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Abstract: Postprandial insulinaemia, triglyceridaemia and measures of inflammation are thought to
be more closely associated with cardiovascular risk than fasting measures. Although hypertension is
associated with altered fasting metabolism, it is unknown as to what extent postprandial lipaemic
and inflammatory metabolic responses differ between hypertensive and normotensive individuals.
Linear models adjusting for age, sex, body mass index (BMI), visceral fat mass (VFM) and multiple
testing (false discovery rate), were used to investigate whether hypertensive cases and normotensive
controls had different fasting and postprandial (in response to two standardised test meal challenges)
lipaemic, glycaemic, insulinaemic, and inflammatory (glycoprotein acetylation (GlycA)) responses in
989 participants from the ZOE PREDICT-1 nutritional intervention study. Compared to normoten-
sive controls, hypertensive individuals had significantly higher fasting and postprandial insulin,
triglycerides, and markers of inflammation after adjusting for age, sex, and BMI (effect size: Beta
(Standard Error) ranging from 0.17 (0.08), p = 0.04 for peak insulin to 0.29 (0.08), p = 4.4 × 10−4 for
peak GlycA). No difference was seen for postprandial glucose. When further adjusting for VFM
effects were attenuated. Causal mediation analysis suggests that 36% of the variance in postprandial
insulin response and 33.8% of variance in postprandial triglyceride response were mediated by
VFM. Hypertensive individuals have different postprandial insulinaemic and lipaemic responses
compared to normotensive controls and this is partially mediated by visceral fat mass. Consequently,
reducing VFM should be a key focus of health interventions in hypertension. Trial registration: The
ClinicalTrials.gov registration identifier is NCT03479866.

Keywords: postprandial; hypertension; insulinaemia; triglyceridaemia; inflammation

1. Introduction

Hypertension is the most prevalent modifiable risk factor for cardiovascular morbidity
and mortality affecting over 1.3 billion people around the world [1]. Studies have shown
that hypertension clusters with metabolic factors including glucose intolerance, hyperin-
sulinaemia, and dyslipidaemia [2]. Indeed, results from the prospective follow-up study,
Pressioni Arteriose Monitorate E Loro Associazioni (PAMELA), suggest that elevated blood
pressure (BP) is the most common component of the metabolic syndrome (MetS), with
95.4% of participants with MetS having elevated BP, and up to 80% of individuals with
MetS being hypertensive [3,4]. Moreover, hypertensive individuals that fulfil the criteria
for MetS have up to a 73% increased age and risk factor-adjusted risk for cardiovascular
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events [5]. Hypertension may also be linked with the onset of new MetS [6]; it is strongly
associated with insulin resistance, a component of MetS, independently of other risk factors,
including obesity [7]. Mechanisms behind this may centre around the hormonal actions of
insulin, which can regulate renal sodium clearance [8], a key mechanism involved in BP
regulation. The increased cardiovascular risk associated with MetS and hypertension may
also be linked to endothelial dysfunction and atherosclerosis [2].

Although previous research has explored fasting metabolism in hypertensive individ-
uals, the majority of the population spend most of their waking hours in a postprandial
state [9,10] and postprandial glycaemia, insulinaemia, lipaemia, and inflammation are
thought to be more closely associated with cardiovascular risk than fasting levels [11],
it is therefore of utmost importance to understand postprandial metabolic responses in
hypertensive individuals. Hypertensive individuals have been found to have higher post-
prandial triglyceride levels [12], and postprandial hypertriglyceridaemia also correlates
with levels of visceral adiposity [13], and causal links have been shown in murine mod-
els [14,15]. Additionally, postprandial glucose disposal in the presence of insulin resistance
may promote hypertension through various atherogenic processes [2].

However, a comprehensive exploration of the fasting and postprandial differences in
metabolic markers (triglycerides, insulin, glucose, and inflammation), between hyperten-
sive and normotensive individuals, when challenged by a standardised mixed-nutrient
meal, is lacking. Here, we investigate whether individuals with hypertension have a
different postprandial response compared to normotensive controls. We further explore
whether visceral fat mass (VFM), thought to be a key marker of glucose homeostasis and
lipid metabolism, is a mediator of associations between hypertension and postprandial
insulin and triglyceride response in the ZOE UK PREDICT 1 study [9]—a single-arm,
randomized cross-over trial of standardized meal interventions designed to quantify and
predict individual variations in postprandial responses (NCT03479866).

2. Materials and Methods

A consort diagram with the study design is presented in Figure 1.
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We included 989 individuals from the UK based ZOE PREDICT-1 study. The ZOE
PREDICT-1 study [9] was a single-arm nutritional intervention conducted between June
2018 and May 2019. Study participants were apparently healthy individuals but included
those with risk factors such as hypertension. Participants were aged between 18–65 years
recruited from the TwinsUK registry [16], and the general population using online advertis-
ing. Participants attended a full day clinical visit consisting of test meal challenges followed
by a 13-day home-based phase, as previously described [9].

Data relevant to this analysis pertain to the day 1 baseline clinical measurement visit
at St. Thomas’ Hospital. As shown in Figure 1, during their visit, participants arrived
at 8:30 am in a fasted state (fasting from 9 pm the previous night). On arrival, partici-
pants provided baseline characteristics, including age, sex, anthropometric measurements
(including adiposity as described below) and BP was recorded. Participants were cannu-
lated and a fasting blood sample was taken. Within a tightly controlled clinical setting,
participants consumed meal 1: breakfast muffins and a milkshake (890 kcal, 85.5 g car-
bohydrate, 52.7 g fat, and 16.1 g protein at the 0-h timepoint, following baseline blood
draw, BP, and anthropometrics). Venous blood samples were collected at 15, 30, 60, 120,
180, 240, 300, 360 min post meal 1. Meal 2: lunch muffins (502 kcal, 71.2 g carbohydrate,
22.2 g fat, and 9.6 g protein) was consumed at the 240-min timepoint (after the 240-min
blood sample). Participants were permitted to sip water throughout (Figure 1). Outcome
variables from blood sampling were blood triglyceride, glucose, insulin, and glycoprotein
acetylation (GlycA) (as a marker of inflammation) levels [9]. GlycA is a particular proton
nuclear magnetic resonance spectroscopy signal that reflects the methyl groups bound to
N-acetylglucosamine residues attached to circulating plasma proteins and is recognised
and validated as a biomarker of systemic inflammation [17]. GlycA moderately correlates
with several other biomarkers of inflammation but has greater analytical precision and
lower-intra-individual variability [18]. Moreover, GlycA levels have also been shown to
associate with both acute and chronic inflammation, severity of inflammatory disorders,
and cardiovascular events independent of other inflammatory markers [19,20]. For each of
these variables, we considered (i) the baseline fasting measures; (ii) the peak (over the 6-h
(360 min) visit for triglycerides and GlycA, and 2-h (240 min) for insulin and glucose) [9]
and (iii) the magnitude of increase (delta increase = peak − baseline). Postprandial peaks
were previously identified using line trajectories as detailed in Berry et al. 2018 [9] and the
specific timepoints used here are based on these previous reports.

2.1. Blood Pressure

Prior to the breakfast test meal challenge, BP was measured by a trained nurse with
the patient in a seated position for 3 min. The cuff was placed on the subject’s arm so
that it was approximately 2–3 cm above the elbow joint of the inner arm, with the air tube
lying over the brachial artery. The subject’s arm was placed on the table or supported
with the palm facing upwards, so that the tab of the cuff was placed at the same level of
the heart. Triplicate measurements were taken with an interval of approximately 1 min
between each reading. The first reading was discarded and the mean of the second and
third measurements recorded.

Participants were classified into hypertensive cases if their systolic BP ≥ 140 mmHg OR
their diastolic BP ≥ 90 mmHg OR they were using antihypertensive medication, otherwise
they were considered as non-hypertensive controls.

2.2. Adiposity

Body fat distribution was determined by whole body dual-energy X-ray absorp-
tiometry (DXA) using a fan beam X-ray bone densitometer (QDR-4500 W, Hologic, Inc.,
Marlborough, MA, USA) with the participant in the supine position and analysed with
QDR Systems software version 12.6 (Hologic, Inc., MA, USA), as previously described [21].
DXA fat mass from the abdominal region was recorded as VFM in a similar manner to
Bertin et al. [22].
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2.3. Statistical Analysis

Statistical analysis was performed using R version 4.0.2. Circos plot was generated
using the R package ‘ggplot2’.

Continuous variables were standardised using z-scores. Linear models were used to
investigate whether hypertensive cases and non-hypertensive controls had different fasting
levels and postprandial responses after adjusting for age, sex, body mass index (BMI), and
multiple testing (Benjamini-Hochberg false discovery rate (FDR < 0.05)). For each of these
comparisons, we report effect size (Betas) and standard error (SE). To explore links between
metabolic factors and visceral adiposity we conducted a sensitivity analysis by additionally
adjusting for VFM.

To investigate the mediatory effects of VFM (indirect effect) in the relationship be-
tween hypertension and postprandial insulin and triglyceride levels (direct effects), we
constructed a causal mediation analysis using the R package “mediation” [23]. The variance
accounted for (VAF) score depicts the ratio of indirect-to-total effect and determines the
proportion of the variance that can be explained by the mediator, in this instance, VFM.

We conducted additional sensitivity analyses by (i) removing any individuals on
antihypertensive medication; (ii) adjusting for menopausal status; and (iii) stratifying by
sex. We also investigated associations between hypertension status and insulin resistance
using the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) formulated
as fasting insulin (µU/mL) × fasting glucose (mmol/L)/22.5 [24].

3. Results

We analysed data from 989 participants who attended a full day (6-h) clinical visit
consisting of two test meal challenges and had BP measurements. We included 203 hyper-
tensive cases and 786 normotensive controls, aged 45.57 (mean, SD = 11.94) years, mainly
females (72.7%), and were on average slightly overweight (BMI = 25.61, SD = 5.07) kg/m2

(Table 1) with an average waist-to-hip ratio of 0.85.

Table 1. Demographic characteristics of the study population overall and by hypertension status.

Overall
(n = 989)

Hypertensive Cases
(n = 203)

Normotensive
Controls
(n = 786)

n % n % n %

Antihypertensive
drug use 56 5.7 56 27.6 0 0

Females 719 72.7 135 66.5 584 74.3
Peri-menopausal 54 8.8 15 12.5 39 7.9
Post-menopausal 201 32.7 72 60 129 26.1

Mean Sd Mean Sd Mean Sd
Age (years) 45.6 11.9 52 10.2 43.9 11.8

BMI (kg/m2) 25.6 5.1 27.4 5.6 25.2 4.8
Waist to hip ratio 0.85 0.08 0.88 0.09 0.84 0.08

VFM (g) 527.2 311.6 689.8 358.8 485.1 283.7
HOMA-IR 1.4 1.1 1.9 1.8 1.3 0.9

Abbreviations: BMI, body mass index; VFM, visceral fat mass; HOMA-IR, Homeostasis Model Assessment for
Insulin Resistance.

3.1. Fasting Levels

We first investigated differences in the fasting (baseline) states between hypertensive
cases and normotensive controls. As depicted in Figure 2, after adjusting for multiple
testing we found that individuals with hypertension had significantly higher fasting glu-
cose (Beta (SE) = 0.18 (0.08), p = 0.02), insulin (Beta (SE) = 0.34 (0.07), p = 8.61 × 10−7),
triglycerides (Beta (SE) = 0.38 (0.08), p = 2.6 × 10−6), and GlycA (Beta (SE) = 0.26 (0.08),
p = 1.2 × 10−3) (Figure 2), in line with the literature [7]. We also found that hyperten-
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sive patients have higher HOMA-IR (Beta (SE) = 0.36 (0.07), p = 3.6 × 10−7) compared to
normotensive controls.
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Figure 2. Circos bar plot with bars representing standardised coefficients of linear models between
metrics and hypertension status with error bars representing standard error. Bars are colour coded
based on covariates. Light blue bars indicate adjustment for age, sex, and BMI, while navy bars
indicated adjustment for age, sex, BMI, and VFM. * FDR < 0.05 (for age, sex, and BMI adjusted model),
# nominal significant (for age, sex, BMI, and VFM adjusted model). Abbreviations: BMI, body mass
index; VFM, visceral fat mass.

3.2. Peak Levels

We observed significantly higher postprandial peaks in insulin (2-h insulin peak, Beta
(SE) = 0.17 (0.08), p = 4.4 × 10−2), triglycerides (6-h peak triglyceride, Beta (SE) = 0.23
(0.08), p = 5.6 × 10−3) and GlycA (6-h peak GlycA, Beta (SE) = 0.29 (0.08), p = 4.4 × 10−4)
in hypertensive cases, after adjusting for age, sex, BMI and multiple testing (Figure 2).
However, when additionally adjusting for VFM, a marker of adipose tissue strongly related
to metabolic disturbances and hypertension [25], effects were attenuated (peak triglycerides,
Beta (SE) = 0.17 (0.08), p = 0.04; peak insulin, Beta (SE) = 0.1 (0.09), p = 0.25); (peak GlycA,
Beta (SE) = 0.2 (0.08), p = 0.01). Given the links between VFM and, cardiometabolic risk
factors, including insulin resistance and triglycerides, we conducted a causal mediation
analysis using bootstrapping and 1000 simulations to determine the indirect effect of VFM
on the relationship between hypertension and postprandial triglyceride, and insulin re-
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sponses. This suggested that VFM was fully mediating the positive association between
hypertension and 2-h peak insulin (VAF = 36% (0.02, 0.1) p = 0.002), and partially medi-
ating the positive association between hypertension and 6-h triglyceride peak (variance
accounted for (VAF) = 33.8% (0.03, 0.16) p= 0.004) (Figure 3).
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3.3. Change from Fasting Levels

Results were consistent when we rerun the analyses investigating the correlation
between hypertension status and postprandial metabolic changes measured as delta. Beta
coefficients were in the same direction, although p values were attenuated (Figure 2).

3.4. Sensitivity Analysis

To account for potential confounding, we conducted sensitivity analyses by (i) exclud-
ing those on antihypertensive drugs, (ii) adjusting for menopausal status (pre-, peri- and
post-menopausal, as determined by a health and lifestyle questionnaire), (iii) stratifying by
sex. Results/effect sizes remained consistent. See Supplementary Table S1.

4. Discussion

In the largest study of its kind to look at differential postprandial responses in hyperten-
sive individuals compared to normotensive subjects, we find that in addition to a disrupted
fasting metabolic state, individuals with hypertension have higher postprandial insulin,
triglycerides, and inflammatory responses after adjusting for traditional risk factors. Causal
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mediation analysis further suggests that VFM, a key risk factor in metabolic syndrome [26],
fully mediates the associations between hypertension and insulin responses and partially
mediates that with postprandial triglyceride response. Moreover, we find an increased
level of insulin resistance in hypertensive participants compared to normotensive controls.

Postprandial lipaemia is a greater predictor of cardiovascular events, in contrast to fast-
ing triglyceride levels [11,27]. Here, we report higher spikes in postprandial triglycerides in
hypertensive cases, after consumption of a mixed-nutrient challenge. In support of our find-
ings, Hwu et al. [12] found higher postprandial triglycerides in hypertensive participants
4-h after a 1000 kcal, high fat meal (65.9% fat, 18.9%, carbohydrates, 15.2% protein). More-
over, when compared to normotensive participants, Kolovou and colleagues [28] also report
higher postprandial triglycerides in 25 individuals with essential hypertension following a
meal dense in fat (83.5% fat, 14% carbohydrates, 2.5% protein). Although, in contrast to our
study, the hypertensive participants were found to have normal fasting triglycerides [28].
Moreover, Kolovou et al. show significant positive correlations between BMI and maximal
postprandial triglyceride concentration within the hypertensive participants. Extending
this link between elevated postprandial triglycerides, hypertension, and body fat. Here,
we find that VFM partially mediates the relationship between hypertension status and
postprandial lipaemia, suggesting that despite the link with cardiovascular events [9],
the lipaemia is likely to have a smaller effect on blood pressure than previously thought.
Rather, this data suggests that the relevance of triglyceride metabolism in hypertension lies
mainly in higher adipose fat. A possible explanation, is the variety of vasoactive factors
(both vasodilators such as leptin, adiponectin, apelin and omectin) and vasoconstrictors
like resistin, chemerin, and visfatin released by adipocytes [25] and that levels of visceral
fat are directly involved in blood pressure regulation or influence blood pressure through
activation of sympathetic nervous system activity [25].

Approximately, half of all patients with essential hypertension are thought to be
insulin-resistant [2,29]. Indeed, here we report that hypertensive individuals have higher
levels of insulin resistance, as determined by the HOMA-IR index. As expected, we also
find hypertensive individuals to have postprandial hyperinsulinaemia. The links between
hyperinsulinaemia and hypertension is thought to be driven via a few key mechanisms,
(i) a decrease in insulin sensitivity, (ii) insulin mediated glucose disposal [2], both of which
are thought to promote hypertension and atherogenesis. (iii) increased plasma aldosterone
levels [30], and (iv) upregulated angiotensin II receptors [31], two components of the renin-
angiotensin-aldosterone system, a critical regulator of BP. Visceral fat, particularly that
deposited around the liver has been linked with impaired insulin clearance or hepatic
insulin action [32], which would further exacerbate these actions, and may explain the
mediation effects we observe.

Additionally, evidence of a causal role of VFM in insulin and triglyceride actions has
also been found in murine models, where the removal of VFM restored insulin action and
improved lipid profiles [14,15], which supports our reports of a strong mediatory role of
VFM in postprandial response.

We also observe higher fasting glucose concentrations in hypertensive cases. However,
despite our findings on insulin resistance, fasting glucose, and fasting/postprandial hyper-
insulinaemia, we did not find significant differences in glycaemic responses. In contrast,
in a cross-sectional, longitudinal analysis of 3437 individuals, of which 497 developed
hypertension, fasting and postprandial glucose were independent predictors of incident
hypertension [33]. This may be explained by an early stage of insulin resistance in the hy-
pertensive cases (HOMA-IR = 1.9, Table 1), whereas hyperglycaemia is thought to become
prevalent at more advanced stages [2].

These results suggest that hypertensive individuals may be more prone to cardiovas-
cular events as a result of exacerbated metabolic responses. Regardless of fasting levels, an
exacerbated postprandial increase in insulin, triglycerides, glucose and inflammation have
detrimental effects on vascular health [26]. Postprandial hyperlipaemia has been linked
with impaired lipid metabolism, endothelial dysfunction, hypercoagulability, all of which
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are key factors involved in atherogenesis [34]. Detrimental effects of postprandial hyper-
insulinaemia relate to the hormonal action of insulin, which has the capacity to stimulate
numerous cellular responses and has been shown to promote protein synthesis, de novo
lipogenesis, and cellular proliferation while inhibiting autophagy, and lipolysis, necessary
actions for cellular turnover. Likewise systemic inflammation is independently linked with
atherogenesis and coronary heart disease events [12].

Our findings also suggest that BMI is unable to capture the true effects brought about
by adiposity. Although BMI is easy to measure in contrast to VFM, the utility of BMI to
distinguish between fat and muscle has long been questioned [35]. The present results
suggest visceral fat mass should be more routinely measured and used as an actionable
target with dietary efforts seeking to reduce visceral fat in hypertensive patients, and in
turn mitigate adverse postprandial responses.

The finding that VFM is a causal mediator between hypertension and an atherogenic
postprandial triglyceride response has a number of implications for management of hy-
pertension. Firstly, it emphasises the importance of VFM and suggests that VFM should
be measured and actioned as a target for treatment. Many lifestyle interventions that are
advocated for hypertension, for example, weight loss and reductions in alcohol intake are
expected to reduce VFM as well as hypertension but in the context of hypertension they
tend to be evaluated according to the reduction in blood pressure achieved. The present
results suggest that normalisation of both blood pressure and VFM is likely to achieve
optimal risk prevention. Interventions such as bariatric surgery may be very effective
in reducing both blood pressure and VFM [36] and their benefit in terms of reduction in
VFM may strengthen this indication. The relative benefits and risk of such an intervention
can, however, only be rigorously assessed by randomised clinical trials. Secondly, the
importance of VFM as contributing to atherogenic risk in hypertension raises the possibility
that it could be incorporated in a risk score guiding the indication for statin therapy to
offset the atherogenic risk. Again, this would need to be guided by prospective studies
evaluating cardiovascular risk and would require more widely available measures of VFM.

Although our study is strengthened by numerous factors, including the tightly con-
trolled nature of the study, there are important limitations. These include (i) the use of
office blood pressure measured on a single day to define hypertension, which is prone to
measurement error, and white coat effect, i.e., BP increases due to physiological changes
when in the presence of a clinician [37], which may have resulted in misclassification
bias. These limitations can be overcome by using other means of BP measurement such
as ambulatory BP monitoring. However, ambulatory BP was not available for the full
sample due to the associated costs and participant burden. (ii) the predominantly female
(72.5%) sex of our sample; further research may be required to accurately elucidate any
differences between the sexes. (iii) Our sensitivity analysis with menopause status was
based on a self-reported questionnaire rather than hormone profiles and may lack accuracy
in identifying those pre- and post-menopausal. (iv) While fasting metabolic levels have
been widely explored in hypertensive individuals, there is a lacuna of research admin-
istering meal challenges in individuals with hypertension and measuring postprandial
metabolic responses. Accordingly, there is relative novelty in our study and a lack of studies
to compare our findings to.

5. Conclusions

Our findings further the clinical perspective of hypertension as a metabolic disorder
and suggest that visceral adiposity is a key factor exacerbating postprandial hypertriglyc-
eridaemia and hyperinsulinaemia. Consequently, reducing VFM should be a key focus of
health interventions in hypertension.
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