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Abstract 

The dependence of voltammetric currents on multiple parameters (concentration, pH, 

temperature, etc) has become a primary source of information in interfacial studies of noble 

metal electrodes. Peak potential, charge, and width are intimately related to surface structure 

and reactivity. However, this interpretation usually neglects the complexity of the redox 

processes involved. For the so-called hydrogen adsorption region in platinum, anion competitive 

adsorption plays an important role that is usually overlooked. While charge displacement 

already demonstrated decades ago the existence of anion adsorption contributions, only 

recently a combination of several surface-sensitive techniques has proven unambiguously the 

presence of OH adsorbed on step site at potentials much lower than usually considered. This 

information must not be neglected when analysing the properties of complex catalysts such as 

those composed of nanoparticles since it is of great importance for understanding its overall 

reactivity, for comparing with computational results, and for performing coulometric analysis.  

 

Introduction. 

Already in the very early studies that identified the existence of adsorption processes in the 

voltammetry of noble metal electrodes, it was soon realised the existence of a correlation 

between surface structure and voltammetric profile [1–3]. This correlation, which could be used 

to characterise the morphology of the electrode surface, elevated the cyclic voltammetry to the 

category of a surface characterization technique. The idea underlying this approach is the 

identification of certain voltammetric currents with adsorption processes that are highly 

dependent on the local nanoscopic environment surrounding the adsorption site. Adsorption 

energies depend on the distribution of atoms on the surface, the bonding mode of the adsorbing 
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molecule or adatom, and the lateral interactions between adsorbed species. Moreover, 

voltammetric peaks appear located at potentials directly correlated with the adsorption 

energies, with an area proportional to the number of adsorbed species and a width related to 

the nature of lateral interactions. In consequence, the voltammogram as a whole is often 

considered a fingerprint characteristic of the nanoscopic properties of the surface.  

After the introduction of the flame annealing technique in the early 80s [4,5], the field of surface 

electrochemistry experienced a remarkable boom. Previous interfacial studies were mainly 

limited to mercury electrodes and results with solid metal electrodes were irreproducible and 

unreliable [1,6,7]. The flame annealing technique brought into play an inexpensive and broadly 

available method to achieve clean and ordered surfaces in electrochemistry [4]. Many 

laboratories turned their attention towards the interfacial studies with noble metal electrodes, 

mainly platinum and gold, and soon many relationships between surface structure and reactivity 

could be established. A huge amount of information has been acquired in the last decades, using 

a combination of multiple electrochemical and non-electrochemical techniques, including 

vibrational spectroscopies and scanning probe microscopies. Unfortunately, such welth of 

information acquired with well defined surfaces is often overlooked by many researchers 

working with complex catalysts in real operating conditions, namely, dispersed nanomaterials. 

In this paper, we give a reflection about the importance of considering the true composition of 

the surface to understand reactivity and to correctly analyse integrated charges. In particular, 

we stress the importance of acknowledging the presence of anionic species, namely, hydroxyl 

or other anions on the most reactive sites on the surface. 

 

Relationship between adsorption processes and surface sites. 

Simple electrosorption isotherms, like Langmuir or Frumkin isotherms, predict a voltammetric 

peak for each adsorption process [8–13]. Then, the number of adsorbed species can be 

determined from the number of peaks and their surface concentration from the charge under 

each peak. The reality, however, is more complex, and real voltammograms contain a 

multiplicity of overlapping peaks, which are strongly dependent on the surface structure and 

composition of the solution. Therefore, although the idea of the voltammogram as a fingerprint 

is still valid, there is some uncertainty in the assignment of the charge under the different peaks 

to distinct species. Such assignment is usually based on the hard-sphere model of the surface 

that allows the calculation of the atomic density on the surface [14]. However, this model 

requires some arbitrary classification of available adsorption sites. For instance, in stepped 
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surfaces, adsorption sites are often classified as belonging to the terrace or the step although, 

in reality, there are more than two different kinds of atoms. A paramount example of such 

ambiguity is the Pt(S)[n(111) × (111̅)] family of stepped surfaces since the step between (111) 

and (111̅) surfaces can be understood as either (111) or(110) steps (Figure 1a) [15]. When the 

(110) symmetry for the step is considered, the terrace has one fewer atom than in the other 

symmetry, which now belongs to the step site. For these surfaces, the voltammogram shows a 

clear peak at 0.12 V that grows as the density of step atoms increases (Figure 1b) that has been 

typically assigned to hydrogen adsorption on step atoms [15].  
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Figure 1. a) Schematic Illustration of a Pt(S)[n(111)x(111̅)] surface. The green spheres 

represent a step considering a (111) geometry and the dark grey spheres highlight a step with a 

(110) geometry for the same surface. b) Cyclic voltammograms for a set of stepped surfaces 

belonging to the Pt(S)[n(111)x(111̅)] series in 0.5 M H2SO4. Scan rate 50 mV s-1 (Adapted from 

ref.[15]). 

 

With this assumption in mind, it has been shown that the charge of this peak is consistent with 

the step density when the step is considered as belonging to the (110) symmetry. However, such 

an assignment has been questioned because it has been considered that anion adsorption may 

coexist with hydrogen adsorption in the same peak [16–18]. Such competitive coexistence of 

hydrogen and OH adsorption in a single voltammetric peak has been unambiguously 

demonstrated for the Pt(110) basal plane [17,19]. Therefore, it is natural to think that similar 

competitive adsorption holds for the step sites with the same symmetry as the (110) basal plane. 

The specific influence of the nature of the cation on the so-called step peak has also been taken 
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as an indication that cations coadsorption takes place together with hydrogen and anion 

adsorption, possibly in the form of an adduct with the anion [20,21].  

 

Identification of the adsorbed species involved in the voltammetric signals. 

One strategy for the separation of different contributions contributing to the voltammetric 

charge, which has been used extensively in our group, is the potentiostatic charge displacement 

[22–25]. In this approach, a displacing agent that adsorbs strongly on the surface is introduced, 

displacing all the previously adsorbed species present at the potential of the experiment. To 

perform this experiment with Pt and Pt-group metals, CO is an excellent displacing agent, since 

it adsorbs very strongly, displacing almost any adsorbed species on the surface. Besides, being 

a gas, it can be easily introduced into the cell atmosphere, and its excess can be easily removed 

from the solution by bubbling Ar. Since the adsorbed CO can be eliminated from the surface 

through oxidation to CO2, the recovery of the surface after the experiment can be assessed, 

ensuring the integrity of the process.  

Described in chronological order, the first success of this technique was to demonstrate that the 

voltammogram of Pt(111) in sulphuric acid solution was composed of two regions: the hydrogen 

adsorption region below 0.3 V and the sulphate adsorption region above this potential 

value[26]. Hydrogen displacement leads to positive (oxidation) currents, according to: 

Pt − H + CO ⇋ Pt − CO + H+ + e 

On the other hand, sulphate displacement leads to negative (reduction) current, according to: 

Pt − SO4 + CO + H+ + e ⇋ Pt − CO + HSO4
− 

One limitation of the CO as a displacing agent is that it cannot be used at potentials where its 

oxidation takes place because it loses its character as a neutral probe. In acidic solutions, this 

means that it cannot be used above 0.5 V, while in alkaline solutions the range of potentials is 

even more restrictive since above 0.3 V it is readily oxidized. However, this is not a major 

problem because, given the charge conservation principle, the difference of displaced charge at 

two potentials should be equal to the charge required to voltammetrically transform the 

interphase from one potential to the other. In other words, the charge displaced at one potential 

can be combined with the voltammetric charge to recreate the complete charge vs potential 

curve. The validity of this assumption was tested for different electrode surfaces and solution 

compositions [23,27]. In this way, although it cannot be demonstrated directly with CO charge 

displacement, the adsorption states at high potentials in the voltammogram of Pt(111) in 
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perchloric acid solutions could be assigned to anion adsorption. This assignment was 

unambiguously proved using a second displacing agent, namely iodine [28,29]. Iodine is a much 

less convenient displacing agent than CO since it cannot be removed from the solution after 

each experiment, and it has a much narrower potential range of application because iodine is 

reduced to iodide at lower potentials and oxidised to iodate at higher potentials. Still, it could 

be used to displace the anion present on Pt(111) in perchloric acid solutions at 0.9 V, proving 

the consistency between voltammetric charges and displaced charges between both displacing 

agents.  

Once the nature of these adsorption states was proved to be anionic, the nature of the adsorbed 

species still remained questionable. Some debate exists about whether perchlorate can adsorb 

specifically or not on platinum surfaces. The fact that exactly the same voltammogram was 

obtained with the three basal planes of platinum in perchloric acid and trifluoromethyl sulfonic 

acid was taken as proof that the adsorbed species should be the hydroxyl since the only anion 

present in both solutions is the hydroxide anion [30]. Moreover, similar adsorption states are 

also registered in hydrofluoric acid and in NaF/HF mixtures where no perchlorate is present 

[31,32].  

Pt(111) is special among the different platinum surfaces because hydrogen and anion adsorption 

processes are well separated, as can be observed in Figure 2a: the hydrogen adsorption process 

takes place between 0.06 V and 0.40 V whereas the OH adsorption occurs between 0.55 V and 

0.90 V [22]. The situation is more complicated for other platinum surfaces. For Pt(100) several 

peaks are observed in the voltammogram that can be assigned to hydrogen and anion 

adsorption. In perchloric acid solutions, a deconvolution has been proposed of the double-layer 

corrected voltammetric profile of Pt(100), showing the hydrogen adsorption and OH adsorption 

contributions overlapped from ca. 0.3 V (Figure 2b) [33]. However, the shape of two competing 

Frumkin isotherms is more complex than the simple deconvolution in figure 2b, as has been 

pointed out elsewhere [34]. 
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Figure 2. Cyclic voltammograms for a) Pt(111) and b) Pt(100) in 0.1 M HClO4 at 50 mV s-1. The 

region in blue corresponds to the hydrogen adsorption and the red one to the OH adsorption 

processes. The proposed deconvolution for the Pt (100) profile is adapted from ref [33].  

 

Neglecting this relatively subtle effect, the voltammetric profile in this region can be fitted very 

well by a Frumkin isotherm with repulsive interactions [35]. Using this approach, a 

thermodynamic analysis of both the hydrogen and OH adsorption region could be done after 

such separation [36]. An additional complication with this surface is related to the presence of 

defects created after the elimination of the hexagonal reconstruction that takes place on the 

free surface prior to the contact with the solution [37,38]. In this way, different peaks and 

shoulders can be measured in the voltammogram associated with monodimensional (100) rows 

or (111) steps. Such defects are likely to adsorb hydroxyl at lower potentials. However, such local 

contributions cannot be separated using the charge displacement experiment since this 

technique only provide the overall charge on the surface and not the local contributions. Only 

in the case of relatively high step densities, a net contribution from the OH adsorption can be 

separated from the overall hydrogen adsorption on the terraces.  

A similar situation happens with the Pt(110) surface. Again, the characteristic voltammetric 

features of this surface are determined, to a large extent, by the existence of a (1×2) 

reconstruction. In this structure, every second row of topmost atoms is lost in such a way that 

microfacets with (111) symmetry are formed (Figure 3a)[39].  
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Figure 3. a) Schematic representation of the ordered (110)-(1x2) and (110)-(1x1) surfaces. 

Adapted from ref. [39] b) Cyclic voltammograms for the H2 (red curve) and CO-cooled (black 

curve) Pt(110) surface in 0.1 M HClO4 solution, Scan rate 50 mV s-1. 

 

In this case, the reconstruction is very sensitive to the rate of cooling after the flame annealing 

and the cooling atmosphere. Recent results have proposed that Pt(110) surfaces cooled in a 

reductive atmosphere created by mixing H2 with Ar result in a partially reconstructed (1×2) 

surface [17,39]. In this case, the voltammogram contains two peaks, the one at lower potentials, 

mainly due to hydrogen adsorption, but the one at higher potentials more likely due to hydrogen 

desorption coupled to OH adsorption according to the reaction (Figure 3b, red curve):  

Pt − H + H2O ⇋ Pt − OH + 2 H+ + 2e 

It could be then said that OH adsorption is the driving force for hydrogen desorption at low 

potentials. The (1×2) reconstruction is lifted at high temperatures in the flame and, therefore, 

the surface is in the (1×1) structure at high temperatures after the flame annealing. If the cooling 

takes place very fast, the (1×1) structure is frozen, resulting in an unreconstructed surface. 

However, if the cooling ramp is slower (as would be the case with a larger electrode with a 

slower rate of heat transfer) patches of the (1×2) structure are formed as detected by X-ray 

scattering [40,41]. Finally, if the cooling is done in a CO atmosphere, CO adsorption stabilizes 

the (1×1) structure (Figure 3a)[39] and the reconstruction does not take place [17,39]. Allegedly, 

this is the most ordered surface that can be obtained by the flame annealing method. The 

voltammogram corresponding to this surface is composed of a series of peaks (Figure 3b, black 
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curve) that could be grouped in three sets, each one with a mean peak and a shoulder, that has 

been ascribed each one of them to hydrogen displacement by OH in sites of different geometry 

[39]. It has been demonstrated that coulometric considerations based on the deconvolution of 

the peaks lead to a correct estimation of the potential of zero total charge [17]. This reinforces 

two key ideas: First, that one peak is not necessarily ascribed to a single adsorbed species, but 

it can involve the cooperative/competitive coadsorption of multiple species[42,43],  and, 

second, the important role that OH adsorption plays in the surface chemistry of platinum 

electrodes.  

All the observations made above regarding well-defined single-crystal electrodes should be 

considered to explain the voltammetry of polycrystalline platinum electrodes and complex 

nanoparticle catalysts. In both cases, the heterogeneous surface can be understood in a first 

approximation as the addition of different contributions of sites of different geometry[44,45]. A 

more accurate description should also consider the electronic interactions between patches of 

different geometry. The voltammetry of polycrystalline platinum is composed of several peaks. 

Figure 4 depicts the cyclic voltammetry for the polycrystalline Pt surface plotted together with 

the voltammetric profiles for the Pt(111), Pt(110), and Pt(711) (Pt(S)[4(111) × (100)] step 

surface) surfaces. It shows how cyclic voltammetry for the polycrystalline surface results from a 

combination of all the different facets present at the surface. This correlation between the 

behaviour of single crystalline and polycrystalline surfaces is clearly observed in sulphuric acid 

solutions since the peaks for the different sites are better defined. Nevertheless, a similar 

situation is observed in the absence of specific anion adsorption, i.e., in perchloric acid or NaOH 

solutions[45]. In perchloric acid solutions, two peaks are typically observed in the 

voltammogram.  The one at the lowest potentials, around 0.12 V, can be correlated with the 

first peak present in (110) surfaces and therefore ascribed mainly to hydrogen adsorption on 

local sites of this geometry. As mentioned above sites of this geometry involve also OH 

adsorption at potentials as low as 0.2 V. Such OH adsorption is usually neglected when the 

reactivity of platinum is considered, although it can imply important consequences for oxidation 

reactions that require a source of oxygen to be complete. Even more, OH is expected to adsorb 

on the (100) step sites that are typically correlated with the peak at 0.32 V.   
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Figure 4. Cyclic voltammograms for Pt-polycrystalline, Pt(111), Pt(110) and Pt(711) surfaces in 

0.5 M H2SO4 solution. Scan rate 50mVs-1 

 

To approach the study of complex real catalysts the study of stepped and kinked surfaces has 

been considered as an intermediate step to model such heterogeneous surfaces. We have 

recently combined electrochemical and spectroelectrochemical techniques to unequivocally 

identify the presence of OH-adsorbed species on a Pt(311) stepped surface, which contains two 

atom-wide (111) terraces and a monoatomic (100) step [24]. For this surface, the voltammetric 

profile is clearly divided into two different regions: the adsorption of hydrogen on the terrace 

sites takes place below 0.23 V and the step sites contributed at potentials above this value. Also, 

the step adsorption states are split into two peaks (figure 5a). CO displacement experiments 

were performed at three potentials (Figure 5b): at 0. 24 V, the displaced charge was positive. At 

this potential, hydrogen on the terrace has been already desorbed and the positive charge 

indicates that hydrogen was adsorbed on the step. On the other hand, at 0.40 V, at the positive 

end of the peak, negative currents were measured in the transient, pointing out the presence of 

OH adsorption on the (100) steps. This finding was further confirmed by AC Voltammetry and 

Raman spectroscopy. Although postulated many times in the past from indirect observations 

[16–18,20,21], this is the first time in which several techniques have been combined to identify 

the presence of this important intermediate at the steps. 
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Figure 5. a) Cyclic voltammogram for Pt(311) surface and b) CO displacement experiments at 

different potentials in 0.1 M HClO4 solution. Scan rate 50 mV s−1 Adapted from ref. [24]  

 

Extending these studies to stepped surfaces with longer terraces is not an easy task since, while 

the local coverage of OH on the step can be significantly high, the overall coverage is low since 

the density of steps decreases as the length of the terrace increases. In general, the careful 

analysis of charge curves obtained from the combination of voltammetry and charge 

displacement shows the existence of positive net charges at potentials above the voltammetric 

peak that can be assigned to the step. The positive charge should be assigned to OH locally 

adsorbed on step sites.  

Conclusions 

Although the picture revealed in recent years about the adsorption processes taking place on 

noble metal electrodes is more complex than initially thought, still many publications simplify 

the interpretation. In this regard, it is common to find the expression “hydrogen peaks” when 

talking about the voltammetry of polycrystalline platinum. According to what has been 

discussed here, a significant contribution to the charge in the “hydrogen region” corresponds to 
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anion adsorption, either hydroxyl or any other anion present in the solution. This contribution 

can have important consequences in the interpretation of electrocatalytic phenomena such as 

oxidation of organic molecules, and oxygen reduction. Also, coulometric calculations from 

stripping voltammetry need to be adjusted to take into account the true nature of the 

adsorption processes. One iconic example is the calculation of CO coverage from its oxidation 

charge. This charge contains a significant contribution from the re-establishment of the anion 

adlayer that needs to be considered before the calculation of the coverage [46]. Although this 

idea was pointed out more than a decade ago, still many publications take an incorrect baseline 

for the calculation of the CO charge.   
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