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Summary

Pulmonary hypertension is an heterogeneous group of 
diseases characterised by increased pulmonary arterial 
pressures which impact on the upstream right ventricle. 
Pulmonary hypertension can be challenging to diagnose, 
classify and monitor when specific therapies are applic-
able. Cardiac magnetic resonance (CMR) imaging has 
greatly evolved in the last decades and is a promising 
tool to non-invasively follow pulmonary hypertension pa-
tients. CMR provides a comprehensive evaluation of the 
heart and is therefore the gold standard for quantification 
of right ventricular volumes, mass and function, which are 
critical for pulmonary hypertension prognosis. In addition, 
innovative MR techniques allow an increasingly precise 
evaluation of pulmonary haemodynamics and lung per-
fusion. This review highlights the main advantages of-
fered by CMR in pulmonary hypertension and gives an 
overview of putative future applications. Although right 
heart catheterisation remains mandatory in the diagnostic 
algorithm, CMR could play an increasingly important role 
in the coming years in monitoring pulmonary hypertension 
patients.

Introduction

Pulmonary hypertension is a pathophysiological manifes-
tation of a heterogeneous group of diseases characterised 
by abnormally elevated pulmonary arterial pressures [1]. 
Chronic heart and lung diseases are the most common ae-
tiologies of pulmonary hypertension in Western countries. 
Since these are increasing in an ageing population, recent 
studies indicated that the prevalence of pulmonary hyper-
tension greatly increased in the last decades [2–4]. The 
clinical manifestations of pulmonary hypertension, which 
encompass exercise dyspnoea, lower limb oedema and

even syncope in severe cases, are generally related to right
ventricular failure and reduced cardiac output due to right
ventricle (RV)/ left ventricle (LV) interdependence [5], as
well as RV / pulmonary artery uncoupling [6]. Early diag-
nosis of RV failure is critical, and therefore cardiac mag-
netic resonance imaging (CMR) could play a pivotal role
in the diagnosis and management of pulmonary hyperten-
sion.

The purpose of the review is to discuss current knowledge
about CMR in the diagnosis and follow-up assessment of
patients with pulmonary hypertension, as well as to com-
pare the benefits of CMR with right heart catheterisation
(RHC) for haemodynamic evaluation. Although right heart
catheterisation will remain mandatory in the diagnostic al-
gorithm, CMR could play an increasingly important role in
monitoring pulmonary hypertension patients in the coming
years.

Pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is a severe, incur-
able, cardiovascular disorder characterised by a diffuse re-
modelling of the pulmonary arteries causing precapillary
pulmonary hypertension with increased pulmonary vascu-
lar resistance (PVR), in the absence of other causes of
precapillary pulmonary hypertension such as chronic lung
diseases, pulmonary artery obstructions or other rarer dis-
eases [7]. The recently updated haemodynamic definition
of PAH is a mean pulmonary arterial pressure (mPAP) >20
mm Hg together with PVR ≥3 Wood units in the presence
of a normal left heart filling pressure (≤15 mm Hg) [7].

The mPAP is defined by the formula: mPAP = PVR x
cardiac output + left atrial pressure. This formula reveals
the main pathophysiological mechanisms underlying pul-
monary hypertension: (a) elevation of the PVR due to var-
ious levels of vasculopathy; (b) increased cardiac output
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due to hyperdynamic states; (c) elevated pressures in the 
left heart causing post-capillary pulmonary hypertension.

Magnetic resonance imaging

Magnetic resonance imaging (MRI) has greatly evolved in 
the past decades and thus emerges as an important imaging 
technique for pulmonary vascular diseases and pulmonary 
hypertension [8–10]. Regular evaluation of RV structure 
and function allows assessment of the response to treat-
ment, which was shown to reflect PAH patient prognosis 
[11, 12]. CMR is the gold standard for accurate and repro-
ducible quantification of RV volumes, mass and function, 
using high spatiotemporal resolution imaging sequences 
[13–15]. CMR thus provides critical prognostic informa-
tion in PAH patients at baseline, as well as during follow-
up [8].

Pulmonary arterial hypertension and the right 
ventricle

Although pulmonary arterial hypertension is a disease of 
the lung vasculature itself, irreversible pulmonary vascular 
remodelling leads to upstream right heart failure with a 
poor outcome once the diagnosis is set [16]. Vasoconstric-
tion together with vascular remodelling contribute to a pro-
gressive increase in PVR and PAP, causing increased RV 
afterload, which has deleterious effects on the RV, such 
as distension and systolic or diastolic dysfunction. It is 
well known that the pathophysiology of the RV allows this 
cavity to cope with increased volume, whereas it is less 
well adapted to an elevated downstream resistance [16]. 
Changes due to pressure overload are detrimental as in-
creased RV wall stress leads to ventricular dilation and hy-

pertrophy, finally with RV maladaptation as a consequence 
of increased PVR (fig. 1). Monitoring RV size and function 
with a reliable method is thus crucial in the assessment of 
pulmonary hypertension.

Diagnostic approach for pulmonary 
hypertension

Patients with suspected pulmonary hypertension typically 
undergo several noninvasive and invasive examinations, 
including right heart catheterisation, before a final diagno-
sis can be reached [17]. Several diseases, such as systemic 
sclerosis, can encompass simultaneously precapillary and 
postcapillary causes of pulmonary hypertension, thereby 
complicating the PAH diagnostic workflow [17, 18].

Doppler echocardiography is safe, widely available and 
therefore represents an inevitable screening tool to raise 
suspicion of pulmonary hypertension. Although transtho-
racic echocardiography (TTE) is an invaluable test for pul-
monary hypertension evaluation, it has some limitations. 
Precise assessment of the right chambers is not always pos-
sible as the ultrasound window may be compromised, par-
ticularly in patients with lung diseases. Quantitative TTE 
measurements are operator-dependent and are limited as 
different thresholds for RV parameters exist. A thorough 
review of the pivotal role of TTE in pulmonary hyperten-
sion was recently published in this journal [19].

When pulmonary hypertension is suspected, right heart 
catheterisation is the gold standard examination to confirm 
the diagnosis and is thus mandatory in the diagnostic algo-
rithm to distinguish between precapillary and postcapillary 
forms of pulmonary hypertension. However, right heart 
catheterisation does not allow a comprehensive evalua-

Figure 1: Schematic pathophysiological interactions in precapillary pulmonary hypertension and consecutive clinical and MRI manifestations.
RV: right ventricle; LV: left ventricle; RA: right atrium; SVC: superior vena cava; IVC: inferior vena cava; PA: pulmonary artery; RPA: right pul-
monary artery; mPAP: mean PA pressure; Ao: aorta; CO: cardiac output.
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tion of the heart chambers or RV-LV interdependence [20].
Right heart catheterisation should only be performed in ex-
pert centres as serious complications may happen [21, 22].
Even in expert centres, invasive haemodynamic measure-
ments can be burdensome for patients. In the multicen-
tre RePHerral study, many incident pulmonary hyperten-
sion patients referred to an expert centre did not undergo a
right heart catheterisation during the diagnostic procedure,
which led in a high percentage of patients to an erroneous
diagnosis [23]. Although right heart catheterisation is the
central examination for pulmonary hypertension evalua-
tion and will most certainly remain mandatory in the near
future, noninvasive diagnostic techniques such as CMR re-
inforce the evaluation procedure and are likely to play an
increasing role in patient monitoring.

Computed tomography pulmonary angiography (CTPA) is
a common imaging modality for pulmonary hypertension
assessment. It allows precise evaluation of pulmonary
structures together with indirect cardiac assessment [24].
CTPA can highlight indirect signs of RV dysfunction and
elevated pulmonary pressures, such as ventricular hyper-
trophy or dilation, abnormal interventricular septum curva-
ture and pericardial effusion [24]. CTPA can point towards
several pulmonary hypertension aetiologies, for example
when advanced interstitial lung disease is present (putative
pulmonary hypertension due to lung diseases) or oe-
sophageal abnormalities, which can be seen in systemic
sclerosis (possible PAH associated with connective tissue
disease) [24]. CTPA can display chronic thrombi in the
pulmonary arteries, suggesting the diagnosis of chronic
thromboembolic pulmonary hypertension (CTEPH). How-
ever, a negative CTPA does not completely rule out the
diagnosis of CTEPH, since perfusion scintigraphy gener-
ally has a higher sensitivity [25]. CTPA has considerable
drawbacks compared with MRI or TTE, as it does not al-
low haemodynamic assessment unless radiation intensity
is increased. In addition, repetitive CTPA, for example for
treatment monitoring, causes significant radiation expo-
sure. The CTPA application can be limited by the risk of
nephrotoxicity and the risk of iodinated contrast media al-
lergy.

CMR provides three-dimensional, high resolution images
of the four chambers of the heart (fig. 2). Hence, it allows
a precise evaluation of the right heart structure and func-
tion, which are only indirectly assessed with right heart
catheterisation. CMR quantifies blood flow with high pre-
cision yielding RV stroke volume, cardiac output, or pul-
monary arterial distensibility [1, 8–10] (fig. 3). Several
CMR signs, such as the presence of tissue fibrosis assessed
by late gadolinium enhancement or decreased pulmonary
arterial distensibility with retrograde pulmonary flow, have
a high value for pulmonary hypertension identification and
prognosis [24, 26]. Evaluation of the interventricular sep-
tum by CMR can distinguish with moderate sensitivity and
excellent specificity between pre- or postcapillary forms
from isolated postcapillary pulmonary hypertension as an
increased angle of ≥160° is associated with mixed pul-
monary hypertension forms with poorer prognosis [27].
CMR provides excellent anatomical and functional infor-
mation due to improved spatial and temporal resolutions,
without ionising radiation or the need to administer
nephrotoxic contrast media. A summarised, but not ex-

haustive, comparison between TTE, CTPA and MRI is pro-
vided in table 1.

Assessing RV function with CMR and PAH
follow-up under specific therapy

Approved therapies for PAH have been developed to
favour pulmonary vasodilatation and slow down the pro-
gression of pulmonary vascular remodelling, via one
of three well-characterised pathways, namely the nitric ox-
ide, the endothelin-1 and the prostacyclin (PGI2) signalling
pathways [28]. The therapeutic strategy for PAH has great-
ly evolved in the last two decades and will likely benefit
from novel molecules in the coming years [29].

Most treatment goals are targeted on maintaining normal
or improving RV function rather than to normalise PA
pressures per se. General measures such as intensive di-
uretic treatment palliates RV insufficiency in order to act
as supportive therapy for PAH. Although the current treat-
ment options have markedly improved overall quality of
life, exercise capacity and long-term outcomes, the 5-year
survival remains low (~60%) [30]. Lung transplantation is
the last therapeutic option if previous therapy failed.

Regular evaluation of RV structure and function are funda-
mental for clinical monitoring of the therapeutic response
as well as evaluation of patient prognosis [1]. Several key
clinical parameters are obtained noninvasively, such as
New York Heart Association (NYHA) functional class,
6-minute walk distance, and N-terminal pro-B-type natri-
uretic peptide (NT pro-BNP) levels [30]. Following the
ERS/ESC risk assessment strategy, haemodynamic para-
meters assessed by right heart catheterisation, such right
atrial pressure, cardiac index and mixed venous oxygen
saturation (SvO2) should be measured if deterioration is
suspected [1]. Imaging parameters such as an increased
right atrial size as well as the presence of a pericardial effu-
sion, either on TTE or CMR, are included in the ERS/ESC
risk assessment. However, numerous important function-
al parameters related to the RV are not covered by current
guidelines, but can be obtained noninvasively with CMR
without the need for an invasive haemodynamic evalua-
tion.

CMR is generally recognised as an accurate technique to
measure RV volumes and its accuracy has further im-
proved in recent years as a result of pulse sequences with
increased temporo-spatial resolutions [10]. Short-axis im-
ages allow a three-dimensional reconstruction of the ven-
tricular anatomy where postprocessing of the endocardial
contours delineate end-systolic volume (ESV), end-dias-
tolic volume (EDV), stroke volume and stroke volume in-
dex, referred to the body surface area) together with RV
ejection fraction. The same 3-dimensional postprocessing
measures ventricular wall masses accurately (see fig. 2).

Hence, CMR offers the advantage of precisely assessing
RV volumes as well as noninvasively obtaining prognostic
indices in pulmonary hypertension. Stroke volume or
stroke volume index were demonstrated to be key haemo-
dynamic parameters in pulmonary hypertension as they
are directly correlated to RV function. A large RV with
a low stroke volume, as well as a reduced LV volume,
are strong independent predictors of treatment failure or
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mortality [11]. After 1 year of PAH-treatment (mainly an
endothelin receptor antagonist), a significant increase in
stroke volume was demonstrated with CMR [31]. A 10-ml
change in stroke volume was correlated to a difference
in 6-minute walk distance, which is widely used in pul-
monary hypertension to assess clinical significance [31].

In the pan-European EURO-MR study, comprising 91 pul-
monary hypertension patients, CMR-derived variables, at
baseline versus after 12 months of disease-targeted thera-
py, reflected changes in functional class and predicted sur-
vival [32].

In a retrospective study comprising 139 adults referred
for pulmonary hypertension evaluation, right ventriculo-
arterial coupling was quantified as the ratio of pulmonary
artery effective elastance (as an index of arterial load) to
RV maximum end-systolic elastance (index of contractili-
ty). RVESV and stroke volume were measured by CMR;
these measures were compared with standard right heart
catheterisation parameters and the authors demonstrated
that pulmonary artery elastance increases with pulmonary
hypertension severity, whereas contractility failed to
progress leading to right ventriculo-arterial uncoupling
[33].

Figure 2: Example of a 45-year old man with idiopathic PAH suffering from dyspnoea on exertion. The cardiac MR (CMR) examination con-
sists of cine short-axis (C, D) and long-axis acquisitions (E) covering the entire right and left ventricles (RV, LV). Post-processing allows recon-
struction of three-dimensional representations of the RV and LV (A, B) for accurate quantification of end-diastolic and end-systolic volumes,
stroke volumes, and RV and LV myocardial mass. In this patient, the RV is dilated and hypertrophied (239 ml, 126 ml/m2 at end-diastole, 83 g,
44 g/m2) and the ejection fraction is severely reduced to 14%. A typical D-shape deformation of the septum is observed at end-systole / early
diastole. The interventricular septal angle was 173⁰, the RV/LV mass ratio was 83 g/159 g, and diastolic pulmonary artery area was 9.9 cm2.
According to the model developed by Johns et al. [38] these measurements translate into an approximate mean PA pressure of 44 mm Hg; a
right heart catheterisation performed 16 months later yielded 42 mm Hg. These data indicate that the RV converted from a volume to a pres-
sure pump. Accordingly, the ventricular-arterial coupling (the ratio of RV maximum end-systolic elastance over PA effective elastance) is un-
favourable in this patient and estimated by the CMR examination to be 6.2 according to Sanz et al. [33]; normal values with optimal coupling
are close to 1.0. A: blue and green 3D-meshes represent RV and LV surfaces at end-diastole, respectively, B: orange and red 3D-meshes rep-
resent RV and LV endocardial surfaces at maximum septal deviation, respectively. Corresponding contours on short-axis cine images (out of a
series of 25 frames per heart beat) are given in C and D, respectively. F: short-axis cine image at maximum septal deviation, G: Diastolic area
of the pulmonary artery, H: short-axis late-gadolinium enhancement image demonstrating intramyocardial fibrosis (bright areas) in the anterior
and posterior insertion point of the RV at the septum.
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Lewis et al. recently evaluated 438 PAH patients from the
ASPIRE MRI database to determine thresholds for PAH
risk stratification [34]. A RV-ESV index threshold of 227%
or a LV-EDV index of 58 ml/m2 identified patients at low
(<5%) and high (>10%) risk of 1-year mortality, respec-
tively. RV-ESV index independently predicted PAH out-
come and improved risk stratification when added to the
REVEAL 2.0 risk calculator or the French Pulmonary Hy-
pertension Registry strategy [34].

In a recent meta-analysis encompassing 22 studies with
nearly 2000 PAH patients, CMR was a robust predictor of
clinical deterioration and mortality [35]. The pooled haz-
ard ratios indicated that every 1% decrease in RV ejec-
tion fraction was associated with a 4.9% increase in the
risk of clinical worsening as well as an increased risk of
death, respectively, over 22 and 54 months of follow-up.
With every increase in RV-ESV or -EDV index by 1 ml/m2,
the risk of clinical worsening increased by 1.3% and 1%,
respectively. With every 1 ml/m2 decrease in LV- stroke
volume index, the mortality increased by 2.5% over 54
months.

CMR for vascular and haemodynamic evalua-
tions and comparison with right heart
catheterisation

RV anatomy/function and pulmonary artery anatomy
for pulmonary hypertension assessment

Several CMR studies demonstrated that absolute or rela-
tive main pulmonary artery size can be directly correlated
with PAP values measured by right heart catheterisation
[36, 37]. In a recent retrospective study, Johns et al. de-
veloped regression models to predict pulmonary pressure
based on CMR measurements in 600 patients with right
heart catheterisation and CMR testing [38]. In one half of
the patients a regression model was developed to estimate
mPAP and its performance was then tested in the remain-
ing patients (the validation cohort). This model, using in-
terventricular septum angle, RV-LV mass ratio, and pul-
monary artery anatomy, had a sensitivity of 93% with a
specificity of 79% to detect pulmonary hypertension non-
invasively [38]. This model was also adapted to detect
mPAP at a lower threshold of 20 mm Hg, according to the
6th World Symposium on Pulmonary Hypertension defini-
tion [39].

Figure 3: Flow measurement in the pulmonary artery (PA). A: Magnitude image, B: Phase contrast image at peak systole. Each voxel is veloc-
ity-encoded (with grey levels representing velocities). The inlet in B shows a flow map in early diastole with forward flow along the outer curva-
ture of the PA (white pixels), while flow is retrograde at the inner curvature (dark pixels) compatible with vortex flow in the PA at this cardiac
phase. C: Multiplying velocities of all corresponding voxels (spatial resolution: 1.9 x 1.9 mm2) within the vessel surface with temporal resolution
(40 ms) yields volume flow.

Table 1:
Comparison of selected noninvasive imaging modalities for pulmonary hypertension, adapted from [24, 26].

Parameters Echocardiography CTPA Magnetic resonance imaging

pulmonary hypertension
detection

+++ + +

Lung evalu-
ation

–

Parenchyma +++ +/–

Vasculature +++ ++

Assessment of pulmonary
hypertension aetiology

+ +++ ++

Evaluation of cardiac
chambers and shunts

++ + +++

Pulmonary pressure eval-
uation

++ – +/–

Strengths No radiation, widely available, noninvasive Lung parenchyma and vessels evalua-
tion

No radiation, precise evaluation of cardiac
structure/function and pulmonary flow quantifi-
cation

Weaknesses Difficult assessment of the right chambers; only indirect
signs of pulmonary hypertension; interobserver variabili-
ty

Limited haemodynamic assessment, ra-
diation and iodine contrast administra-
tion

Limited evaluation of the lungs

CTPA: computed tomography pulmonary angiography; RV: Right ventricle; – = no utility; + = limited utility; ++ = moderately useful; +++ = very useful; +/– = in development.
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Pulmonary artery haemodynamics for pulmonary 
hypertension assessment

Two-dimensional flow acquisitions are standard compo-
nents of pulmonary hypertension studies by CMR. How-
ever, 3-dimensional flow acquisitions (also called 4D-flow 
acquisitions as they acquire 3D-volumes over time) have 
the potential to provide more detailed flow pattern analy-
ses. For example, aberrant flow patterns in the main pul-
monary artery, namely vortex formations, can be associat-
ed with pulmonary hypertension. These 2D and 3D flow 
data assign velocities to each pixel (or voxel), thus allow-
ing accurate measurement of volume flow in non-homo-
geneous flow fields, such as in vessels with skewed flow 
profiles (fig. 3). This technique allows a precise analysis 
of vascular flows as well as transvalvular or intra-cavity 
flows, which can be difficult by ultrasound. Appearance of 
the vortex flows in the main pulmonary artery was linearly 
associated with mPAP measurements. Reiter et al. recent-
ly compared 4D-flow imaging with right heart catheterisa-
tion in 44 pulmonary hypertension patients. In their work, 
they converted pulmonary artery flow patterns into mPAP 
estimations [40]. In patients with mPAP >16 mm Hg, 4D-
flow imaging accurately predicted mPAP changes [40]. In 
another elegant study by Ikoma et al., 4D-flow was found 
to have the potential to detect early haemodynamic change 
in systemic sclerosis, since wall shear stress and shear 
stress index were correlated with PAH in systemic sclero-
sis when compared with controls [41].

These novel 4D-flow sequences proved to be of value for 
noninvasive estimations of mPAP in smaller studies. Ac-
cordingly, larger studies are currently warranted to confirm 
these findings. Noninvasive determination of mPAP and 
PVR could also benefit from models that combine RV/LV 
and pulmonary artery anatomical findings with pulmonary 
haemodynamics and flow patterns assessed by 4D-flow ac-
quisitions.

Interventional CMR for pulmonary hypertension
assessment

With the advent of interventional CMR, the performance 
of CMR-guided right heart catheterisation is another in-
novative technique, which combines MRI with simultane-
ous pressure measurements yielding a comprehensive and 
highly precise assessment of RV and pulmonary haemo-
dynamics [42, 43]. This radiation-free technique was suc-
cessfully evaluated in both adults and children [44]. These 
experimental findings require further evaluation in larger 
studies to assess their application in clinical practice.

Promising future directions: the example of 
chronic thromboembolic pulmonary hyperten-
sion

Chronic thromboembolic pulmonary hypertension 
(CTEPH) is a rare but severe cause of pulmonary hy-
pertension where incomplete resolution of a thrombus lo-
calised in the pulmonary arteries leads to precapillary pul-
monary hypertension [25]. Pulmonary vascular evaluation 
with MRI emerges as a useful imaging technique in 
CTEPH. Contrast-enhanced MR pulmonary angiography 
is promising, especially when iodinated contrast media are 
contraindicated. Several innovative MRI techniques are

emerging, which incorporate pulse sequences for lung per-
fusion evaluation. As only few multicentre validation stud-
ies are available so far, these techniques are not yet ready 
to replace ventilation/perfusion scintigraphy to confirm or 
rule out CTEPH [24, 25].

Three-dimensional dynamic contrast-enhanced lung perfu-
sion provided a dynamic analysis of regional pulmonary 
perfusion by tracking the passage of a contrast bolus into 
the pulmonary arteries. It can assess parenchymal hypop-
erfusion as seen in CTEPH, together with quantification 
of regional parenchymal hypoperfusion, before and after 
pulmonary endarterectomy, the curative treatment option 
in operable CTEPH, where proximal marginal thrombi are 
surgically removed [45].

Meanwhile, several papers elegantly demonstrated the 
benefit of 4D-MRI in CTEPH. Ota et al. reported in 2015 
the first demonstration of normalisation of the main pul-
monary artery flow patterns (vortex flow) after pulmonary 
angioplasty [46]. Enhanced pulmonary blood flow was 
demonstrated via MRI two weeks after pulmonary en-
darterectomy in CTEPH patients with a significant corre-
lation between the 6-minute walk test and perfusion im-
provement [45]. The same authors demonstrated perfusion 
improvement after balloon pulmonary angioplasty, which 
may allow a longitudinal noninvasive imaging follow-up 
in distal forms of CTEPH [47].

A recent post-processing technique, called phase-resolved 
functional lung MRI, includes the reconstruction of the 
pulmonary arterial pulse wave during the cardiac cycle, 
thereby deriving dynamic information about ventilation 
and perfusion with increased temporal resolution [48]. 
This technique emerges as an innovative noninvasive tool 
for quantification of regional perfusion, not only for 
CTEPH but also in patients with chronic lung diseases 
[48]. The same procedure was recently demonstrated to 
correlate with outcome after pulmonary endarterectomy as 
well as mPAP evaluation, which is of interest for longitu-
dinal follow-up of CTEPH patients after surgery [49].

Conclusion

MRI enables a comprehensive evaluation of both sides of 
the heart together with the assessment of pulmonary artery 
dynamics, which is critical for pulmonary hypertension di-
agnostic workup as well as for disease monitoring. CMR 
offers noninvasive prognostic values in PAH, where seri-
al right heart catheterisations are burdensome. Innovative 
MRI techniques also provide increasingly precise evalu-
ation of the lung vasculature; therefore, they will have a 
growing importance for pulmonary vascular disease eval-
uation in the coming years. Indirect PAP evaluation and 
monitoring via CMR paves the way for noninvasive, radi-
ation-free patient follow-up, although right heart catheter-
isation remains mandatory for pulmonary hypertension di-
agnosis. The relatively limited availability of CMR should 
positively evolve in parallel with the numerous innovations 
observed in the last years.
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