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The combination of network theory and network psychometric methods has opened up a variety of
new ways to conceptualize and study psychological disorders. The idea of psychological disorders as
dynamic systems has sparked interest in developing interventions based on results of network analytic
tools. However, simply estimating a network model is not sufficient for determining which symptoms
might be most effective to intervene upon, nor is it sufficient for determining the potential efficacy of
any given intervention. In this paper, we attempt to remedy this gap by introducing fundamental concepts
of control theory to both psychometricians and applied psychologists. We introduce two controllability
statistics to the psychometric literature, average and modal controllability, to facilitate selecting the best
set of intervention targets. Following this introduction, we show how intervention scientists can probe the
effects of both theoretical and empirical interventions on networks derived from real data and demonstrate
how simulations can account for intervention cost and the desire to reduce specific symptoms. Every step
is based on rich clinical EMA data from a sample of subjects undergoing treatment for complicated grief,
with a focus on the outcome suicidal ideation. All methods are implemented in an open-source R package
netcontrol, and complete code for replicating the analyses in this manuscript are available online.

Keywords: control theory, network psychometrics, complicated grief, personalizedmedicine, intervention
science, psychopathology.

1. Introduction

Common cause models of psychopathology posit that correlations between symptoms arise
from an underlying disease entity (e.g., coughing, fever, and Koplik spots co-occur due to the
measles virus). Although this common cause model is clearly appropriate for some diseases
such as those caused by pathogens, the utility of this perspective for psychopathology has been
increasingly questioned (Borsboom 2008; Kendler et al. 2011). In contrast, the network theory of
psychopathology posits that psychological disorders can be described as sets of causally interact-
ing symptoms (Borsboom 2017; Cramer et al. 2010). Under this framework, psychopathology is
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an emergent property constructed from dynamic interactions among symptoms and other related
problems (Radden 2018; Kendler et al. 2011). This theoretical stance is grounded in insights
drawn from philosophy of psychiatry, network science, systems science, and historical calls for
greater complexity in clinical psychology and, in recent years, has generated a rapidly growing
body of applied research (Robinaugh et al. 2019).

Researchers working within the network approach to psychopathology have relied heavily
on network psychometrics: a class of statistical models derived from diverse fields (e.g., statistical
mechanics) that seeks to model relations between symptoms (Epskamp 2017). Researchers using
these methods often focus their analyses on identifying “central” symptoms strongly intercon-
nected within the symptom network. The hope is that such analyses may identify symptoms that
play an important causal role in the maintenance of the disorder and, thus, may be an important
target for treatment (Contreras et al. 2019; Fried et al. 2017). Although early network studies
often assessed cross-sectional (i.e., between-subject) data, there has been a growing focus on
examining temporal (i.e., within-subject) data, as this level of analysis is better aligned with
the within-person hypotheses about disease etiology and treatment that are the focus of network
theory (Jordan et al. 2020). It is posited that targeted treatment of “central” symptoms in these
temporal networks (i.e., those exhibiting strong temporal associations with other symptoms) will
produce considerable downstream improvement in other symptoms, a position that is consistent
with how many clinicians think about mental disorder treatment (Kim and Ahn 2002). Clinical
trials testing this idea are already underway (Levine and Leucht 2016).

Unfortunately, due to their chaotic nature, predicting how complex, dynamical systems will
respond to intervention is exceedingly difficult and there is no guarantee that treatments targeting
central symptoms will actually offer the hypothesized benefits outlined above. In this paper,
we propose that control theory, a well-established mathematical discipline, provides a better,
data-driven way to identify optimal treatment targets while also equipping us to evaluate the
theoretical efficacy of proposed interventions using estimated network structures.1 We will begin
by introducing readers to network psychometrics and to the core concepts in control theory. After
these primers, we introduce optimal control methods and demonstrate in two simple simulated
examples how these control theory methods can be applied to psychological data. We then further
illustrate the clinical utility of control theory by using it in a series of simulation studies to (a)
examine single target interventions, (b) evaluatemultiple interventions applied simultaneously and
(c) simulate empirical interventions. We conclude by discussing the limitations of this approach
and the steps needed in future research to fully realize the potential of control theory within
psychological science.

2. Introduction to Network Psychometrics and Control Theory

The first step to any application of control theory is that of system identification (Ljung 1999).
In traditional control theory settings such asmanufacturing or engineering, the systems in question
are often known a priori, such as a production line. In the case of psychopathology, the dynam-
ics governing the relations between symptoms overtime are unknown and must be determined.
In a network psychometric framework, we construct a psychological network. A psychological
network consists of nodes, representing the symptoms or problems under study, and edges, rep-

1We intend thismanuscript to serve as an introduction to control theory both formethodologistsworkingwithin clinical
sciences as well as clinical psychologists wishing to better model disorders and possible treatment effects. Accordingly,
although many technical details are included in the main text, some have been omitted to provide a more accessible
overview. Further technical details about the models and code to replicate all results presented in this paper are included in
the SupplementaryMaterials (SMs) and at https://osf.io/f268v/. All controllability centralitymeasures and optimal control
inputs are calculated using netcontrol (Henry 2020), an open-source, publicly available R package implementing
many methods from control theory for use in psychological and neurological data analysis.

https://osf.io/f268v/
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Symptom Key

SI : Suicidal ideation

T:F: Thoughts about personal future (Reverse coded)

T:D: Thoughts about loved one's death

T:L: Thoughts about deceased loved one

App: Spending time in places/with things that 

          remind you of the deceased

EmP: Emotional pain

PsA: Engaging in positive activities (Reverse coded)

YLO: Yearning for loved one

Avd: Avoiding places/things that 

          remind you of the deceased

Pls: Pleasure (Reverse coded)
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Figure 1.
Symptom Dynamics of Complicated Grief. Blue edges represent positive relations, and red represents negative relations.
Autoregressive effects were rescaled to improve edge contrast, and edges with absolute values below .05 were omitted
from the visualization. Note that this network represents the lagged relation between the changes in symptom values
(i.e., the use of an integrated VAR) rather than the lagged relations between the symptom values themselves.

resenting some kind of relation between the symptoms, be it causal or statistical. Edges may
represent relations among symptoms within a single individual over time or the between-subject
relations among symptoms in a group of individuals. Consider the network presented in Fig. 1
estimated using multilevel integrated vector autoregressive models (ML-VARI; Bringmann et al.
2013; Epskamp et al. 2018; Shumway and Stoffer 2017) using ecological momentary assessment
(EMA) data of symptoms from 8 subjects during treatment for complicated grief (For details on
why multilevel integrated VAR is used, see Supplementary Materials). Complicated grief is a
bereavement-specific syndrome characterized by persistent, intense, and impairing grief-related
thoughts, emotions, and behaviors. Nodes in the network represent 9 core symptoms of compli-
cated grief as well as thoughts about suicide. Edges represent the relation between the change in
a symptom from time t − 1 to t and the change in another symptom from time t to time t + 1,
controlling for all other lagged relations. Because relations are temporal and differ in magnitude,
the resulting edges are both directed and weighted. That is, they provide information about both
the direction of the temporal association (e.g., change in thoughts about the future predicts change
in emotional pain, but not vice versa) and the strength of that association (e.g., the association
from suicidal ideation to thoughts about the loved one is stronger than the reverse).

Importantly, a network model-informed intervention requires more than just estimating net-
work structure. The behavior of a dynamical system, such as the ones proposed by network
psychometric models, can be difficult to predict on the basis of the network structure alone. An
intervention does not have just an instantaneous effect, rather that instantaneous treatment effect
will propagate over time throughout the system, which in turn can change the overall impact of
the intervention. To understand the impact of interventions on a dynamical system, an approach
that goes beyond structure to examine how the complex dynamics of the system will be affected
over time is required. Control theory provides one such toolkit.
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Table 1.
Glossary of control theory terms, psychological equivalent, and definition.

Control theory Psychological equivalent Definition

Physical plant Psychological system The dynamical system
that is being
controlled

Control inputs Interventions/treatments Intentional inputs to
the system

Disturbance Disturbance Random inputs to the
system (not
measurement error)

Error Measurement Error Random error due to
measurement
(doesn’t impact the
system)

State Symptom value The (possibly
unobserved) values
of the variables in the
system

Observation Measurement/Item The observed
measurement of a
variable in the system

Energy Cost of intervention The overall cost of
applying control
inputs

2.1. Primer on Control Theory

Control theory is a mathematical discipline concerned with the control of dynamic systems.
It was first developed to improve manufacturing outcomes. For example, helping to determine
the series of inputs to a manufacturing plant that optimize production while minimizing cost.
Since its development, control theory has emerged as an important area of research in diverse
areas of science. In this section, we will introduce several fundamental concepts of control theory
with a focus on its application in psychopathology. To make this introduction as accessible as
possible, wewill primarily use terminology frompsychology and network science andwill include
equivalent terms from control theory parenthetically and in bold italics (e.g., psychological term
(control theory term)). To further assist translation, a glossary of control theory terms and their
equivalent concepts in psychology appears in Table 1.

Notably, we are not the first to propose applying control theory to psychological research.
Hyland (1987) applied principles of control theory to theoretical models of depression, while
Carver and Scheier (1998) and Johnson et al. (2006) examined how control theory principles map
onto self-regulation, cognition, and behavior. Other researchers have applied control theory prin-
ciples to adaptive intervention designs. For example, Molenaar (1987), Sinclair and Molenaar
(2008) and Molenaar (2010) demonstrated how optimal control methods can be used to indi-
vidualize psychotherapeutical trajectories. Rivera et al. (2007) likewise described how to apply
control theory to model and assess adaptive interventions on single target variables. In perhaps
the most comprehensive application, Rivera et al. (2018) used a sophisticated form of control
called model predictive control (MPC) in two separate interventions with sedentary, overweight
adults and pregnant women (for further discussion of the utility ofMPC, see our Future Directions
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section). Finally, there is a related large literature on adaptive interventions (Collins et al. 2004;
Nahum-Shani et al. 2018), which is a considerably broader topic than just control theory, and
addresses key considerations for both study and intervention design.

Prior applications of control theory have primarily focused on either theoretical implications
or single target behavioral interventions (e.g., an intervention to increase walking in sedentary
adults (Rivera et al. 2018)). With the development of network psychometrics and the expansion
of intensive longitudinal data collection, there is a growing opportunity for more complex appli-
cations of control theory: applications which promise to not only tailor existing interventions to
individual needs, but also to improve our understanding of psychological disorders by identify-
ing both core controllable symptoms and heterogeneity in these symptoms and their response to
treatment. Accordingly, our introduction to control theory will focus on its for application in these
growing areas of research.

2.2. Defining the Control System

There are many possible system types, including continuous time, nonlinear, time-varying,
and stochastic systems. Here, it is important to note the distinction between a system in the
control theory sense, and a model in the statistical sense. A data model (or statistical model) is
a representation of the data. A control system is a combination of the data model and defined
set of control inputs. In our case, the aforementioned VARI model is being used to represent
the dynamics governing the set of symptoms, and the control system we present below is an
elaboration of that model which includes control inputs.

One of the simplest types of system is the discrete linear time-invariant system (DLTI). These
control systems operate over discrete time units, have no nonlinear components (and can thus be
represented entirely using linear algebra), and the systemdynamics do not change over time (hence
time-invariant). This type is well-suited for both representing network psychometric models (such
as the a VARI model depicted in Fig. 1) and for illustrating control theory techniques. As such,
we focus on DLTIs in this paper (for more information about system identification, including the
rationale for why we chose the ML-VARI model as the system of interest in this paper, see SM).

DLTI systems take the following form:

xt+1 = Axt + But
yt = Cxt

(1)

where xt is a vector of p symptom (state) values at time t , A is the p × p coefficient matrix
governing their dynamics, and B is a p × l matrix mapping l interventions (control inputs) ut to
the p symptoms. yt is the vector of the observed measurements of the symptoms (observations) at
time t whileC is a matrix that maps the true values of symptoms xt to the observed measurements
yt . If one specifies that C = I (I being the identity matrix), then yt = xt .

Although Eq. 1 is very similar to a vector autoregressive model at lag-1 that currently domi-
nates the within-subjects network literature in psychopathology (Bringmann et al. 2013; Robin-
augh et al. 2019), there are three important differences: (a) the inclusion of the control inputs ut ,
(b) the addition of an observation equation (i.e., yt = Cxt ), and (c) the lack of a disturbance term
(εt in Eq. 1). The inclusion of control inputs is a necessity, though it is important to note they
are additive inputs. The observation equation will feel familiar to readers versed in latent variable
modeling, as it maps indicators (the observed measurements) to underlying states. To simplify
our exposition, we make the assumption of complete observability throughout this manuscript
(C = I). This assumption implies that there are no latent variables and that the observed vari-
ables are perfectly reliable, which is a problematic assumption when considering psychological
constructs. Fortunately, more general forms of the C matrix can be specified to allow for latent x
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with manifest indicators y. Using more general forms of C requires testing for observability, or
the ability to reconstruct the latent variables x from the measured indicators y. For a more detailed
discussion of observability, see Preumont (1997).

Finally, in the original manufacturing context of control theory the absence of a disturbance
term is defensible as disturbances are rare. In psychological systems, regular random disturbances
are to be expected. Fortunately, however, if the random disturbance has an expected value of 0
and is uncorrelated in time (i.e., white noise), then disturbances can be ignored when considering
optimal control inputs (Molenaar 2010). The assumption of a white noise disturbance term is
common across many time series and longitudinal models used in psychology and crucially relies
on an assumption that any temporal dependence is explicitly modeled. Relaxing this assumption
and allowing for time-correlated disturbances is the purview of stochastic control theory (See
Åström (2006) for a introduction), a topic of relevance to psychological research, but not one we
will address here. To demonstrate the robustness of these methods to disturbances, we generate
white noise disturbances for each of our simulations.

3. Using Control Theory to Select Intervention Targets

With our system specified, we can now identify which symptoms are the best intervention
targets. For example, in our complicated grief network, it would be beneficial to know whether
a targeted intervention to reduce, say, emotional pain is more effective than an intervention to
increase positive engagement. However, the mere specification of the system is not sufficient to
determine how an intervention will perform, as the performance of an intervention is entirely
dependent on how it interacts with the dynamical system that it effects. Control theory provides
tools to directly quantify the theoretical impacts of a targeted intervention in the form of con-
trollability centrality measures. To begin, let us make some simplifying assumptions that reduce
notational burden. First, let C = I. This reduces the system in Eq. 1 to

xt+1 = Axt + But . (2)

The matrix B describes how a set of interventions impacts the symptom values. From this
system, we compute the controllability Gramian W∞, which is the solution to the following
Lyapunov equation in the case of a discrete time-invariant linear system (Lewis et al. 2012):

W∞ − AW∞A′ = BB′ (3)

where ′ is the transpose operator.
The controllability Gramian is related to efficacy of a given intervention with respect its

impact on the entire system. Eigenvectors with large eigenvalues define directions in the space of
x that are easier for a given intervention to move the system in (Summers et al. 2016).

Critically, the controllability Gramian refers to the controllability of the entire system using
the set of treatments specified in B. As such, we can easily use the controllability Gramian to
assess how efficiently the system can be controlled by specific symptoms. Let B = I. In this case,
each intervention defined inB is the intervention on a single symptom. Therefore, the value on the
diagonal of the controllability Gramian when B = I quantifies the effect that intervening on each
symptom individually has on the rest of the system (Summers et al. 2016). This controllability
metric is called average controllability2, which provides a direct measure of how efficient it is to

2The use of the term “average” in average controllability is an unfortunate case of naming. Here, average does not
refer to any specific statistical average, rather it is used in a more colloquial sense to mean “general” or “overall.” As
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target a given symptom for intervention, relative to the efficiency of targeting other symptoms in
the symptom.An intervention that targets a high average controllability symptomwill lead tomore
change in the system overall than an equivalently strong intervention that targets a symptom with
lower controllability. Importantly, these are relative differences, and average controllability does
not indicate that an intervention will have a strong or clinically meaningful effect. We elaborate
on this point later in Sect. 4.1.

Average controllability of individual symptoms is strongly associated with the network statis-
tic of strength (the sum of the outgoing or incoming edge weights for a given node), which is
commonly usedwhendiscussing intervention targets in psychological networks (Fried et al. 2017).
However, average controllability holds three advantages over strength as a metric of symptom
importance. First, whereas strength is concerned with network structure, average controllability
is focused on the effect of a theoretical intervention, thereby more directly reflecting the ultimate
end goal of identifying intervenable symptoms. Second, average controllability incorporates both
the directionality of edges and the sign of edges into a single value per node. In contrast, strength
is typically calculated using either outgoing or incoming edges and does not account for the sign
of edge weights (i.e., they take the absolute value). Failing to account for path signs can result in
underestimating suppression effects, where a symptom that has high out-degree is not as effec-
tive to intervene upon as a symptom with lower out-degree, simply because the high out-degree
symptom has amixture of positive and negative effects. Finally, average controllability ismodular
(Summers et al. 2016), meaning that, if one were interested in intervening on only k symptoms,
then the best set of symptoms to intervene on are the k symptoms with the greatest average con-
trollability. This guarantees that symptoms chosen on the basis of high average controllability
should be as effective when intervened upon simultaneously as when they are intervened upon
separately in isolation. In contrast, symptoms chosen on the basis of strength are more likely to
be less effective intervention targets when intervened upon together.

There is an important nuance to the use of average controllability applied to individual symp-
toms. The average controllability of an individual symptom assumes that it is possible to intervene
on that symptom in isolation. This is analogous to the reasoning behind using node strength to
identify individual symptom importance. However, as mentioned above, average controllability
is calculated on the level of interventions, and the same advantages that average controllability
has at the symptom level apply to average controllability calculated with multi-symptom inter-
ventions. The modular property of average controllability implies that the most effective set of
multi-symptom interventions (in terms of moving the system overall) are the set of interventions
with the highest average controllability.

A second controllabilitymetric ismodal controllability (Hamdan andNayfeh 1989).Whereas
average controllability quantifies the efficiency of intervening on a symptom relative to interven-
ing on other symptoms in a total symptom reduction sense, modal controllability quantifies the
“reach” of intervening on a given symptom. The “modal” in modal controllability refers to the
modes of the underlying dynamical system. Roughly speaking, modes refer to the independent
directions a system can move in and are the dynamical systems analog to the orthogonal compo-
nents of a principal components analysis in cross-sectional data.3 For example, a single-symptom
intervention that targets a symptom with low modal controllability would be more restricted in
the ways it can change other symptoms relative to a single-symptom intervention targeting a

Footnote 2 continued
such, there is the distinct possibility that researchers will use the term “mean average controllability” to refer to the average
of several values of average controllability. We sympathize with the confusion of any reader who encounters that term in
the future.

3The term mode, when applied to a linear system, refers to the set of eigenvectors along with the corresponding
eigenvalues of the dynamics matrix. These eigenvectors correspond to patterns of input that, if provided, would pass
through the system unchanged save for a multiplicative constant, which is the corresponding eigenvalue. To be concrete,
if ν is an eigenvector of A with corresponding eigenvalue λ, if Xt = ν, then Xt+1 = νA = λν
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high modal controllability symptom. Because interventions targeting high modal controllabil-
ity symptoms can effect the system in more ways, such interventions are also more likely to
impact ”hard-to-reach" symptoms that are less centrally located in the psychometric network.
Like with average controllability, modal controllability of a symptom assumes that the symptom
can be intervened on in isolation and modal controllability can be calculated for multi-symptom
interventions.

To calculate modal controllability, let λ j be the j th eigenvalue of A and νi j be the i th entry
on the j th eigenvector. The modal controllability of symptom i is then (Pasqualetti et al. 2014):

φi =
n∑

j=1

(1 − |λ j |2)|νi j |2 (4)

where n is the number of symptoms and | · | is the modulo operator for complex numbers.
Modal controllability is submodular rather than modular (Pasqualetti et al. 2014), which means
that determining the set of interventions that maximize modal controllability is not a simple
matter of choosing the k interventions with the greatest modal controllability. However, a greedy
optimization approach will result in a near optimal solution (Summers et al. 2016, p. 4).

We emphasize that average and modal controllability can be used not only to assess interven-
tions on single symptoms, but also broader intervention strategies that target multiple symptoms.
This is especially useful in the context of predefined interventions, where the goal is not to deter-
mine which symptoms are best to target, but rather to determine which interventions (out of
many) are most effective in reducing symptoms overall. Here again, we would stress that this
is a significant advantage of controllability metrics over indices of node centrality, which only
provide information about a single node in isolation and cannot be used to describe the impact of a
multi-target intervention, something that is almost certainly required in any real-world treatment
context. Finally, in the Supplementary Materials, we describe a statistical testing approach for
evaluating how the rank ordering of symptoms or interventions with respect to controllability
measures generalize from a sample to the population.

4. Using Control Theory to Simulate Treatments

The identification of treatment targets is only one advantage of a control theory approach. A
second advantage is that control theory provides the opportunity to evaluate howwell interventions
might perform, even before empirical studies such as randomized controlled trials are carried out.
We can achieve this aim using optimal control methods that seek to determine a sequence of
control inputs (i.e., interventions) that will drive a system to a desired end state with minimum
cost. To introduce these methods, we will review three key concepts: tests of controllability, cost
functions, and optimal control.

4.1. Testing Controllability

One fundamental question is whether a given system is controllable. Is it possible to control
the trajectory of all the symptoms over time, given a set of interventions and the dynamics of the
system?Note that controllability does not refer to the ability to control a single symptom. Rather, it
refers to the ability to control the entire system froma single symptomor set of symptoms.A system
is controllable if given A and B, for any desired final state x̂, there exists a series of interventions
(control inputs) such that xt̂ = x̂ for some t̂ > 0. Although this property is important to evaluate,
it does not reflect the practicality of controlling the system. A system can be mathematically
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controllable, but require an unreasonable amount of time or intervention strength. Conversely,
a system might not be mathematically controllable, but a given intervention still proves to be
effective at reducing symptoms by a clinically relevant degree. Evaluating the controllability of a
system provides useful diagnostic measures, but further steps are necessary to evaluate the actual
effect of a given intervention. There are two approaches to assessing controllability that we present
here, the first being a classical test of controllability and the second being a descriptive approach
using indirect effect calculations.

To test if a system is controllable, one can construct the following matrix:

C =
[
B,AB,A2B, . . . ,An−1B

]
(5)

where n is the number of variables in the system. The system is controllable if C has full row-rank
rank(C) = n. When we consider a single intervention that reduces the symptom of complicated
grief with the highest average controllability (i.e., suicidal ideation), we find that the system is not
controllable, as C is not full rank. This implies that the intervention targeting suicidal ideation is
not capable of reducing all symptoms to 0, even if applied at full strength over an infinite amount
of time.

For an alternative and perhaps more intuitive approach to examining controllability, we can
take advantage of the fact that AiB represents the effect of the interventions described in B after
i timesteps. Therefore,

E∞ = B +
∞∑

i=1

AiB (6)

is a p × l matrix where entry E∞[i j] represents the total effect of intervention j on symptom i if
the intervention is applied once at time i = 0. This matrix provides a practical look at the overall
effect of an intervention and can indicate whether an intervention will be effective at changing a
given symptom.

Now, consider an intervention for complicated grief that only targets suicidal ideation. We
can calculate the intervention effect for this single target intervention E∞, which is presented in
Table 2.

Table 2 indicates that a single intervention that initially reduces suicidal ideation by 1 point,
will lead to a total reduction over time of 2.09 points for suicidal ideation and 0.63 points for
thoughts: loved ones. However, the same intervention would lead to, for example, an increase
in yearning: loved ones of 0.1. As this intervention reduces some symptoms while increasing
others, this system (i.e., complicated grief) cannot be controlled by a single intervention that
targets suicidal ideation.

If a single symptom intervention on suicidal ideation failed to achieve control of the system,
the next question is: What is the minimal set of interventions that is sufficient to control the
system? Unfortunately, there is no simple solution to this problem. Determining this set exactly
(actuator placement) is computationally intractable (indeed, an NP-hard problem, Olshevsky
2014a), though there are algorithms that find a set of control inputs that render the system con-
trollable (Olshevsky 2014a,b). There are practical barriers as well. First, it might be impossible
to directly intervene on some symptoms. For example, in Cognitive Behavioral Therapy, inter-
ventions target emotional symptoms only indirectly via interventions on cognition or behavior.
Second, it is unlikely that any given intervention will only directly impact a specific symptom or
subset of symptoms, with other symptoms only impacted indirectly. Instead, interventions likely
directly effect many symptoms within a system to varying degrees of strength. We illustrate the
impact of assuming a highly specific intervention vs one with more broad effects in Sect. 5.1.
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4.2. The Cost Function

To this point, the tools we have described for evaluating the effect of an intervention do
not account for the cost of the intervention. Both approaches we have considered (controllability
indices and tests ofmathematical controllability) operate under the assumption that an intervention
can be arbitrarily applied at any strength. These tools are useful, as they provide evaluations of the
potential efficacy of an intervention. However, they do not provide any guidance as to the optimal
implementation of a given intervention. In order to apply control in any practical context, we first
need to define how costly our interventions are. To do this, we use a cost function. A general form
of the cost function that provides analytic solutions is that of a linear-quadratic regulator (Lewis
et al. 2012):

Jt = 1

2
x′
TST xT + 1

2

T−1∑

k=t

(
x′
kQxk + u′

kRuk
)

(7)

where T is the final timepoint. Many cost functions in the context of control theory are similar to
the general linear-quadratic regulator, as this form is particularly amenable to analytic solutions
to the control problem. In practice, choice of the cost function depends on the nature of the control
problem. Here, we are seeking to minimize symptom values.

In the above cost function, the matrices ST , Q, and R have important substantive interpreta-
tions. ST is a p× p positive (semi) definite matrix that provides the relative weighting of the final
values of each symptom. For example, ST = I places equal importance on each symptom. Off-
diagonal elements of ST place more importance on reducing collections of symptoms together,
instead of considering each symptom as making an independent contribution to the cost function.
Qk is a p× p positive (semi) definite matrix specifying the relative importance of each symptom
at each timepoint. For simplicity’s sake, hereQ is time-invariant but could vary over time. Finally,
R is a l×l positive (semi) definite matrix specifying the relative cost of each intervention. As with
Q, R can vary over time. By manipulating ST , Q and R, researchers can examine the theoretical
performance of their intervention set under a variety of settings.

Many cost functions in the context of control theory are similar to the general linear-quadratic
regulator, as this form is particularly amenable to analytic solutions to the control problem. In
practice, choice of the cost function depends on the nature of the control problem. Here, we are
seeking to minimize symptom values both by the final timepoint (where symptoms’ importance
are represented by ST ) and during the period of control ( where symptoms’ importance are
represented byQ), while keeping cost of the intervention minimal (with cost of each intervention
represented by R). As such, this function is a reasonable choice for the control problem at hand.

4.2.1. Determining Cost Parameters Unlike parameters that govern dynamics (i.e., A and B),
which could be inferred as part of system identification, the parameters of the cost function J
must be defined by the analyst. There are several considerations for this definition:

• Relative Weighting - Each of the matrices ST , Qt and R contribute to the total cost, and
when specifying them, the analyst must consider the relative weighting both within and
between matrices carefully. For example, if ST and Qt are I while R = 10I, then the cost
of applying interventions will be weighted more heavily than the values of symptoms.

• Scaling - If symptoms aremeasured on a different scale (i.e., one symptom is on a 1–7 point
scale, the next a 1–5 point scale), this will affect how the control parameters function. For
example, weighting the importance in the ST matrix of 1–5 symptom and a 1–7 symptom
equally (e.g., diagonal entries ofST equal 1 for those symptoms)will result in the symptoms
having unequal importance, as the scaling is different.

• Timeframe - The relative weights of R versus ST and Qt will affect the timescale of
the intervention strategy. If R makes much more of a contribution to cost than symptoms
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do, then an "optimal” intervention strategy might be to apply the intervention at very low
strength, which requires a longer intervention period. Alternatively, if cost of interventions
is not weighted strongly, then the intervention might be applied too strongly or too quickly.

• Intervention Strength - The combination of ST ,Q andR with the scaling of the observed
variables ultimately determines the scaling of the optimal control inputs ut , which in the
setting of interventions we refer to as intervention strength. It is important to chose the cost
parameters so the estimated intervention strength is interpretable, which depends on the
precise nature of the intervention. For example, if an intervention is a set of CBT sessions
in a givenmonth, a reasonable scale for intervention strength would be from 0 (no sessions)
to 8 (two sessions a week). A 0–8 scale would not be reasonable for an intervention defined
as either a 60 min or 30 min session. There, a 0 (no session) to 1 (60 min session) scale
might be more appropriate. 4

There are no clear cut rules for setting the control parameter values. The precise values that an
analyst chooses will be dependent on the data and purpose at hand. We emphasize that the choice
of values is not an inferential process, as they do not depend on the data generating process but
rather reflect the desired goals of applying control.

4.3. Optimal Control

With our cost function Jt defined and parameter values set, we can now determine the optimal
series of control inputs (ut ) that minimizes the cost function Jt over a finite time horizon T . We
do not present derivations here, but for a thorough treatment see Lewis et al. (2012). First, we
must compute an intermediate series of weighting matrices:

St = A′(S−1
t+1 + BR−1B′)−1A + Q. (8)

Note that St is defined with recursion forward in time, where the value of St at time T is the
a priori defined ST . The above expression for St is referred to as a Riccati equation in the control
theory literature.

With St computed for every t ∈ 1 . . . T , we can then compute a set of matrices that allow us to
inform our intervention strategy based on the current symptom values (Kalman gain sequence):

Kt = (B′St+1B + R)−1B′St+1A (9)

and finally the optimal sequence of intervention strengths

ut = −Ktxt . (10)

Note that the optimal sequence of control inputs is computed on the basis of the observed
sequence of x. In other words, the optimal sequence of interventions is a closed feedback loop,
as the values of xt inform the control inputs ut . Importantly, this differs from open loop con-
trols, which can be used to drive systems to predefined endpoints instead of minimizing the cost
function Jt . However, because open loop controls do not take into account the current value of
the symptoms, they are not robust to any deviation off of the expected trajectory, making them
unsuitable for controlling an inherently noisy and measurement error prone system like that of a
psychological disorder.

4Many interventions can be considered all or nothing, with no notion of varying intervention strength. While the
exposition in the current manuscript presents optimal control with varying interventions strength, we note in the dis-
cussion that hybrid model predictive control methods allow for binary intervention strengths (i.e., 0—no intervention,
1—intervention)
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4.4. Two Simple Control Examples

To demonstrate the use of optimal control methods, we first apply them in two simple simu-
lated examples: an easy-to-control system (System 1) and a difficult-to-control system (System 2).
Both systems have three variables (A, B, and C), white noise disturbances (randomly generated
once and applied to both System 1 and System 2), and a single intervention that is applied to
variable A. ST andQ are both I, andR = 100I. The VARI networks for both systems, the control
inputs, and the variable time series appear in Fig. 2. In both cases, the starting values for all three
variables were set at 20 (on a wholly arbitrary scale). The key differences between System 1 and
System 2 are the presence of a suppressing effect from C to B and the negative autoregressive
effect on B, both of which render System 2 more difficult to control than System 1.

These simulations illustrate two important points. First, this form of closed-loop feedback
control is fairly robust to disturbances. In both systems, even with disturbances, control success-
fully minimized variable A and further reduced the value of variable C, keeping both fairly low
across time. Second, a system can be controllable in an absolute sense but not controllable in a
practical sense. In the difficult-to-control System 2, our interventions had minimal effect. Even
though variable A was positively associated with variable B in System 2, the negative relation
between C and B partially suppresses the A-to-C relation, and the negative autoregressive effect
of B further dampens any interventions that impact B through A. This is the case even though
both System 1 and 2 are “controllable,” as indicated by the previously described rank test for
controllability. Examining the total intervention strength for both systems, an intervention that
reduces variable A by 1 would lead to a total reduction in variable B of 2.88 in System 1 but
only .1 in System 2, an order of magnitude different. In other words, even though System 2 could
be controlled with very high cost and/or over a very long timeframe, it is not controllable in a
practical sense.

5. Illustrating the Clinical Utility of Control Theory

5.1. Controlling Psychological Networks via Single-Target Intervention

Now that we have established that closed-loop interventions work in principle in simple
simulated systems, we turn back to the VARI model of complicated grief symptoms estimated
from empirical data. Although the network psychometric modeling literature has often focused
on identifying symptoms thought to have the largest potential impact on other symptoms, another
potential goal of these models could be to identify the specific symptoms most amenable to
intervention. The simplest scenario is an intervention that targets a single symptom. In analyses
described in detail in the supplementary materials, we identified suicidal ideation as the symptom
with the highest average controllability (indicating that suicidal ideation is the most effective
single symptom to reduce, see Supplementary Materials for details ). In Sect. 4.1, we showed that
a suicidal ideation-only intervention was not capable of controlling the entire system. Here, we
demonstrate what that means in practice.

To begin setting up the matrices that form the cost function for this simulation, we assume
that (a) no symptom is more important to reduce than any other and (b) this importance does not
change over the course of treatment. This implies that ST = Q = I5 and when R = aI, where a
is a positive number chosen to ensure that intervention is not unrealistically strong. The control

5These matrices should be specified with respect to the scaling of individual symptom measures. In the example of
complicated grief symptoms, the measure of suicidal ideation has a maximum value of 5, whereas all others measures
have a maximum value of 7. This requires a slight modification of the ST and Q matrices, so that the scales are equated.
Here, the element corresponding to suicidal ideation in ST and Q is set to 7

5 = 1.4 rather than 1. For scales with several
different maximums, a common factor can be computed. Finally, this rescaling should only be done when the choice of
units is arbitrary, such as in a Likert type item.
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Figure 2.
Networks, Intervention and Variable Values for Systems 1 and 2. Networks represent dynamics operating on change (as
in Fig. 1). Both systems were subjected to the same series of disturbances, which was generated as white noise.

input matrix B is, for a single symptom intervention targeting suicidal ideation, a 10 × 1 vector
of 0s, with the exception of the element corresponding to suicidal ideation, which is set to 1. Our
dynamics matrix A is taken from the group network of complicated grief symptoms (Fig. 1), see
Supplementary Materials for more details. We add in a small amount of random disturbance to
each symptom at each timepoint, sampled independently from a Normal(0, .1) distribution. In
the following simulations, all symptoms will start at their middle value (3 for suicidal ideation
and 5 for every other symptom) and are restricted in their ranges from 0 to the symptommaximum
(5 for suicidal ideation, 7 for all other symptoms). Finally, intervention strength (control inputs)
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is restricted to be positive or zero. This restriction prevents the case where the optimal control
would involve increasing symptoms by applying an “anti-intervention.”

For a single-symptom intervention targeting suicidal ideation, the control input matrix B is a
10 × 1 vector of 0s, with the exception of the element corresponding to suicidal ideation, which
is set to 1. Previously, we noted that a psychological intervention, even one explicitly designed to
reduce a single symptom, is unlikely to have no direct effects on any other symptoms. For example,
in the case of talk-therapies, common factors such as therapeutic alliance are likely to impact
a wide range of symptoms. Similarly, pharmaceutical interventions target biological systems
involved in many behavioral outcomes. To reflect this, we can modify the suicidal ideation-
targeted intervention to be a “heavy handed” intervention: one that targets a specific symptom but
directly reduces other symptoms as well. Figure 3 Panel A shows what optimal control looks like
when the treatment reduces only suicidal ideation by 1 point per unit of intervention strength. In
contrast, Panel B shows what optimal control looks like when the intervention reduces suicidal
ideation by 1 point per unit of intervention strength, and all other symptoms by .1 point per unit
of intervention strength. Panel A allows us to assess the impact of reducing a single symptom
(in this case suicidal ideation), but the “heavy handed” intervention depicted in Panel B is likely
closer to a real-world psychological intervention.

First, let us examine the symptoms’ behavior and the intervention’smagnitude over the course
of 100 timepoints. R is set to 100I, which (in this example) restricted the maximum intervention
strength to an approximately .3 point reduction in suicidal ideation for the intervention that targets
only suicidal ideation (Panel A) and .4 for the intervention that targets suicidal ideation and all
other symptoms (Panel B).

There are three key features to note in Fig. 3. First, both types of interventions were initially
applied at a high strength (.3 in Panel A and .425 in Panel B), then was applied at lower strength
for the rest of the intervention period. In Panel A, the single target intervention, there were
periods of 0 intervention strength, while in Panel B, intervention strength was nonzero across the
intervention period. This was due to the broader intervention being used to control non-target
symptoms. Second, both thoughts: loved ones and suicidal ideation showed a greater reduction
and less variance when the intervention reduced all symptoms slightly (Panel B) relative to single
target intervention (Panel A). Finally, in Panel B relative to Panel A, the remaining symptoms had
a smaller spread in their trajectories, while the majority of the remaining symptoms did not show
meaningful reductions.

Although suicidal ideation was the symptom with the highest average controllability for
both within- and between-subject networks, the symptom trajectories in Fig. 3 show that an
intervention that solely or primarily targets suicidal ideationmainly reduces suicidal ideation and
thoughts: loved ones, while other symptoms were effectively unchanged. These results highlight
two crucial points. First, controllability metrics indicate how efficiently interventions targeting
single symptoms will impact the whole system relative to targeting other symptoms. Second,
although controllability metrics can help us identify the most impactful symptoms, they indicate
little about themagnitude of the impacts from such an intervention. Selecting intervention targets is
important, but evaluating these interventions is necessary to gain a genuine understanding of their
impact. This example also illustrates how control theory can guide the application of maintenance
interventions. For example, the optimal sequence of control inputs applied the intervention around
timepoint 75 after a period of relatively low intervention strength, in response to the slight trend
upwards seen in suicidal ideation and thoughts: loved ones.

Overall, our simulations suggest that applying single target interventions can be effective in
reducing the targeted symptom, but are less likely to meaningfully impact all symptoms, even
when the intervention has small direct effects on non-targeted symptoms. However, it is unlikely
that a single intervention is all that a therapist has on hand. Instead, several interventions would
be available which could be applied simultaneously, a situation we cover next.
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Figure 3.
Intervention strength and symptom values when a intervening on only suicidal ideation with strength of 1 and b, when
intervening on suicidal ideation with a strength of 1, and all other symptoms with a strength of .1. Note that the same
sequence of random disturbances were applied to each simulation. Results show that the broader intervention in Panel
B leads to more reduction in suicidal ideation and thoughts: loved ones than the single target intervention in Panel A.
Additionally, the broad nature of the intervention in Panel B only reduced the spread of symptoms other than suicidal
ideation and thoughts: loved ones slightly more than the single target intervention in Panel A.

5.2. Controlling Networks via Multiple-Target Interventions

Suppose Intervention A targets suicidal ideation, Intervention B targets positive activities
(reverse coded so that reductions correspond to increases in enjoyment of positive activities),
and Intervention C targets thoughts: future. In this example, all three interventions also reduce
non-targeted symptoms by .1. The B matrix for these interventions is shown in Table 3.

We apply these three interventions simultaneously,with all symptoms beingweighted equally,
and all interventions having the same cost (e.g., R = 100I). Figure 4 shows the intervention
strength and symptom trajectories in this case.
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Table 3.
BMatrix for Interventions A, B and C.

Intervention
A B C

Suicidal Ideation − 1 −.1 −.1
Thoughts: Loved One −.1 −.1 −.1
Thoughts: Future −.1 −.1 − 1
Avoidance −.1 −.1 −.1
Thoughts: Death −.1 −.1 −.1
Positive Activities −.1 − 1 −.1
Yearning: Loved One −.1 −.1 −.1
Approach −.1 −.1 −.1
Pleasure −.1 −.1 −.1
Emotional Pain −.1 −.1 −.1

First, Fig. 4 indicates that when these three interventions are applied simultaneously, all
symptoms can be meaningfully reduced within the given timeframe. Second, the interventions
are not applied equally strongly. Intervention A is applied with the weakest strength throughout
the timeframe, while Interventions B and C are applied with similar strength throughout the
timeframe. Third, this set of interventions only reduced suicidal ideation, thoughts: loved ones,
thoughts: future and avoidance to near 0. All other symptoms were reduced by ∼ 3 to ∼ 4.5
points. This is notable as positive activities was the specific target of Intervention B, yet was not
successfully reduced to 0.

This example evaluates three very simple interventions: real-life interventions such as cogni-
tive behavioral therapy almost certainly include at least two more important complications. First,
not all treatments are equally costly, in different meanings of costly. Pharmacological interven-
tions are less resource intensive than weekly psychotherapy targeting the intense and pervasive
negative emotions that characterize complicated grief, but may come with stronger side-effects.
Second, the impact on safety and well being is not the same across symptoms: any clinician would
prefer to remove suicidal ideation from the clinical picture as quickly as possible, even if that
meant delaying an intervention on other important, but less immediately harmful, grief-related
symptoms. This means we may want to use control theory to optimize control of one specific
symptom rather than the whole system, such as suicidal ideation. Fortunately, the control theory
framework explicitly allows one to account for these considerations.

5.3. Changing Symptom Importance and Intervention Cost

Take again the set of three interventions (A, B, C) from the previous example. We apply three
modifications to showcase the possibilities that the control theory framework offers. First, we
prioritize quickly reducing and maintaining minimal levels of suicidal ideation, given its greater
threat to patient safety. Second, we also illustrate the effect of different intervention costs: we
set Intervention A to cost twice as much as Intervention B, and Intervention C to cost half as
much as Intervention B. Third, we model the scenario where Interventions A and B are difficult
or impossible to apply together (e.g., two pharmacological interventions that interact poorly, or
two intensive behavioral interventions). Our ST , Q, and R matrices are presented below.
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The simultaneous application of these interventions led to a reduction to 0 for both suicidal ideation and thoughts: future,
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ST =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)
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Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0 0 0 0 0 0
0 .5 0 0 0 0 0 0 0 0
0 0 .5 0 0 0 0 0 0 0
0 0 0 .5 0 0 0 0 0 0
0 0 0 0 .5 0 0 0 0 0
0 0 0 0 0 .5 0 0 0 0
0 0 0 0 0 0 .5 0 0 0
0 0 0 0 0 0 0 .5 0 0
0 0 0 0 0 0 0 0 .5 0
0 0 0 0 0 0 0 0 0 .5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

where for both ST and Q, the first column/row corresponds to suicidal ideation.

R = a

⎡

⎣
2 0 2
0 1 0
0 0 .5

⎤

⎦ (13)

where the rows/columns are ordered, A, B, C. This R matrix puts our assumptions about relative
cost of interventions into rigorous form. The 1 corresponds to B being half as expensive as A,
while the .5 corresponds to C being a quarter as expensive as A. The 2 on the off-diagonal
specifies that there are additional costs to implementing intervention A and C at the same time
(analogous to two medications having negative interactions) To keep intervention strengths from
being unrealistically high, a = 2500.

Figure 5 shows the symptom trajectories and intervention strengths for this control setup.
Changing the control parameters led to these interventions being applied quite differently than in
Fig. 4. First, the fact that Intervention A and C are difficult to apply together is reflected in how
these two interventions were applied. There is a spike in the strength of Intervention C around
time 10, and there is a spike in the strength of Intervention A around time 65. Both interventions
were applied at a very low level throughout the remainder of the timeframe. Second, even though
SI was set as the most important symptom to reduce, the inability to apply all three interventions
simultaneously resulted in SI being reduced at a slower rate than that shown in Fig. 4. Finally,
while the same sets of symptoms as in Fig. 4 were reduced to near 0, the remaining symptoms
were not reduced as much overall as in 5.

In these examples, we have been evaluating interventions that have been proposed on the
basis of controllability statistics. However, it is common that we have a priori knowledge on the
efficacy of real-world interventions. In the next section, we simulate the effects of the complicated
grief treatment intervention of Shear (2010) that was given to our sample of patients.

6. Discussion

The use of network psychometric models to inform intervention design is a promising aim for
clinical research, but one that requires new mathematical tools if it is to be realized. In this paper,
we introduced several fundamental concepts from control theory, such as controllability centrality
and optimal control and illustrated via examples how they can improve intervention evaluation
and design. All examples used EMA data from a sample of subjects undergoing treatment for
complicated grief; this allowed us to firmly embed the methodology discussed in a practical,
real-world empirical example. Below, we summarize our substantive findings and propose future
directions for methodological research in control theory and network psychometrics.
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Figure 5.
SymptomValues and Intervention Strength for Interventions A, B, C with Unequal Symptom Importance and Intervention
Costs. Note: Interventions A and C have been specified to be incompatible (i.e., applying them simultaneously costs more
than applying both separately). The simultaneous application of these interventions led to a similar reduction to 0 for both
suicidal ideation and thoughts: future as in Fig. 4, but only a ∼ 1.5 point reduction in positive activities (reverse coded)
(compared to a 3.75 reduction seen in Fig. 4).

6.1. Controlling Psychological Networks: The Empirical Case of Complicated Grief

Our analyses, althoughmeant principally to demonstratemethodology, revealed several inter-
esting features of complicated grief and its treatment. Suicidal ideation and thoughts about one’s
deceased loved one had the highest average controllability (as seen in Section 2 of the Supplemen-
tary Materials), suggesting that intervening on those two symptoms in the present sample would
be more effective at changing the system of complicated grief as a whole than would intervening
on other symptoms. An analysis of single symptom interventions showed that targeting suicidal
ideation was indeed the most effective single symptom intervention. However, it also showed
that this single-symptom intervention was not successful at reducing all other symptoms to zero.
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Indeed, most symptoms were relatively unaffected. This suggests that the dynamic system that
underlies complicated grief is not solely driven by any one symptom, and that single symptom
interventions may not be effective at treating the disorder’s gestalt.

Modeling and comparing multiple interventions sets (A, B, C) shed further light on the struc-
ture of complicated grief. In the first set of interventions, Intervention A (targeting the symptoms
of suicidal ideation and thoughts: loved one) was more effective, in terms of intervention cost to
total reduction in symptoms, relative to Interventions B or C when applied separately. However,
when applied in tandem, Interventions A, B and C together led tomuch better treatment outcomes:
reducing all symptoms of complicated grief. Finally, in Section 4 of the SupplementaryMaterials,
we simulated how the empirical treatment that the subjects were undergoing, a structured psycho-
logical therapy focused on accepting the loved one’s death—would impact subjects symptoms
when applied optimally. We found that the simulated “empirical” treatment appeared primarily
impact patients’ preoccupation with thoughts of the deceased loved one while also significantly
reducing suicidal ideation in the process.

These substantive conclusions should be interpreted in light of a number of limitations.
First, there are only eight subjects present in the analysis, each of whom not only met criteria
for complicated grief, but also reported persistent suicidal thoughts, limiting the generalizability
of our findings. Second, all simulations were performed under the assumption that the group-
level dynamics were a reasonable estimate for each subject in the population, an assumption
that is unlikely to hold. Third, the treatment effect was modeled within the ML-VARI as a 0/1
indicator, which does not reflect the fact that the treatment had multiple phases. This choice,
made to simplify the control theory modeling of the treatment effect, likely also reduces our
power to detect treatment effects that varied over the stages of the intervention. Finally, and
most importantly, although we used an integrated VAR(1,1) model to model symptom trajectories
as a non-stationary process, it is unlikely that this model truly represents the causal dynamics
underlying the disorder, a significant limitation to which we will return.

6.2. Methodological Challenges and Future Directions

In this paper, we aimed to introduce control theory as a valuable tool for identifying interven-
tion targets and understanding the behavior of a psychological system undergoing intervention.
Below, we more fully discuss limitations in the presented approach, briefly introduce more mod-
ern control theory methods, and identify future research directions that may radically improve the
application of control theory to psychology.

6.2.1. The Importance of System Identification Like any methodological approach, control
theory can only be as effective as the information it is provided. If the system to which one is
applying control theory fails to capture the important dynamics of the real-world psychological
system, the methods we have presented here will be ill-equipped to inform intervention. Accord-
ingly, how one decides tomodel a psychological process will havemajor consequences for control
theory applications.

In the network psychometric literature, the most commonly used time-series model, the VAR
model, assumes stationarity. That is, it assumes that the means and variances of the time series
are stable across time. In this paper, we used the VARI model, assuming that time series of
symptom values are non-stationary, but that the change in symptom values from timepoint to
timepoint is stationary. This ensured that the symptoms followed a unit-root process, allowing
their trajectories to be permanently altered by interventions. This is vital, as a stationary VAR
process is inherentlymean reverting: no amount of interventionwill permanently shift the expected
symptom values away from the model-defined mean. Future research in the area of longitudinal
psychometric network modeling should focus on modeling systems of symptoms in a way that
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allows disturbances (e.g., interventions) to impact the data-generating process directly. Such work
will be especially important for researchers aiming to inform treatment. A state-space modeling
approach is particularly amenable to this, as non-stationary processes can be modeled at the latent
state level, while stationary error processes can be modeled at the indicator level. State-space
modeling also allows for nonlinear processes, an area where control theorists have developed
several approaches for optimizing interventions.

An alternative approach to system identification than the one presented here would to work
not from data-based models, but from theory-based models. In recent years, several researchers
have argued for the benefits of formalizing theories in clinical psychology as mathematical or
computational models (e.g., Haslbeck et al. 2019; Robinaugh et al. 2019; Burger et al. 2019;
Fried 2020). These formal theories often take the form of a causal network that aims to capture
the dynamic processes that give rise to psychopathology. Although we herein demonstrated the
use of control theory methods on networks derived from real data, there is no reason why the
methods we used could not be applied to understanding the dynamics of a formal model. Indeed,
we consider this to be a novel and promising application of control theory for psychological
science. However, just as with models derived from empirical data, it is important to remember
that the application of control theory will only be successful to the extent that the formal theory
is an adequate representation of the target system of interest. Accordingly, it will be critical for
theorists to develop strong formal theories if this approach is to be successful.

6.2.2. The Importance of Measurement and Measurement Error The systems modeled in this
paper were assumed, for the sake of simplicity, to have a white noise disturbance component.
White noise error processes do not impact the optimal control estimates for linear systems (Mole-
naar 1987). More complex error processes (e.g., the temporally correlated noise commonly found
in psychological data) can be addressed through the use of stochastic control theory. However,
there are other sources of error than disturbances, with measurement error being a major con-
cern for any psychological dataset. Studying how measurement error impacts statistical models
of psychological data is a time-honored tradition in psychometrics and control theory should
be no exception. Some control theory literature does touch on measurement error (i.e., Schultz
1964), but measurement error is particularly salient for clinical psychopathology research. Most
recent applications of control theory to human behavior have observable outcomes (e.g., walk-
ing measured by actigraphy) and are less susceptible to measurement error. The measurement
of psychological symptoms, however, typically relies on self-reported assessments of symptom
severity/frequency, which are more susceptible to error, making it vital to evaluate effects of mea-
surement error on control outcomes. One promising but currently underutilized way to account for
measurement error in network psychometric is latent variable network modeling (Epskamp et al.
2017), which should be further developed for longitudinal network modeling of non-stationary
processes.

In addition to error in symptom measurement, there also likely to be error in intervention
strength measurement. The strength of an intervention is not simply the immediate impact on
symptoms, but also needs to take into account how the intervention interacts with subject specific
dynamics. The consequences of this type of measurement error are especially salient in our
present context, as psychological interventions have direct impacts on the lives and health of
patients. The issue of how best to measure intervention strength is a relatively novel one for
clinical psychology, but one that is critical to evaluating the expected impact of the intervention
on systems of interest. Future control theory applications should examine howmeasurement error
in the estimate of system dynamics, control inputs, and symptom observation during intervention
may all bias conclusions.
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6.2.3. The Future of Control Theory in Psychology In this paper, we aimed to provide an
accessible introduction to control theory by focusing on a relatively straightforward set of analyses.
However, the field of control theory is much broader than just these analyses and more complex
analyses are available to help address challenges that are likely to be faced in applying this work
within clinical psychology. For example, the analyses performed in this paper restricted symptoms
values to a particular range and required interventions to be positive. Binary control inputs, or
control inputs that have bounds, are referred to in the control theory literature as saturated control
inputs. These restrictions led to interpretable trajectories and intervention regimes above, but
can have large impacts on system behavior and are thus not completely optimal. When applying
control theory to psychology, inputs and outputs will likely always be bounded/saturated, which
necessitates more complex methods than we have used here when optimal performance is desired.

The constraint issue canbe resolvedusinghybridmodel predictive control (HMPC;Bemporad
and Morari 1999), which not only allows for constraints on both control inputs and state values,
but also for categorical control inputs and state values. HMPC also brings with it the advantages of
model predictive control, in that it can be applied to nonlinear systems and allows for non-quadratic
forms of the cost function. However, model predictive control approaches do not guarantee an
optimal sequence of interventions and systems as it can be computationally difficult to determine
the control laws for many variables (Kouvaritakis and Cannon 2015). Nonetheless, psychological
data are likely to be more amenable to model predictive control in practice, because there may be
less need for rapid online control calculations such as in an engineering context. This would avoid
some of the computational issues associated with applying this approach to high-dimensional data
with a high sampling frequency.

Another challenge likely to be faced in clinical psychology is the possibility for time-delayed
effects. Our intervention’s effects were modeled as instantaneous, with an intervention at time t
causing a change in symptoms at time t . In reality, psychological interventions may not have such
instantaneous effects. For example, an intervention reducing grief-related avoidance behavior
may take weeks before it is accepted and adhered to by a patient. Such time-delayed effects,
like saturated inputs, change how optimal controls should be calculated. Future research in this
area should focus on bringing time-delayed control methods into control theory applications in
psychology, as this would improve the external validity of the approach.

Perhaps the most important step in applying control theory within clinical psychology will be
to move toward applying these methods using within person-specific networks. In Sect. 5.1, we
estimated the intervention effect at the group-level, assuming homogeneity in treatment response.
Although interventions will likely have at least some common effect, the response of any sin-
gle participant to any single intervention is likely heterogeneous. One solution is to explicitly
estimate individualized treatment effects. However, there are several important considerations to
note. First, the amount of data per person needed to estimate individual treatment effects is far
greater than that needed when estimating group-level treatment. Second, estimation of an individ-
ual intervention effect requires collecting data before treatment for that given individual, which
complicates optimally controlling the intervention applications for that person. Nonetheless, mod-
eling individual treatment effects and applying them in a control setting could potentially improve
the personalization of psychological interventions.

Finally, we would like to stress the importance of cross-validation in future applications of
control theory that compares simulated and empirical interventions. The methods and results pre-
sented in this paper take a simulation approach to evaluating the implied efficacy of interventions
on psychological networks. This allows for formalized predictions of treatment response, without
having to evaluate the treatment in an empirical study. A vital next step would be to compare these
formalized predictions from the simulations to the actual treatment response in a new interven-
tion study with a different sample of individuals. As mentioned above, this enables researchers
to cross-validate their interventions. Any mismatch between the simulation-implied treatment
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effect and the empirical (observed) treatment effect would help reveal issues in modeling, data
collection, or other threats to inference.

6.3. Conclusion

Control theory holds great promise for improving the development and evaluation of psy-
chological interventions. Control theory as a field is more generally well developed; as such,
future applications of control theory to psychology can benefit from many already existing tools.
Although there are some unique challenges that psychological data also present, solving these
challenges offers new opportunities to provide clinical science with more accurate predictions and
stronger interventions that account for heterogeneity in both treatment and treatment response. In
particular, control theory opens up new possibilities for personalized treatment strategies, where
interventions could be applied based on the unique dynamics of a given patient. More work is
clearly necessary, but we hope that applying control theory to the intervention sciences will ulti-
mately improve people’s real-life experiences and outcomes across a diversity of interventions,
be they medical treatments, mental health management, or behavioral interventions.
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