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Abstract: In this study, three copolymers of poly(methyl methacrylate) and poly(butyl acrylate)
(PMMA-co-PBA) latex containing 1-octyl-3 methylimidazolium hexafluorophosphate (C8mimPF6),
cellulose nanocrystals (CNCs), and C8mimPF6-CNCs were successfully synthesized through mini
emulsion polymerization. These novel composites were each coated on mild steel panels and tested
for their anti-corrosion performance by immersion of the coated samples in 3.5 wt% sodium chloride
(NaCl) solution over a certain period. The synergistic anti-corrosion effects of the C8mimPF6-CNCs
sample led to the highest coating resistance, charge transfer resistance, and corrosion inhibition
efficiency and the lowest diffusion coefficient and corrosion rate. The proposed synergistic mechanism
revealed that CNCs enhanced the barrier effect of the coating while C8mimPF6 inhibited corrosion
when released.

Keywords: ionic liquid; cellulose nanocrystals; corrosion protection; polymer; electrochemical
analysis; composite

1. Introduction

The ionic liquid C8mimPF6 as a corrosion inhibitor has been proven to be effective in
waterborne anti-corrosion coatings on mild steel in simulated seawater, i.e., 3.5 wt% NaCl
solution [1]. The mechanism of C8mimPF6 in corrosion inhibition is mainly ascribed to the
adsorption of imidazolium ions to passivate the reaction sites on the metal surface, which
in turn prevents corrosion from occurring when encapsulated C8mimPF6 is released into
the corrosive medium [1,2]. Although the anti-corrosion performance was enhanced with
the introduction of C8mimPF6, it was still inferior to other anti-corrosion coatings, such
as epoxy, due to the poor performance of neat waterborne PMMA-co-PBA [3]. However,
as one of the acrylate coatings, waterborne PMMA-co-PBA coatings have advantages
such as low cost, excellent adhesion, coalescence, color retention, and satisfactory UV and
hydrolysis resistance [4,5]. Rather than searching for alternative waterborne coating resins
without prior anti-corrosion resistance to encapsulate C8mimPF6, direct addition of fillers
to enhance the barrier effect of the neat PMMA-co-PBA coating is a facile route to improve
the anti-corrosion performance [6].

Cellulose, a natural filler, is fibrous, tough, water-insoluble, biodegradable, biocompat-
ible, renewable polymer, and is also abundant in nature [7]. Cellulose can form nanocrystals
(CNCs) which, unlike cellulose nanofibers (CNFs) with highly entangled web-like struc-
tures, present shorter lengths and needle-like shapes [8]. Hydroxyl groups in CNCs lead to
strong hydrogen bonds and a highly crystalline structure [7]. Moreover, CNCs can act as a
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gas or water-impermeable barrier and additives can enhance the mechanical properties of
coatings [9,10]. He et al. [11] incorporated CNCs into a waterborne acrylate coating and
compared the anti-corrosion performance before and after CNC addition. They found that
the polarization resistance of the coating with CNCs slightly increased after 35 days of
exposure, whilst the water uptake was relatively stable at a low level. On the contrary, the
polar resistance of the coating without CNCs decreased after 21 days of exposure, with
the coating showing remarkable degradation. They ascribed the enhancement effect to
hydrogen bonding between CNCs and other coating materials. Therefore, we are inter-
ested to introduce CNCs as fillers into our previously reported ionic liquid-containing
anti-corrosion coating formula [1]. Previous reports have shown that iridescent PVA com-
posite films can be fabricated with the combination of CNCs and ionic liquids [12]. This
composite is of high strength and toughness [13] and can adsorb and recover lithium ions
from groundwater [14]. These works reveal that CNCs and ionic liquid could be homoge-
nized in one functioning composite. So far, no research work has reported such an idea
to combine C8mimPF6 and CNCs into a waterborne acrylate coating. To the best of our
knowledge, we are the first to incorporate C8mimPF6 and CNCs as a corrosion inhibitor
and barrier into coating fillers. In this research, systematic characterizations and analyses
on the anti-corrosion performance were carried out, exploring their synergistic effect and
the underlying anti-corrosion mechanism.

2. Materials and Experimental Methods
2.1. Materials

Methyl methacrylate (MMA, CP), sodium dodecyl sulfonate (SDSO, CP), L-Ascorbic
acid (AAc, AR), and hydrogen peroxide (H2O2, AR) were purchased from Sinopharm
Chemical Reagent Co., Ltd, Shanghai, China. Hexadecane (HD, 98%) and n-butyl acry-
late (BA, 99%) were purchased from Aladdin Industrial Inc, Shanghai, China. Cellulose
nanocrystals (CNCs) were kindly supplied by ScienceK Co., Ltd, Huzhou, China. The
compound 1-octyl-3 methylimidazolium hexafluorophosphate (C8mimPF6, 99%) was pur-
chased from Cheng Jie Chemical Co., Ltd, Shanghai, China. Ultra-pure water with a
resistivity of less than 18.2 MΩ cm was used in all experiments. A mild steel panel (steel
Q235) for testing was bought from Zhi Bao Metal Products Co., Ltd, Shenzhen, China. The
mild steel composition (wt%) was 0.14–0.22 C, 0.3–0.65 Mn, < 0.30 Si, < 0.045 p, < 0.055 S,
and the remaining was Fe.

2.2. Preparation of Mini Emulsion

The mini emulsion was prepared by mixing the oil phase containing a 1:1 mass ratio
of MMA to BA. C8mimPF6 (10 wt%) and 0.5 wt% CNC were added to the oil and water
phase, respectively, before phase mixing. A sonicator (Scientz II, Xinzhi Co., Ltd, Ningbo,
China) was used to homogenize the two-phase mixture using a power of 285 W for 6 min
with a pattern of 1 s on and 1 s off.

2.3. Mini Emulsion Polymerization

Polymerization was carried out in a 250 mL four-necked flask equipped with a stirrer,
a reflux condenser, a thermometer, and a nitrogen inlet. The flask was immersed in a water
bath with the temperature controlled at 40 °C. The mini emulsion was loaded into the flask
and stored under stirring and nitrogen bubbling for 1.5 h to remove oxygen. After the
reaction temperature (40 °C) was reached, a 0.1 mol% H2O2/AAc solution with a molar
ratio of 1 to 1.3 was injected to start the reaction.

2.4. Coating Film Characterization
2.4.1. Testing Sample Preparation

Before characterization, the copolymer coating film was prepared as follows. After
treatment with emery paper, mild steel specimens of 1 cm in length and 1 cm in width were
selected as the substrate for coating. After treatment with emery paper, several drops of
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latex developed in previous steps were dropped onto one side of the surface of the mild
steel specimen, followed by the rolling of bar coater BGD212/150µm from one side to the
other side evenly. After evaporation of water, the solid content remained. The thickness
of the film was measured with a PosiTectorFS1 apparatus, and the film thickness was
controlled at 40 ± 2 µm.

2.4.2. FTIR

FTIR spectra of copolymer coating samples were collected using Vertex 70, Bruker Co.,
Ltd, Beilin, Germany. The operation was carried out over the wavenumber range of 4000 to
400 cm−1 with a resolution of 4 cm−1.

2.4.3. Surface Morphology

The surface morphology of the coating film was investigated by a scanning electron mi-
croscope (SEM) (ΣIGMA/VP, Carl Zeiss Microscopy Ltd., Jena, Germany) at an accelerating
voltage of 4 kV.

2.4.4. Wettability

The contact angle between water and the coated mild steel surface was measured
with a dynamic contact angle measuring instrument (Theta Flex, Biolin Scientific Co Ltd.,
Shanghai, China). Initially, 5 µL of water droplets was loaded on the tip of a needle tube,
and after dropping onto the coated mild steel surface, the contact angle was recorded at the
20th second. The contact angle measurements were repeated three times for each sample.
An average value was used for the final measurement result.

2.4.5. Electrochemical Techniques

The anti-corrosion performances of the coatings were measured using Princeton’s
electrochemical workstation. A conventional three-electrode configuration electrochemical
cell was prepared with a volume of 30 mL. The mild steel electrode, a platinum sheet,
an Ag/AgCl electrode (in 3.0 M KCl), and 3.5 wt% NaCl (aqueous) were used as the
working, counter, and reference electrodes and the electrolyte, respectively. The open
circuit potential (OCP) for each sample was measured for 0.5 h before electrochemical
impedance spectroscopy (EIS) and potentiodynamic polarization curves were measured.
The EIS test was performed at the OCP with a frequency range of 10 kHz to 10 mHz under
±10 mV amplitude sinusoidal voltage. Tafel plots were scanned at rate of 0.5 mV/s in the
range of ±250 mV VS.OCP.

3. Results and Discussion

The latex was prepared as described in Section 2.3. The anti-corrosion performances of
the copolymer coatings containing C8mimPF6 and CNCs were evaluated via open circuit
potential (OCP), electrochemical impedance spectroscopy (EIS), and Tafel polarization
curves. The status of C8mimPF6 and CNCs was revealed, and the mechanism of the
synergistic effect was further explained in the following sections.

3.1. Anti-Corrosion Performance Evaluation of Copolymer Coating
3.1.1. Open Circuit Potential (OCP)

The electrochemical technique started with open circuit potential (OCP) measurement.
OCP indicates the thermodynamic tendency of a material under electrochemical oxidation
in a corrosive medium [15]. In other words, OCP values can reflect the extent of corrosion.
Severe corrosion exhibits a more negative OCP. The variation in OCP versus immersion time
in the absence and presence of C8mimPF6 and CNCs is displayed in Figure 1. At the initial
immersion stage, the OCP of bare (no coating layer), blank (with a neat PMMA-co-PBA
coating), C8mimPF6 (PMMA-co-PBA coating with 10 wt% C8mimPF6), CNCs (PMMA-co-
PBA coating with 0.5 wt% CNCs), and C8mimPF6

−CNCs (PMMA-co-PBA coating with
10 wt% C8mimPF6 and 0.5 wt% CNCs) samples were approximately −550, −496, −412,
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−432, and −357 mV, respectively. The drop in OCP in the first 2 h was ascribed to the
penetration of corrosive ions such as OH− and Cl− and oxygen through coating micropores
and the coating/steel interface [16]. After 96 h of immersion, the OCP of bare mild steel
reduced sharply from −550 mV to −645 mV, which indicated that bare mild steel was
severely corroded. In addition, the OCP of blank, C8mimPF6, CNCs, and C8mimPF6-CNCs
samples at 96 h were−605,−538,−556, and−457 mV, respectively. The steady OCP values
of these samples from 48 h to 96 h was attributed to the saturated water absorption of the
coating and the accumulation of corrosion products [17]. Among them, the lowest rate of
declination was observed in the C8mimPF6-CNCs sample. Thus, it could be concluded that
the C8mimPF6-CNCs sample exhibited the most pronounced anti-corrosive effect.
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Figure 1. OCP for various samples at different immersion times.

3.1.2. Electrochemical Impedance Spectroscopy (EIS)

After the stabilization of OCP, other electrochemical techniques such as EIS and Tafel
were applied to further quantitively evaluate the extent of corrosion. For EIS, the resistance
and capacitance of the coating could be directly obtained through data fitting. Moreover,
with the obtained coating capacitance values, other indirect parameters such as the water
absorption ratio of the coating and the diffusion coefficient of the corrosive ions could be
calculated via the Brasher and Kingsbury equation [18] and the simplified Fick’s law of
diffusion [3], respectively.

Figure 2 shows the Nyquist impedance plots of different coated samples after 96 h of
immersion in 3.5 wt% NaCl solution. The Nyquist plot is one of the manifestations of EIS
tests, with different parts representing different hierarchies of the coating. For instance, in
Figure 2a, the bottom left part at high frequency was correlated to defects and pinholes of
the coating, while the upper right part at low frequency was assigned to the interface of the
coating and the mild steel surface [19,20]. The shrinking semicircles during the immersion
test exhibit the declining anti-corrosion performance. The initial linear portion of the curve
shown in Figure 2c could be attributed to the pseudo-two-time constant phenomenon
caused by the penetration of electrolytes through the coating defects [21,22]. Moreover, an
electrical equivalent circuit was applied to model Nyquist plots for quantitative evaluation.
As shown in Figure 3, the circuits consisted of different electrochemical parameters such as
solution resistance (RS), coating resistance (RC), coating capacitance (CC), charge transfer
resistance (Rct), and constant phase element (CPEdl), where CPEdl represents the non-ideal
capacitance of double layer. Here, CPE is a valid model to simulate the dielectric response,
which symbolizes a real-life capacitive impedance independent of frequency [23]. Using
ZSimpWin 3.60 software, the results of resistance and capacitance were fitted and presented
in Figure 4. Figure 4a and c show the coating resistance (RC) and charge transfer resistance
(Rct), respectively.
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RC indicates the barrier performance to ionic paths through the coating [24]. Generally,
RC values decreased with immersion time, which reveals a degradation of the coating and
a decline in anti-corrosion performance [25]. As Figure 4 shows, the RC value of the blank
sample decreased from 132 Ω cm2 at the initial stage to 97 Ω cm2 after 96 h of immersion.
Meanwhile, the RC of the C8mimPF6 sample reduced from 624 Ω cm2 to 142 Ω cm2. The
reduction in coating resistance shows the degradation of the coating. The final RC for
the C8mimPF6 sample was still higher than the blank sample, which indicates the prior
anti-corrosion performance of the C8mimPF6 sample compared with the blank one. In
contrast to the C8mimPF6 sample, the RC of the CNCs sample increased significantly from
603 Ω cm2 at the initial stage to 1754 Ω cm2 after 96 h immersion. One explanation for this is
the enhancement of the barrier effect after introducing CNCs into the coating [10]. Another
possible reason may be a pseudo-two-time constant phenomenon after the penetration
of electrolytes [21,22], which interferes with the curve fitting, resulting in a larger RC
value than the real value. During the immersion process, the RC of the C8mimPF6-CNCs
sample had the highest values of 18,670 and 7865 Ω cm2 at the initial stage and after 96 h
of immersion, respectively. This value was almost 100 times higher than the RC of the
blank sample, indicating the remarkable protective capability against corrosion with the
combination of C8mimPF6 and CNCs. In addition, the charge transfer resistance, Rct, the
resistance to charge transfer on mild steel, was inversely related to the corrosion rate [26].
Similar to the results of RC, the blank sample presented the lowest Rct at 3490 Ω cm2 after
96 h of immersion. The Rcts of the C8mimPF6 and CNCs samples were 7518 and 6677 Ω
cm2, respectively, after 96 h of immersion, which was much higher than the Rct of the blank
sample, indicating an enhancement in charge transfer resistance with effect of adding these
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two components. Surprisingly, the C8mimPF6-CNCs sample exhibited the highest Rct of
79,460 Ω cm2 after 96 h of immersion, which was nearly 22 times larger than the Rct of
the blank sample and one magnitude larger than that of the C8mimPF6 or CNCs samples.
After immersion tests, Lewis et al. [27] studied the corrosion resistance of a 60 µm-thick
waterborne acrylic coating modified with nano-sized titanium dioxide and found that the
highest resistance after 48 h of immersion in 3% (m/v) NaCl solution was approximately
18,000 Ω cm2. Our C8mimPF6-CNCs sample with a lower thickness and higher resistance
is clearly more competitive, demonstrating that the lowest corrosion rate could be achieved
under the synergistic effects of C8mimPF6 and CNCs.

In addition to resistance, the coating capacitance (CC) and double-layer capacitance
(CPEdl) also indicate the extent of corrosion; the increase in capacitance indicates a rise in
electrolyte uptake [25]. This study revealed the synergistic effect of C8mimPF6 and CNCs
on capacitance, presented as the electrolyte uptake (water absorption) ratio and diffusion
coefficient of corrosive ions. The main component of the electrolyte is water; therefore,
the electrolyte uptake in this experiment is mainly water absorption. The Brasher and
Kingsbury equation [18] was applied to calculate the volume fraction of water absorption,
φ %:

φ% =
log
(

Ct
C0

)
logεw

× 100% (1)

where C0 and Ct are the coating capacitance at the initial stage and time t, respectively. εw
is the dielectric constant of the electrolyte (78.3 at 25 ◦C for water [28]).

In Figure 5, the calculated absorbed water volume fraction at different immersion
times is displayed. Waterborne acrylate coatings tend to absorb water due to the existence
of a surfactant residue. After 96 h of immersion, the absorbed water volume fraction of the
blank sample reached 11.4%. The CNCs sample presented the largest water absorption at
14.2%, which might be due to an enhancement in hydrophilicity caused by the hydrophilic
functional groups, such as hydroxyl, carboxyl, and aldehyde groups, inside CNCs [29].
These hydrophilic functional groups favor water retention in the coating. In contrast,
the C8mimPF6 sample exhibited the lowest absorbed water volume fraction of 7.7%, due
to existence of a hydrophobic functional group, PF6

−. As a result of this trade-off, the
absorbed water volume fraction of the C8mimPF6-CNCs sample was in between the value
of the CNCs and C8mimPF6 samples.
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Figure 5. Water uptake of different coated samples immersed for up to 96 h.

The absorbed water volume fraction measures the moisture content retained in the
coating. The concept of the electrolyte diffusion coefficient, D, is introduced to evaluate
how fast the corrosive ions in the water moisture could pass through the coating. The
diffusion coefficient, also called the diffusivity, indicates the ability of the corrosive ions to
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penetrate through the coating. In this study, D was calculated using coating capacitance,
CC, via a simplified Fick’s law of diffusion [3]:

lgCc − lgC0

lgC∞ − lgC0
=

2
L

√
D
π

√
t (2)

where C0, Cc, and C∞ are the initial, current, and saturated coating capacitances. L is the
coating thickness and D is the diffusion coefficient.

From Figure 6, after the introduction of C8mimPF6 and CNCs, the diffusion coef-
ficient of each sample reduced from 3.6× 10−11 to 1.1× 10−12 and 7.7× 10−12 cm2·s−1,
respectively. The C8mimPF6-CNCs sample presented the lowest diffusion coefficient of
7.4× 10−14 cm2·s−1, where CNCs enhanced the barrier effect of the PMMA-co-PBA coating
film and C8mimPF6 inhibited the corrosion of the mild steel surface [1,9,10]. In comparison,
Ji et al. [30] used the same formula to calculate the diffusion coefficient of corrosive ions in a
waterborne acrylic-alkyd anti-corrosion coating and reported that the lowest diffusion coef-
ficient was 1.7× 10−11 cm2·s−1 at 25% alkyd, which is higher than the D of the C8mimPF6
and CNCs samples and much higher than the D of the C8mimPF6-CNCs sample. This
result further confirms the synergistic effect of C8mimPF6 and CNCs on anti-corrosion
performance enhancement.
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3.1.3. Tafel Polarization Plot

In addition to EIS, Tafel polarization is another electrochemical technique to quanti-
tively evaluate the anti-corrosion performance based on the corrosion potential (Ecorr) and
the corrosion current density (icorr). Additionally, icorr is used to calculate two parameters
of anti-corrosion performance: the corrosion inhibition efficiency and the corrosion rate.
Figure 7 presents the Tafel plots of coated and uncoated samples after 96 h of immersion.
The parameters and calculated variables of these Tafel plots are given in Table 1. Besides
the corrosion potential (Ecorr) and corrosion current density (icorr), anodic and cathodic Tafel
slopes ba and bc were also derived from the Tafel extrapolation of the plot in Figure 7. For
bare mild steel, Ecorr was −646 mV, and with the coating of neat PMMA-co-PBA, Ecorr was
−605 mV. After incorporating C8mimPF6 and CNCs, the Ecorr for the C8mimPF6 and CNCs
samples shifted to −534 and −550 mV, respectively. The least negative Ecorr was obtained
at −467 mV for the C8mimPF6-CNCs sample. The less negative values of Ecorr indicated
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the enhancement in the anti-corrosion performance [31]. Therefore, Ecorr results proved the
optimal anticorrosion performance was in the C8mimPF6-CNCs sample.
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Table 1. Tafel parameters and calculated corrosion variables of the coated and uncoated samples after
96 h of immersion.

Sample Ecorr (mV) Icorr (µA/cm2) ba (V·dec−1) bc (V·dec−1) Inhibition
Efficiency

Rcorr
(µm per Year)

Bare steel −646 9.4 61 −334 109

Blank −605 4.6 82 −222 51% 54

C8mimPF6 −534 2.9 103 −305 70% 34

CNCs −550 3.1 138 −287 67% 36

C8mimPF6-CNCs −467 0.5 173 −112 94% 6

As for the corrosion current density (icorr), instead of a direct comparison, it is used
to calculate the corrosion inhibition efficiency (IE%) and corrosion rate (Vcorr) using
Equations (3) and (4), respectively [3]:

IE% =
i0 − i

i0
× 100% (3)

where i0 and i are corrosion current densities of uncoated and coated samples, respectively,
after 96 h of immersion at room temperature.

The IE%s were 51% (blank), 70% (C8mimPF6), 67% (CNCs), and 94% (C8mimPF6-
CNCs) which proved the improvement in anti-corrosion performance under the synergistic
effect of C8mimPF6 and CNCs. Hamidon and Hussin [32] studied the synergistic anti-
corrosion impact of a hybrid silane/silicate sol-gel and caffeine in a 3.5 wt% NaCl solution.
They stated that the highest inhibition efficiency was 89% at 100 ppM caffeine. Compared
with this, our product was better at inhibiting the corrosion of mild steel in 3.5 wt% NaCl.
Therefore, the combination of C8mimPF6 and CNCs would be a competitive method to use
in the anti-corrosion of mild steel in 3.5 wt% NaCl solutions. In addition, our C8mimPF6-
CNCs sample was advantageous for the same corrosion inhibition during the immersion
period. Murmu et al. [33] used p-phenylenediamine to cure double Schiff base epoxy
(DSBE) and applied it to coating of mild steel in a 3.5 wt% NaCl solution. The highest
imbibition efficiency was 94% after 24 h of immersion, similar to the IE% of our products
after 96 h of immersion.
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The corrosion rate (Vcorr, mm per year) was also calculated from icorr using Equation (4),
and the results are shown in Table 1 [34].

Vcorr =
icorr M

DV
× 3270 (4)

where icorr is the corrosion current density (A/cm2), M is molecular weight (56 g mol−1 for mild
steel), V is the valency (two for the oxidation of mild steel), 3270 (mm·g·A−1·cm−1·year−1) is a
constant for unit conversion [35], and D is the density (7.85 g cm−3 for mild steel).

The corrosion rate of these samples was consistent with the results of corrosion inhi-
bition efficiency. The results showed that Vcorr decreased from 109 µm per year (bare) to
54 µm per year (blank). With the addition of C8mimPF6 and CNCs, it further decreased to
34 (C8mimPF6) and 36 (CNCs) µm per year. The synergistic effect of C8mimPF6-CNCs was
further proven with the lowest Vcorr of 6 µmm per year, which was 1/18 of the Vcorr of the
blank sample. In comparison, Cai et al. [36] introduced polyaniline (PANI) and reduced
graphene oxide (RGO) as anti-corrosive fillers into a waterborne polyurethane coating and
found that the lowest Vcorr was achieved at 0.75 wt% RGO/PANI, which was about 1/6 of
that of the neat waterborne polyurethane (blank sample).

3.1.4. Morphology after Immersion Tests

The optimal anti-corrosion performance of the C8mimPF6-CNCs was further inves-
tigated using SEM. The surface morphology with a 500 times magnification for samples
before and after immersion was observed and is displayed in Figure 8. Before the immer-
sion test, all coated samples presented a smooth surface with a few residues of copolymer
particles on the surface. After the immersion test, rust covered the surface of bare mild
steel, which indicated its poor anti-corrosion performance. With the coating of neat PMMA-
co-PBA, the surface exhibited some defects instead of the rust observed in the blank sample,
which was a sign of anti-corrosion enhancement. After incorporating C8mimPF6 or CNCs,
defects were replaced with a small number of cracks, indicating a further improvement
in anti-corrosion properties. With the synergistic effect of C8mimPF6 and CNCs, the
C8mimPF6-CNCs sample exhibited optimal anti-corrosion performance with sparse cracks
and a smooth surface.
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3.2. Mechanism of C8mimPF6 and CNCs in PMMA-co-PBA Anti-Corrosion Coating

The results above have proved the synergistic anti-corrosion effects of C8mimPF6
and CNCs in PMMA-co-PBA coatings. To further explain the mechanism of this syn-
ergistic effect, the status of the C8mimPF6 and CNCs in the coating and the wettability
of the coating were observed, and a possible detailed mechanism was illustrated with a
schematic drawing.

3.2.1. Status Identification of C8mimPF6 and CNCs in PMMA-co-PBA Coating

To identify the status of C8mimPF6 and CNCs in the PMMA-co-PBA coating, the
FTIR spectra of the as-received C8mimPF6 and CNCs and the as-prepared samples were
measured and plotted in Figure 9. For C8mimPF6, characteristic peaks of C8mim+ were
present at 3173 cm−1 (aromatic n(C–H) stretching vibration), 1574 cm−1 (imidazolium H–C–
C bending), 1469 cm−1 (imidazolium H–C–N bending), and 1168 cm−1 (imidazolium C2–
N1–C5 bending), and the peaks at 837 (P-F stretching vibration) and 558 cm−1 (P-F bending
vibration) were assigned to PF6

− [37–39]. Meanwhile, the distinct characteristic peaks of
CNCs were 1161 cm−1 (C-O-C vibration in pyranose ring), 1060 cm−1 (C–O–C asymmetric
stretching vibration), and 896 cm−1 (β-glycosidic linkages of glucose ring) [40–43]. For
neat PMMA-co-PBA, peaks at 2997, 2952, and 1444 cm−1 represented the –CH3 stretching
vibration, the –CH2– stretching vibration, and the C–H bending vibration, respectively [44].
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In addition, the carboxyl group’s C–O–C stretching vibration induced peaks at 1732, 1250,
and 1150 cm−1 [44,45]. In the C8mimPF6 copolymer sample, peaks at 837 cm−1 and
558 cm−1 were observed, which proved the existence of C8mimPF6. Moreover, the peak at
1060 cm−1 demonstrated the existence of cellulose C–O–C functional groups in the CNCs
copolymer sample; the peak might be overlapped by the peak of the carboxyl stretching
vibration in the copolymer at 1150 cm−1. In the C8mimPF6-CNCs copolymer sample, these
peaks mentioned above were all observed, and confirmed the co-existence of C8mimPF6
and CNCs. As for the interaction between C8mimPF6 and CNCs, it has been reported that
cellulose can be dissolved in some kinds of ionic liquids [46]. However, the solubility of
lignocellulose in imidazolium ionic liquid with PF6

− anions was extremely low (0.1%) [47].
Therefore, CNCs were not dissolved in C8mimPF6. Moreover, C8mimPF6 and CNCs do
not contain vinyl or styrene groups. No other new peaks aside from the C8mimPF6 and
CNCs peaks were observed in the spectrum. Thus, it can be concluded that C8mimPF6 and
CNCs did not attend the reaction. Due to the stabilizing properties of CNCs reported in the
previous literature [48], CNCs might form strong physical interactions with PMMA-co-PBA.
It is speculated that C8mimPF6 was encapsulated in a PMMA-co-PBA droplet, and CNCs
behaved as a co-stabilizer adsorbed on the droplet surface.
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3.2.2. Wettability of Copolymer Coating

The wettability of the copolymer coating is another concern, because the hydrophobic-
ity of the coating may influence the anti-corrosion performance [49]. Surface roughness and
surface chemistry are the two main factors affecting the wettability [50,51]. Based on the
results of SEM, the surface morphology of each sample was similar, so the influence of sur-
face roughness on the contact angle was negligible. Therefore, the variation in contact angle
obtained for each sample could be ascribed to the surface chemistry. As shown in Figure 10,
the water contact angle of the blank sample (neat PMMA-co-PBA) was approximately 79.8◦.
Due to the typical hydrophobic anion PF6

−, the introduction of C8mimPF6 improved the
hydrophobicity up to a water contact angle of 83.5◦. In contrast, the hydrophobicity of the
copolymer coating weakened, and the water contact angle decreased to 76.6◦ after adding
CNCs, influenced by the abundance of hydrophilic functional groups such as hydroxyl,
carboxyl, and aldehyde groups [26]. As for the C8mimPF6-CNCs sample, the water contact
angle was about 81.4◦, located between the values of C8mimPF6 and CNCs samples. These
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were consistent with the results of water absorption in Section 3.2.2. The incorporation
of C8mimPF6 and CNCs influenced the wettability of the coating and further affected the
water absorption.

Polymers 2023, 15, x FOR PEER REVIEW 14 of 18 
 

 

C8mimPF6 improved the hydrophobicity up to a water contact angle of 83.5°. In contrast, 

the hydrophobicity of the copolymer coating weakened, and the water contact angle de-

creased to 76.6° after adding CNCs, influenced by the abundance of hydrophilic func-

tional groups such as hydroxyl, carboxyl, and aldehyde groups [26]. As for the C8mimPF6-

CNCs sample, the water contact angle was about 81.4°, located between the values of 

C8mimPF6 and CNCs samples. These were consistent with the results of water absorption 

in Section 3.2.2. The incorporation of C8mimPF6 and CNCs influenced the wettability of 

the coating and further affected the water absorption.  

  

  

Figure 10. The water contact angle for various coated samples (a) blank sample, (b) C8mimPF6, (c) 

CNCs, (d) C8mimPF6-CNCs. 

3.2.3. Synergistic effect of C8mimPF6 and CNCs in PMMA-co-PBA anti-corrosion coat-

ings  

With all the results listed above, the synergistic anti-corrosion mechanism of 

C8mimPF6 and CNCs could be summarized. As shown in Figure 11, at the initial stage of 

immersion, oxygen, moisture, and other corrosive ions such as Cl- diffuse through the 

micropores and defects of the copolymer coating to the coating interface and mild steel. 

Without C8mimPF6 and CNCs, oxidation and reduction occurred at the interface listed 

below [52].  

 Fe → Fe2+ + 2e- (5) 

 Fe2+ → Fe3+ + e- (6) 

 H2O + (1/2)O2(g) + 2e- → 2OH- (7) 

 2Fe2+ (aq) + O2(g) + 2H2O → 2FeOOH + 2H+ (8) 

Pitting and delamination of coatings could be induced by these reactions, followed 

by failure of the protective effect. With the introduction of CNCs, a barrier effect enhance-

ment was observed with a higher coating resistance and lower diffusion coefficient, which 

Figure 10. The water contact angle for various coated samples (a) blank sample, (b) C8mimPF6,
(c) CNCs, (d) C8mimPF6-CNCs.

3.2.3. Synergistic Effect of C8mimPF6 and CNCs in PMMA-co-PBA
Anti-Corrosion Coatings

With all the results listed above, the synergistic anti-corrosion mechanism of C8mimPF6
and CNCs could be summarized. As shown in Figure 11, at the initial stage of immersion,
oxygen, moisture, and other corrosive ions such as Cl− diffuse through the micropores and
defects of the copolymer coating to the coating interface and mild steel. Without C8mimPF6
and CNCs, oxidation and reduction occurred at the interface listed below [52].

Fe→ Fe2+ + 2e− (5)

Fe2+ → Fe3+ + e− (6)

H2O + (1/2)O2(g) + 2e− → 2OH− (7)

2Fe2+ (aq) + O2(g) + 2H2O→ 2FeOOH + 2H+ (8)

Pitting and delamination of coatings could be induced by these reactions, followed by
failure of the protective effect. With the introduction of CNCs, a barrier effect enhancement
was observed with a higher coating resistance and lower diffusion coefficient, which might
be caused by the reinforcing and impermeable properties of CNCs [9,10]. However, the
reduction in the water contact angle and larger water absorption volume ratio compared
to the blank sample indicates that there was more water moisture absorbed in the coating.
Despite the fact that more water moisture was absorbed, the anti-corrosion performance
was still enhanced in the CNCs sample. In other words, most of the water moisture in
the CNCs sample was contained to the coating without further penetration through the
coating layer. This is similar to other nanofillers, such as nano silica, which can retard the
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diffusion of water moisture and other corrosive ions to the coating/mild steel interface
through zigzagging the pathway [53,54]. Nevertheless, even though the barrier effect of
the coating was enhanced, some of the water moisture and other corrosive ions could still
pass through the coating and be retained at the interface of coating and mild steel, which
could still induce corrosion. With further degradation of the coating film, encapsulated
C8mimPF6 was released and C8mim+ cations replaced Na+, adsorbing electrostatically
on the surface of the mild steel due to its larger steric hindrance [1,2,55–57]. Then, the
corrosion rate was further reduced as the corrosion reaction sites on the mild steel were
blocked. In summary, CNCs and C8mimPF6 worked at different coating sites, where CNCs
strengthened the barrier effect of the coating and C8mimPF6 inhibited the corrosion at
the interface of the coating and the mild steel. Therefore, the C8mimPF6-CNCs composite
coating exhibited superior protection than other samples in this research with the highest
corrosion inhibition efficiency, the lowest diffusion coefficient and corrosion rate, and the
least corroded surface, as observed by SEM.
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Figure 11. Schematic representation of corrosion protection for mild steel with the C8mimPF6-
CNCs sample.

As for the interaction between CmimPF6 and CNCs, no new peaks were observed in
FTIR results. Although it has been reported that either a catalyst or a linker is required at a
higher temperature such as 170 ◦C to graft imidazolium ions onto CNCs [13,58]. Therefore,
it could be concluded that no chemical interaction existed between C8mimPF6 and CNCs
in our products.

4. Conclusions

A waterborne PMMA-co-PBA latex incorporated with C8mimPF6 and CNCs was suc-
cessfully prepared through mini emulsion polymerization. FTIR proved the incorporation
of C8mimPF6 and CNCs, and the anti-corrosion performances of the copolymer coatings
were investigated on mild steel samples exposed to 3.5 wt% NaCl. The C8mimPF6-CNCs
sample exhibited a superior anti-corrosion performance with the highest coating, charge
transfer resistance, and corrosion inhibition efficiency and lowest diffusion coefficient. The
proposed synergistic mechanism showed that the CNCs enhanced the barrier effect of the
coating while the C8mimPF6 inhibited corrosion when released. This study reveals a way to
combine two environmentally friendly additives with different anti-corrosive mechanisms
to achieve a synergistic effect for anti-corrosion.
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