has the effect of increasing wave
amplitude at the interface with the liquid. The attenuation due to the vis-
coelastic properties of the liquid thus becomes stronger. To conclude, the
maximum of Love waves attenuation as a function of the waveguide thick-
ness is due mainly to the energy confinement in the waveguide. Moreover,
the amplitude of this maximum is amplified due to both the fluid viscosity
and the viscosity of the waveguide.

4.2. Influence of the glycerol concentration on the Love wave attenuation

In this paragraph, we investigate how the attenuation vary with the glyc-
erol mass fraction (i.e., shear viscosity) in both Newtonian and viscoelastic
fluids. Indeed, by considering a viscous fluid and increasing the glycerol mass
fraction, a Newtonian fluid predicted a monotonically increasing relationship
between the attenuation and the glycerol mass fraction [23]. Figure 5 is in
good agreement with this Newtonian behavior. However, the Maxwell and
Kelvin-Voigt fluids highlighted a non-monotonically decreasing correlation
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Figure 4: Love phase velocity and attenuation versus the layer thickness in the case of
Newtonian fluid (χ = 15.4%) with hf = 20µm. In Figures (c) and (d) : dashed lines
f = 50 MHz and solid lines f = 100 MHz.

between the attenuation and glycerol mass fraction. Therefore we can con-
clude that the non-monotonic behavior manifested the intrinsic viscoelastic
properties of fluid [24, 25, 26]. In addition, Figure 5(a) shows the attenua-
tion variation for a frequency equal to 50 MHz and for a waveguide thickness
of 1 m. In the case of a Maxwell fluid, the elastic effects are significant for
a glycerol concentration greater than 62.1%. In other words, for Deborah
number values less than the critical values of 0.064, the elasticity can be
neglected and the behavior is purely Newtonian. This is due to the time
constant value less than 204 ps corresponding to De less than 0.064. The
term De is then negligible compared to 1 and the complex dynamic viscosity
η∗ can be assimilated to the dynamic viscosity η characterizing a Newtonian
behavior. Thus, a similar results are obtained for others excitation frequen-



cies and waveguide thickness (see Figure 5). These observations are in good
agreement with the literature results [5]. Therefore, to reasonably predict
the characteristics responses of Love waves, the Maxwell fluid is more ap-
propriate for low glycerol concentration and, the Kelvin-Voigt fluid is more
suitable for high glycerol concentration and at high frequency.

4.3. Love wave attenuation versus frequency

The dependence of the attenuation on the frequency for two values of the
glycerol concentration (χ = 62.1% and 88.0%) in the case of Newtonian and
Maxwell fluids is depicted in Figure 6. As can be seen in this Figure, the
attenuation depends strongly on the frequency and glycerol concentration.
Whatever the fluid used, with an increase in the frequency and glycerol con-
centration causes a non monotonic behavior in the Love wave attenuation.
It is seen that the attenuation values obtained with the Maxwell model con-
verge towards those obtained with the Newtonian model for frequencies lower
than 20 MHz. At about 29 MHz (χ = 62.1%) and 27 MHz (χ = 88.0%), the
attenuation reaches a local maximum. In spite of the increased viscosity of
fluid (increase in glycerol concentration), the attenuation is less pronounced
in the case of the Maxwell model due to the elastic behavior of the fluid at
high frequencies. Figure 6 also highlights a less important difference between
Maxwell curves and those of Newtonian fluid for χ = 62.1%. In other words,
for glycerol concentrations lower than 62.1%, the fluid behaves as Newtonian.
However, this difference becomes more important for glycerol concentrations
higher than 62.1% and the fluid exhibits a purely elastic behavior from a fre-
quency of 63 MHz. In other words, for frequencies over 63 MHz the mixtures
response converges towards an attenuation limit value. It corresponds to the
fact that de fluid develops a purely elastic behaviour. If we want to take
reference about concrete example, it shows the same behavior as fluid mate-
rials that becomes solid when we put it under stress. Note that Nagy and
Nayfeh [28] highlight a similar behavior of longitudinal waves attenuation
curves in the case of newtonian fluid, even though the vibration mechanism
is fundamentally different.

4.4. Phase velocity and attenuation versus fluid thickness

Figure 7 exhibits the plot of Love wave phase velocity and attenuation as
a function of fluid thickness, for frequencies f = 100 and 150 MHz and two
glycerol concentrations χ = 62.1 and 88%. When the fluid thickness hf is
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Figure 5: Love wave attenuation versus the glycerol mass fraction with ηv = 1×10−3Pa · s
and hf = 20µm.

finite, a strong dependence of the Love wave phase velocity and attenuation
on the actual value of hf is observed.
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Figure 6: Love wave attenuation versus frequency with ηv = 1 × 10−3Pa · s, hv = 10µm
and hf = 20µm.

For example, in the case of a frequency of 100 MHz and a glycerol concen-
tration of χ = 62.1%, Figure 7(a) shows that, initially, for the fluid thickness
growing from zero the phase velocity drops monotonically and reaches a min-
imum for the thickness hf equaled to 0.16µm. Increasing further the fluid
thickness, we observe that the phase velocity grows monotonically and at-
tains a local maximum at hf = 0.4µm. Next, for hf > 0.4µm the phase
velocity slightly drops and enters a plateau for hf = 4.6d. In other words,
that if the fluid thickness hf = 4.6d, we can consider practically such a fluid
layer as infinitive. This is an important result in design of Love wave fluid
sensors. Note that a same behavior is observed for other frequencies and
glycerol concentrations. However, in the case of attenuation, Figure 7(b) il-
lustrates an opposite behavior to that of the phase velocity. Indeed, initially,
for the fluid thickness growing from zero the attenuation increases monoton-
ically and reaches a maximum. Increasing further the thickness, we observe
that the attenuation decreases monotonically and attains a local minimum.
Next, the attenuation slightly increases and enters a plateau for hf equaled
to the 4.6 times fluid penetration depth. Figure 7 also shows that the value of
the plateau strongly depends on the excitation frequency and the used fluid
model. Therefore, to accurately optimize the height of the fluid from which
it can be assumed to be a semi-infinite medium, the phase velocity and the
attenuation must be correctly predicted as function of the fluid model and
excitaion frequency.
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Figure 7: Phase velocity and attenuation versus fluid thickness with ηv = 1 × 10−3Pa · s
and hv = 10µm. Dashed lines f = 100 MHz and solid lines f = 150 MHz. (a) and (b)
χ = 62.1%; (c) and (d) χ = 88%. v0 corresponds to the Love wave velocity without the
fluid loading.

5. Conclusion

In this paper, Love wave propagation in viscoelastic waveguide loaded on
its surface with viscoelastic fluids of finite thickness is investigated using an
original approach based on the exact theory. A generalized analytical form
of the complex dispersion equation was developed. Therefore, the curves
highlighting the behavior of attenuation and phase velocity of Love waves
as function of fluid thickness, operating frequency, glycerol concentrations
and waveguide thickness were obtained. Five detailed dispersion equations
were established, (i) viscoelastic waveguide and viscoelastic fluid with finite
thickness, (ii) viscoelastic waveguide and semi-infinite viscoelastic fluid, (iii)



elastic waveguide and semi-infinite Maxwell fluid, elastic waveguide and semi-
infinite Newtonian fluid, and viscoelastic waveguide without any fluid on its
surface. The obtained generalized complex dispersion equation can be very
useful in the design and optimization of Love wave fluid sensors.

Generally, the properties of the viscoelastic fluid can be described by a
standard linear model, which predicts both the creep and stress relaxation
behavior and, therefore, is applicable in the entire frequency range. An
important contribution of this paper is the analysis of the impact of both
waveguide viscosity ηv and the viscosity of fluid loading η on the Love wave
velocity and attenuation. These characteristics of the Love wave dispersion
curves in viscoelastic waveguide loaded with viscoelastic fluids are original
and can be particularly useful in the design of biosensors and chemosen-
sors based on the Love waves. From the performed analysis and numerical
calculations, one can conclude that :

• Attenuation dispersion curves of the Love wave exhibit a maximum as
a function of the waveguid thickness hv. This is due to the energy
confinement in the waveguide. For a given frequency, there exists a
thickness for which the attenuation ki attains the maximum, see 4.
The amplitude of this maximum is amplified due to both the fluid
viscosity and the viscosity of the waveguide.

• The change of the Love wave velocity and attenuation as a function of
fluid thickness hf of the loading fluid has the character of a damped si-
nusoid, for small initial values of the thickness hf , see Figure 7. Overall
it seems that taking in account the viscoelastic behaviour of the fluid
amplifies its response in regard of its viscous behaviour.

• Dispersion curves of the phase velocity as a function of fluid thick-
ness hf , for frequencies 100 and 150 MHz, see Figure 7, show that the
limiting thickness beyond which a Newtonian liquid can be treated
as a semi-infinite can be safely assumed as 4.9d (4.9 times penetra-
tion depths into the liquid) for Maxwell model and 6d for Kelvin-Voigt
model.

• To reasonably predict the characteristics responses of Love waves, the
Maxwell fluid is more appropriate for low glycerol concentration and,
the Kelvin-Voigt fluid is more suitable for high glycerol concentration
and at high frequency. We can also observe that for low frequencies and



a low concentration of glycerol, we can approximate a material with a
Maxwell’s law of behavior as a Newtonian fluid and conversely for a high
concentration of glycerol and high frequencies a Kelvin-Voigt fluid as a
Newtonian fluid. Taking that in count modelling Newtonian behaviour
will be less demanding in terms of calculation than viscoelastic models
and it can be useful if we want to carry out a rapid simulation or to
have sensors with a rapid response time.

This work is original contribution to the state of the art. Since it covers
Love waves properties at both high (Kelvin-Voigt fluid) and low frequency
(Maxwell fluid), the results obtained can be used in many fields of science and
technology, such as: geophysics, non-destructive testing and in the design of
viscosity sensors.
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