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A B S T R A C T   

In the pre-construction of wind farms, wind resource assessment is of paramount importance. Measurements by 
lidars are a source of high-fidelity data. However, they are expensive and sparse in space and time. Contrarily, 
Weather Research and Forecasting models generate continuous data with relatively low fidelity. We propose a 
hybrid approach combining measurements and output from numerical simulations for the assessment of offshore 
wind. Firstly, the datasets were fed onto a matrix, with columns representing the spatial lidar and WRF points, 
and the rows representing the time steps. Entries of the matrix reflect the wind speed, empty entries represent 
unobserved data. Then, matrix factorization using Gaussian process was employed for filling the missing entries 
with statistically calculated estimates. The model was optimized with stochastic gradient descent to apply GP 
without approximation methods. To evaluate the method, wind speed data along the coast of Denmark were 
used. The proposed technique, evaluated using two experiments, resulted in 58% more accurate results than the 
industrial standard method with trivial increase of computational cost. The RMSE of the proposed method ranges 
between 0.35 and 0.52 m/s.   

1. Introduction 

Over the past decade, the energy industry has seen great changes due 
to a worldwide demand for sustainable energy. Clean energy is recog-
nised as the pathway for a sustainable future, which leads to a dramatic 
expansion and an increase in renewable energy capacity, with a rise in 
global investments. In 2021, the global wind power market added 60 
GW to its arsenal, the second largest wind power annual increase, 
reaching a total of 743 GW for both onshore and offshore sites [1]. In 
2021, the UK wind energy accounted for an estimated 24.8% of elec-
tricity generation. As of 2020, the UK has a total set onshore record of 
10.2 TWh and offshore of 9.2 TWh [2]. In addition, Europe intends to 
increase the demand for wind energy and its capacity by 35% within the 
next decade [3]. 

Evaluating the wind speed condition of a potential location is a 
critical early step before the construction of any wind farm. As minimal 
changes in speed can drastically have large deviations in the power 
output [4], and as the wind varies both geographically and temporally 
over a wide range of scales, an accurate wind resource assessment is 

essential and is considered of a paramount significance for a successful 
wind energy project [5]. Moreover, the assessment provides aid to the 
selection of wind turbines, their layouts, and for planning a wind proj-
ect, which wind power developers use to estimate the future energy 
production of a wind farm to meet their demand [6]. 

Instruments that measure wind can yield accurate observations of 
the wind speed but can be expensive, and the data are generally sparse. 
This equipment includes lidars, which measure the line-of-sight (LOS) 
velocity by computing the Doppler shift of the signal of an infrared laser 
based on the movement of aerosols. However the lidar output is usually 
intermittent with large unavailability at offshore locations. Contrarily, 
numerical weather prediction (NWP) models offer output that covers 
large geographical areas and long-time horizons simultaneously and 
continuously, but the data are of a significantly lower fidelity [7]. 

Measurement instruments and numerical simulations complement 
each other, suggesting that hybrid data fusion techniques can be used to 
combine their merits. It is desirable to extend the information from 
coastal vertical lidars (wind profilers) for the reconstruction of offshore 
time series, as they are easier to maintain [8]. Information can be 
numerically extended from coastal measurements to offshore time series 
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at lower cost and higher accuracy, compared to having complete data 
dependent on lidars at all the positions. This technique has been widely 
used in predictions of future developments based on various inputs [9]. 
Wind resource assessment is commonly required to cover large areas, 
over a long-time-interval (e.g. a year or a number of years) and 
spatio-temporal fusion of physically measured and numerically esti-
mated wind [10]. 

Missing value estimation is a significant problem in many research 
areas, including recommender systems [11], geostatistics [12], and 
image restoration [13]. In most cases, the cost of acquiring high fidelity 
data or repeating an experiment, due to low availability, is high. 
Therefore, filling out missing data is the method of preference [14]. 
Most missing value estimation approaches include, but are not limited 
to, clustering algorithms and probabilistic matrix factorization (PMF) 
[15,16]. Matrix factorization techniques proved to be superior to clus-
tering methods because the former allows incorporation of additional 
information [17]. In its basic form, PMF factorizes a matrix to find two 
lower rank matrices such that their dot product is the original matrix. 
After factorizing the partially observed matrix, each row and each col-
umn are assigned a latent vector, and the estimation of the missing cell 
becomes the inner product of the latent vectors for the corresponding 
row and the corresponding column. PMF characterizes both time steps 
and spatial points by vectors of factors inferred from point time series 
patterns. High correspondence between factors leads to an estimation. 
These methods are becoming increasingly popular by combining good 
scalability with predictive accuracy [18]. 

Based on available data, expectation maximization (EM) and 
maximum likelihood (ML) are two very common methods of estimating 
parameters of missing data. ML approaches the missing value estimation 
by finding the underlying probability distribution of the available data. 
Due to the sparseness of the dataset, it is imperative that both methods 
follow an iterative approach in estimating the missing values. The first 
step is to estimate the parameters of interest from the available data and 
the probable value of the missing data. Parameters are then recalculated 
using the available data along with estimates from the first round, and 
new parameters are applied to re-estimate the missing values, and so 
forth. This process is repeated until the estimated data have a high 
correlation with that of the previous cycle [15]. In the case of stochastic 
intermittent data, a mixture of Gaussian methods is a more suitable 
probability distribution method. 

In machine learning, factorization-based methods are a well estab-
lished and powerful technique for analysing data for matrix completion. 
A probabilistic framework for matrix factorization, was presented in 
Ref. [19], which was integrated to a fully Bayesian model later [20]. The 
model scales linearly with the number of observations in the original 
matrix and performed well on the Netflix dataset, where the rows rep-
resented users, the columns represented the items and the data is 
review-based. The model included adaptive prior on the model param-
eters and showed how the model capacity can be controlled automati-
cally. MF was generalised to a full Bayesian model in Refs. [21,20], 

which incorporated multiple sources of side information and combined 
multiple priori estimates for the missing data using real-world drug--
target interaction datasets. Additionally, Agathokleous and Tsapatsoulis 
[15] inspected the Voting Advice Application (VAA) data from the 
Cypriot presidential elections to estimate missing data for the party and 
candidate recommender system using several collaborative filtering 
methods. In this paper, we apply the idea of missing data completion in a 
matrix, in the wind industry sector. 

The novelty of this work relies on the utilisation and deployment of a 
nonlinear probabilistic matrix factorization model with Gaussian pro-
cess algorithm for the accurate assessment of offshore wind resources 
with reduced cost and high accuracy, testing multiple points both 
spatially and temporally. It combines the generally continuous but low- 
fidelity numerical data and high-fidelity but limited physical measure-
ments. Efforts are also devoted to pre-processing the time series, taking 
into account additional information not considered in existing methods 
to lift the accuracy of the fusion. This algorithm enables the projection of 
limited nearshore measurements to offshore locations in light of nu-
merical simulations and limited lidar measurements with significantly 
higher accuracy than the industry standard approach. The application 
uses tests for the prediction of wind speed in two space dimensions 
across time using multiple lidar, WRF, and the pre-processed data in-
puts, to deliver a model capable of performing spatial and temporal 
predictions in a single step. The model feeds 48 lidar points and 15 WRF 
spatial points along 12,960 time steps. The algorithm considers all 
neighboring data in the space and time domains for the prediction of 
every missing entry. 

2. Methodology 

2.1. Pre-processing: empirical wavelet transform 

Empirical wavelet transform (EWT) [22] is an algorithm developed 
to process non-stationary time series. The algorithm can extract mean-
ingful information from a given series by designing an appropriate 
wavelet filter bank, which decomposes the time series into a signal and 
additional residual components, resulting in a filter of the 
non-stationary signal. In the present work, the process starts by identi-
fying and extracting the different intrinsic modes of the wind time series, 
by relying on robust preprocessing for peak detection. Then, spectrum 
segmentation is performed based on the detected maxima, hence con-
structing a corresponding wavelet filter bank. In this study, the EWT 
algorithm was used to preprocess 15 grid points, from output of a 
WRF-based numerical simulation. The process of extracting meaningful 
information from the signal was the first stage in building a forecasting 
model as shown in the matrix factorization flowchart in Fig. 2. 

2.2. Multivariate Gaussian process regression 

A Gaussian process GP(m(t),k(t,s)) is determined by a mean function 
m(t) and a covariance function k(t,s). Contrarily, a multivariate Gaussian 
is determined by a mean vector and a covariance matrix, GP(m(t),k((t,s), 
(t′,s′))), where the algorithm considers the high-fidelity data, fh(t), in the 
multivariate set as a function of two variables (t,s), and s is the low- 
fidelity dataset, fl(t), fh(t) = g(t,fl(t)). 

The Gaussian process works well for temporal data fusion and one 
dimensional time series predictions. However, in geostatistics and spe-
cifically in wind resource assessments, it is necessary to predict multiple 
points at different locations, and hence spatial extrapolation is required 
along temporal extrapolation. In previous studies [23], neural networks 
were trained to connect the time series of two spatial points to supply 
data that use measured time steps interpolated with WRF simulations 
and onshore lidar measurements to predict wind at locations offshore 
without lidar measurement. However, for this study, we experimented 
with 16 spatial points distributed across 4 km in three months at three 
different heights. 

Nomenclature 

R N × M Data matrix 
Ri, ith row of R 
R:,j jth column of R 
N Number of row in R 
M Number of columns in R 
D Dimension of the latent factors 
U N × D Latent matrix for rows of R 
V M × D Latent matrix for columns of R 
ui, Latent factors for Ri,: 
v:,j Latent factors for R:,j  
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2.3. Non-linear probabilistic matrix factorization with Gaussian process 

In this study, a non-linear probabilistic matrix factorization model 
was employed to map both space and time to a joint latent factor space 
of dimensionality, F, such that space-time interactions are modelled as 
inner products in that space. For the large and sparse matrices in this 
work, stochastic gradient descent was used to optimize the Gaussian 
process, which successfully handles large-scale and sparse machine 
learning problems, and the parameters are learned using maximum 
likelihood [16]. 

The results provided direct predictions of wind speed across multiple 
spatial points located at three different planes, representing three 
different heights, at any given time (See Fig. 1 for a graphical illustra-
tion). Previous forecasting models focused mainly on predicting the 
wind speed either spatially, by including multiple spatial points for a 
single timestep, which is known as point prediction, or temporally by 
interval predictions where the target is to forecast the wind speed for a 
specific spatial point for a specified time interval, dealing with a single 
measured wind speed time series. 

2.3.1. Probabilistic matrix factorization (PMF) 
For a dataset with N spatial points and M time steps, the matrix is 

considered as R ∈ N × M. The objective is to obtain a lower rank fac-
torized form of R,R ¼ U⊤V, where U ∈ RD×N and V ∈ RD×M. The process 
of collecting the data of the rows and columns is the second stage in the 
flowchart of the matrix factorization process, this is shown as the data 
structuring process of the flow chart in Fig. 2. In this study, for the latent 
factor, D, two values were experimented, two and five. Predictions can 
then be performed on missing entries by estimating (U,V) from the 
training data and computing the resulting approximation to R. This is 
graphically demonstrated in Fig. 1 and is the third stage in the matrix 
factorization flowchart, where the missing entries are identified for 
predictions in Fifure 2. PMF favours a probabilistic perspective to solve 
the problem from the matrix factorization aspect. Let Ri,j represent the 
wind speed of time-step i (time) for lidar point j (space), and ui,: and v:,j, 
denoting the time-specific and space-specific latent feature vectors 
respectively:  

1. For each row i in R, [i]N1 , generate ui,: ~ N(0,σU
2 I), where I denotes the 

identity matrix.  
2. For each column j in R, [j]M1 , generate vj,: ~ N(0,σV

2 I). 3. For the non- 
missing cells (i,j), generate Ri,j ∼ N(ui,:υT

j,: , σ2) where N(μ,σ2) repre-
sents the probability density function of the Gaussian distribution 
with mean μ, variance σ2. A conditional distribution is defined over 
the observed wind speeds as: 

p(R|U,V, σ2)=
NM
YY
ij

[
N
(
Rij|U⊤i, : V :, j, σ2

)]
Iij (1)  

where Q is the product operator of a sequence, and Iij is the indicator 
function that can either be equal to 1 when the matrix cell has a wind 
speed measurement or 0 otherwise. In PMF, matrix R is modelled as a 
low rank matrix with noise corruption, where the matrix factorization, 
U⊤V, is the mean of the distribution and the noise is Gaussian with 
variance σ2.Thus, zero mean spherical Gaussian priors are placed on 
time and space feature vectors: 

p(U|σU2 )=QNi=1N(ui, : |0, σU2 I), p(V|σV2)=
N

YN
j = 1

(V :, |0, σV2 I) (2) 

Then assume that both the space and time latent feature vector and 
the product latent feature vector obey the Gaussian prior distribution 
with zero mean. The log-posterior distribution over the latent matrices U 
and V is given by: 

log p
(
U,V

⃒
⃒R, σ2, σ2

U , σ2
V

)
= −

1
2σ2

∑N

i=1

∑M

j=1
Iij

(
Rij − ui,:v:T,j

)2

−
1

2σ2
U

∑N

i=1
uT

i,ui, −
1

2σ2
V

∑M

vT
:,jv:,j

−
1
2
(
A log σ2 +ND log σ2

U +MD log σ2
V

)
+ C.,

(3)  

where constant C does not depend on the latent parameters and is 
generated after expanding the function to collect all constants for the log 
of scaling factor by multiplying the coefficient variables. 

2.3.2. Optimizer: stochastic gradient descent 
Ideally, the marginal likelihood of the model would be calculated, 

but in practice this is not tractable. Instead, maximum a posteriori, MAP, 
inference maximizes the logarithmic likelihood with respect to U and V, 
which is equivalent to minimizing the sum of squared error function 
with quadratic regularization terms: 

E=
1
2
∑N

i=1

∑M

j=1
Iij

(
Rij − uT

i,:v:,j
)2

+
λU

2
∑N

i=1

⃦
⃦ui,:

⃒
⃒|

2
F +

λV

2
∑M

j=1

⃦
⃦v:,j

⃒
⃒|

2
F

(4)  

where λU = σ2/σU
2, λV = σ2/σV

2, and ‖.‖2
F denotes the Frobenius norm. 

Performing gradient descent in U and V will give a local minimum of the 
objective function. 

For each column of the latent matrices, the prior distribution is a 
zero-mean Gaussian process, which is a generalization of the multivar-
iate Gaussian distribution. 

The selection of likelihood is based entirely on the one with fewer 
parameters. In this case there were less columns since they represented 
the space domain, rather than the rows that represented the time steps. 
As using EM for a large matrix would be highly computationally 
expensive, it made sense to consider SGD, which converges much faster. 

Fig. 1. Flow chart for 3D spatio-temporal probabilistic matrix factorization for wind resource assessment, where the amount of missing data is reduced and WRF data 
is fused with lidar measurements to estimate missing data. 
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2.3.3. The model: non-linear PMF via GP-LVMs 
A probabilistic matrix factorization with parameters marginalized 

belongs to a category of models called Gaussian process latent variable 
models (GP-LVM). The Gaussian process is a linear model that can be 
transferred nonlinear by replacing the inner product matrix by a Mercer 
kernel. Consequently, maximizing over the logarithmic likelihood can 
no longer be attained through an eigenvalue problem; but SGD in the 
manner described above is straightforward. 

The regression model followed in Eq. (1) can be written in the form 
of a product of univariate Gaussian distributions, g, 

p(R|U,V, σ2)=
ND

YY N
i = 1 j = 1

(
Rij|ui,⊤ : v :j

)
, (σ2)Iij (5) 

A Gaussian process with latent variable models can be recovered by 
recognising the placed prior distribution directly over the function 
through a Gaussian process. In a Gaussian process, the mean and 
covariance function specify the model, where the joint distribution for 
any given set of the function, f, is Gaussian. For a zero mean function, the 
distribution is N(f|0,K), where K represents the covariance function 
made up of elements, k(xi,:,xj,), which represent the correlation between 
the two samples, fl(t) (low-fidelity), and fh(t) (high-fidelity) from f as a 
function of inputs associated with the samples xi,: and xj,:. 

A commonly used covariance function that gives a prior over 
nonlinear functions is known as the radial basis function (RBF) covari-
ance, 

k
(
Xi,:,Xj,:

)
= σ2 exp

(

−
1
2
⃦
⃦Xi,: − Xj,:

⃦
⃦2
)

., (6)  

which can be substituted directly in the likelihood to give a probabilistic 
model, where parameters of the covariance function are presented in 
hyperparameters. 

Following learning based on the SGD provides an estimate of the 
latent matrices U and V, where for a missing cell, Rij, the maximum 
likelihood becomes the inner product of the corresponding latent vec-
tors. This corresponds to the last stage in the matrix factorization 
flowchart in Fig. 2, where the byproduct of the inner matrices is 
calculated to estimate the final matrix. 

3. Test case description 

Two numerical experiments were run on the data acquired from the 
dualDoppler scans of the RUNE experiment [24](see Fig. 3). The scans 
were acquired between the period from December 2015 until March 
2016. The dual-Doppler scans (36 in total per height measured) were 
performed with two scanning lidars (positions 1 and 3), which were 
configured to match their scanning patterns at three heights 50, 100, 
and 150 m above mean sea level (all heights are referred to this level 
unless otherwise stated). One ‘virtual line’, i.e. a line perpendicular to 
the coast was scanned in about 45 s. In particular, given a time-space 
matrix with missing entries, the goal is to predict the missing wind 
speeds at the unobserved time-steps by using both high-fidelity sparse 
lidar measurements and continuous simulation output from the WRF 
model (see Fig. 4 for a time series plot of lidar measurements and WRF 
simulations, and Figs. 5 and 6 for the distribution of the observations 
across the experiment period). Fig. 6 panel (a), shows the number of 
observations for every week of the experiment, while panel (b) shows 
the histogram for the number of observations. For all experiments, the 
data were partitioned as follows: 20% of the dataset for the validation, 
20% for testing and 60% for training. 

In addition, Fig. 7 demonstrates the wind speed data correlation 
between all lidar and WRF time series, reflecting that the scale of the 
weather patterns was similar to the scale of the measured volume. The 
correlations ranged from 0.80 to 0.99, indicating high correlation be-
tween all the sets, which reflects that even far points can be used to 
influence the prediction of any point in the matrix, and the strong 
relation between all the data points. High correlation between the in-
dependent features and dependent variable is a good indication that 
accurate estimations could be yielded. 

The dual-Doppler points used were at the far most offshore 4-km 
range. In the first experiment, an evaluation on the effect of increasing 
the observations in the matrix and varying the lidar points by using three 
different matrices with different number of lidar points was tested. For 
each height, there were four dualDoppler points per km, here referred to 
as a lidar point. There were three matrices available: matrix A had the 
first 2 lidar points (from the west) per km, which led to a total of 8 new 
lidar points; matrix B had the first 3 lidar points per km leading to a total 

Fig. 2. Proposed matrix factorization with EWT preprocessing and Gaussian process algorithms flowchart for 3D wind speed predictions.  
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of 12 new lidar points; and matrix C had 4 lidar points per km leading to 
a total of 16 lidar points. The first experiment used data from the 50-m 
height level dataset. The statistics of the datasets for experiment 1 are 
given in Table 1, which also shows the division of data for all three 
matrices A, B and C with percentage of sparsity in every matrix. 

For experiment 2, matrix C with 16 lidar points was used, at the three 
different heights (50, 100, and 150 m). Results from the experiment 
were compared to those using an academic prediction model for wind 
forecast predictions (EWT + GPR) and a leading industrial software, 
Windgrapher, a leading software for importing, visualising and ana-
lysing wind resource data [25]. Windgrapher follows the 
measure-correlate-predict (MCP) algorithms including linear least 
squares; the method is on correlating target and reference speed data, 
based in the linear least squares procedure. However, these techniques 
are one dimensional interval predictions techniques, hence can only be 
applied to one spatial point at a time and require 16 iterations for 
comparison with one iteration from the probabilistic matrix 

factorization with Gaussian process model. 

4. Results and discussion 

Results from both experiments 1 and 2 are discussed and compared 
in this section. First, the results from experiment 1, where three matrices 
had different number of dual-Doppler points to study the effect of adding 
lidar observations and increasing the sparseness of the matrix. Then, in 
experiment 2, results are compared by means of the root mean square 
error (RMSE) as metric for 16 dualDoppler points at 3 different heights 
using the proposed non-linear probabilistic matrix factorization with 
Gaussian process with two D-factors (2 and 5), the industrial software, 
the academic model, and the WRF simulation. 

4.1. Experiment 1: different sparsity with additional lidar measurements 

Three different datasets of the 16 dual-Doppler offshore points were 

Fig. 3. (Left) RUNE experimental area (in the rect-
angle) in western Denmark. (Right) RUNE coastal 
experimental area on a digital model of the surface 
(UTM32 WGS84, Zone 32V). The positions of the li-
dars (1 and 3) are shown in squares and of the dual- 
Doppler scans (36) in black markers. The scans are 
taken at three heights, 50, 100 and 150 m. The 16 
dual-Doppler scans used in this study are present in 
the black box. Colorbars indicated the height in me-
ters above mean sea level [23,24].   

Fig. 4. (a) Low-fidelity data from numerical simulation output from the WRF model at the most offshore point. (b) High-fidelity data from the dual-Doppler lidar 
setup at the most offshore point. There are 5 continuous WRF time series and 16 intermittent lidar time series for each height, where data are missing at the same time 
intervals across all the points in the high-fidelity time series. 

B. Elshafei et al.                                                                                                                                                                                                                                 



Renewable Energy 202 (2023) 1215–1225

1220

used to evaluate three iterations of probabilistic matrix factorization. 
The performance of the three models was optimized, through the 
hyperparameters, by applying different learning rates and D-factors (2 
and 5). Firstly, exploring the matrix with 5 WRF points and 2 lidar points 
per km, with a total of 8 dual-Doppler points of the total 16, the time 
steps represent 3 months worth of data at 10 min intervals. The di-
mensions of the matrix were 13 columns and 12,960 rows, represented 
as model (A). Then, for model (B), the number of lidar points was 
increased to 3 per km, and finally model (C) had 4 lidar points per km, 
including all 16 dual-Doppler points. The slight increase in the number 
of lidar points varied the sparsity of the models from 91% to 94%. This 
experiment was employed to test how the algorithm reacted to different 
sparsities (density of missing data) and how increasing the number of 
measurements affected the predictions. 

Table 1 shows the statistics of the datasets used in Experiment 1. All 
models had a constant number of WRF data (5 points), while the lidar 
data and hence the total number of cells in the matrix varied, resulting in 
three different sparsity percentages for models A, B, and C; 91%, 93% 
and 94%, respectively. 

Fig. 8 panel (a) shows the predicted time series of the first dual- 
Doppler point and the lidar measurements. Additionally, panel (b) 
shows the observed lidar measurements against their counterparts from 
the predicted time series for the 20% test dataset. Results from the 
matrix factorization process showed that the generated time series with 
predictions was able to follow the complex trends from the lidar data 
and follow a similar signal. Despite the fluctuations in the dataset, the 

generated time series in Fig. 8 panel (a) intersects with the lidar points at 
most of the lidar points, which is reflected in panel (b) of the same 
figure, where the variance between predicted-observed points is less 
than 0.5 m/s. Fig. 9 top panels (a), (b), and (c) shows the time series of 
the three original matrices with 8, 12, and 16 dual-Doppler points, 
respectively. Panels (d), (e), and (f) show the 3 result matrices with the 
predictions. The main purpose of Fig. 9 was to visually demonstrate the 
power of matrix factorization in wind speed prediction and observe how 
varying the percentage sparsity of the matrix affected the accuracy of 
predictions. The model digested a matrix with low data density (high 
sparsity) and was able to generate predictions for 16 different points at 
different locations in a single iteration. The RMSE for each point in the 
matrix with respect to the 20% hidden test data within the time series 
was measured and compared to the WRF output and lidar data. The 
results from all matrices outperform that of the WRF simulation, where 
the RMSEs of the time series generated by matrix factorization at the 
three heights ranged between 0.38 m/s and 0.46 m/s compared to 1.4 
m/s and 0.8 m/s from the WRF simulation. The experiment showed that 
increasing the number of dual-Doppler points, hence the sparsity of the 
matrix and amount of high accurate data, did not affect the accuracy of 
the prediction as the RMSE was unchanged amongst all points. This was 
due to the multicollinearity in the dataset, since all lidar and WRF points 
were highly correlated. Note that using any of the neighboring points 
would be beneficial, despite the distances from the targeted point, and 
since the points were to an extent linearly correlated, the amount of 
missing data was not a problem. 

Fig. 5. (a) Weekly box plot for the WRF-based wind speed time series.  

Fig. 6. Histograms of (a) wind speed measurement frequencies; and, (b) the division of observations by weeks.  
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4.2. Experiment 2: fixed sparsity at different heights 

The second numerical experiment aimed to test how the models 
performed at different heights compared to other academic and indus-
trial algorithms. Three models were trained with 5 WRF points, the 
number of dual-Doppler points was constant at 4 points per km leading 
to a total of 16 in each matrix. The three different heights of the 
experiment are 50, 100, and 150 m. The sparsity of all three models was 
unchanged at 11.8%. Statistics of the dataset for this experiment can be 
found in Table 2. 

Subsequently, the performance of the Matrix factorization algorithm 
was evaluated against results from Windgrapher. Another algorithm in 
the comparison was the empirical wavelet transform (EWT) and multi- 
fidelity Gaussian process regression (MF-GPR). The EWT was used to 
pre-process the WRF time series reducing the spikes and high frequency 
fluctuations, which results in a more accurate Gaussian process. Finally, 
for the PMF testing, different D numbers, 2 and 5 were used. 

The RMSEs for each of the 16 dual-Doppler points were measured at 
one iteration from the Matrix using PMF with D = 2 and D = 5, then 
compared to their counterparts using EWT + MF-GPR, and Windgra-
pher, but after 16 different iterations (as they can predict for a single 
point at a time only). Fig. 10 shows the RMSE for each of the 16 dual- 
Doppler points using all algorithms tested, where panels (a), (b), and 
(c) represent the heights 50, 100, and 150 m, respectively. On average, 
the PMF algorithm using D = 2 and D = 5 was able to outperform the 
other algorithms at all measured points for all three heights. The RMSE 
of the PMF algorithm was reduced by at least 65% compared to that 
using Windgrapher and 40% compared to that of the academic algo-
rithm for the height of 50 m. At the heights 100 and 150 m, the RMSEs 
were very similar; however, increasing the height reduced the RMSE and 
increased the percentage drop in RMSE, which was mainly because the 
accuracy of the WRF simulation increased at higher heights. Addition-
ally, as matrix factorization predictions for the 16 points were per-
formed at the same iteration and used the data from all lidar and WRF 
points, the 16 RMSEs for the NPMF results (C and D) in Fig. 10 had less 
variance in their values compared to that of the results from using other 
models, as other models performed predictions separately for each point 
with different hyperparameters resulting in different performances 
within the same model. 

Fig. 11 shows the RMSE of the most (panel a) and least (panel b) 
offshore point using all the algorithms for all three heights; that is the 3 
algorithms discussed above and the 2 PMF models. The results in the 
figure demonstrate the order of algorithms showing the least to most 
accurate, with PMF leading for both D numbers. Similarly, the results 
indicate that by increasing the height of the measurements more accu-
rate predictions are achieved, which is due to higher ability of the WRF 
output to predict winds. 

5. Conclusions 

In this work, data fusion was performed between lidar measurements 
sparse in space and time with high-fidelity with output from the WRF 
model, which was continuous in space and time but of low-fidelity. The 
aim of the data fusion was to obtain spatio-temporal predictions at un-
observed space and time points, suitable for offshore wind resource 
assessment. During the RUNE experiment dualDoppler scans were per-
formed, which resulted in 36 lidar points across 10 km, both offshore 
and onshore, with 1331 measurements. Subsequently, the numerical 

Fig. 7. Correlation between all lidar and WRF points.  

Table 1 
Statistics of the datasets used in Experiment 1.   

A B C 

lidar Points 8 12 16 
Measurements (lidar) 10624 15936 21248 
Simulation data (WRF) 56880 56880 56880 
Total No. of Cells 739440 966960 1194480 
Missing data (sparsity) 91% 93% 94%  

Fig. 8. (a) Predicted Time-series and lidar observations for the first dual-Doppler point marked red in Fig. 3(b). (b) Prediction points against counter observed 
measurements. 
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simulations performed using the WRF model generated an instantaneous 
constant output every 10 min for the same period, resulting in a total of 
11,376 data points. 

In this study, the performance of the algorithm was tested on the 
offshore data at 16 points at 3 different heights, namely 50, 100, and 
150 m. 

In a first experiment, the number of lidar points per km was varied to 
test the accuracy of the model with less valuable lidar data of sparsity 
percentages, which varied between 91%, 93%, and 94%. As 

aforementioned, the high-fidelity lidar data was presented at unob-
served regions and periods by exploiting the available data and the low- 
fidelity WRF output. The addition of more lidar points caused an in-
crease in the sparsity of the matrix, despite giving more valuable lidar 
data. The RMSE of predictions was not affected as it ranged from 0.45 
m/s and 0.52 m/s across all three matrices; in this experiment, only the 
data at 50 m was used. 

Contrarily, the second experiment aimed to test the accuracy of 
prediction of the PMF model when the D-factor is varied at 2 and 5, 
when compared to the results of an academic model with pre-processing 
(EWT + multi-fidelity GPR) and those of an industrial leading software 
(Windgrapher). First, 16 lidar points and 5 WRF points with 11.8% 
sparsity were used. The results showed that using a lower D-factor was 
more accurate and resulted in improved predictions; this was observed 
significantly at lower heights. Additionally, the results for all models 
showed that by using data at higher heights more accurate predictions 
were achieved, as the WRF outputs were more accurate at higher levels 
at this particular site. Hence, the results for the heights of 50 and 150 m 
had the highest and lowest RMSEs, respectively. The difference RMSE 

Fig. 9. Original matrices of all three setups with 2, 3, and 4 lidar points, A, B, and C, respectively (Top). Final processed matrices for all setups, A, B, and C, 
respectively (bottom). 

Table 2 
Statistics of the datasets used in Experiment 2.   

All heights 

Lidar points 16 
Time-steps 11376 
Measurements observed 21248 
Measurements per Point 1328 
Measurements density (sparsity) 11.8%  

Fig. 10. Comparison between RMSE results from Windgrapher (A), EWT + MGPR (B), our tested method NPMF with Gaussian process (D = 5 and D = 2), (C) and 
(D), respectively, across all 16 grid points for heights 50 m (a), 100 m (b), and 150 m (c). 
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between both heights was around 0.18 m/s, equivalent to a 15% drop in 
RMSE. Subsequently, both PMF models with 2 and 5 D-factors were able 
to outperform the results of both the industrial and the academic models 
by at least 58% and 40%, respectively. 

There are three major limitations in this study, which could be 
addressed in future work. First, only data obtained from the RUNE 
experiment was addressed, which is a very sparse dataset, including only 
1331 measurements for each lidar point equivalent to 220 h of measured 
data, reflecting several weeks with no data. Second, due to the resolution 
of the WRF model output (2 km), the generated WRF points are all to the 
nearest 100 m, which is a considerable distance, as points this far will 
have significant differences in the wind speed. Hence, interpolation was 
necessary to obtain WRF data at the corresponding lidar points. Third, 
the starting time for both datasets generated using the WRF model and 
from the lidar was not the same. The WRF output was available a few 
days earlier. This problem is called a ‘cold’ start and is a common issue in 
matrix completion problems. 

Future work may also concern further development of the matrix 
input data. Additional datasets such as derivatives and other type of 
WRF output (including output from a higher resolution run) could be a 
great source of information. This would reduce the sparsity of the matrix 
and improve the Gaussian process, hence the accuracy of predictions. 
Furthermore, the preprocessing methods of the WRF data with EWT 
before processing in the matrix should be tested. 
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Appendix .0.1. EWT 

The process consists of five main steps: extending the signal, Fourier transforms, extracting boundaries, building a filter bank, and extracting the 
sub band. The five level decomposition attained by the preprocessing algorithm, EWT, was able to describe the signal in a meaningful way with much 
less fluctuations, by extracting five uncorrelated filter modes from the wind speed signal and a residual from the extraction. The reconstructed signal 
will be used as additional input for the forecasting models. 

Appendix .0.2. PMF is Bayesian PCA 

With little changes to the notations, PMF is probabilistically equivalent to Bayesian PCA. The Bayesian treatment provides fully automatic 
complexity control as model parameters and hyperparameters are integrated. Considering a matrix of latent variables, X ≡ U⊤∈ RN×D, and a mapping 
matrix that goes from the latent space to the space of observed data, W–––V ⊤∈ RM×D. Following the new notation, the probabilistic model can be 
written in the form: 

Fig. 11. (a) Comparison between RMSE results from the WRF output, Windgrapher, EWT + MGPR, our current method NPMF with Gaussian process (D = 5 and D =
2) for the far east lidar point for each height. (b) Comparison between RMSE results from the WRF output, Windgrapher, EWT + MGPR, NPMF with Gaussian process 
(D = 5 and D = 2) for the far west lidar point for each height. 
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p
(
R
⃒
⃒W,X, σ2)=

N
Y

I = 1
N
(
ri
⃒
⃒WXi, :, σ2I

)
, (A1) 

where Xi,: is the ith column of U, and ri,: represents the column vector from the ith row of R containing wind speeds of the ith time-step for a point in 
space. The previous equation is a multi-output linear regrression from a D dimensional feature matrix V to matrix targets R. Placing a prior over X gives 
the following, which can be marginalized later to give the marginal likelihood used in missing values imputation.   

Fig. S12. a) Original and processed signals. (b–e) residuals of the preprocessing model.  

p(X)=
ND
YY

i = 1 j = 1
N
(
xi,j

⃒
⃒0, σx

− 1) (A2)  

Appendix .0.3. Missing values imputation 

The method discussed is a Gaussian matrix factorization model with a particular covariance structure, which means marginalizing is straight-
forward in finding the missing values. A Gaussian distribution is considered over the following parameters: a vector y with mean μ and covariance σ, in 
the form y N(μ,σ). An observed subset of y is represented by yi, where i is an index for the observed values. When marginalizing the missing values, 
getting the Gaussian form yi N(μi,σi,i) where μi, and σi,i, represent the mean vector with the rows for the sum of σ columns associated with the un-
observed elements of the removed y. Hence, for a sparse data matrix, the likelihood is given by: 

p
(
Y
⃒
⃒W, σ2, αx

)
=
∏N

i=1
N
(

yi,ji}

⃒
⃒
⃒0, α− 1

x Wji,WT
ji,: + σ2I

)
(A3) 

Optimizing with respect to the parameters leads to αx being part of W, which leaves the likelihood function associated with PPCA, and hence 
becomes intractable when marginalizing W. Instead the prior is taken over W, 
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p(W)=

MD
YY

I = 1 j = 1
N
(
Wi,j|0,αW − 1

)
(A4) 

and the marginal likelihood is then in the form. 

which is the marginal likelihood of a Bayesian linear regression model with multiple outputs. These equivalences imply that with marginalisation 
of either W or X, will eventually lead to optimizing the resulting marginal likelihood for the remaining matrix and model hyperparameters. 
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