

The structure and dynamics of the 30 Doradus molecular cloud as revealed by ALMA

Wong, T.; Oudshoorn, L.; Sofovich, E.; Green, A.; Indebetouw, R.; Meixner, M.; ...; Tielens, A.G.G.M.

Citation

Wong, T., Oudshoorn, L., Sofovich, E., Green, A., Indebetouw, R., Meixner, M., ... Tielens, A. G. G. M. (2022). The structure and dynamics of the 30 Doradus molecular cloud as revealed by ALMA. *Bulletin Of The American Astronomical Society*, (6), 333.04. Retrieved from https://hdl.handle.net/1887/3562780

Version: Publisher's Version

License: <u>Creative Commons CC BY 4.0 license</u>
Downloaded from: <u>https://hdl.handle.net/1887/3562780</u>

Note: To cite this publication please use the final published version (if applicable).

The structure and dynamics of the 30 Doradus molecular cloud as revealed by ALMA

Tony Wong¹ Luuk Oudshoorn² Eliyahu Sofovich¹ Alex Green¹ Remy Indebetouw³ Margaret Meixner⁴ Alvaro Hacar⁵ Omnarayani Nayak⁶ Kazuki Tokuda⁷ Alberto Bolatto⁸ Mélanie Chevance⁹ Guido De Marchi¹⁰ Yasuo Fukui¹¹ Alec Hirschauer¹² Katherine Jameson¹³ Venu Kalari¹⁴ Vianney Lebouteiller¹⁵ Leslie Looney¹ Suzanne Madden¹⁶ Toshikazu Onishi⁷ Julia Roman-Duval¹² Monica Rubio¹⁷ Alexander Tielens²

¹University of Illinois, Urbana-Champaign, ²Leiden Observatory, ³University of Virginia|NRAO, ⁴USRA, ⁵University of Vienna, ⁶Johns Hopkins University, ⁷Osaka Prefecture University, ⁸University of Maryland, College Park, ⁹Heidelberg University, ¹⁰ESA, ¹¹Nagoya Univ., ¹²STScI, ¹³CSIRO, ¹⁴Gemini Observatory / NSF's NOIRLab, ¹⁵CNRS/AIM, CEA/Irfu/DAp, Paris-Saclay, ¹⁶Centre'd Etudes de Saclay, ¹⁷Universidad de Chile

Published on: Jun 29, 2022

URL: https://baas.aas.org/pub/2022n6i333p04

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

We present results of a wide-field (approximately 60×90 pc) ALMA mosaic of CO(2-1) and ¹³CO(2-1) emission from the molecular cloud associated with the 30 Doradus starforming region. Three main emission complexes, including two forming a bowtieshaped structure extending northeast and southwest from the central R136 cluster, are resolved into complex filamentary networks. Consistent with previous studies, we find that the central region of the cloud has higher line widths at fixed size relative to the rest of the molecular cloud and to other LMC clouds, indicating an enhanced level of turbulent motions. However, there is no clear trend in gravitational boundedness (as measured by the virial parameter) with distance from R136. Structures observed in ¹³CO are spatially coincident with filaments and are close to a state of virial equilibrium. In contrast, ¹²CO structures vary greatly in virialization, with low CO surface brightness structures outside of the main filamentary network being predominantly unbound. The low surface brightness structures constitute ~10% of the measured CO luminosity; they may be shredded remnants of previously star-forming gas clumps, or alternatively the CO-emitting parts of more massive, CO-dark structures.