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a b s t r a c t 

The recognition of symbols within document images is one of the most relevant steps involved in the 

Document Analysis field. While current state-of-the-art methods based on Deep Learning are capable of 

adequately performing this task, they generally require a vast amount of data that has to be manually 

labeled. In this paper, we propose a self-supervised learning-based method that addresses this task by 

training a neural-based feature extractor with a set of unlabeled documents and performs the recogni- 

tion task considering just a few reference samples. Experiments on different corpora comprising music, 

text, and symbol documents report that the proposal is capable of adequately tackling the task with high 

accuracy rates of up to 95% in few-shot settings. Moreover, results show that the presented strategy out- 

performs the base supervised learning approaches trained with the same amount of data that, in some 

cases, even fail to converge. This approach, hence, stands as a lightweight alternative to deal with symbol 

classification with few annotated data. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The preservation and exploitation of cultural heritage is an es- 

ential vehicle for understanding our history and expanding new 

nowledge. Libraries, archives, and museums typically safeguard 

ll the information humanity gained over the centuries. Among 

he oldest methods of preservation are facsimiles and handcrafted 

opies of historical sources. However, this approach suffers not 

nly damage issues over use and time but also some accessibil- 

ty inconveniences. For example, their study has to be performed 

n situ . 

The emergence of the Internet and digital technologies pro- 

uced a shift towards the digitization of those works, leading to 

ore secure and accessible storage based on digital databases/ 

ibraries [1] . This enables not only the global accessibility of the 

rchives but the storage of information that lies beyond documents 

hemselves—such as metadata or content transcription—at the ex- 

ense of a tedious manual transcription process. 

With the advent of artificial intelligence, and specifically the 

ise of Machine Learning (ML) and Deep Learning (DL) strategies, 

lternative automated solutions appeared to ease this task. The 

ocument Analysis field studies the comprehension and informa- 
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ion extraction from documents by computational means [2] . This 

ine of research has empirically demonstrated that following auto- 

ated transcription approaches for document digitization reduce 

uman-annotation effort, including that needed for revision and 

orrection of possible errors. Although the use of DL systems offers 

 remarkable advantage over manual approaches, these models re- 

uire to be specifically trained on the graphical domain that which 

he system is intended to be applied to. This means that to retrieve 

nformation from a given collection, it is mandatory to manually 

nnotate a representative portion of data which serves as a train- 

ng corpus. Indeed, the amount of training data required to obtain 

cceptable results tends to be vast. This is currently a bottleneck 

hen dealing with historical documents, as there is typically few 

abeled data available. New avenues of research are, therefore, ex- 

loring alternative methodologies that disregard this limitation. 

Self-Supervised Learning (SSL) represents one of the most re- 

ent, yet competitive, paradigms within the DL field, aimed at 

alliating the large amount of labeled data required by deep 

eural models to learn [3] . Note that, while traditional super- 

ised learning relies on human-annotated corpora, SSL is meant 

o learn through pseudolabeled data–where no human annotation 

s involved—to then converge in one or more downstream tasks 

e.g., classification) [4] . Currently, this paradigm represents an ef- 

ective solution to data-lacking scenarios, providing multipurpose 

tate-of-the-art models [5,6] . One process that can benefit from 

his approach is the symbol classification stage—one of high 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. General scheme of the proposed self-supervised workflow for this paper. Red arrows represent steps that are used during the workflow training—being the crop 

extraction and training of the neural network performed first and the k NN adjusting with the produced representations next—and the purple ones the inference process, 

where the representation of the given query is retrieved and then used in the k NN classifier to obtain the symbol class. 
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elevance—whose labeling process tends to be the most tedious 

nd prone to errors. Although SSL stands as an interesting option, 

here is a challenge to tackle in this task. Symbols are typically la- 

eled by determining not only their class but also their location 

n the document—i.e, marking the region they belong to with a 

ounding box. If SSL aims to be an interesting solution, even when 

ddressing only symbol classification, we need the methodology to 

ork with completely unlabeled data, where not even the position 

f the symbols is known. 

This work proposes a symbol classification workflow that solves 

his scenario by sticking to the aforementioned premise. Our 

ethodology comprises three stages: (i) data selection from com- 

letely unlabeled documents; (ii) pre-training of a deep neural 

odel via SSL for its use as a feature extractor; and (iii) a k -Nearest

eighbor ( k NN) classification [7] for labeling query samples using 

 remarkably reduced reference set of labeled data—namely, few- 

hot classification—annotated by the user. 

The remainder of the paper is organized as follows: 

ection 2 thoroughly develops the proposed workflow. 

ection 3 describes the experimental setup. Section 4 presents and 

nalyses the results, and finally, Section 5 concludes the work and 

iscusses possible ideas for future research. 

. Methodology 

This section presents the few-shot symbol classification pro- 

osal of the work, which is graphically shown in Fig. 1 . In it, we

rain in an unsupervised manner a neural network able to gener- 

te an adequate feature representation space that can be then used 

y a classifier. This process comprises three stages: (i) the auto- 

atic extraction of isolated symbols from unlabeled documents; 

ii) training a neural feature extractor via self-supervised learning; 

nd (iii) a classification phase that considers the nearest neighbor 

ule to label symbol queries. The rest of the section thoroughly de- 

cribes these stages. 

.1. Stage I: Element extraction 

The first stage of the proposal aims to extract all the possible 

xisting categories from a collection of unlabeled documents, i.e., 
2

either class nor location annotations of the symbols within are 

rovided. In this respect, this work proposes an algorithm to auto- 

atically extract these pieces of information by subdividing each 

ocument into a set of image patches using a sliding-window ap- 

roach for then selecting those that may contain a symbol, re- 

erred to as crops , based on certain criteria. This proposal is now 

escribed and summarized in Algorithm 1 . 

Algorithm 1: Crop extraction algorithm proposed. 

Input : D ← Set of documents. 

ω ← Patch window. 

δh × δw 

← Stride factor. 

Output : C ← Resulting set of crops. 

1 P = ExtractPatches (D, ω, δs × δh ) 

2 C = ∅ � Initial empty set of crops. 

3 for p ∈ P do 

4 p bn = ConvertToGrayscale (p) � p bn ∈ R 

s h ×s w 

5 p bin = SauvolaBin (p bn , w p ) � p bin ∈ { 0 , 1 } s h ×s w 

6 ē = − ∑ 

i ∈ { 0 , 1 } 
c i log c i where c i = | { x ∈ P bin : x = i } | 

7 if ē > e min then 

8 C = C ∪ p 

9 end if 

10 end for 

Formally, let D = 

{
D 1 , D 2 , . . . , D |D| 

}
represent a se t of document 

mages. Additionally, let ω denote an image mask of size s h × s w 

ixels, which respectively correspond to its height and width di- 

ensions. Window ω is moved from left to right and up to down—

tarting from the top-right corner of the image—along all the 

ocuments in set D with a striding factor of δh × δw 

pixels for 

he height and width dimensions, respectively, retrieving a set of 

atches P = 

{
p 1 , p 2 , . . . , p |P| 

}
, being p i ∈ R 

s h ×s w ×c i where c i stands 

or the number of channels of the image with 1 ≤ i ≤ | P | . 
After that, a filtering process is done on set P to eliminate spu- 

ious and non-relevant patches for the subsequent stages by select- 

ng a set C ⊆ P of image portions, namely crops , with the follow- 

ng process: each patch p ∈ P is converted to gray scale—retrieving 
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Table 1 

Details of the corpora in terms of the number of 

samples and the cardinality of the vocabulary for 

each label space considered.. 

Corpus Pages Symbols Samples 

Egyptian 10 172 4,210 

Capitan 74 53 17,112 

TKH 999 1,492 323,498 

GRPOLY-DB 38 112 168,719 

t

i

T
a

o  

q

y

w

s

t

3

3

m

t

t

e

t

p

1 https://github.com/HCIILAB/TKH _ MTH _ Datasets _ Release 
ample p bn ∈ R 

s h ×s w —and then binarized resorting to the Sauvola 

inarization method [8] , hence obtaining sample p bin ∈ { 0 , 1 } s h ×s w ; 

he entropy value ē [9] is computed out of the p bin patch and com- 

ared against a threshold e min —user parameter—that, if exceeded, 

lement p is included in set C. 

.2. Stage II: Self-Supervised neural feature extraction 

The second stage of this process aims to obtain a neural- 

ased feature extractor—specifically, a Convolutional Neural Net- 

ork (CNN)—in a self-supervised manner using the set of crops C
etrieved in the former stage. For that, we resort to the Variance- 

nvariance-Covariance Regularization (VICReg) method [10] due to 

ts reported competitive overall performance in the related liter- 

ture. VICReg improves previous state-of-the-art SSL methods by 

mposing fewer constraints on the architecture, such as avoid- 

ng the need for negative examples, which opens up the door to 

on-contrastive SSL. In a broad sense, this strategy allows train- 

ng a neural model in a self-supervised fashion based on the so- 

alled concepts of variance, invariance , and covariance , and whose 

mbedded representation space meets certain conditions suitable 

or classification tasks. 

To achieve this goal, the VICReg method initially draws an N- 

ize batch of unlabeled image crops I ⊆ C that undergoes two inde- 

endent image distortion processes, hence retrieving collections X A 
nd X B . Note that, since these processes perform some controlled 

istortions in each of the images in the batch, the number of im- 

ges for each collection remains the same, i.e., | X A | = | X B | = N. 

After that, sets X A and X B are mapped to an m -dimensional 

pace by considering a function f ( ·) given by a CNN scheme, thus 

btaining collections X 
f 

A 
and X 

f 
B 

, respectively. Note that this neural 

odel represents the actual feature extractor to be retrieved as a 

esult of this second stage of the proposal. 

Following this, an additional neural model—namely, expander —

pplies a transformation h : R 

m → R 

m 

′ 
to sets X 

f 
A 

and X 
f 

B 
, hence

roducing X h 
A 

and X h 
B 

. It must be pointed out that, while not strictly 

ecessary, this step is considered in the literature to improve the 

onvergence of the scheme. 

Finally, the expanded sets X h 
A 

and X h 
B 

are used for computing 

he following loss function: 

 

(
X 

h 
A , X 

h 
B 

)
= λs 

(
X 

h 
A , X 

h 
B 

)
+ μ

[
v (X 

h 
A ) + v (X 

h 
B ) 

]
+ φ

[
c(X 

h 
A ) + c(X 

h 
B ) 

]
(1) 

here s ( ·, ·) is the invariance term, which forces the network to 

ull these representations together in space and is computed as 

ean squared error (MSE), v ( ·) denotes the variance component, 

here a hinge loss is computed to force the network to generate 

nformation-rich vectors—by not enabling their terms to be equal—

 and c ( ·) is the covariance contribution, where the embedding 

lements produced from a given sample are forced to be differ- 

nt within and prevents the informational collapse effect. The λ, μ, 

nd φ terms of the equation represent the respective regulariza- 

ion multipliers for the aforementioned loss components that are 

xperimentally tuned. 

.3. Stage III: Classification 

The final stage of this proposed method performs the actual 

ymbol classification considering the CNN-based feature extractor 

reviously obtained. For that, we resort to the k NN classifier [7] , 

hich hypothesizes about the class of a given query attending to 
3

he labels of its closest k neighbors, based on a certain dissimilar- 

ty measure. 

Formally, the initial query q and the labeled set of documents 

 are mapped to the target m -dimensional representation space 

s q f and T f using the CNN model obtained in the second stage 

f the proposal. After that, the k NN rule estimates the class y q of

uery q as: 

 q = mode 

(
ζ

(
argmin 

∀ t∈T f 
k 

{
d 
(
q f , t 

)}))
(2) 

here d : R 

m × R 

m → R 

+ 
0 

represents a dissimilarity measure, ζ (·) 
tands for the function that outputs the label of the element in 

he argument, and mode (·) denotes the mode operator. 

. Experimental setup 

.1. Corpora 

Several corpora have been considered to evaluate the perfor- 

ance of the proposal. Note that, since the presented method aims 

o be a generic solution not tailored for any type of specific data, 

he studied datasets constitute representative examples of differ- 

nt domains in the Document Analysis field. The specifications of 

hese corpora are the following. 

1. The Egyptian hieroglyph database is a collection of documents 

presented in Franken and van Gemert [11] . It contains ten 

plate photographs of ancient Egyptian hieroglyphics manually 

segmented and labeled, compiling approximately 172 different 

symbol categories. 

2. The Capitan corpus [12] comprises 74 handwritten scores from 

the 17th century of a missa (sacred music) in mensural nota- 

tion with 53 different symbols. Each page of the manuscript is 

provided with annotations of the individual symbols in the dif- 

ferent music staves. 

3. The Tripitaka Koreana in Han (TKH) dataset is a collection of Chi- 

nese historical documents created for symbol classification and 

detection [13] . It contains 999 document pages with 1,492 dif- 

ferent symbol categories and their location within. This corpus 

was publically released by the Deep Learning and Visual Com- 

puting Lab of South China University of Technology. 1 

4. The old Greek polytonic database GRPOLY-DB is a collection of 

both machine-printed and handwritten documents presented 

in Gatos et al. [14] . It consists of four subsets annotated with 

ground-truth information at different levels. In this work, we 

use the “MachinePrintedA” and “MachinePrintedB” sets since 

their corresponding ground-truth contains segmentation at the 

symbol level. The total amount of data comprises 38 printed 

documents with 112 different symbols. 

Table 1 provides a summary of the characteristics of these cor- 

ora. We eventually derive two non-overlapping partitions—train 

https://github.com/HCIILAB/TKH_MTH_Datasets_Release
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Fig. 2. Examples of the extracted crops from Algorithm 1 in the evaluated corpora. 
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Fig. 3. Example of distortions applied to a given symbol image. 

l

o

f  

E

p

w  

λ  

T

e

t  

s

p

a

w

3

L

L

N

m

t

f

d

a

L

t

t

s

t  

h

b

h

3

p

r

nd test—following a 10-iteration bootstrapping scheme for provid- 

ng more robust performance figures. 

.2. Pipeline configuration 

We now introduce the implementation details of the workflow 

roposed. For the sake of clarity, we separately detail these de- 

criptions in their respective stages of the pipeline. 

.2.1. Stage I: Element extraction 

The crop extraction proposal presented in Section 2.1 requires 

he specification of certain parameters to adequately address the 

rocess: the height s h and width s w 

dimensions of the image mask 

, the δh and δw 

displacement parameters of the sliding-window 

olicy, and the e min entropy threshold. 

Based on preliminary experimentation, we eventually consid- 

red squared ω windows ( s h = s w 

= s ) of size s = 64 pixels for

he Capitan and TKH sets and s = 32 pixels for the Egyptian and

RPOLY-DB corpora. Striding factor was fixed in all cases to half of 

he window size, i.e., δh = δw 

= s/ 2 . 

Regarding the entropy threshold, we set a rather restrictive 

alue of e min = 0 . 8 to avoid the selection of background or non-

ymbol-related data—such as staves or lyrics in the case of music 

ocuments—, which would be detrimental to the self-supervised 

eature extractor. Examples of the extracted information from this 

lgorithm are shown in Fig. 2 . 

.2.2. Stage II: Self-Supervised neural feature extractor 

During the training stage, and as aforementioned, the proposed 

eature extraction method requires two neural models: (i) a CNN 

rchitecture that processes the input images to obtain an adequate 

mbedded representation—mapping function f —; and (ii) the Ex- 

ander block, which maps those features into a higher-dimensional 

pace to ease convergence—mapping. 

We consider different CNN architectures for the encoder net- 

ork: a standard ResNet-34 configuration [15] and a more 

ightweight neural architecture that follows the topology proposed 

n Nuñez-Alcover et al. [16] . Other state-of-the-art models for im- 

ge classification tasks such as VGG-19 [17] were evaluated in pre- 

iminary experimentation but, among all of them, the ResNet-34 

ackbone yielded the best results for the different considered cor- 

ora. Note that, independently of the chosen configuration, the top 
4

ayer is a fully connected network that maps the representation 

nto the target feature space with m = 1 , 600 . 

In the case of the Expander block, the implementation 

rom Bardes et al. [10] is considered. We fix m 

′ = 1 , 024 for the

xpander target dimensionality (function h ) as it yielded the most 

romising results in preliminary experiments. 

Concerning the regularization multipliers for the VICReg loss, 

e use λ = 10 , μ = 1 , and φ = 1 for the Egyptian and TKH sets and

= 10 , μ = 10 , and φ = 1 for the Capitan and GRPOLY-DB corpora.

hose values yielded the best convergence results in preliminary 

xperimentation. 

Finally, with regard to the image distortion processes followed 

o obtain sets X A and X B , we have resorted to a subset of those

uggested in the work by Bardes et al. [10] as they are proved to 

rovide an adequate convergence of the neural model. Fig. 3 shows 

n example of the different distortion processes considered in this 

ork. 

.2.3. Stage III: Classification 

Few-shot classification scenarios are defined by the N-way- 

 -shot approach: the training set contains N classes each with 

 examples [18] , typically being L < 10 examples [19,20] . When 

equals the total number of symbols of the dataset, the 

ethod is referred to as L -shot classification, being this par- 

icular scenario the one addressed in this work. We, there- 

ore, sub-sample the reference T labeled set of images by ran- 

omly selecting L samples per class. For our experiments, we 

ssess the influence of this particular parameter by considering 

 ∈ { 1 , 5 , 10 , 15 , 20 , 25 , 30 } samples per class. It must be noted 

hat results for values L > 10 are given for reference purposes as 

hey do not constitute representative values for few-shot learning 

cenarios. 

Regarding the k NN classifier, we set k = 1 to ensure the condi- 

ion k ≤ L , i.e., the number of examples of the same class is always

igher than—or, at least, equal to—the number of requested neigh- 

ors. Higher values may result in k > L , which would remarkably 

inder the performance of the scheme. 

.3. Baseline approaches 

To comparatively assess the performance of the presented pro- 

osal, several non-SSL methods have been considered to establish 

eference results. 
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Table 2 

Mean accuracy (%) values obtained on the classification stage in the test set for each evaluated corpus and train set T size. Bold figures denote the 

best results for each T labeled reference set size. The dashed line separates supervised (above) from self-supervised (below) strategies. 

Egyptian Capitan 

1 5 10 15 20 25 30 1 5 10 15 20 25 30 

Flatten 31.8 52.7 59.2 64.7 66.4 69.5 70.6 32.6 50.4 59.9 64.4 68.0 69.7 71.9 

Pre-trained ResNet34 46.9 65.0 70.0 74.0 75.7 76.8 77.8 37.0 55.7 62.6 66.3 67.8 70.3 71.0 

Supervised 

Nuñez-Alcover 31.2 56.4 75.3 86.3 88.6 75.7 83.9 41.3 65.6 78.1 83.1 86.7 88.7 90.0 

ResNet34 15.0 74.3 89.3 93.9 96.4 97.6 98.1 31.0 78.4 90.1 93.3 96.1 96.7 97.1 

————————————————————————————————————————————————————————————————————————————————–

Labeled crops 

Nuñez-Alcover 74.0 84.5 88.0 89.1 90.1 90.6 90.6 65.7 82.0 86.0 88.3 89.2 90.0 90.1 

ResNet34 55.2 70.4 71.8 74.5 75.4 75.9 76.9 49.2 71.0 75.4 76.7 77.9 79.3 79.2 

Our approach 

Nuñez-Alcover 66.4 80.0 84.3 85.6 86.7 87.8 88.3 67.2 82.0 86.9 88.9 89.9 90.1 90.5 

ResNet34 41.1 59.3 63.8 67.2 69.2 70.3 71.3 34.3 52.0 58.6 62.4 64.8 66.0 67.2 

TKH GRPOLY-DB 

1 5 10 15 20 25 30 1 5 10 15 20 25 30 

Flatten 28.6 56.4 66.5 71.8 74.9 77.4 78.5 30.5 57.7 68.4 74.6 77.7 79.6 81.3 

Pre-trained ResNet34 19.3 36.5 43.9 48.6 51.5 54.1 55.6 18.7 35.7 42.5 48.5 52.3 55.0 57.5 

Supervised 

Nuñez-Alcover 22.5 34.1 46.2 12.5 39.6 22.5 12.5 30.0 67.6 78.4 83.5 86.1 88.2 89.1 

ResNet34 27.2 83.8 93.9 96.4 97.4 97.9 98.2 38.0 80.6 89.0 91.7 93.3 94.2 95.0 

————————————————————————————————————————————————————————————————————————————————–

Labeled crops 

Nuñez-Alcover 85.9 94.2 95.0 95.9 95.6 96.2 96.2 38.6 67.2 77.9 83.0 85.2 86.6 87.4 

ResNet34 49.2 63.1 68.1 70.5 72.8 73.7 74.6 24.4 45.9 53.8 57.6 59.9 61.1 62.3 

Our approach 

Nuñez-Alcover 86.4 94.9 95.7 96.5 96.4 96.7 96.7 28.6 56.8 68.7 74.3 77.0 79.2 80.6 

ResNet34 32.7 53.3 60.6 64.6 66.9 68.9 70.2 16.7 31.0 37.2 40.9 43.6 45.2 46.6 
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2 The code developed in the work is publicly available for reproducible research 

at: https://github.com/mariaalfaroc/ssl- symbol- classification.git 
The first one, namely Flatten , considers the individual pixels of 

he image as features, flattened as a one-dimensional vector. This 

pproach serves as a reference for how the Classification stage con- 

idered performs without a feature extraction process, i.e., raw un- 

rocessed images. 

The second approach is the use of the ResNet-34 residual net- 

ork pre-trained with the ImageNet dataset [21] , which currently 

epresents one of the state-of-the-art models for image classifica- 

ion tasks. This baseline, denoted as Pre-trained ResNet34 through- 

ut the rest of the paper, establishes a reference on how trans- 

er learning—a common approach for few-shot learning—works for 

his scenario. 

To provide insights on the effectiveness of traditional super- 

ised learning in this framework, the different CNN architectures 

escribed in Section 3.2.2 with a classifier layer are used. Note 

hat, for a fair comparison with the rest of the strategies, these 

ethods are trained with the same few-shot set T . 
Finally, to assess the impact of using algorithmically extracted 

ymbols from unlabeled documents as training data, we also train 

he self-supervised feature extractor by extracting the symbols of 

he given corpora by their labeled bounding boxes. This approach 

s referred to as Labeled crops in later reports. 

.4. Data-limited scenarios 

To deepen the analysis of the pipeline performance presented 

n this article, we evaluated the proposed models on several data- 

onstrained scenarios, where only a limited amount of crops is re- 

rieved from the given corpora. This way, we would also draw an 

pproximation on how many unlabeled documents are required to 

roduce accurate classifications. 

To perform this analysis, we sample the C set of crops by ran- 

omly selecting a subset of elements from it, retrieving reduced 

et C . In our experiments we consider four different scenarios 
R 

5 
hat differ in the number of selected elements: C R ∈ C with |C R | =
 

5 k , 10 k , 15 k , 20 k } . To avoid any bias when randomly sampling the 

set of crops, these experiments are repeated 5 times to obtain a 

etter estimate of the average performance. 

. Results 

This section discusses the results obtained with the considered 

xperimental set-up previously posed. In this regard, Table 2 re- 

orts the average performance of both the proposed and baseline 

ethods in terms of classification accuracy. 2 

The first idea that can be observed is that the self-supervised 

ethods—our approach and the Labeled crops one—report the most 

ompetitive results when performing few-shot symbol classifica- 

ion, i.e., when the number of examples, L , is below 10. Specifi- 

ally, it can be noticed that these methods achieve accuracy values 

bove 60% with only one sample per class for the Egyptian, Capitan , 

nd TKH datasets—obtaining at best an 86.4% score in the latter 

orpus—whereas the other alternatives depict performance rates 

elow 50%. The sole exception to this is depicted by the GRPOLY- 

B corpus for which the supervised learning approach yields the 

est results, being the exception the 1-shot classification scenario 

although the differences can be considered marginal). The chosen 

alues for the regularization multipliers of the VICReg loss might 

e inappropriate for this dataset—the performance of the down- 

tream task is highly dependent on them as the authors of the VI- 

Reg method indicate [10] . 

When more examples per class are given, L > 5 , the super- 

ised learning approach outperforms the self-supervised one for 

ll corpora—L must be larger than 15 for the TKH dataset—when 

he chosen configuration for the encoder network follows the 

https://github.com/mariaalfaroc/ssl-symbol-classification.git
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Fig. 4. Representations of the elements in set T using t-SNE when considering L = 30 samples per class for the self-supervised methods using the Nuñez-Alcover CNN 

configuration as well as the Flatten and Pre-trained ResNet34 supervised baseline cases for the TKH corpus. Colors in the samples denote their respective ground-truth labels. 
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esNet-34 scheme. The obtained results suggest that the use of 

ightweight neural architectures might favor the convergence of 

he SSL model. Moreover, as mentioned in Section 3.2.3 , this work 

onsiders an N-way- L -shot approach in which N equals the to- 

al number of classes. Looking at Table 1 , the training set sizes 

ould range between 530 and 14,920 samples when L > 5 , which 

ould be enough to favor the convergence of the supervised mod- 

ls. Nevertheless, the best results yielded by the two frameworks 

re slightly similar. Finally, it must be noted that pure transfer 

earning—represented by the Pre-trained ResNet34 case—does not 

tand as a competitive solution in this scenario as the reported re- 

ults are consistently worse than those achieved by the presented 

roposal. 

Focusing on the self-supervised learning cases, the unlabeled- 

ata approach obtains the best results both in the Capitan and TKH 

orpora, while that trained with perfectly cropped symbols yields 

he best performance in the Egyptian and GRPOLY-DB sets. Indepen- 

ently on the corpora, we observe that both self-supervised cases 

btain similar overall results. That is, when there are enough train- 

ng samples, having unlabeled document images from the same 

orpus seems to be enough to achieve adequate performance, as 

ur crop extraction algorithm produces a set that allows the VI- 

Reg method to converge into an easy-to-classify representation 

pace. 

To further explore and support this claim, a t-distributed 

tochastic Neighbor Embedding (t-SNE) [22] analysis of the rep- 

esentation spaces for the classification of TKH samples is pre- 

ented in Fig. 4 . In the case of the supervised baselines—Flatten 

nd Pre-trained ResNet34 approaches—the retrieved space is rather 

parse, as no label groups are distinguished. This is not an ideal 

ase for the nearest neighbor rule, as its best conditions are 

et when data can be easily separable in space, which conse- 

uently produces the results reported in Table 2 . This outcome 

s somehow expected since the Flatten case directly relies on 

he image pixels as features while the representation space ob- 

ained when pre-training the ResNet34 scheme with the Ima- 
6

eNet set does not match that of the posed symbol classification 

ask. 

In contrast to this, the representation spaces generated by the 

elf-supervised methods using the Nuñez-Alcover CNN scheme—

eing this configuration the one who yielded the best overall 

SL results—present sample groups that can visually be clustered, 

hich remarkably facilitates the classification task. Moreover, the 

act that these representation spaces remarkably resemble—Figs. 

nd —supports the initial claim that the methodology presented 

n this paper produces similar results to the case in which all the 

ymbols are annotated with their class and location. 

Finally, Fig. 5 shows the performance results obtained when 

onsidering subsets C R ⊂ C with a limited amount of train data 

or the self-supervised stage using the Nuñez-Alcover CNN scheme 

ince, as previously mentioned, it is the most competitive CNN 

onfiguration within the SSL framework. As it may be checked, 

imiting the C training data for the self-supervised learning meth- 

ds noticeably affects their convergence, both in terms of accu- 

acy and stability. In relation to the accuracy criterion, it can be 

bserved that both the Capitan and GRPOLY-DB corpora degraded 

n, approximately, 3% while the Egyptian and TKH datasets suffer a 

erformance drop close to 12% and 42%, respectively, when only 

C R | = 5 k samples are used. Nevertheless, when considering the 

argest subset of train data—|C R | = 20 k—, the performance achieved 

s similar—or even better as in the case of the TKH corpus —to that 

f considering the entire crop set ( C R = C) for training the model. 

his fact suggests that, once provided with enough variability in 

he training set to retrieve a robust representation space for the 

earest neighbor rule, the proposal reaches an improvement ceil- 

ng that may even degrade if more samples than necessary are pro- 

ided (e.g., the TKH set). 

Regarding the variability in the results, and as expected, larger 

 R sizes increase the robustness as being the version trained with 

k samples the one that presents more dispersed performance val- 

es. Note that, while this feature varies depending on the corpus—

he TKH variability remarkably differs from those of the Capitan, 
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Fig. 5. Mean accuracy values (%) obtained on the data-constrained scenarios with the presented proposal using the Nuñez-Alcover CNN configuration for each of the studied 

corpora. Colored areas represent the dispersion in the results when considering different C R random subsets. 
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gyptian , and GRPOLY-DB corpora—it may be observed that results 

ecome remarkably stable when, at least, |C R | = 15 k samples may 

e used for training the model. 

. Conclusions 

This work presents a self-supervised learning method for gen- 

ral document recognition suited for few-shot symbol classifica- 

ion scenarios. This proposal comprises three different stages: (i) 

 first stage where symbols are automatically retrieved from unla- 

eled corpus; (ii) a neural-based feature extractor trained in a self- 

upervised manner considering the so-called Variance-Invariance- 

ovariance Regularization loss to generate an adequate representa- 

ion space; and (iii) a k -Nearest Neighbor classifier for performing 

he recognition task with a considerably limited set of reference 

ata. 

The proposed method has been tested in four corpora from dif- 

erent domains and compared with supervised learning alterna- 

ives, ranging from simple feature extraction processes to transfer 

earning with state-of-the-art image-based classifiers. Additional 

xperiments are also provided to evaluate the effectiveness of au- 

omatically retrieving the training set from unlabeled documents 

gainst extracting manually-labeled symbols. 

The reported results show that the proposal outperforms the 

ontemplated baseline strategies in terms of classification accu- 

acy when less than 10 labelled samples per category are pro- 

ided. More precisely, this strategy achieves in some corpora more 

han 80% of accuracy considering one single example per class 

n the reference set—reference strategies achieve, at most, a 30% 

ate. When the labelled training set is increased in size, the over- 

ll best results are attained by the supervised learning framework, 

lthough closely followed by the self-supervised ones. These differ- 

nces are, however, more prominent for one of the corpora consid- 

red, suggesting that, in this case, the weights used to balance the 

ifferent terms of the self-supervised loss might not be the appro- 

riate ones. 

In light of the results obtained, we consider that the self- 

upervised paradigm may be deemed as a suitable solution to deal 

ith the data scarcity problem in related tasks such as layout anal- 

sis, holistic transcription, or end-to-end full-page recognition. In 

uture work, we plan to extend this proposal to the aforemen- 

ioned tasks, where novel formulations and methodologies should 

e proposed to enable systems to learn specific features or hierar- 

hies in the input data that allow them to perform such tasks. 
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