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Abstract

The notion of stationary equilibrium is one of the most crucial solution

concepts in stochastic games. However, a stochastic game can have multiple

stationary equilibria, some of which may be unstable or counterintuitive. As a

refinement of stationary equilibrium, we extend the concept of perfect equilib-

rium in strategic games to stochastic games and formulate the notion of perfect

stationary equilibrium (PeSE). To further promote its applications, we develop

a differentiable homotopy method to compute such an equilibrium. We incor-

porate vanishing logarithmic barrier terms into the payoff functions, thereby

constituting a logarithmic-barrier stochastic game. As a result of this barrier

game, we attain a continuously differentiable homotopy system. To reduce the

number of variables in the homotopy system, we eliminate the Bellman equa-

tions through a replacement of variables and derive an equivalent system. We

use the equivalent system to establish the existence of a smooth path, which

starts from an arbitrary total mixed strategy profile and ends at a PeSE. Ex-

tensive numerical experiments further affirm the effectiveness and efficiency of

the method.
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1 Introduction

Stochastic games, dating back to the seminal paper by Shapley (1953), serve as a

powerful mechanism for strategic interaction analysis in a dynamic environment with

conflicts of interests. Stochastic games model the dynamic interaction between a

finite number of players. A stochastic game consists of a sequence of stages, where

the relevant part of the history at the beginning of each stage is summarized by a

commonly known state variable. More explicitly, at the beginning of the first stage,

the players are in some given initial state. They take their actions simultaneously and

independently. Subsequently, they get their instantaneous payoffs, and each player is

informed of the others’ actions at this stage. The game then moves to the next stage.

Based on the previous state and action profile, a new state is selected, potentially in

a probabilistic way. This process is repeated over an infinite number of stages. A

stochastic game therefore consists of a series of stochastically generated stage games.

Extensive applications of stochastic games can be found in the literature such as

Chatterjee et al. (1993), Amir et al. (2003), and Manea (2018) and the references

therein.

Subgame perfect equilibrium in stationary strategies (SSPE) is one of the essential

solution concepts in stochastic games. A stationary strategy only depends on the

current state rather than the entire history of states and strategy profiles. A stationary

strategy thereby satisfies the reasonable principle of “letting bygones be bygones”

(Maskin and Tirole (2001); Herings and Peeters (2004)). The existence of SSPEs

was discussed in Fink (1964), Takahashi (1964), and Sobel (1971), which provided

a solid theoretical foundation for the development of stochastic games. Herings and

Peeters (2004) developed the first globally convergent method to compute SSPEs. To

do so, they extended the linear tracing procedure of Harsanyi (1975) from strategic

games to stochastic games. Since then, there has been more and more interest in the

computation of SSPEs, witnessing the development of a Gaussian iterative method in

Doraszelski and Pakes (2007), a piecewise smooth homotopy method in Govindan and

Wilson (2009), a logit homotopy path-following method in Eibelshäuser and Poensgen

(2019), an arbitrary starting linear tracing procedure in Li and Dang (2020), and an

interior-point homotopy method in Dang et al. (2022).

The notion of SSPE is based on the assumption that the decision-makers are ra-

tional and never make mistakes. As pointed out in Selten (1975) and Myerson (1978),

a strategic game can have multiple Nash equilibria, some of which may be unstable

and inconsistent with our intuitive notions about a reasonable outcome of the game.

To eliminate some of these counterintuitive Nash equilibria, Selten (1975) introduced
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a refinement of Nash equilibrium called perfect equilibrium and proved the existence

of perfect equilibria in normal-form games. In an extensive-form game, a perfect equi-

librium is robust against the introduction of mistakes by which every player chooses

each action with a small strictly positive probability. The equivalence between the

perfect equilibria in an extensive-form game with perfect recall and its corresponding

agent normal-form game was established in Selten (1975) as well. van den Elzen and

Talman (1991) considered an extensive two-person game with perfect recall and pre-

sented a complementary pivoting algorithm that traces a piecewise linear path, which

induces a normal-form perfect equilibrium if the starting vector is a completely mixed

strategy profile. Aiming at the same problem, von Stengel et al. (2002) developed

a much more efficient method that is based on the sequence form, This method was

proven to be tractable for larger-scale games.

For similar reasons as in strategic games, a stochastic game can have a vast mul-

tiplicity of SSPEs, many of which are unreasonable. However, due to the extremely

complicated structure of stochastic games, studies on the refinement of SSPEs are

scarce, and their computation has been neglected so far in the literature. Acemoglu

et al. (2009) proposed the concept of Markov Trembling Hand Perfect Equilibrium

(MTHPE) to get rid of some counterintuitive equilibria and proved the existence of

MTHPE for dynamic voting games. In this paper, we extend Selten’s perfectness

concept for strategic games to stochastic games and formulate the notion of perfect

stationary equilibrium (PeSE), which is defined as the limit of SSPEs for a sequence

of perturbed stochastic games.1 A PeSE extends the notion of perfect equilibrium for

extensive-form games to the class of stochastic games.

Computational tools play an important role in the application of stochastic games,

but the computation of PeSEs has not been addressed in the literature so far. An

obvious idea would be as follows: Compute an SSPE using the existing methods and

then determine whether this SSPE satisfies the perfectness criterion. Unfortunately,

such an approach was proven to be an NP-hard problem by Hansen et al. (2010).

Another idea to find a PeSE is to straightforward follow its definition and compute

the limit of equilibrium points for a sequence of perturbed stochastic games. Nev-

ertheless, the efficiency of this approach very much depends on the sequence and

underlying methods for computing the equilibrium points, which may lead to a huge

computational burden, especially when the problem is large. It was illustrated in

Dang et al. (2022) that the equilibrium system of stochastic games can be rewritten

as a mixed complementarity problem (MCP) and solved by a widely used software

1Note that a Nash equilibrium in stationary strategies of the perturbed game is a subgame perfect
equilibrium and so is the limit of a sequence of such equilibria.
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package for MCPs - the PATH solver, which employs Newton method.2 However, the

PATH solver fails to compute PeSEs as it is not designed to compute equilibria of

suitably perturbed problems and then take limits of such equilibria.

It has been shown in the literature that homotopy methods have a compelling per-

formance in solving fixed points problems. Moreover, these methods have been shown

to be effective in the computation of perfect equilibria for strategic games. Chen and

Dang (2019) developed a simplicial homotopy method to approximate perfect equi-

libria for small-scale strategic games. Later, a differentiable homotopy method was

developed in Chen and Dang (2021) to compute perfect equilibria for larger-scale

strategic games. The latter homotopy follows a smooth path of solutions and shows

a performance which is both very stable and efficient.

Inspired by the above successes, we aim to design a differentiable homotopy

method to compute PeSEs for stochastic games. To accomplish this objective, we

exploit a continuously differentiable function θ : [0, 1] → [0, 1]) of the homotopy vari-

able t ∈ [0, 1] which remains zero as long as t is not larger than a given positive number

ζ0/2. With this function, we incorporate a logarithmic barrier term into the original

stochastic game and formulate a logarithmic-barrier stochastic game, which continu-

ously deforms a trivial game to the perturbed stochastic game of interest as t varies

from one to ζ0/2. As t descends further from ζ0/2 to zero, the perturbations vanish

and the perturbed stochastic games eventually reduce to the unperturbed stochastic

game of interest at t = 0. A well-chosen transformation of variables addresses the

inherent conflict between the interiority requirement of differentiable homotopies and

the perfectness criterion. As a result, we establish an everywhere smooth homotopy

path, which starts from an arbitrarily chosen totally mixed strategy profile and ends

at a perfect stationary equilibrium for the stochastic game of interest.

We call the resulting method a logarithmic-barrier differentiable homotopy (LB-

DH) method. The employment of the logarithmic-barrier term in the method restricts

the path to the interior of strategy space before θ(t) vanishes, which is inspired by

interior-point methods and expected to significantly enhance the numerical efficiency.

To reveal the advantages of the LB-DH method, we also develop a convex-quadratic-

penalty differentiable homotopy (CQP-DH) method, which is a direct stochastic ex-

tension of the method developed in Chen and Dang (2021) for strategic games and

can be regarded as an exterior-point differentiable homotopy method. We have im-

plemented the LB-DH and CQP-DH methods to solve stochastic games, including

several preliminary examples and randomly generated cases. Numerical results fur-

ther confirm the effectiveness and efficiency of the LB-DH method.

2Interest readers are referred to Dirkse and Ferris (1995) for more details about the path solver.
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The remainder of the paper is organized as follows. In Section 2, we discuss

stochastic games and define the concept of perfect stationary equilibrium (PeSE). In

Section 3, we develop the LB-DH method to compute PeSEs and prove the global

convergence of the method. For numerical comparisons, we present the CQP-DH

method in Section 4. Extensive numerical results are reported in Section 5. The

paper is concluded in Section 6.

2 Stationary Equilibria and Perfectness

2.1 Stationary Equilibria in Stochastic Games

To further elicit the criterion of perfectness, we briefly review the notions of stochastic

games and subgame perfect equilibria in stationary strategies (SSPE) in this subsec-

tion.3 A finite discounted stochastic game with infinitely many stages is given by

Γ = ⟨N,Ω, {Si
ω}(i,ω)∈N×Ω, {ui}i∈N , π, δ⟩,

where

� N = {1, 2, . . . , n} is the set of players.

� Ω = {ω1, ω2, . . . , ωd} is the set of states.

� Si
ω = {siωj : j ∈ M i

ω} is the set of actions for player i ∈ N in state ω ∈ Ω with

M i
ω = {1, 2, . . . ,mi

ω}.

� Sω =
n∏

i=1

Si
ω is the set of action profiles in state ω ∈ Ω.

� ui : D → R is a real-valued function, describing the instantaneous payoff

function of player i ∈ N , where D = {(ω, sω) : ω ∈ Ω, sω ∈ Sω}.

� For any state ω ∈ Ω and any action profile sω ∈ Sω,

π(ω, sω) = (π(ω1 : ω, sω), π(ω2 : ω, sω), . . . , π(ωd : ω, sω)) ∈ Rd,

where, for k = 1, . . . , d, π(ωk : ω, sω) is the probability that the system jumps

to state ωk ∈ Ω when the current state is ω ∈ Ω and the action profile is sω. It

holds that
d∑

k=1

π(ωk : ω, sω) = 1.

3This subsection present a brief review and some details are omitted. Interested readers are
referred to Dang et al. (2022) for more details about stochastic games and stationary equilibria.
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� Π(s) ∈ Rd×d is a matrix with row k equal to the row vector π(ωk, sωk
), that is,

Π(s) = (π(ωk, sωk
))ωk∈Ω.

� δ is the discount factor with 0 < δ < 1, which is used to discount future

instantaneous payoffs.

For i ∈ N and ω ∈ Ω, by taking the mixed extension of the action space Si
ω, each

player i ∈ N uses a mixed strategy xi
ω = (xi

ω1, . . . , x
i
ωmi

ω
), where xi

ωj is the probability

assigned to action siωj ∈ Si
ω. We denote by

X i
ω = {xi

ω ∈ Rmi
ω

+ :
∑
j∈M i

ω

xi
ωj = 1}

the set of all mixed strategies for player i in state ω. Let X i =
∏

ω∈Ω X i
ω and

X =
∏

i∈N X i
ω. Let m =

∑
i∈N
∑

ω∈Ω mi
ω denote the total number of actions over

players and states.

We restrict ourselves to stationary strategies, i.e., the strategy of a player only

depends on the current state. Therefore, a player chooses the same probability mix

over actions after all histories with the same current state. A stationary strategy for

player i ∈ N is represented by an element xi ∈ X i and a stationary strategy profile

for all players is an element in X. It is well-known that if all opponents of a player

use a stationary strategy, then the player has a stationary strategy as a best response,

for details see Herings and Peeters (2004). In this sense, it is rational for players to

restrict themselves to stationary strategies.

Given a stationary strategy profile x ∈ X, we let µi
ω(x) denote the total expected

payoff for player i starting from state ω. Then, a standard argument as for instance in

Li and Dang (2020) shows that µi := µi(x) = (µi
ω(x) : ω ∈ Ω) is the unique solution

to the following linear system,

µi
ω = ui(ω, xω) + δ

∑̄
ω∈Ω

π(ω̄ : ω, xω)µ
i
ω̄, ω ∈ Ω, (1)

which is the so-called Bellman equation. To simplify our notation, we define

φi(ω, siωj, x
−i
ω , µi) = ui(ω, siωj, x

−i
ω ) + δ

∑̄
ω∈Ω

π(ω̄ : ω, siωj, x
−i
ω )µi

ω̄. (2)

Using this notation, system (1) can be rewritten as

µi
ω =

∑
j∈M i

ω

xi
ωjφ

i(ω, siωj, x
−i
ω , µi) := φi(ω, xω, µ

i).
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Next, we formulate the stochastic game Γ as a mathematical programming problem.

The well-known one-shot deviation principle states that if a player has a profitable

deviation from a given strategy, then the player also has a profitable one-shot devia-

tion (Fudenberg and Tirole (1991)). For any strategy x̂, given a state ω ∈ Ω, player

i ∈ N , has no profitable one-shot deviation at the given state when x̂i
ω solves the

following optimization problem,

max
xi
ω∈Xi

ω

∑
j∈M i

ω

xi
ωjφ

i(ω, siωj, x̂
−i
ω , µ̂i)

s.t.
∑

j∈M i
ω

xi
ωj = 1, xi

ωj ≥ 0, j ∈ M i
ω.

(3)

Combining all the optimality conditions of these optimization problems, over players

i ∈ N and states ω ∈ Ω, results in the following nonlinear system of equations,

φi(ω, siωj, x
−i
ω , µi) + λi

ωj − µi
ω = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

xi
ωj ≥ 0, λi

ωj ≥ 0, λi
ωjx

i
ωj = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,∑
j∈M i

ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N.

(4)

If (x, λ, µ) is a solution to (4), then x is an SSPE of Γ. Conversely, any SSPE x of Γ

corresponds with a unique solution (x, λ, µ) to (4).

2.2 Perfectness

As mentioned in Section 1, some SSPEs of a stochastic game may be counterintuitive.

Let us present an example to illustrate (Osborne and Rubinstein (1994)).

Example 1. Consider a stochastic game with N = {1, 2}, Ω = {ω1, ω2}. For i = 1, 2,

Si
ω1

= {siω11
, siω12

, siω13
} and Si

ω2
= {siω21

}. The payoff matrices are given by

ω1 s2ω11
s2ω12

s2ω13

s1ω11
(0, 0) (0, 0) (0, 0)

s1ω12
(0, 0) (1, 1) (2, 0)

s1ω13
(0, 0) (0, 2) (2, 2)

and
ω2 s2ω21

s1ω21
(0, 0)

.

The transition probabilities are given by π(ω̄ : ω, sω) = 0.5, for any ω̄, ω ∈ Ω.

As shown in the matrices above, the stochastic game in this example has three

SSPEs, (s1ω11
, s2ω11

, s1ω21
, s2ω21

), (s1ω12
, s2ω12

, s1ω21
, s2ω21

), and (s1ω13
, s2ω13

, s1ω21
, s2ω21

). Nonethe-
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less, the SSPEs corresponding to the top-left and bottom-right cells are unattractive,

since both the first and the last actions for both players are dominated by their sec-

ond action. Indeed, if players tremble and play all their actions with strictly positive

probability, then their second action yields a strictly higher payoff than both their first

and their last action. Therefore, only (s1ω12
, s2ω12

, s1ω21
, s2ω21

) survives as a reasonable

SSPE.

To address the above issue and eliminate some less plausible SSPEs, we extend

the perfectness criterion for strategic games to stochastic games and formulate the

notion of perfect stationary equilibrium, which is a strict refinement of SSPE.

Definition 1. For ε > 0, a totally mixed strategy profile x ∈ X is an ε-perfect sta-

tionary equilibrium of Γ if for all ω ∈ Ω, i ∈ N and j, k ∈ M i
ω, φ

i(ω, siωj, x
−i
ω , µi(x)) <

φi(ω, siωk, x
−i
ω , µi(x)) implies xi

ωj ≤ ε. A strategy profile x∗ ∈ X is a perfect station-

ary equilibrium (PeSE) if there is a convergent sequence of εk-perfect stationary

equilibria, x(εk), k = 1, 2, . . ., such that lim
k→∞

x(εk) = x∗ and lim
k→∞

εk = 0.

To establish the existence of a PeSE, we first define a perturbed stochastic game

Γ(ε) where all players choose each action with probability greater than or equal to ε.

More formally, we have that

Γ(ε) = ⟨N,Ω, {X i
ω(ε)}(i,ω)∈N×Ω, {ui}i∈N , π, δ⟩,

where X i
ω(ε) = {xi

ω ∈ X i
ω : for all j ∈ M i

ω, x
i
ωj ≥ ε}. For notational convenience, we

define X(ε) =
∏

i∈N
∏

ω∈Ω X i
ω(ε). Notice that Γ(0) = Γ. We establish the following

theorem.

Theorem 1. Each SSPE of Γ(ε) is an ε-perfect stationary equilibrium of Γ.

Proof. In Γ(ε), for any strategy profile x̂ ∈ X(ε), the optimal strategy of player i ∈ N

in state ω can be found as a solution to the following linear optimization problem,

max
xi
ω∈Xi

ω

∑
j∈M i

ω

xi
ωjφ

i(ω, siωj, x̂
−i
ω , µ̂i)

s.t. xi
ωj ≥ ε, j ∈ M i

ω,∑
j∈M i

ω

xi
ωj = 1.

(5)
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The optimality conditions of problem (5) are given by

φi(ω, siωj, x̂
−i
ω , µ̂i) + λi

ωj − βi
ω = 0, j ∈ M i

ω,

xi
ωj ≥ ε, λi

ωj ≥ 0, λi
ωj(x

i
ωj − ε) = 0, j ∈ M i

ω,∑
j∈M i

ω

xi
ωj − 1 = 0.

From the one-stage deviation principle, by letting x̂ = x, we attain the following

equilibrium system for Γ(ε),

φi(ω, siωj, x
−i
ω , µi) + λi

ωj − βi
ω = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

xi
ωj ≥ ε, λi

ωj ≥ 0, λi
ωj(x

i
ωj − ε) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,∑
j∈M i

ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N,

µi
ω − φi(ω, xω, µ

i) = 0, ω ∈ Ω, i ∈ N.

(6)

Any x ∈ Rm satisfying system (6) is an SSPE of the perturbed stochastic game Γ(ε).

Suppose that φi(ω, siωj, x
−i
ω , µi) < φi(ω, siωk, x

−i
ω , µi). From the first group of equations

of system (6), we know that λi
ωj > λi

ωk. From the condition that λi
ωk ≥ 0, we have

that λi
ωj is strictly positive. It follows from the second group of equations in (6)

that xi
ωj = ε, which shows that x is an ε-perfect stationary equilibrium of Γ. This

completes the proof.

The existence of stationary equilibria of Γ(ε) implies the existence of ε-perfect

equilibria of Γ by virtue of Theorem 1. Together with Definition 1, which defines a

PeSE as a limit of a sequence of ε-perfect stationary equilibria of Γ, this ensures the

existence of PeSEs for the stochastic game Γ. We obtain the following corollary.

Corollary 1. The game Γ has a PeSE.

In the next section, we exploit system (6) to develop an effective differentiable

homotopy method, called the logarithmic barrier differentiable homotopy (LB-DH)

method, and compute a PeSE for the stochastic game Γ. With a homotopy variable

t ∈ [0, 1], we formulate a continuously differentiable homotopy system, whose solution

set contains an everywhere smooth path starting from an arbitrary interior point x0

at t = 1. As t varies from a given positive number ζ0/2 ∈ (0, 1) to zero, the path

provides a series of ε(t)-perfect stationary equilibria for Γ. As t approaches zero, ε(t)

also goes to zero and according to Definition 1 the path eventually reaches a PeSE of

Γ. Fig. 1 illustrates how the homotopy works.
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Figure 1: A differentiable homotopy path.

3 A Logarithmic Barrier Differentiable Homotopy

Method

As illustrated in the previous section, the homotopy variable t will descend from one

to zero and generate an ε(t)-perfect stationary equilibrium for Γ when t is sufficiently

small. Moreover, it holds that limt→0 ε(t) = 0. It is therefore convenient to let

ε(t) = tη0 in problem (5) with η0 a given positive number satisfying 0 < η0 <

1/maxω∈Ω,i∈N mi
ω. Then system (6) becomes

φi(ω, siωj, x
−i
ω , µi) + λi

ωj − βi
ω = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

xi
ωj ≥ tη0, λ

i
ωj ≥ 0, λi

ωj(x
i
ωj − tη0) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,∑
j∈M i

ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N,

µi
ω − φi(ω, xω, µ

i) = 0, ω ∈ Ω, i ∈ N.

(7)
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Now we want to eliminate the group of Bellman equations µi
ω − φi(ω, xω, µ

i) = 0. It

is obvious that the system (7) is equivalent to the following system,

φi(ω, siωj, x
−i
ω , µi) + λi

ωj − (νi
ω + tη0

∑
k∈M i

ω

λi
ωk) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

xi
ωj ≥ tη0, λ

i
ωj ≥ 0, λi

ωj(x
i
ωj − tη0) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,∑
j∈M i

ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N,

µi
ω − φi(ω, xω, µ

i) = 0, ω ∈ Ω, i ∈ N.

(8)

Multiplying the first group of equations by xi
ωj and summing over j ∈ M i

ω in system

(8), we have that νi
ω = φi(ω, xω, µ

i), which implies that νi
ω = µi

ω. Consequently,

system (7) is equivalent to the following system,

φi(ω, siωj, x
−i
ω , µi) + λi

ωj − µi
ω − tη0

∑
k∈M i

ω

λi
ωk = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

xi
ωj ≥ tη0, λ

i
ωj ≥ 0, λi

ωj(x
i
ωj − tη0) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,∑
j∈M i

ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N.

(9)

Clearly, the perturbed stochastic game Γ(t) coincides with the original stochastic

game of interest Γ at t = 0.

Let

X i
ω(t) = {xi

ω ∈ X i
ω : for every j ∈ M i

ω, xi
ωj ≥ tη0}

and X(t) =
∏

i∈N
∏

ω∈Ω X i
ω(t). Clearly, the relative interior of X(t) is non-empty. For

further development, we make use of the following continuously differentiable function

θ : [0, 1] → [0, 1],

θ(t) =


0, if t ≤ ζ0/2,

1

4

(2t− 1)2

1− ζ0
+

1

2
(2t− 1) +

1

4
(1− ζ0), if ζ0/2 < t ≤ 1− ζ0/2,

2t− 1, otherwise,

(10)

where ζ0 ∈ (0, 1). Obviously, θ(1) = 1 and θ(t) remains equal to zero as soon as t is

smaller than the given small positive number ζ0/2.
4

4The formulation of the continuously differentiable function θ is not uniquely determined. We
compared several possible formulations and find that the one proposed here achieves the highest

11



For i ∈ N, let µi = (µi
ω : ω ∈ Ω) be the unique solution to the linear system

µi
ω = (1− θ(t))φi(ω, xω, µ

i) + θ(t)(1− η0m
i
ω), ω ∈ Ω. (11)

Clearly, when θ(t) = 0, (11) reduces to the Bellman equation (1). We use the function

θ to incorporate a logarithmic barrier term into the objective function of the problem

(5) and define an artificial stochastic game, in which for any strategy profile x̂ ∈ X,

each player i ∈ N in state ω ∈ Ω solves the following strictly convex optimization

problem,

max
xi
ω∈Xi

ω(t)
(1− θ(t))

∑
j∈M i

ω

xi
ωjφ

i(ω, siωj, x̂
−i
ω , µ̂i)− 1

2

∑
j∈M i

ω

(xi
ωj − x̂i

ωj)
2

+θ(t)
∑

j∈M i
ω

(x0,i
ωj − η0)ln(x

i
ωj − tη0)

s.t.
∑

j∈M i
ω

xi
ωj − 1 = 0,

(12)

where x0 ∈ Int(X(1)) is an arbitrarily given totally mixed strategy profile. The

logarithmic term ln(xi
ωj − tη0) enforces that x

i
ωj > tη0, that is, x is an interior point

of the perturbed strategy space X(t) before θ(t) vanishes. Note that the quadratic

term −(1/2)
∑

j∈M i
ω
(xi

ωj − x̂i
ωj)

2 in the objective function assures the strict concavity

of the problem for any t ∈ [0, 1].5 The optimality conditions of the problem (12) are

given by

(1− θ(t))φi(ω, siωj, x̂
−i
ω , µ̂i) + λi

ωj − βi
ω − (xi

ωj − x̂i
ωj) = 0, j ∈ M i

ω,

λi
ωj(x

i
ωj − tη0)− θ(t)(x0,i

ωj − η0) = 0, λi
ωj ≥ 0, xi

ωj ≥ tη0, j ∈ M i
ω,∑

j∈M i
ω

xi
ωj − 1 = 0.

(13)

An application of the one-shot deviation principle together with x̂ = x yields the

numerical efficiency.
5With the extra term −(1/2)

∑
j∈Mi

ω
(xi

ωj − x̂i
ωj)

2, the mapping from the strategy space to the

optimal solution set of the optimization problem (12) is a point-to-point continuous mapping. This
extra term vanishes at a fixed point x = x̂ in the equilibrium system.

12



equilibrium system for the artificial stochastic game,

(1− θ(t))φi(ω, siωj, x
−i
ω , µi) + λi

ωj − βi
ω = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

λi
ωj(x

i
ωj − tη0)− θ(t)(x0,i

ωj − η0) = 0, λi
ωj ≥ 0, xi

ωj ≥ tη0, j ∈ M i
ω, ω ∈ Ω, i ∈ N,∑

j∈M i
ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N,

µi
ω = (1− θ(t))φi(ω, xω, µ

i) + θ(t)(1− η0m
i
ω), ω ∈ Ω, i ∈ N.

(14)

Like before, we eliminate the Bellman equation in homotopy system (14). Replacing

βi
ω with νi

ω + tη0
∑

k∈M i
ω

λi
ωk in system (14), we have

(1− θ(t))φi(ω, siωj, x
−i
ω , µi) + λi

ωj − (νi
ω + tη0

∑
k∈M i

ω

λi
ωk) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

λi
ωj(x

i
ωj − tη0)− θ(t)(x0,i

ωj − η0) = 0, λi
ωj ≥ 0, xi

ωj ≥ tη0, j ∈ M i
ω, ω ∈ Ω, i ∈ N,∑

j∈M i
ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N,

µi
ω = (1− θ(t))φi(ω, xω, µ

i) + θ(t)(1− η0m
i
ω), ω ∈ Ω, i ∈ N.

Multiplying the first group of equations by xi
ωj and summing over j in the system

above, one obtains that

νi
ω = (1− θ(t))φi(ω, xω, µ

i) + θ(t)(1− η0m
i
ω).

That is, νi
ω = µi

ω. The equilibrium system (14) is therefore equivalent to the following

system,

(1− θ(t))φi(ω, siωj, x
−i
ω , µi) + λi

ωj − µi
ω

−tη0
∑

k∈M i
ω

λi
ωk = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

λi
ωj(x

i
ωj − tη0)− θ(t)(x0,i

ωj − η0) = 0, j ∈ M i
ω, ω ∈ Ω, i ∈ N,

λi
ωj ≥ 0, xi

ωj ≥ tη0, j ∈ M i
ω, ω ∈ Ω, i ∈ N,∑

j∈M i
ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N,

(15)

which is a continuously differentiable system in (x, λ, µ, t) ∈ X × Rm × Rnd × [0, 1].

The elimination of the Bellman equation in the homotopy system has two advantages.
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On the one hand, it significantly reduces the number of variables. On the other hand,

it substantially alleviates the non-linearity of the homotopy function. Therefore, it

can improve the numerical efficiency of the proposed method. This improvement in

efficiency becomes clear in the numerical part.

We observe from the second group of equations in system (15) that when t ∈
(ζ0/2, 1], θ(t) > 0 and λi

ωj(x
i
ωj − tη0) = θ(t)(x0,i

ωj − η0) > 0, which indicates that the

solutions to the system (15) always stay in the interior of the feasible set, that is,

x ∈ Int(X(t)) and λ ∈ Rm
++. Note that when t ≤ ζ0/2, θ(t) becomes equal to zero and

the system (15) becomes identical to the equilibrium system (9) for the perturbed

stochastic game Γ(t). We show that the set of solutions to system (15) identifies a

series of tη0-perfect stationary equilibria as t varies from η0 to zero and yields a PeSE

of Γ at t = 0.

The next lemma states that our system has a unique starting point at t = 1.

Lemma 1. At t = 1, the system (15) has a unique solution.

Proof. Let t = 1. It follows that θ(t) = 1, so system (15) reduces to

λi
ωj − µi

ω − η0
∑

k∈M i
ω

λi
ωk = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

λi
ωj(x

i
ωj − η0)− (x0,i

ωj − η0) = 0, λi
ωj ≥ 0, xi

ωj ≥ η0, j ∈ M i
ω, ω ∈ Ω, i ∈ N,∑

j∈M i
ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N.

(16)

It follows from (11) that µi
ω = 1− η0m

i
ω. Then the first group of equations becomes

λi
ωj − 1 + η0m

i
ω − η0

∑
k∈M i

ω

λi
ωk = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N.

Summing over j in the system above, one obtains that
∑

k∈M i
ω
λi
ωk = mi

ω. By substi-

tuting the expressions for µi
ω and

∑
k∈M i

ω
λi
ωk in the first group of equations in (15),

we find that, for all i ∈ N, ω ∈ Ω, j ∈ M i
ω, λ

i
ωj = 1. Substituting λi

ωj = 1 into the

second group of equations, we have that, for all i ∈ N, ω ∈ Ω, j ∈ M i
ω, x

i
ωj = x0,i

ωj .

Let σi
ω : X× [0, 1] → X i

ω be the unique solution to the strictly convex optimization

problem (12) and let ϕ : X × [0, 1] → X be the product of σi
ω over all i ∈ N and

ω ∈ Ω, so ϕ(x, t) satisfies the optimality conditions of problem (12) for all players

in all states. The function ϕ is obviously a continuous mapping on X × [0, 1]. For

what comes next, we need the following fixed point theorem (Browder (1960); Herings

(2000)).
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Theorem 2 (Browder’s fixed point theorem). Let S be a non-empty, compact

and convex subset of Rm and let f : S × [0, 1] → S be a continuous function. Then

the set F = {(x, t) ∈ S × [0, 1] : f(x, t) = x} contains a connected set F c such that

F c
⋂
(S × {0}) ̸= ∅ and F c

⋂
(S × {1}) ̸= ∅.

We denote by P̃−1 the set of all (x, t) ∈ X× [0, 1] satisfying system (15). It follows

from Brouwer’s fixed point theorem that, for every t ∈ [0, 1], ϕ(·, t) has a fixed point

in the non-empty compact convex set X. Clearly, as x̂ = x at a fixed point, the two

systems (13) and (15) have precisely the same solutions and therefore P̃−1 can be

rewritten as

P̃−1 = {(x, t) ∈ X × [0, 1] : x = ϕ(x, t)}.

Then, a direct application of Browder’s fixed point theorem results in the following

corollary.

Corollary 2. The set P̃−1 contains a connected component that intersects both sets

X × {0} and X × {1}

Corollary 2 assures the global convergence of the LB-DH method. Since all equa-

tions in system (15) are polynomial, P̃−1 is a semi-algebraic set. Hence, the com-

ponent in this corollary is actually path-connected. That is, any two points in the

component can be joined by a path (Schanuel et al. (1991)). This establishes the

following corollary.

Corollary 3. The set P̃−1 contains a path-connected component that intersects both

sets X × {0} and X × {1}

To design an effective and efficient method for computing a PeSE for the original

stochastic game Γ, we need to construct an everywhere smooth path, where some

regularity conditions are required to hold. Recall that when t ∈ (ζ0/2, 1], θ(t) >

0, and it is possible to verify that zero is a regular value of (15). However, when

t ∈ [0, ζ0/2], this regularity disappears, and a natural conflict occurs between the

interior requirement of differentiable homotopies and the perfectness criterion. More

specifically, when t ∈ [0, ζ0/2], θ(t) = 0, and the second group of equations to system

(15) becomes a group of complementarity constraints, which are needed to establish

ε-perfectness. Precisely because of these constraints, the Jacobian matrix of the

equilibrium system (15) may become singular. To address this conflict, we make the

following transformation of variables.6 For i ∈ N, ω ∈ Ω, and j ∈ M i
ω, we write xi

ωj

6Related transformations of variables have been frequently used in the literature such as Herings
and Peeters (2001), Herings and Schmedders (2006), and Chen and Dang (2021).
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and λi
ωj as functions of a new variable ziωj and the homotopy variable t,

xi
ωj(z, t) = tη0 +

(qiωj(z, t) + ziωj
2

)κ
, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

λi
ωj(z, t) =

(qiωj(z, t)− ziωj
2

)κ
, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

(17)

where

qiωj(z, t) =
√

(ziωj)
2 + 4(θ(t)(x0,i

ωj − η0))1/κ

and κ > 2. This ensures the differentiability of system (17). The definitions in (17)

guarantee that the second group of equations in system (15) automatically hold. By

substituting (17) into system (15), one obtains the following system,

(1− θ(t))φi(ω, siωj, x
−i
ω (z, t), µi) + λi

ωj(z, t)− µi
ω

−tη0
∑

k∈M i
ω

λi
ωk(z, t) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

∑
j∈M i

ω

xi
ωj(z, t)− 1 = 0, ω ∈ Ω, i ∈ N.

(18)

For any t ∈ [0, 1], let p(z, µ, t) denote the left-hand side of system (18). The set of

solutions to system (18) is given by

P−1 = {(z, µ, t) ∈ Rm × Rnd × [0, 1] : p(z, µ, t) = 0}.

The next lemma demonstrates that zero is a regular value of the homotopy system

(18) at the starting level t = 1.

Lemma 2. At t = 1, system (18) has a unique solution. Moreover, zero is a regular

value of p on Rm × Rnd × {1}.

Proof. At t = 1, the unique solution to system (15) pins down a unique value of ziωj for

any i ∈ N, ω ∈ Ω, and j ∈ M i
ω, which is strictly positive and given by (x0,i

ωj−η0)
1/κ−1.

We prove in Appendix B that the Jacobian matrix of p at (z, µ, 1) ∈ Rm ×Rnd ×{1}
such that p(z, µ, 1) = 0 is of full rank. Therefore, zero is a regular value of p on

Rm × Rnd × {1}.

The following theorem provides conditions such that the set of solutions to sys-

tem (18) contains a smooth path leading to a perfect stationary equilibrium of the

stochastic game Γ.

16



Theorem 3. Suppose zero is a regular value of p on Rm ×Rnd × (0, 1). Then P−1 ∩
Rm × Rnd × (0, 1] is a smooth one-dimensional manifold with boundary. Moreover,

P−1 connects the unique solution at t = 1 to a perfect stationary equilibrium of the

stochastic game Γ at t = 0.

Proof. We first prove that the variables z and µ are uniquely determined for a given

value of x. From the first group of equations in system (17), for any i ∈ N, ω ∈ Ω,

and j ∈ M i
ω, x

i
ωj(z, t) is a strictly increasing function of ziωj, since the derivative of

xi
ωj with respect to ziωj is positive. That is, any given xi

ωj determines a unique value

of ziωj. The second group of equations in (17) pins down a unique value of λi
ωj for any

value of ziωj. Next, the first group of equations in (18) determines µi
ω uniquely given

any value of ziωj. All the above results together with the compactness of the strategy

space X lead to the compactness of the solution set P−1. From a discussion similar

to the one preceding Corollary 3, we find that P−1 has a path-connected component

that intersects both sets Rm × Rnd × {1} and Rm × Rnd × {0}. We have proved in

Lemma 1 that system (15) has a unique solution at t = 1. Therefore, system (18)

also has a unique solution at t = 1. Lemma 2 and the assumption that “zero is a

regular value of p on Rm × Rnd × (0, 1)” ensure that P−1 ∩ Rm × Rnd × (0, 1] is a

smooth one-dimensional manifold with boundary. The path-connected component in

P−1 which starts from the unique point on the level of t = 1 and ends at a point on

the level of t = 0. We derive from Definition 1 and Theorem 1 that the first point

reached by the path at t = 0 is a perfect stationary equilibrium of the stochastic game

Γ.

Now we want to get rid of the assumption that “zero is a regular value of p on

Rm × Rnd × (0, 1)” in Theorem 3. A general approach is to add a perturbation term

−t(1− t)γ to system (18), where γ ∈ Rm with ∥γ∥ sufficiently small. In this way we

obtain a slightly modified homotopy system,

(1− θ(t))φi(ω, siωj, x
−i
ω (z, t), µi) + λi

ωj(z, t)− µi
ω

−tη0
∑

k∈M i
ω

λi
ωk(z, t)− t(1− t)γi

ωj = 0, j ∈ M i
ω, ω ∈ Ω, i ∈ N,

∑
j∈M i

ω

xi
ωj(z, t)− 1 = 0, ω ∈ Ω, i ∈ N.

(19)

Clearly, the two systems (18) and (19) are identical when t = 1 or t = 0.7 Let

p(z, µ, t;γ) denote the left-hand side of system (19). For any fixed γ ∈ Rm, we let

7The perturbation term is used to generically rule out degeneracies and is always set to zero in
numerical implementations.
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pγ(z, µ, t) = p(z, µ, t;γ) and denote the set of solutions to system (19) by

P−1
γ = {(z, µ, t) ∈ Rm × Rnd × [0, 1] : pγ(z, µ, t) = 0}.

Clearly, p(z, µ, t;γ) is continuously differentiable and

lim
∥γ∥→0

p(z, µ, t;γ) = p(z, µ, t;0) = p0(z, µ, t) = p(z, µ, t).

The set P−1
γ also contains a path-connected component connecting the unique starting

point at t = 1 to an SSPE at t = 0. For a generic choice of γ, the regularity condition

of Theorem 3 is satisfied and we obtain the following theorem.

Theorem 4. For a generic choice of γ ∈ Rm, P−1
γ ∩ Rm × Rnd × (0, 1] is a smooth

one-dimensional manifold with boundary. Moreover, P−1
γ connects the unique solution

at t = 1 to an SSPE of the stochastic game Γ at t = 0.

Proof. Using the same argument as before, one can show that P−1
γ contains a path-

connected component that intersects both sets Rm ×Rnd ×{1} and Rm ×Rnd ×{0}.
At both t = 0 and t = 1, the perturbation term t(1 − t)γ vanishes and pγ(z, µ, t) =

p(z, µ, t). Any point in P−1
γ with t = 0 is therefore an SSPE of Γ. It has been proved in

Lemma 2 that the solution to p(z, µ, 1) = 0 is unique and that 0 is a regular value of

p on Rm×Rnd×{1}. Hence, the path-connected component in P−1
γ intersecting t = 1

also starts from this unique solution. We prove in Appendix C that zero is a regular

value of p(z, µ, t;γ) on Rm × Rnd × (0, 1) × Rm. From the well-known transversality

theorem, together with the result of Lemma 2, we obtain that zero is also a regular

value of pγ(z, µ, t) on Rm × Rnd × (0, 1] for almost all γ ∈ Rm.8 It follows that for

almost all γ ∈ Rm, P−1
γ ∩ Rm × Rnd × (0, 1] is a smooth one-dimensional manifold

with boundary.

Thus far, we have proved that the solution set to (19) contains an everywhere

smooth path starting at t = 1. If system (19) would resume to system (18) when

t ≤ ζ0, then this path yields a sequence of tη0-perfect stationary equilibria for Γ, which

has a PeSE as its limit for t → 0. Nonetheless, the perturbation term −t(1− t)γ will

not completely vanish before t is equal to zero, which yields a concern that the end

point of the path is not a perfect stationary equilibrium. Theorem 5 addresses this

concern.

For every t ∈ (0, 1], we define Ξt = {(z, µ, t′) ∈ P−1 : t′ = t} and, for every

γ ∈ Rm, Ξγ,t = {(z, µ, t′) ∈ P−1
γ : t′ = t}. For every t ∈ (0, 1], for every ιγ,t ∈ Ξγ,t,

8The transversality theorem is presented in Appendix A.
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the distance between the point ιγ,t and the set Ξt is denoted by

d(ιγ,t,Ξt) = min
ιt∈Ξt

∥ιt − ιγ,t∥.

With the above notations, we present Theorem 5.

Theorem 5. For every t ∈ (0, 1], for any ϵ > 0, there exists a δ0 > 0 such that, for

every γ ∈ Rm with ∥γ∥ < δ0, for every ιγ,t ∈ Ξγ,t, d(ιγ,t,Ξt) < ϵ.

Proof. Let t ∈ (0, 1]. We prove the theorem by contradiction. Suppose there exists an

ϵ0 > 0, and a convergent sequence {γk}k∈N with lim
k→∞

γk = 0 and a sequence {ιγk,t}k∈N
in Ξγk,t such that, for every k ∈ N, d(ιγk,t,Ξt) ≥ ϵ0. Since the sequence {ιγk,t}k∈N is

bounded, without loss of generality, one can assume it is convergent with the limit,

say, ι∗t . It follows from the continuity of p that

0 = lim
k→∞

p(ιγk,t; γ
k) = p(ι∗t ; 0),

so ι∗t ∈ Ξt. We therefore have

0 < ϵ ≤ lim
k→∞

d(ιγk,t,Ξt) = d(ι∗t ,Ξt) = 0,

a contradiction. This completes the proof.

Theorem 5 confirms that for every t ∈ (0, 1], the perturbed path in P−1
γ is ar-

bitrarily close to the path in P−1 that leads to a PeSE for the stochastic game of

interest. Therefore, the perturbed path in P−1
γ leads to an approximate perfect sta-

tionary equilibrium for the original stochastic game Γ. With the above results, we

establish the following corollary.

Corollary 4. For a generic choice of γ ∈ Rm with ∥γ∥ sufficiently small, there exists

an everywhere smooth path in P−1
γ , which starts from an arbitrary point at t = 1 and

provides an approximate perfect stationary equilibrium for the stochastic game Γ as t

approaches zero.

4 A Convex Quadratic Penalty Homotopy Method

For numerical comparisons, we develop in this section a convex-quadratic-penalty

differentiable homotopy (CQP-DH) method. Let the perturbed strategy space X(t)

and continuously differentiable function θ(t) be defined as in Section 3. For any
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stationary strategy profile x̂ ∈ X(t), we incorporate with θ(t) a convex quadratic

penalty term into the perturbed stochastic game and construct an artificial penalty

stochastic game, in which any player i ∈ N solves the following optimization problem

in state ω ∈ Ω.

maxxi
ω∈Xi

ω
(1− θ(t))

∑
j∈M i

ω

xi
ωjφ

i(ω, siωj, x̂
−i
ω , µ̂i)− θ(t)

2

∑
j∈M i

ω

(xi
ωj − x0,i

ωj)
2

−1

2

∑
j∈M i

ω

(xi
ωj − x̂i

ωj)
2

s.t. xi
ωj ≥ tη0, j ∈ M i

ω∑
j∈M i

ω

xi
ωj − 1 = 0,

(20)

where x0 ∈ Int(X(1)) is an arbitrarily given totally mixed strategy profile, and µ̂i =

(µ̂i
ω : ω ∈ Ω) is the unique solution to the linear system

µ̂i
ω = (1− θ(t))φi(ω, x̂ω, µ̂

i)− θ(t)
∑
j∈M i

ω

x̂i
ωj(x̂

i
ωj − x0,i

ωj), ω ∈ Ω. (21)

Then, from a similar discussion as in Section 3, one can formulate the equilibrium

system for this stochastic game with quadratic penalty terms, which is given by

(1− θ(t))φi(ω, siωj, x
−i
ω , µi)− θ(t)(xi

ωj − x0,i
ωj) + λi

ωj

−µi
ω − tη0

∑
k∈M i

ω

λi
ωk = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

xi
ωj ≥ tη0, λ

i
ωj ≥ 0, λi

ωj(x
i
ωj − tη0) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,∑
j∈M i

ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N.

(22)

Lemma 3. At t = 1, the system (22) has a unique solution.

Proof. When t = 1, θ(t) = 1 and the system (22) reduces to

−(xi
ωj − x0,i

ωj) + λi
ωj − µi

ω − η0
∑

k∈M i
ω

λi
ωk = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

xi
ωj ≥ η0, λ

i
ωj ≥ 0, λi

ωj(x
i
ωj − η0) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,∑
j∈M i

ω

xi
ωj − 1 = 0, ω ∈ Ω, i ∈ N.

(23)
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Let i ∈ N and ω ∈ Ω. We take the sum over j ∈ M i
ω in the first group of equations

in (23) to obtain that

∑
j∈M i

ω

λi
ωj −mi

ωµ
i
ω − η0m

i
ω

∑
k∈M i

ω

λi
ωk = 0,

which can be reorganized as

µi
ω = (

1

mi
ω

− η0)
∑
j∈M i

ω

λi
ωj.

Substituting the above equation into the first group of equations in (23), we find that

xi
ωj − x0,i

ωj = λi
ωj −

1

mi
ω

∑
k∈M i

ω

λi
ωk, j ∈ M i

ω, i ∈ N,ω ∈ Ω. (24)

Next we prove that for all j ∈ M i
ω, λ

i
ωj = 0. Suppose that, for some j ∈ M i

ω, λ
i
ωj > 0.

We define M
i

ω = {j ∈ M i
ω : λi

ωj > 0} and denote the cardinality of M
i

ω by mi
ω. It

follows from the second group of equations in (23) that xi
ωj = η0 for all j ∈ M

i

ω. From

the choice of η0, we find that mi
ω < mi

ω. Since x0 ∈ Int(X(1)), x0,i
ωj > η0. Then, we

derive from equation (24) that, for any j ∈ M
i

ω,

0 > λi
ωj −

1

mi
ω

∑
k∈M i

ω

λi
ωk = λi

ωj −
1

mi
ω

∑
k∈M i

ω

λi
ωk.

Summing over j ∈ M
i

ω in the above group of inequalities, we have that

0 > (1− mi
ω

mi
ω

)
∑
j∈M i

ω

λi
ωj > 0,

a contradiction. Therefore, λi
ωj = 0 for any j ∈ M i

ω. Then we have that xi
ωj = x0,i

ωj

and µi
ω = 0.

Lemma 3 shows that the continuously differentiable system (22) has a unique

solution at t = 1. Note that when t is not larger than the positive number ζ0/2, θ(t)

is equal to zero and the homotopy system (22) reduces to the equilibrium system (9)

for the perturbed stochastic game Γ(t). At t = 0, the system (22) becomes identical

to the equilibrium system (4) for the original stochastic game Γ. Next, we prove

that there exists a path-connected component in the set of solutions to the homotopy

system (22), which intersects both the level of t = 1 and t = 0. We denote by H̃−1
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the set of all (x, t) ∈ X × [0, 1] satisfying the equilibrium system (22). From a similar

discussion as in the LB-DH method, we attain the following theorem.

Theorem 6. The set H̃−1 contains a path-connected component that intersects both

X × {0} and X × {1}.

Theorem 6 ensures the global convergence of the CQP-DH method. For numerical

implementation, we further need to construct an everywhere smooth path leading to a

PeSE. That is, one must eliminate the complementarity conditions λi
ωj(x

i
ωj − tη0) = 0

by making an appropriate transformation of variables in the system (22). For any

i ∈ N , ω ∈ Ω and yiωj ∈ Rm, let

λi
ωj(y) = max {0,−yiωj}ℓ and xi

ωj(y, t) = tη0 +max {0, yiωj}ℓ, (25)

where ℓ > 2.9 Moreover, we formulate the following CQP-DH homotopy system,

(1− θ(t))φi(ω, siωj, x
−i
ω (y, t), µi)− θ(t)(xi

ωj(y, t)− x0,i
ωj)

+λi
ωj(y)− µi

ω − tη0
∑

k∈M i
ω

λi
ωk(y)− t(1− t)αi

ωj = 0, j ∈ M i
ω, ω ∈ Ω, i ∈ N,

∑
j∈M i

ω

xi
ωj(y, t)− 1 = 0, ω ∈ Ω, i ∈ N,

(26)

where α ∈ Rm is a small perturbation. Let h(y, µ, t;α) denote the left-hand side of the

system (26), which is clearly a continuously differentiable function. The system (26)

has a unique starting point at the level of t = 1. For any α ∈ Rm, let hα(y, µ, t) =

h(y, µ, t;α) and let the solution set to the system (26) be denoted by H−1
α . It follows

from the two systems (25) and (26) that y, β and µ can be uniquely determined for

any given x. Therefore, H−1
α contains a path-connected component that intersects

both Rm × Rnd × {1} and Rm × Rnd × {0}. The following theorem verifies that this

path-connected component forms an everywhere smooth path, which eventually leads

to a perfect stationary equilibrium for Γ.

Theorem 7. For a generic choice of α ∈ Rm with ∥α∥ sufficiently small, there exists

a smooth path in H−1
α , which starts from an arbitrary point at t = 1 and ends at an

approximate perfect stationary equilibrium for the stochastic game Γ as t approaches

zero.

Proof. It has been proved in Appendix D that zero is a regular value of h(y, µ, t;α)

on Rm × Rnd × (0, 1]× Rm. From the transversality theorem, for almost all α ∈ Rm,

9The reason for choosing ℓ > 2 is the use of the transversality theorem in the following analysis,
which requires the homotopy function to be at least second-order continuously differentiable.
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zero is also a regular value of hα(y, µ, t). Moreover, we derive from a highly similar

discussion as the proof of Theorem 5 that, when ∥α∥ is sufficiently small, the smooth

path contained in the set H−1
α leads to an approximate perfect stationary equilibrium

for Γ as t approaches zero.

5 Numerical Performance

In this section, we have applied the proposed LB-DH method to solve various nu-

merical examples, including several well-known stochastic games and randomly gen-

erated stochastic games. A predictor-corrector method has been adopted for nu-

merically tracing the generated homotopy paths (Allgower and Georg (2012); Chen

and Dang (2021); Eaves and Schmedders (1999)). In our implementation, we set

η0 = 1/( max
i∈N,ω∈Ω

mi
ω+5), ζ0 = 10−5, κ = 3, and δ = 0.95. To reveal the effectiveness of

the LB-DH method for selecting a PeSE, we have exploited the IPM, a powerful ap-

proach developed in Dang et al. (2022) for finding an SSPE, to solve some examples.

We have plotted in this section the developments of the homotopy paths for several

stochastic games to illustrate how the methods work. To demonstrate the numerical

efficiency of the LB-DH method, we have also implemented the CQP-DH method and

compared its computation time with that of the LB-DH method. Moreover, we have

studied a legislative voting model based on a stochastic game paradigm and utilized

the LB-DH method to find a PeSE for this model. All the methods are coded in

MatLab(R2019a).

5.1 Several Well-Known Stochastic Games

We have tested the numerical effectiveness of the LB-DH method for computing

a PeSE in Example 1. Recall that the stochastic game in Example 1 has three

SSPEs, (s1ω11
, s2ω11

, s1ω21
, s2ω21

), (s1ω12
, s2ω12

, s1ω21
, s2ω21

) and (s1ω13
, s2ω13

, s1ω21
, s2ω21

), and only

(s1ω12
, s2ω12

, s1ω21
, s2ω21

) is a PeSE. By applying the LB-DH method to this example, we

have eventually reaped the unique PeSE. The method has started from a total mixed

strategy profile, (x0,1
ω11

, x0,1
ω12

, , x0,1
ω13

, x0,2
ω11

, x0,2
ω12

, x0,2
ω13

, x0,1
ω21

, x0,2
ω21

) = (0.2, 0.5, 0.3, 0.2, 0.5, 0.3, 1, 1).

The development of different variables with the number of iterations is plotted in Fig.

2.

Moreover, we have applied both the LB-DH and IPM methods to the following

examples and plotted the developments of the homotopy paths specified by the meth-

ods.
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Figure 2: The Development of Different Variables in Iterations

Example 2. N = {1, 2} and Ω ∈ {ω1, ω2}. For i = 1, 2, Si
ω1

= {siω11
, siω12

} and

Si
ω2

= {siω21
}. The payoff matrices for the players are given by

ω1 s2ω11
s2ω12

s1ω11
(0, 0) (0,−1)

s1ω12
(0, 0) (−1,−1)

,
ω2 s2ω21

s1ω21
(1, 1)

.

The transition probability is π(ω̄ : ω, sω) = 0.5, for any ω̄, ω ∈ Ω.10

There are infinitely many SSPEs in this stochastic game, but only (s1ω11
, s2ω11

,

s1ω21
, s2ω21

) is a PeSE. Both the methods have started from the same mixed strategy pro-

file, (x0,1
ω11

, x0,1
ω12

, x0,2
ω11

, x0,2
ω12

, x0,1
ω21

, x0,2
ω21

) = (0.2, 0.8, 0.2, 0.8, 1, 1). The changes of different

variables in iterations in state ω1 can be found in Fig. 3. It is easy to observe from Fig.

3 that the IPM leads to a SSPE but not perfect, (x1
ω11

, x1
ω12

, x2
ω11

, x2
ω12

, x1
ω21

, x2
ω21

) =

(0.6, 0.4, 1, 0, 1, 1). The LB-DH method successfully finds the unique PeSE. That is,

(x1
ω11

, x1
ω12

, x2
ω11

, x2
ω12

, x1
ω21

, x2
ω21

) = (1, 0, 1, 0, 1, 1).

Example 3. We have N = {1, 2}, Ω = {ω1, ω2}, S1
ω1

= {s1ω11
, s1ω12

, s1ω13
}, S2

ω1
=

{s2ω11
, s2ω12

, s2ω13
}, S1

ω2
= {s1ω21

}, S2
ω2

= {s2ω21
}. The transition probability is π(ω̄ :

10The game in this example is derived from a stochastic extension of a normal-form game
in Mertens (1989).
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Figure 3: Numerical Comparisons

ω, sω) = 0.5, for any ω̄, ω ∈ Ω. The payoff matrices are given by

ω1 s2ω11
s2ω12

s2ω13

s1ω11
(1, 1) (0, 0) (1, 1)

s1ω12
(0, 0) (0, 0) (0, 10)

s1ω13
(1, 1) (5, 0) (1, 1)

and
ω2 s2ω21

s1ω21
(0, 0)

.

The transition probability is π(ω̄ : ω, sω) = 0.5, for any ω̄, ω ∈ Ω.11

There are infinitely many SSPEs in this stochastic game, which includes all mix-

tures between the first and third actions for both players in state ω1. Nevertheless,

only (s1ω13
, s2ω13

, s1ω21
, s2ω21

) satisfies the notion of perfectness. Both the methods have

started from the same point,

(x0,1
ω11

, x0,1
ω12

, , x0,1
ω13

, x0,2
ω11

, x0,2
ω12

, x0,2
ω13

, x0,1
ω21

, x0,2
ω21

) = (0.6, 0.2, 0.2, 0.6, 0.2, 0.2, 1, 1).

The changes of x1
ω11

, x1
ω12

, and x1
ω13

are plotted in Fig. 4. It can be seen from Fig. 4

that the IPM fails to find a PeSE while the LB-DH method is successful in doing so.

The above examples illustrate the effectivenss of the LB-DH method for finding

a PeSE. As we know, the development of homotopy paths is closely associated with

the starting point. In other words, a homotopy method starting from different points

11The game in this example is derived from an extension of a normal-form game in McKelvey and
Palfrey (1995).
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Figure 4: Numerical Comparisons

may lead to different ending points. To further ensure the rigor of the results in

the above experiments and confirm the effectiveness of the LB-DH method, we have

repeatedly run the methods with various randomly generated starting strategy profiles

x0 and reported the success rate of the methods in Table 5.1, 5.1, where “S” (or “F”)

means the method succeeds (or fails) to compute a PeSE. It follows from the numerical

results that the LB-DH method has achieved a 100% success rate in computing PeSEs

regardless of the starting point, while the IPM might reach any possible SSPE and

therefore has failed to find a PeSE for stochastic games with a large number of SSPEs.

5.2 Randomly Generated Stochastic Games

In addition to the above examples, we have generated extensive randomly generated

stochastic games for varying n, d, and m0, where m0 denotes the number of actions

for each player in each state. Payoffs are uniformly chosen from the interval [−10, 10]

and set to be zero with probability “pd0”, where “pd0” is a random value in [0, 0.8].

Clearly, “pd0” measures the sparseness of the payoff matrix; that is, a larger value

of “pd0” leads to a sparser payoff matrix. For numerical comparisons, we have run

the LB-DH and CQP-DH methods to compute PeSEs for the randomly generated

games.12 Moreover, to verify that the LB-DH method gains from eliminating the

12To shuffle the deck even more against us and illustrate the numerical efficiency of the LB-DH
method, we have implemented the CQP-DH method with ℓ = 2 in numerical experiments, which on
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Test (x0,1
ω11

, x0,1
ω12

, x0,2
ω11

, x0,2
ω12

) LB-DH IPM

1 (0.4826, 0.5174, 0.2528, 0.7472) S F

2 (0.6935, 0.3065, 0.6449, 0.3551) S F

3 (0.4621, 0.5379, 0.4752, 0.5248) S F

4 (0.4833, 0.5167, 0.4878, 0.5122) S F

5 (0.2757, 0.7243, 0.5145, 0.4855) S F

6 (0.6382, 0.3618, 0.2376, 0.7624) S F

7 (0.5962, 0.4038, 0.5800, 0.4200) S F

8 (0.1879, 0.8121, 0.6156, 0.3844) S F

9 (0.7977, 0.2023, 0.7686, 0.2314) S F

10 (0.5718, 0.4282, 0.2728, 0.7272) S F

Table 1: Numerical Performance in Example 2

Test (x0,1
ω11

, x0,1
ω12

, x0,1
ω13

, x0,2
ω11

, x0,2
ω12

, x0,2
ω13

) LB-DH IPM

1 (0.3874, 0.1816, 0.4310, 0.3253, 0.3564, 0.3183) S F

2 (0.4710, 0.2215, 0.3075, 0.4007, 0.3225, 0.2768) S F

3 (0.3309, 0.3033, 0.3033, 0.2059, 0.4541, 0.3400) S F

4 (0.4962, 0.1755, 0.3283, 0.2304, 0.4058, 0.3638) S F

5 (0.2609, 0.4470, 0.2921, 0.3404, 0.3966, 0.2630) S F

6 (0.5994, 0.2026, 0.1980, 0.3566, 0.4141, 0.2293) S F

7 (0.2896, 0.3760, 0.3344, 0.3686, 0.3912, 0.2402) S F

8 (0.3442, 0.3450, 0.3108, 0.3622, 0.4638, 0.1740) S F

9 (0.2407, 0.4949, 0.2644, 0.3800, 0.1734, 0.4466) S F

10 (0.1823, 0.3916, 0.4261, 0.3255, 0.2752, 0.3993) S F

Table 2: Numerical Performance in Example 3
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Bellman equation (1), we have tested the efficiency of the LB-DH method without

eliminating the Bellman equation (LB-DH-NR). Each experiment with the same triple

of (n, d,m0) has been run ten times, and the average computational results have been

reported in this section.

5.2.1 Comparisons with the CQP-DH Method

We let n be equal to 2, 3, and 4. For any given n, we take d and m0 from 2 to 5,

which induces several groups of stochastic games with different scales. The LB-DH

and CQP-DH methods have been adopted for solving those games, and the compar-

ison results have been reported in Table 5.2.1, where “AVER” is the average com-

putation time (in seconds) for each triple, “MAX” is the maximal computation time

(in seconds), “MIN”is the minimal computation time (in seconds), “STDEV” is the

standard deviation in the computation time, and “Ratio” equals
AVER of LB-DH

AVER of CQP-DH
.

From the last column of Table 5.2.1, it can be seen that the percentage ratio of

the computation time of the LB-DH and CQP-DH methods is around 10%, which

implies that the LB-DH method significantly outperforms the CQP-DH method. The

standard derivations of computation time show that the LB-DH method is much more

stable than the CQP-DH method.

5.2.2 Comparisons with the LB-DH-NR

This section focuses on large-scale stochastic games, which are considerably difficult

to be solved with the CQP-DH method in a reasonable time. The LB-DH and LB-DH-

NR have been implemented to compute PeSEs for these games, where the homotopy

system for the LB-DH-NR is given by

(1− θ(t))φi(ω, siωj, x
−i
ω (z, t), µi) + λi

ωj(z, t)− βi
ω = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,∑
j∈M i

ω

xi
ωj(z, t)− 1 = 0, ω ∈ Ω, i ∈ N,

µi
ω = (1− θ(t))φi(ω, xω(z, t), µ

i) + θ(t)(1− η0m
i
ω) ω ∈ Ω, i ∈ N,

(27)

with x(z, t) and λ(z, t) the same as those in (17). We have reported the average com-

putation time (in seconds) in Table 5.2.2. The improvement in efficiency brought

by the elimination is also shown in Table 5.2.2, which reads as “ImRatio”=1 −
AVER of LB-DH

AVER of LB-DH-NR
.

average leads to shorter computational times than the case with ℓ > 2.

28



LB-DH CQP-DH

MAX MINAVERSTDEV MAX MIN AVER STDEV Ratio

(d,m0)

n = 2

(2, 2) 4.17 0.43 1.99 1.25 57.32 0.62 24.01 20.61 8.29%

(2, 5) 13.51 0.86 5.29 3.77 140.23 1.26 59.18 46.62 8.94%

(3, 4) 14.16 4.31 10.19 1.75 242.65 14.14 146.10 31.72 6.97%

(4, 3) 20.24 6.46 13.16 4.65 226.32 66.47 178.47 49.37 7.37%

(5, 2) 29.97 5.95 15.02 7.38 524.02 32.92 214.06 154.37 7.01%

(d,m0)

n = 3

(2, 2) 17.19 2.83 5.57 4.34 282.87 7.85 81.17 82.04 6.86%

(2, 5) 26.27 6.75 15.91 6.91 294.71 72.54 163.49 90.62 9.73%

(3, 3) 36.48 15.61 24.08 7.13 467.12 127.00 270.75 114.91 8.89%

(4, 2) 45.20 9.05 24.05 11.66 598.61 56.45 251.89 166.20 9.54%

(d,m0)

n = 4

(2, 2) 20.42 3.30 9.47 5.21 299.77 12.08 100.13 85.84 9.45%

(2, 4) 37.59 7.97 21.61 10.58 403.44 24.52 216.18 143.61 9.99%

(3, 2) 39.23 13.73 27.46 2.74 279.94 36.54 128.49 83.71 12.63%

(4, 2) 162.7522.07 63.20 49.92 3505.53 45.20 1081.921378.93 7.63%

Table 3: Numerical Performance and Comparisons
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LB-DH LB-DH-NR ImRatio

n = 3/(d,m0)

(3, 7) 149.58 179.25 16.55%

(4, 6) 472.45 558.02 15.33%

(5, 5) 299.36 371.59 19.43%

(6, 6) 901.96 1181.59 23.66%

(7, 3) 426.56 606.57 29.67%

(7, 7) 4820.88 7240.56 33.41%

n = 4/(d,m0)

(3, 7) 769.48 871.32 11.69%

(4, 6) 711.73 1055.56 32.57%

(4, 7) 1470.76 2237.81 34.27%

(5, 5) 1379.07 1978.78 30.31%

(6, 5) 2045.60 2878.29 28.93%

(7, 4) 2384.97 2920.30 18.33%

n = 5/(d,m0)

(3, 6) 2639.46 3674.06 28.16%

(4, 5) 1585.87 1981.08 19.94%

(5, 4) 2368.15 3281.12 27.82%

(6, 3) 1553.67 2041.08 23.88%

n = 6/(d,m0)

(3, 5) 2101.86 2732.08 23.06%

(4, 4) 2209.21 2736.01 19.25%

(5, 3) 2259.47 2746.82 17.74%

n = 7/(d,m0)

(3, 4) 2033.90 2552.62 20.26%

(4, 3) 1462.38 1804.41 18.95%

(4, 4) 6018.24 7570.19 20.50%

Table 4: Average Computation Time and Comparisons
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Table 5.2.2 confirms the effectiveness of the LB-DH method to compute PeSEs

for stochastic games with scales up to n = 7, d = 7 or m0 = 7. It can be seen

that the average computation time becomes larger with the increase of n, d, and m0.

The last column of Table 5.2.2 affirms that the elimination of the Bellman equation

enhances the numerical efficiency of the LB-DH method. Moreover, among the three

parameters n, d, and m0, n is the most influential factor for the computational cost,

which aligns with the observations made for the computation of SSPEs in Herings

and Peeters (2004); Li and Dang (2020).

5.3 An Application in Voting Problems

Consider a voting model carried out by three voters for two options. In any stage t,

the voters simultaneously and independently vote, a or b. If they choose the same

option, the voting ends, and this option will be implemented in the subsequent stages.

Otherwise, the voters pay a voting fee in stage t and start a new round of voting in

stage t + 1. This voting problem can be formulated into a stochastic game with

infinitely many stages. More specifically, N = {1, 2, 3} and Ω = {ω1, ω2, ω3}, where
ω1 = {a new round of voting starts}. The states ω2 and ω3 correspond to the states

in which the voting has ended, where ω2 = {a has been implemented} and ω3 =

{b has been implemented}. In ω1, the voters have two actions, which read as: siω11
=

{vote for a} and siω12
= {vote for b} with i = 1, 2, 3. Moreover, the payoff matrices

are given by

ω1 s2ω11
s2ω12

s1ω11
(1, 1, 1) (−1,−1,−1)

s1ω12
(−1,−1,−1) (−1,−1,−1)

s3ω11

,

ω2 s2ω21

s1ω21
(1, 1, 1)

s3ω21

,

ω1 s2ω11
s2ω12

s1ω11
(−1,−1,−1) (−1,−1,−1)

s1ω12
(−1,−1,−1) (−1,−1,−1)

s3ω12

,

ω3 s2ω31

s1ω31
(0, 0, 0)

s3ω31

.

If the current state is ω1 and unanimity is not achieved, the system will jump to ω1

with probability 1. Otherwise, the system will jump to ω2 or ω3 with probability 1.

Furthermore, states ω2 and ω3 are absorbing. That is, once the system reaches ω2 or

ω3, it will never leave them.

The strategy profile with all individuals voting for a in the state ω1 is the unique
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PeSE in this game. However, there exists a non-perfect SSPE with all individuals

voting for b. Starting from a randomly generated strategy profile, the LB-DH method

eventually leads to the unique PeSE, where (x1
ω11

, x2
ω11

, x3
ω11

) = (1, 1, 1). The develop-

ments of different variables in iterations have been plotted in Fig. 5.

Figure 5: Development of t and xω1 in the various iterations.

6 Conclusions and Future Research

In this paper, we have extended to stochastic games the concept of perfect equilib-

rium for strategic games and formulated the notion of perfect stationary equilibrium

(PeSE), which can effectively eliminate some counterintuitive stationary equilibria

in stochastic games. To find such an equilibrium, we have developed a logarithmic-

barrier differentiable homotopy (LB-DH) method. The basic idea of the method is

incorporating a logarithmic-barrier term into the objective functions of the original

stochastic game and constituting a logarithmic-barrier stochastic game. A scheme of

eliminating the Bellman equation has been exploited in the development, which signif-

icantly reduces the number of variables in the equilibrium system of the logarithmic-

barrier game. We have proved that the set of solutions to the resulting system con-

tains a differentiable homotopy path, which starts from an arbitrary given point and

ends at a PeSE for the stochastic game of interest. To verify the numerical effec-

tiveness of the LB-DH method, we have applied the method to several well-known

stochastic games with multiple stationary equilibria. Numerical results show that the

LB-DH method can always lead to a PeSE. To illustrate the numerical efficiency of

the LB-DH method, we have compared it with the stochastic extension of an exist-

ing method, called the convex-quadratic-penalty homotopy (CQP-DH) method, on
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extensive randomly generated stochastic games. Numerical results confirm that the

LB-DH method significantly outperforms the CQP-DH method in computation time.

Moreover, numerical comparisons tell us that the LB-DH method gains from elimi-

nating the Bellman equation. The perspective of the proposed method creates some

opportunities to investigate several other refinements of stationary equilibria, such as

proper stationary equilibria and perfect d-proper stationary equilibria.

A Transversality Theorem (Mas-Colell (1989))

Theorem 8. Let f : S × Rl → Rs be Cr, where S ⊂ Rn is an open set and r ≥
1 + max{0, n − s}. If zero is a regular value of f, then zero is a regular value of

f(·, w) : S → Rs for almost all w ∈ Rl.

B Proof of Lemma 2

This appendix shows that the Jacobian matrix of p at (z, µ, 1) ∈ Rm×Rnd×{1} such

that p(z, µ, 1) = 0 is of full rank. This result is used in the proof of Lemma 2. At

t = 1, system (18) reduces to

λi
ωj(z, 1)− µi

ω − η0
∑

k∈M i
ω

λi
ωk(z, 1) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

∑
j∈M i

ω

xi
ωj(z, 1)− 1 = 0, ω ∈ Ω, i ∈ N.

(28)

The Jacobian matrix of p at the starting point (z, µ, 1) reads as

Jp(z, µ, 1) =

A0 −diag(emi
ω
)

B0 0

 ∈ R(m+nd)×(m+nd),
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where emi
ω
∈ Rmi

ω is a column vector with all elements equal to one and A0 = diag(Ci
ω :

ω ∈ Ω, i ∈ N) ∈ Rm×m is a block diagonal matrix with

Ci
ω =



(1− η0)
∂λi

ω1(z, 1)

∂ziω1
−η0

∂λi
ω2(z, 1)

∂ziω2
· · · −η0

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

−η0
∂λi

ω1(z, 1)

∂ziω1
(1− η0)

∂λi
ω2(z, 1)

∂ziω2
· · · −η0

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω
...

...
. . .

...

−η0
∂λi

ω1(z, 1)

∂ziω1
−η0

∂λi
ω2(z, 1)

∂ziω2
· · · (1− η0)

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω


.

Moreover,

B0 =
∂x(z, t)

∂z
= diag(∂xi

ω) ∈ Rnd×m

with

∂xi
ω = (

∂xi
ωj

∂ziωj
)j∈M i

ω
∈ R1×mi

ω .

Now we prove that Ci
ω is of full rank. Suppose there exists a vector v ∈ Rmi

ω such

that Ci
ωv = 0. That is,

(1− η0)
∂λi

ω1(z, 1)

∂ziω1
v1 − η0

∂λi
ω2(z, 1)

∂ziω2
v2 − . . .− η0

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

vmi
ω
= 0,

−η0
∂λi

ω1(z, 1)

∂ziω1
v1 + (1− η0)

∂λi
ω2(z, 1)

∂ziω2
v2 − . . .− η0

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

vmi
ω
= 0,

...

−η0
∂λi

ω1(z, 1)

∂ziω1
v1 − η0

∂λi
ω2(z, 1)

∂ziω2
v2 . . .+ (1− η0)

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

vmi
ω
= 0.

(29)

Summing all the equations in the system above, we have that

(1−mi
ωη0)(

∂λi
ω1(z, 1)

∂ziω1
v1 +

∂λi
ω2(z, 1)

∂ziω2
v2 + . . .+

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

vmi
ω
) = 0.
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Recall that η0 < 1/maxω∈Ω,i∈N mi
ω. Therefore it holds for all i ∈ N and ω ∈ Ω that

1−mi
ωη0 > 0. It follows that

∂λi
ω1(z, 1)

∂ziω1
v1 +

∂λi
ω2(z, 1)

∂ziω2
v2 + · · ·+

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

vmi
ω
= 0.

Multiplying both sides of the above equation by η0 and adding the result to the first

equation in system (29), we obtain that

∂λi
ω1(z, 1)

∂ziω1
v1 = 0.

Similarly, one can prove that for any j ∈ M i
ω,

∂λi
ωj(z, 1)

∂ziωj
vj = 0.

At the starting point ziωj = (x0,i
ωj − η0)

1/κ − 1 it holds that

∂λi
ωj(z, 1)

∂ziωj
=

κ

2
(

ziωj
ziωj + 2

− 1),

which is obviously negative. Consequently, v = 0, which implies that Ci
ω is of full

rank. Hence, A0 is also of full rank.

Next, at the starting point ziωj = (x0,i
ωj − η0)

1/κ − 1, it holds that

∂xi
ωj(z, 1)

∂ziωj
= κ

ziωj + 1

ziωj + 2
,

which is strictly positive. Therefore, B0 is clearly of full row rank.

By applying standard row operations to the Jacobian matrix Jp(z, µ, 1), one trans-

forms this Jacobian matrix to the following matrix,(
A0 −diag(emi

ω
)

0 B0A
−1
0 diag(emi

ω
)

)
.

SinceB0 andA−1
0 diag(emi

ω
) are both diagonal matrices, it follows thatB0A

−1
0 diag(emi

ω
)

is a diagonal matrix. We now compute the diagonal element corresponding to i ∈ N
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and ω ∈ Ω, which is equal to ∂xi
ω(C

i
ω)

−1emi
ω
. We define

v =
1

1−mi
ωη0

 1
∂λi

ω1(z,1)

∂ziωj

, . . . ,
1

∂λi
ωmi

ω
(z,1)

∂zi
ωmi

ω


⊤

,

a strictly negative column vector in Rmi
ω . It holds that Ci

ωv = emi
ω
, so our designated

diagonal element is equal to

∂xi
ω(C

i
ω)

−1emi
ω
= ∂xi

ω(C
i
ω)

−1Ci
ωv = ∂xi

ωv,

the product of a strictly positive and a strictly negative vector, so a strictly negative

number. It follows that B0A
−1
0 diag(emi

ω
) is of full rank. As a result, Jp(z, µ, 1) is of

full rank.

C Proof of Theorem 4

We prove in this appendix that the Jacobian matrix of p has full row rank if t ∈ (0, 1).

This result is used in the proof of Theorem 4. When t ∈ (0, 1), the Jacobian matrix

of p(z, µ, t;γ) reads as

Jp(z, µ, t;γ) =


∂p1
∂z

∂p1
∂µ

∂p1
∂t

−t(1− t)Im

B0 0
∂p2
∂t

0

 ∈ R(m+nd)×(2m+nd+1),

where p1 and p2 represent the first and second groups of equations in system (19),

respectively. The matrix B0 has been defined in Appendix B and has full row rank.

Obviously, −t(1−t)Im is of full rank. It follows immediately that the Jacobian matrix

Jp(z, µ, t;γ) has full row rank and Rank[Jp(z, µ, t;γ)] = m + nd. This together with

Lemma 2 establishes that zero is a regular value of p on Rm × Rnd × (0, 1]× Rm.

D Proof of Theorem 7

We prove in this appendix that zero is a regular value of h on Rm×Rnd× (0, 1]×Rm.

This result is used in the proof of Theorem 7.
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First, let us consider the case that t = 1. System (26) becomes

−(xi
ωj(y, 1)− x0,i

ωj) + λi
ωj(y)− µi

ω − η0
∑

j∈M i
ω

λi
ωj(y) = 0, j ∈ M i

ω, ω ∈ Ω, i ∈ N,

∑
j∈M i

ω

xi
ωj(y, 1)− 1 = 0, ω ∈ Ω, i ∈ N.

(30)

We evaluate the Jacobian matrix of h at a point (y, µ, 1) ∈ Rm×Rnd×{1} such that

h(y, µ, 1) = 0. The matrix is given by

Jh(y, µ, 1) =

(
A −diag(emi

ω
)

B 0

)
∈ R(m+nd)×(m+nd),

where emi
ω
∈ Rmi

ω is a column vector with all elements equal to one, so diag(emi
ω
) ∈

Rm×nd, and A = ℓ · diag(Di
ω : ω ∈ Ω, i ∈ N) ∈ Rm×m is a block diagonal matrix with

Di
ω =


−ξiω1 − (1− η0)f

i
ω1 η0f

i
ω2 · · · η0f

i
ωmi

ω

η0f
i
ω1 −ξiω2 − (1− η0)f

i
ω2 · · · η0f

i
ωmi

ω
...

...
. . .

...

η0f
i
ω1 η0f

i
ω2 · · · −ξi

ωmi
ω
− (1− η0)f

i
ωmi

ω

 ,

where ξiωj = max{0, yiωj}ℓ−1 and f i
ωj = max{0,−yiωj}ℓ−1. Moreover, it holds that

B = ℓ · diag(ξiω
⊤
) ∈ Rnd×m, where ξiω = (ξiωj)j∈M i

ω
is a column vector with dimension

mi
ω.

Since h(y, µ, 1) = 0, it holds that, for every i ∈ N , for every ω ∈ Ω, for every

j ∈ M i
ω, y

i
ωj = (x0,i

ωj − η0)
1/ℓ > 0, so the matrix A is a full-rank diagonal matrix and

the matrix B is of full row rank. By row operations, the Jacobian matrix Jh(y, µ, 1)

can be transformed to (
A −diag(emi

ω
)

0 BA−1diag(emi
ω
)

)
The matrix BA−1diag(emi

ω
) ∈ Rnd×nd is a diagonal matrix with rank nd. Therefore,

the Jacobian matrix Jh(y, µ, 1) is of full rank, which shows that zero is a regular value

of h(y, µ, 1).

Next, we consider the case that t ∈ (0, 1). We evaluate the Jacobian matrix of h

at a point (y, µ, t;α) ∈ Rm ×Rnd × (0, 1)×Rm such that h(y, µ, t;α) = 0. It is given

by

Jh(y, µ, t;α) =

(
E1 E2 E3 t(1− t)Im

B 0 η0e 0

)
∈ R(m+nd)×(2m+nd+1),

where B is defined as above and e ∈ Rnd. The matrices E1 ∈ Rm×m, E2 ∈ Rm×nd,
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and E3 ∈ Rm×1 are the derivatives of the first group of equations with respect to y,

µ, and t, respectively. Clearly, t(1− t)Im is of rull rank m when t ∈ (0, 1). It follows

from the previous discussion that B is of full row rank nd. It follows that the rank of

the Jacobian matrix Jh(y, µ, t;α) is (m + nd). Therefore, Jh(y, µ, t;α) is of full row

rank. This completes the proof.
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