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ABSTRACT

Geometry and dynamical structure of emission regions in accreting pulsars are shaped by the interplay between gravity,

radiation, and strong magnetic field, which significantly affects the opacities of a plasma and radiative pressure under

such extreme conditions. Quantitative consideration of magnetic plasma opacities is, therefore, an essential ingredient

of any self-consistent modeling of emission region structure of X-ray pulsars. We present results of computations

of the Rosseland and Planck mean opacities of a strongly magnetized plasma with a simple chemical composition,

namely the solar hydrogen/helium mix. We consider all relevant specific opacities of the magnetized plasma including

vacuum polarization effect and contribution of electron-positron pairs where the pair number density is computed in

the thermodynamic equilibrium approximation. The magnetic Planck mean opacity determines the radiative cooling

of an optically thin strongly magnetized plasma. It is by factor of three smaller than non-magnetic Planck opacity

at kBT < 0.1Ecyc and increases by a factor of 102 – 104 at kBT > 0.3Ecyc due to cyclotron thermal processes. We

propose a simple approximate expression which has sufficient accuracy for the magnetic Planck opacity description.

We provide the Rosseland opacity in a tabular form computed in the temperature range 1 – 300 keV, magnetic field

range 3 × 1010 − 1015 G, and a broad range of plasma densities. We demonstrate that the scattering on the electron-

positron pairs increases the Rosseland opacity drastically at temperatures > 50 keV in the case of mass densities

typical for accretion channel in X-ray pulsars.

Key words: opacity – radiation mechanisms: thermal – polarization – X-rays: binaries – stars: neutron – stars:

magnetic field

1 INTRODUCTION

Emission regions of X-ray pulsars (XRPs, see e.g., White
et al. 1983; Mushtukov & Tsygankov 2022) and pulsing ul-
traluminous X-ray sources (pULXs) confine high temperature
and high density plasma threaded by ultra-strong magnetic
fields (Bachetti et al. 2014; Kaaret et al. 2017; Fabrika et al.
2021). Despite many attempts over the last few decades, there
are no self-consistent physical models accurately describing
the dynamical structure of the emission regions in these ob-
jects and their observed X-ray spectra. Two main directions
of research can be identified here, i.e. attempts aiming to de-
scribe observed spectra based on some simplified assumptions
regarding emission region geometry and dynamical structure,
and modeling aimed to justify such assumptions from first
principles. As an example of first approach one can quote
models by Becker & Wolff (2007) Farinelli et al. (2016) which
were successfully used for description of the observed spectra
of highly-luminous XRPs (see e.g. Wolff et al. 2016; Caiazzo &

? E-mail: suleimanov@astro.uni-tuebingen.de (VFS)

Heyl 2021), albeit using a rather extended set of free param-
eters and at times ignoring features like the energy conserva-
tion law (Thalhammer et al. 2021). A similar approach was
used to model spectra of low-luminous objects (Mushtukov
et al. 2021; Sokolova-Lapa et al. 2021), which were recently
found to exhibit two-humped X-ray spectra (Tsygankov et al.
2019a,b).

On the other hand, several attempts have been made to
model actual physical conditions in the accreting regions, es-
pecially in accretion columns. For instance, the pioneering
work by Basko & Sunyaev (1976) and many other related
investigations (see e.g. Wang & Frank 1981; Lyubarskii &
Syunyaev 1988), including two- and three-dimensional mod-
eling of the accretion columns (Postnov et al. 2015; Takahashi
& Ohsuga 2017; Gornostaev 2021). Note that understanding
of physical conditions in the emitting region of XRPs is essen-
tial to constrain the maximal possible luminosity of accretion
columns, which is relevant for understanding the phenomenon
of pULXs (Mushtukov et al. 2015b; Brice et al. 2021). In a
first order approximation, the maximal luminosity depends
on the optical depth across the column (see e.g. Lyubarskii
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2 V.F. Suleimanov et al.

& Syunyaev 1988) and, therefore, on the plasma opacities
which remain a major source of uncertainty in such mod-
eling. Indeed, up to now only electron scattering with and
without magnetic field were taken into account. In particu-
lar, the reduction of the electron scattering cross-section in
strong magnetic fields was used by Mushtukov et al. (2015b)
to explain the observed high luminosities of pULXs (see also
Brice et al. 2021).

Other processes can, however, contribute to the high tem-
perature opacity of plasma in a strong magnetic field. The
simplest one is magnetic bremsstrahlung (see e.g. Kaminker
et al. 1983). At high plasma temperatures creation of
electron-positron pairs due to photon-photon interactions
comes into play (see e.g. Beloborodov 1999, and references
therein). In presence of strong magnetic fields, also one-
photon pair creation becomes relevant (see e.g. Daugherty
& Harding 1983). Note that the number density of pairs
can be significant in an optically thick plasma in thermo-
dynamic equilibrium especially under the conditions of ex-
tremely strong magnetic fields (see e.g. Mushtukov et al.
2019). The increase of pair number density naturally leads
to the increase of the opacity. One of the aims of the current
work is to compute the Rosseland mean opacity of a high
temperature plasma in a strong magnetic field including all
the mentioned processes and answer the question whether the
aforementioned effects could be relevant for different types of
accretion column models.

Here we provide simple means for calculation of the opacity
of magnetized plasma and thus make a step towards the accu-
rate calculations of thermal balance in radiative transfer mod-
els accounting for a strong external magnetic field, which was
an issue for some of the previous investigations. For instance,
Sokolova-Lapa et al. (2021) only considered non-magnetized
hydrogen plasma emissivity due to bremsstrahlung to com-
pute temperature structures of the overheated upper layers
of strongly magnetized neutron star atmospheres heated by
accreting protons. We note, however, that plasma cooling
and thermal balance could be different if additional cyclotron
emission and magnetic bremsstrahlung would be taken into
account. The optically thin plasma cooling can be expressed
in terms of the Planck mean opacity. Its accurate computa-
tion for a high temperature magnetized plasma is the second
aim of the paper.

2 METHOD

To calculate the mean Planck k(ρ, T,B) and Rosseland
κ(ρ, T,B) opacities of a strongly magnetized plasma at given
plasma density ρ, temperature T , and magnetic field strength
B, we have to determine the plasma chemical composition,
number densities of the plasma particles, and cross-sections
of the elementary processes of photon interactions with the
plasma particles, other photons, and magnetic field. Here we
assume that the plasma is the solar hydrogen/helium mix
without heavy elements. We assume also that both chemi-
cal elements are fully ionized at the considered temperatures
kBT > 1 keV, where kB is the Boltzmann constant.

For computations of the number densities of the plasma
particles we have to take into account that the Planck and
Rosseland mean opacities are relevant at significantly dif-
ferent physical conditions. The Planck mean opacity de-

scribes the radiation loss rate of an optically thin plasma,
Q = k(ρ, T,B)B(T ), where B(T ) = σSBT

4/π is the integral
Planck function, and σSB is the Stefan-Boltzmann constant.
Conversely, the Rosseland mean opacity controls the radia-
tion energy transport in optically thick plasma. Therefore, we
assume that the plasma is optically thick and in thermody-
namic equilibrium when we compute the Rosseland opacity.
In particular it means that the radiation intensity equals the
Planck function at the considered temperature. We also as-
sume that the electron-positron pairs are in thermodynamic
equilibrium and their number densities can be computed here
using this approximation. On the other hand, we cannot ex-
clude physical conditions when the radiation field is still in
equilibrium but the pair creation and annihilation is not. Fur-
thermore, the Rosseland mean opacity can be useful for esti-
mates of radiative acceleration in the upper layers of neutron
stars (see, e.g. Mushtukov et al. 2015a), i.e. under the as-
sumption of a significantly diluted radiation field. Therefore,
we computed three sets of the Rosseland mean opacities for
several assumptions regarding the pairs. First, we consider
the case with pairs in thermodynamical equilibrium. For the
second case pair number density is assumed to be insignifi-
cant, but they can be created by photons assuming that the
radiation field is described by the Planck function at the con-
sidered temperature. Finally, we consider also the case where
all processes involving the pairs are ignored.

Pairs certainly cannot be in thermodynamic equilibrium
in an optically thin plasma, and we ignore pairs and all the
processes connected with pair creations when we compute the
Planck opacity. Details of number densities calculations are
presented in Appendix A.

We consider all relevant opacity sources in the high-
temperature magnetized plasma to compute the Rosseland
and Planck means. In particular, we consider specific opac-
ities due to electron scattering κjes and free-free absorption
κjff (continuum), as well as opacities in the cyclotron reso-
nance and harmonics κjcyc. Finally, we treat the processes of
electron-positron pair creations by photons as an opacity. We
compute the continuum and cyclotron opacities separately in
two normal modes, the extraordinary one, X (j = 1) and the
ordinary one, O (j = 2). The opacities due to the two-photon
κγγ and one-photon pair creation in a strong magnetic field
κ1γ are computed without distinguishing the modes, and we
just take them to be equal for both modes. We emphasize
that this recipe can also be considered an assumption of our
model.

We use approximate expressions rather than precise treat-
ment to simplify the calculations whenever possible. All
specific opacities used in the calculations are described in
Appendix B. The main approximations used are described
here. First, we use the rarified plasma approximation, which
means that the plasma frequency νp =

√
e2ne/πme is sig-

nificantly less than the photon frequency ν, and we use
the cold plasma approximation for the opacities below the
electron cyclotron frequency νB = eB/2πmec. The corre-
sponding plasma energy is Ep ≈ 0.12

√
ne/1025 keV, and

the corresponding non-relativistic cyclotron energy is Ecyc =
~eB/mec ≈ 11.6B12 keV. Here and further on we use the def-
inition B12 = B/1012 G, and, also, ne instead of the sum of
the electron and positron number densities, ne = ne− + nB

e+

when the Rosseland mean opacities are considered.

The specific total opacity κj(E,µ) at the photon energy

MNRAS 000, 1–?? (2022)



Mean opacities of a strongly magnetized high temperature plasma 3

E depends on µ = cos θ, where θ is the angle between the
photon momentum and the magnetic field direction, and is
computed as

κj(µ,E) = kj(µ,E) + max(κjes, (1−P)κjcyc) + κγγ + κ1γ . (1)

The first term is the true opacity

kj(µ,E) = max(κjff ,P κ
j
cyc), (2)

which includes free-free absorption and thermal cyclotron
emission. Here we took into account the fact, that the contin-
uum opacities and the cyclotron opacity are closely tied and
have to be considered and computed simultaneously. How-
ever, we describe both here as different processes in the frame-
work of the adopted approximations. Therefore, we compare
κjes with (1 − P)κjcyc and κjff with P κjcyc at every photon
energy, and only take into account the largest opacity.

The main processes of excitation and de-excitation of up-
per Landau levels are interactions with photons. On the
other hand, de-excitation and excitation by thermal ions also
contribute to the total rate of excitation and de-excitation.
Thus, the process where excitation is due to photon and de-
excitation is due to collision with an ion must be considered
as a true opacity. The opposite process provides additional
plasma cooling. The relative contribution of the thermal pro-
cesses to the total cyclotron opacity P can be expressed as it
was described by Pavlov et al. (1980b), see also discussion in
Potekhin (2014)

P =
νei

νei + νer
≈ νei

νer
, (3)

where νer is the frequency of the electron-photon collisions
and νei is the frequency of the electron-ion collisions. We used,
however, the full P definition (the left side of Eq. 3) in the
computations.

The collision frequencies are determined as (see e.g. van
Adelsberg & Lai 2006)

νer ≈
2e2

3 ~2 me c3
E2 ≈ 1.446× 1013 E2

keV (4)

νei ≈
4π

3
√

3
Z̄2e4

(
2π

mekT

)1/2
nion

E

[
1− exp

(
− E

kBT

)]
(5)

≈ 1.93× 10−10 nion

T
1/2
keVE

[
1− exp

(
− E

kBT

)]
.

Therefore,

P ≈ 1.3× 10−23 nion

T
1/2
keVE

3

[
1− exp

(
− E

kBT

)]
. (6)

This value agrees to an order of magnitude with the estima-
tion made by Arons et al. (1987), i.e. given by their Eqs. (64)
and (66). It is also similar to the value presented by Mush-
tukov et al. (2021), i.e. given by their Eq. (19), if we assume
that E = kBT = Ecyc. The estimates in both papers cited
above were made, however, for the cyclotron line only, so our
result is acceptable in a wider energy range.

It is also important to realize that mean opacities of a
magnetized plasma depend on the angle between the mag-
netic field lines and the direction of the photon propagation.
We computed the Rosseland mean for two such angles, across
and along magnetic field for both polarization normal modes.

The Rosseland mean across the field is computed as it was
described by Mushtukov et al. (2015b)

κj⊥ =

∞∫
0

dBE/dT dE

∞∫
0

dBE/dT dE
π∫
0

dϕ
1∫
0

3µ2
n[πκj(µ,E)]−1 dµn

, (7)

where E is the photon energy, and BE is the Planck function.
The angular integration occurs around the main axis normal
to the magnetic field direction, and ϕ is the azimuthal angle,
and µn is the cosine of the angle between the photon mo-
mentum and the main axis. We note that the specific total
opacity κj(E,µ) at photon energy E depends on the cosine
µ = cos θ, where θ is the angle between photon momentum
and magnetic field direction. Both cosines are connected as
µ =

√
1− µ2

n cosϕ. We note that κj(µ,E) depends also on
plasma temperature and density.

The Rosseland mean opacity along the magnetic field is
computed more easily due to axial symmetry (Mushtukov
et al. 2015a)

κj‖ =

∞∫
0

dBE/dT dE

∞∫
0

dBE/dT dE
1∫
0

3µ2[κj(µ,E)]−1 dµ

. (8)

The Planck mean opacities in the both directions are com-
puted in a similar manner, but here we only considered the
opacity along the field, because there is an obvious astrophys-
ical application only for this case (see e.g. Sokolova-Lapa et al.
2021):

kj‖ =

π
∞∫
0

BE dE
1∫
0

kj(µ,E) dµ

σSBT 4
, (9)

with the same notation. We note, that the both mean opaci-
ties are computed in the plasma rest-frame.

The mean opacities computed separately in two polariza-
tion modes were summed using following rules

1

κ⊥,‖
=

1

2κX
⊥,‖

+
1

2κO
⊥,‖

and k‖ =
kX
‖

2
+
kO
‖

2
. (10)

We mix the Rosseland opacities for both modes in equal pro-
portions because electron scattering effectively mixes the po-
larization modes in the optically thick plasma, where the
Rosseland mean opacity has to be used. This is a conse-
quence of the assumption of local thermodynamical equilib-
rium in the plasma, which is optically thick in both modes.
In particular, this assumption IjE = BE/2 is used as the in-
ner boundary condition for the radiation transfer equations
in the normal modes (Shibanov et al. 1992). Cooling of a
plasma optically thin in both modes occurs independently in
both modes, Qj = kj‖B(T )/2, and the total cooling rate is

reduced to Q = (kX
‖ /2 + kO

‖ /2)B(T ).
Integration over photon energies cannot be performed from

zero to infinity in numerical computations. Therefore, we
used finite limits during the computations. It is important
to cover a wide band around the Planck function maximum
at a given temperature. Therefore, we take the energy band
for computing the mean opacities at given temperature be-
tween 0.01 kBT and 30 kBT . Values of the Planck function at
the boundaries are at least by four orders of magnitude lower

MNRAS 000, 1–?? (2022)



4 V.F. Suleimanov et al.

Figure 1. Dependencies of the magnetized plasma emissivity (top

panel) and the Planck mean opacity (bottom panel) on the plasma
temperature for magnetic field strength B = 1012.5 G computed

with and without contribution of the cyclotron emission. The cor-
responding values computed for non-magnetized plasma are also

shown. The plasma density is ρ = 10−4 g cm−3.

compared to the maximum, and this fact guarantees that the
outside energy bands do not contribute significantly to the
mean opacity.

3 RESULTS

Thermal cyclotron emission significantly contributes to the
Planck opacity and, therefore, to radiative energy losses at
some temperatures, see Fig. 1. The Planck opacity of the
magnetized plasma is lower by about a factor of two to three
compared to the corresponding opacity of the non-magnetized
plasma if the plasma temperature is much less than the cy-
clotron energy (kBT ≤ 0.1Ecyc). The main reason is that the
opacity in X-mode is depressed and only the O-mode con-
tributes to the opacity under this condition. The cyclotron
thermal emission completely dominates at kT > 0.3Ecyc in-
creasing the Planck opacity by approximately three orders
of magnitude. We note, however, that the Planck opacity of
the magnetized plasma increases even if we ignore thermal
cyclotron emission (P = 0), which is due to the contribu-
tion of peaks in the Gaunt factor at the cyclotron harmonics
(see Pavlov & Panov 1976; Suleimanov et al. 2010; Potekhin
2010).

The dependence of the Planck mean opacity on the mag-
netic field strength is shown in Fig. 2. It can be seen that
the Planck opacity properties are consistent with the descrip-
tion presented above. However, the contribution of thermal

Figure 2. Dependencies of the magnetized plasma Planck mean
opacities on the plasma temperature for various magnetic field

strengths and plasma density ρ = 10−4 g cm−3.

Figure 3. Comparison of the Planck mean opacities computed for

two different plasma densities, ρ = 10−8 g cm−3 and ρ = 1 g cm−3,

and three various magnetic field strengths. The opacities computed
for the higher density were multiplied by a factor of 10−8.

cyclotron emission becomes relatively less important as the
magnetic field strength increases. It is well known, that the
Planck opacity of a non-magnetized plasma depends linearly
on plasma density. The same is correct for a magnetized
plasma, see Fig. 3, where the normalized Planck opacities
computed for ρ = 10−8 g cm−3 and ρ = 1 g cm−3, and three
various magnetic field strengths are shown. Note that there
is some inconsistency at the lowest magnetic field and the
highest temperature, which is related to the fact that the ap-
proximations used for the cyclotron opacity at these plasma
parameters start to fail here because the cyclotron harmonics
strongly overlap at these conditions, and much more compli-
cated computations are necessary (see e.g. Chanmugam &
Dulk 1981). For that reason we did not consider here the
Planck opacity of a relatively low magnetized plasma with
B < 1011 G.

We also find a relatively simple analytic function which
can be used to approximate the numerical computations of

MNRAS 000, 1–?? (2022)



Mean opacities of a strongly magnetized high temperature plasma 5

Figure 4. Top panel: Results of the approximation of the depen-
dencies of the Planck mean opacities on the plasma temperature

for various magnetic field strengths (solid curves)

with the approximation formula (11, dashed curves). The plasma

density is ρ = 10−4 g cm−3. Bottom panel: Relative errors of the

fitting.

the Planck mean opacities:

k̃‖ = 0.36 k0

(
1 +Acyc

(
1− exp

[
− kBT

0.1E′cyc

])13.4
)
, (11)

where k0 is the Planck mean, computed for the non-
magnetized plasma at given density and temperature

k0 = 0.5058 ρT−3.5
keV , (12)

and the cyclotron energy E′ computed across the field using
the relativistic formula

E′cyc = mec
2

(√
1 + 2

B

Bcr
− 1

)
. (13)

The amplification factor Acyc is also dependent on the mag-
netic field strength and is

Acyc ≈ 4240B−1.06
12 . (14)

Here Bcr = 4.414× 1013 G, see also Appendix A.
Some examples illustrating the parametrization of numeri-

cal calculations with this function are shown in Fig. 4. The rel-
ative accuracy of the fitting (k‖−k̃‖)/k‖ is not high, about 10-
30%. The error is larger for low magnetic fields and can reach
200% for the lowest magnetic field at high temperatures. This
means that we recommend using the approximation formula
(11) with caution for astrophysical problems requiring high
accuracy. We note, however, also that the uncertainties due to
the simplifications used for numerical calculations, especially
for the contribution of thermal cyclotron emission P could be
comparable with the approximation formula uncertainties.

The dependence of the Rosseland mean opacity on plasma
density is more complex. Therefore, we computed an ex-
tended grid of Rosseland opacities for both, across and along

Figure 5. Dependencies of the Rosseland mean opacities across
the magnetic field on the plasma temperature for various magnetic

field strengths and two plasma density parameters, ρ = 0.1 (dashed
curves) and 10 g cm−3 (solid curves). The magnetic field strengths

are marked near the curves.

the field lines for 85 plasma temperatures, from lg TkeV = 0
to 2.52 with the step 0.03, and 14 magnetic field strengths
lgB = 10.5, 11, 11.5, 11.75, 12, 12.25, 12.5, 12.75, 13, 13.25,
13.5, 14, 14.5, and 15. The third grid parameter is density.
This parameter has 19 values on the grid, from lg ρ =−6
to 3 with the step 0.5. We note that the electrons at the
lowest plasma temperatures and magnetic field strength are
degenerate. Our approach is not strictly correct for degen-
erate plasma, and the opacities under such conditions are,
therefore, not computed. Instead, the opacity values com-
puted for the lower plasma density are taken. It is important,
that the magnetic field is strongly quantizing for the consid-
ered plasma parameters at kBT < Ecyc. It means that all the
electrons are in the first Landau level and the Fermi temper-
ature is significantly less than the Fermi temperature for the
non-quantizing magnetic field (see Appendix A). As a result,
electrons are not degenerate even at the lowest temperatures
and the highest densities if lgB ≥ 11.75.

Examples of the computed Rosseland mean opacities κ⊥
from the first set for a few magnetic field strengths and two
density values, ρ = 0.1 and 10 g cm−3, are shown in Fig. 5. A
significant increase of the opacity at kBT >40−100 keV is
connected with the scattering on the electron-positron pairs.
The opacities at lower temperatures are generally consistent
with the case of pure magnetic electron scattering presented
by Mushtukov et al. (2015b). The opacities of a dense plasma
are higher than the opacities of a rarified plasma due to
increase of the free-free opacity contribution. The opacities
for B = 1011 G are close to the case of the non-magnetized
plasma, and the opacities have a local maximum at temper-
atures of about 10 keV for a moderate magnetized plasma
(lgB = 12.25) due to the contribution of the cyclotron line
and its harmonics.

A comparison of the Rosseland opacities κ⊥ computed for
all three considered cases is shown in Fig. 6. The opacities
from the second case increase at temperatures above 100 keV
mainly due to photon-photon interactions. We note, that in-
crease of opacity occurs at the higher temperatures (about
60-70 keV instead of 30 keV in the example above), and the

MNRAS 000, 1–?? (2022)



6 V.F. Suleimanov et al.

Figure 6. Comparison of the Rosseland κ⊥ opacities computed
with (solid curves) and without (dashed curves) electron-positron

pairs taking into account. The opacities computed without consid-
ering pairs are also shown (dotted curves)

The results for two magnetic field strengths, lgB = 12.25 and
lgB = 14, and ρ = 0.1 g cm−3 are shown.

Figure 7. Comparison of the Rosseland mean opacities across

(solid curves) and along (dashed curves) the magnetic field for
two field strengths and two plasma density parameters, ρ = 0.1
and 10 g cm−3. The magnetic field strengths are marked near the
curves. The relative differences between opacities are shown in the

bottom panel.

opacity is reduced by several orders of magnitude for temper-
atures above 30 keV. This computations are not completely
self-consistent because the photon-photon interactions lead
to pair creation. However, these results allow us to qualita-
tively estimate a value of the Rosseland opacity when the
pair number density is far from the equilibrium. Opacities,
computed for the third case, show no significant increase at

Figure 8. Top panel: Comparison of the interpolated opacities
(dashed curves) with the exactly computed ones (solid curves) for

two plasma density parameters, ρ = 0.2 (red curves) and 20 g cm−3

(blue curves). The magnetic field strength is fixed (lgB = 12.1).
Bottom panel: Dependence of the relative interpolation errors

([exact-interpolated]/exact) on the plasma temperature.

high temperatures as all the processes connected with pairs
are ignored in this set.

A comparison of the Rosseland opacity across and along
the field is presented in Fig. 7. In fact, the Rosseland κ⊥ and
κ‖ are close to each other with maximum differences of about
10-15%. The opacities from the first set were used here and
further.

A code for the interpolation in the grid was also created.
the code is based on the spline interpolation procedure MAP1
created by R.L. Kurucz and published in his code ATLAS
(Kurucz 1970). Examples of the relative interpolation accu-
racy for κ⊥ (error = (κ⊥(comp) − κ⊥(interp)/κ⊥(comp))
are shown in Fig. 8. The interpolation accuracy is better than
10% for all temperatures. We note that we presented the most
complicated case when the contribution of the cyclotron opac-
ity is important (lgB between 11.75 and 12.5). The interpo-
lation accuracy is far better at lower and higher magnetic
fields. The source files in the arXiv publication contain the
interpolation code together with the necessary data files and
a test example.

4 CONCLUSIONS

We investigated the properties of the Rosseland and Planck
mean opacities of a high-temperature plasma in a strong mag-
netic field. Using accurate values of these opacities is impor-
tant for the construction of accretion structures on the surface
of neutron stars in X-ray pulsars, namely accretion columns
and accretion heated spots.

We considered a plasma with a simplified chemical com-
position, the solar hydrogen/helium mix. We also assumed

MNRAS 000, 1–?? (2022)



Mean opacities of a strongly magnetized high temperature plasma 7

that both chemical elements are fully ionized at the consid-
ered temperature range kBT , 1–330 keV, and that the plasma
density is low enough to be non-degenerate. Finally, we also
assumed that the plasma temperature is larger than the en-
ergy corresponding to the plasma frequency, kBT � Ep.

All specific opacities relevant for radiative transfer in a
highly magnetized plasma were considered. They included
magnetic bremsstrahlung, magnetic electron scattering, cy-
clotron line and harmonics, and the one- and two-photon
pair creations. Magnetic bremsstrahlung and electron scat-
tering were considered in the cold plasma approximations at
photon energies E ≤ Ecyc, and various simplifying approxi-
mations were used for the description of the cyclotron opacity.
All these three opacity sources were computed for two modes
of radiative transfer in a highly magnetized plasma.

We demonstrated that the Planck mean opacity of a highly
magnetized plasma has the main properties similar to the
Planck mean opacity of the fully ionized non-magnetized
plasma. In particular, it is also linearly proportional to the
plasma density. The Planck opacity of the highly magne-
tized plasma is by factor of three lower than the correspond-
ing opacity of the non-magnetized plasma at temperatures
kBT < 0.1Ecyc, because only the opacity in the ordinary
mode is significant, and the additional reduction arises due
to magnetic Gaunt factor behaviour. At higher temperatures,
the contribution of thermal cyclotron absorption becomes sig-
nificant and the Planck opacity increases by a few orders
of magnitude reaching a maximum at kBT ≈ 0.3Ecyc. The
opacity amplification is maximum for the lowest magnetic
field strength considered (B ≈ 3.3×1011 G) and decreases al-
most linearly as the magnetic field strength increases. At the
same time, the contribution of the thermal cyclotron emis-
sion to plasma cooling is the largest source of uncertainty for
plasma cooling rate, because existing computations of the ra-
tio between the thermal cyclotron emission and the cyclotron
scattering are not robust.

We suggest a relatively simple approximation formula (11)
for the description of the Planck opacity of a high temper-
ature plasma in a strong magnetic field. We demonstrated
that this approximation has an accuracy of about 30% for
lgB ≥ 12 and can be used for modeling of the radiative cool-
ing of the high-magnetized plasma.

The Rosseland mean opacity does not depend on the
plasma density linearly, and we computed an extended grid
of these opacities both, along and across the field for plasma
temperatures from 1 to 330 keV and 14 values of the mag-
netic field strength in the range lgB from 10.5 to 15. The
third input parameter of the grid is the plasma density ρ
ranging between 10−6 and 103. The electrons are degenerate
at a few of the lowest temperatures and high densities for
low magnetic field strength, and the opacities at these grid
points were not computed. The electrons at strongly quantiz-
ing magnetic field, lgB ≥ 11.75 for the adopted grid are not
degenerate even at the lowest temperatures and the highest
densities. The main difference of our work in comparison with
the calculations previously published in the literature is the
inclusion of scattering on the electron-positron pairs. Their
number densities needed for such calculation were computed
by us using thermodynamic equilibrium assumption in the
non-relativistic approximation. Formally, the opacities con-
nected with electron-positron pair creation on the two-photon
interaction and the photon interaction with a strong mag-

netic field were also included to the Rosseland opacity com-
putations. However, their contribution to the total opacity is
insignificant in comparison with the scattering on the pairs.
Altogether, we computed three sets of Rosseland mean opac-
ities across and along the field. In the first set we take into
account pairs in the thermodynamical equilibrium assump-
tion and opacities due to pair creation in the thermodynamic
equilibrium radiation field. In the second set we assumed that
there are no pairs, but their creation in the Planck radiation
field is possible. In the last set we ignored the pairs com-
pletely.

We did not include the pair annihilation as an additional
source of the radiative cooling of the magnetized plasma, e.g.
in the Planck opacity calculations. This process can be pre-
computed assuming that the radiation intensity equals the
Planck function, but it is not correct for the optically thin
plasma layers where the Planck opacity has to be used.

The inclusion of scattering on the pairs leads to the Rosse-
land mean opacity dramatically increasing at temperatures
kBT > 50− 100 keV, especially for the strong magnetic field
cases. This fact refutes earlier results where it was demon-
strated that the maximum accretion column luminosities in-
crease as the magnetic field strength on the neutron star sur-
face increases (Mushtukov et al. 2015b; Brice et al. 2021).
New computations of the maximum accretion column lumi-
nosities with the Rosseland mean opacities computed here
taken into account will be published in a separate paper. Pre-
liminary results are presented by Suleimanov et al. (2022).
There it is shown that the maximum luminosity of the accre-
tion column ceases to grow with increasing magnetic field at
lgB ≈ 14.5, while in the papers cited above the maximum lu-
minosity monotonically grows with increasing magnetic field.
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APPENDIX A: ELECTRON AND ION NUMBER
DENSITIES

The electron and ion number densities are determined by
two equations, the electric neutrality of the plasma

ne− = nB
e+ + Z̄ nion (A1)

and the relation between the ion number density and the
plasma density

nion =
ρ

ĀmH
. (A2)

Here nB
e+ is the positron number density at the given mag-

netic field strength, and this value was taken equal to zero at
the Planck opacity computations, Z̄ = AH + 2AHe is the av-
erage ion charge, and Ā = AH +4AHe is the average ion mass.
We take the relative hydrogen number density AH = 0.922
and the relative helium number density AHe = 0.078 accord-
ing to Asplund et al. (2009). Therefore, the number densities
of hydrogen and helium are computed as follows:

nH = AHnion, nHe = AHenion. (A3)

Note that although there are accurate fully relativistic ex-
pressions for the electron and positron number densities in a
strong magnetic field (see details in Mushtukov et al. 2019),
we use here the approximation presented by Kaminker &
Yakovlev (1993), where the basic assumption is that the elec-
tron positron pairs are in thermodynamic equilibrium at the
high temperatures. It means also that we consider a non-
degenerate plasma and use non-relativistic approximations.
This is the situation we look at, so use of the simplified ex-
pressions is justified. The product of positron and electron
number densities in thermodynamic equilibrium at zero mag-
netic field strength can be found as

n0
e+n

0
e− =

1

2π3λ6
C

e−2/trt3r , λC =
~
mec

, (A4)

(Zeldovich & Novikov 1971). It is well known that the pair
number density increases at high magnetic fields when Ecyc ≥
mec

2, or B ≥ Bcr = m2
ec

3/~e ≈ 4.414 × 1013 G (see, e.g.
Mushtukov et al. 2019). Here we take into account this kind
of amplification using non-relativistic approximation

nB
e+ne− ≈ n

0
e+n

0
e−∆b2(1 + 0.306 tr) coth2

(
∆b

1 + 2.6 tr

)
(A5)

where

∆b =
Ecyc

2 kBT
=

~ eB
mec

· 1

2 kBT
, (A6)

and the relative temperature tr is

tr =
kBT

mec2
. (A7)
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Figure A1. The total electron number density (ne− + ne+ ) vs.
temperature for three magnetic field strengths: 1013 G (black solid

curve), 1014 G (red dashed curve), and 1015 G (blue dot-dashed
curve). The plasma density is fixed, 10 g cm−3 . The thermody-

namic equilibrium positron number density at zero field strength

(see Eq. A4) is shown with the black dotted curve.

Finally, using Eqs.(A1) and (A5) we obtain

nB
e+ =

1

2

(√
(Z̄ nion)2 + 4nB

e+
ne− − Z̄ nion

)
. (A8)

In fact, the plasma density changes due to pair contribution

ρ′ = ρ+me(nB
e+ + ne−). (A9)

But we consider the plasma density determined using the ion
number density only (Eq. A2) as a part of the input param-
eter in our computations, and, therefore, use it in opacity
computations as well. It means that only the plasma den-
sity determined by Eq. (A2) has to be used for the Rosseland
optical depth computations

dτ = ρ κ(ρ, T,B)dx. (A10)

We note also, that the opacity calculations presented below
can be easily recomputed from dimension cm2 g−1 used here
to dimension cm−1 by simple multiplication of opacity values
presented here by corresponding grid point density.

An example of number density calculations using the ap-
proximations described below is presented in Fig. A1. Here
we approximately reproduce the bottom panel of the Fig. (2)
in Mushtukov et al. (2019) where more accurate relativistic
expressions are used, and as can be seen from the figure, both
results are in a good agreement for kBT < 200 keV.

The assumptions adopted in the paper are only appropriate
for a non-degenerate plasma. This implies plasma tempera-
tures need to be larger than the Fermi temperature, T > TF.
The Fermi temperature is determined by the plasma density
and its value is significantly different for a non-quantizing
magnetic field, at kBT < Ecyc and a strongly quantizing mag-
netic field in the opposite case.

The expression for the Fermi temperature in low field limit
is

kBT
F
e− = mec

2(γr − 1), (A11)

where the parameters γr and xr are determined as

γr =
√

1 + x2
r , xr = λC(3π2ne−)1/3. (A12)

In the opposite case, when kBT < Ecyc we consider the
strongly-quantizing approximation, assuming that only the
ground Landau level is occupied (Haensel et al. 2007). The
Fermi temperature is significantly reduced at these conditions

kBT
F
e−(B) = mec

2(γB − 1), (A13)

where

γB =
√

1 + x2
B, xB =

2Bcr

3B
x3

r . (A14)

APPENDIX B: SPECIFIC OPACITIES

B1 Continuum opacity

The continuum opacity, for both electron scattering and
free-free absorption are computed using the method described
by Lai & Ho (2003); van Adelsberg & Lai (2006), see also
Suleimanov et al. (2009). In the all cited papers the opaci-
ties were computed in cold plasma approximation for chemi-
cally pure (hydrogen or helium) atmospheres. We modified
the method for the H/He mix and assume that the cold
plasma approximation provides correct opacities at E < Ecyc.
We note that the used opacities correctly transform to the
non-magnetic opacities at E >> Ecyc. The cyclotron opacity
dominates at E ∼ Ecyc, and the cold plasma approximation
is not used for computations of the cyclotron opacity.

Vacuum polarization is also taken into account according
to the description in van Adelsberg & Lai (2006). It is known
that the plasma polarizability is dominating in the dielectric
tensor at photon energies below some boundary energy EV =
Ecyc V

−1/2, where

V =
3× 1028cm−3

ne

(
B

Bcr

)4

, (B1)

and finally

EV ≈ (1.7× 104ne)1/2B−1 ≈ 413
( ne

1025

)1/2

B−1
12 keV. (B2)

In the opposite case, E > EV, vacuum polarizability is dom-
inating. There is a so called vacuum resonance at the photon
energy E = EV. At this condition the normal modes are
mixed and the opacities in the both modes become equal.

Let us present the formulae for the continuum opacities.
The scattering opacity from the mode i and the direction µ
to the mode j and the direction µ′ is

κijes(µ, µ
′) =

3

4

σT

ρ

+1∑
α=−1

Bα aα(i, µ) aα(j, µ′), (B3)

and the total scattering opacity from the mode j and the
direction µ is

κjes(µ) =
σT

ρ

+1∑
α=−1

Bα aα(j, µ)

(
2∑
i=1

Aα(i)

)
, (B4)

where

Bα = ne te(α) +

(
me

mp

)2

ni (AHtH(α) +AHetHe(α)) . (B5)

In the described approach the unit mode electric vector in
the frame with the z-axis directed along magnetic field can be

MNRAS 000, 1–?? (2022)
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presented as E = ej = e0(iKj , 1, iKz,j). The vector compo-
nents are expressed using the ratio of the polarization ellipse
iKj = Ex/Ey, its projection on the z-axis iKz,j = Ez/Ey,
and the normalization e0 = (1 +K2

j +K2
z,j)
−1/2. The opaci-

ties are computed in the cyclic frame, and the corresponding
squares of the cyclic vector components are

a±1(j, µ) =

∣∣∣∣ 1√
2

(ejx + iejy)

∣∣∣∣2 (B6)

=
1± (Kj sin θ +Kz,j cos θ)2

2(1 +K2
j +K2

z,j)
,

a0(j, µ) =
(Kj sin θ −Kz,j cos θ)2

1 +K2
j +K2

z,j

, (B7)

and

Aα(j) =
3

2

∫ 1

0

aα(j, µ) dµ. (B8)

They are computed using the ratio of the polarization ellipse
axes

Kj = q

(
1 + (−1)j

(
1 +

r

q2

)1/2
)
, (B9)

where the polarization parameter q

q = − (ε2 − g2 − εη) sin2 θ + εη(1− r)
2gη cos θ

, (B10)

and projection of the electric field vector on z-axis

Kz,j = − (ε− η) sin θ cos θKj + g sin θ

ε sin2 θ + η cos2 θ
, (B11)

are computed using the components of the dielectric tensor
ε, g, and η. We generalize their values, presented by Lai &
Ho (2003) after Ginzburg (1970), for two ions, and present
their shortened expressions without damping terms:

ε± g = 1− ve + vi

(1∓ u1/2
e )(1± u1/2

H )(1± u1/2
He )

, (B12)

and

η = 1− ve − vi. (B13)

Here we use the dimensionless values

ve =
E2

p

E2
; vi =

E2
p,i

E2
, (B14)

and

ue =
E2

cyc

E2
; uH =

E2
cyc,H

E2
; uHe =

E2
cyc,He

E2
. (B15)

The positron contribution was taken into account at the
plasma photon energy Ep computations by replacing ne ≡
ne− + nB

e+ as it was declared in Sect. 2. The energy corre-
sponding to plasma frequency, Ep, and the electron cyclotron
energy Ecyc are also defined in Sect. 2. The energy Ep,i cor-
responds to the ion plasma frequency ν2

p,i = Z2e2ni/πAmi.
The specific contribution of the protons and α−particles to
the νp,i is equal, as Z2/A ≈ 1 for both ions. We use the total
ion number density ni = nH + nHe. The common expression
for the ion cyclotron energies is

Ecyc,(H,He) = ~ ZeB
Ampc

≈ 6.35 · 10−3 B12
Z

A
keV. (B16)

The vacuum polarization changes the dielectric tensor com-
ponents and they have to be replaced as (Potekhin et al. 2004)

ε → ε+ a′ (B17)

η → η + a′ + q′.

The value r is determined as

r = 1 +
m′

1 + a′
sin2 θ. (B18)

Here m′, a′ and q′ are small corrections expressed as

m′ = −αf
3π

b2Q

3.75 + 2.7b
5/4
Q + b2Q

(B19)

a′ = −2αf
9π

ln

(
1 +

b2Q
5

1 + 0.25487b
3/4
Q

1 + 0.75b
5/4
Q

)

q′ =
7αf
45π

b2Q
1 + 1.2bQ

1 + 1.33bQ + 0.56b2Q
,

where bQ = B/Bcr, and αf = e2/~c ≈ 1/137.
The magnetic bremsstrahlung opacity in the mode j and

the angle µ separately for collisions of electrons with protons
and α−particles is

κjH,He(µ) =

+1∑
α=−1

ζjH,He(α) te,(H,He)(α) aα(j, µ), (B20)

where

ζjH,He(±1) = ζ0
H,HeΛ⊥, ζjH,He(0) = ζ0

H,HeΛ‖. (B21)

Here Λ⊥ and Λ‖ are the magnetic Gaunt factors (Pavlov &
Panov 1976; Suleimanov et al. 2010; Potekhin 2010), and ζ0
is the nonmagnetic bremsstrahlung opacity without Gaunt
factor

ζ0
H,He =

25/2π3/2~2e6

cm
3/2
e (kT )1/2

Z2AH,Henine

E3ρ

(
1− e−

E
kT

)
. (B22)

We also use the following definitions

te(±1) =
1

(1± u1/2
e )2 + (γ⊥e,H + γ⊥e,He + γre)2

, (B23)

tH,He(±1) =
1

(1∓ u1/2
H,He)2 + (γ⊥e,(H,He) + γri)2

, (B24)

te,(H,He)(±1) =
1

(1± u1/2
e )2(1∓ u1/2

H.He)2 + Γe,(H,He)

, (B25)

and

te(0) = tH,He(0) = te(H,He)(0) = 1. (B26)

Here

Γe,(H,He) =
(
γ⊥e,(H,He) + (1± u1/2

e )γri + (1∓ u1/2
H,He)γre

)2

.

(B27)

In the previous equations we used the effective radiative
dimensionless dumping rates

γre =
2e2

3mec3~
E, γri =

2Z2e2

3Ampc3~
E. (B28)

We note, that the rates for protons and α−particles are equal
to each other, and we do not distinguish them. The relative
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Figure B1. Dependence of the opacities due to free-free absorption
(red curves) and electron scattering opacities (blue curves) on the

photon energy for a plasma with the parameters presented in the
plot. The magnetic field strength is 1014 G. Opacities in X-mode

are shown by the solid curves, and the opacities in O-mode are

shown by the dashed curves. Positions of the ion resonances for
protons and α−particles as well as the position of the vacuum

resonance are also shown.

effective dimensionless electron-ion collision rate across the
magnetic field is

γ⊥e,(H,He) =

√
2π~Z2e4

(mekT )1/2

AH,Heni

E2

(
1− e−

E
kT

)
Λ⊥. (B29)

Examples of continuum opacities for some plasma param-
eters are shown in Fig. B1. We ignore here bremsstrahlung
opacities due to e−e−, e+e+, and e−e+ which could be po-
tentially important at high magnetic fields and temperatures.
We believe that the Rosseland mean opacity is dominated by
photon scattering by electrons and positrons.

The electron scattering opacity can be smaller than Thom-
son scattering due to the Klein-Nishina reduction. It could
be significant at high plasma temperatures. Therefore, we
multiply the electron scattering opacity by the known ratio
σKN/σT at every photon energy. Here σT = 6.65× 10−25 cm2

is the Thomson scattering cross-section. We perform this kind
of reduction for the cyclotron opacity as well. The importance
of this reduction for the Rosseland opacity of a weakly mag-
netized plasma is even more significant if Compton scattering
is taken into account, see e.g. Paczynski (1983); Suleimanov
et al. (2012a); Poutanen (2017), but we ignore it here.

B2 Cyclotron opacity

The opacities in the cyclotron line and the harmonics κj
(cm2 g−1) for polarization modes j=1 (X-mode) and j = 2
(O-mode) are computed using various approximate expres-
sions.

For the normal mode opacities for the plasma domination
case we use the approximate formulae derived by Pavlov et al.
(1980a), (see also Suleimanov et al. 2012b). In particular, the
X-mode opacity near the fundamental resonance is

κ11 ≈
√
π

~cρ
E2
p

E

1 + µ2

2βT|µ|
exp(−x2

1). (B30)

The expressions for the O-mode opacity near the fundamental

resonance as well as the opacities at the harmonics can be
found in Suleimanov et al. (2012b).

In comparison with the original version we have introduced
some relativistic corrections by hands. So we use another def-
inition for x1 and corresponding values for higher harmonics

xs =
E − Es

∆ED,s
(B31)

by including the correct relativistic expression for the reso-
nance and harmonic energies Es instead of using the approx-
imate linear shift relative to sEcyc

Es =
mec

2

1− µ2

(√
1 + 2sB(1− µ2)/Bcr − 1

)
. (B32)

Here s is the harmonic number, and s = 1 for the fundamental
resonance. The expression (B32) is correct for µ 6= 1 only.
There is only fundamental resonance at the energy Ecyc at
µ = 1.

The Doppler width of the harmonic ∆ED,s is also corrected,

∆ED,s = min(E,Es)βTµ

(√
1− β2

T

1− µβT

)
. (B33)

Here βT is the ratio of the most probable thermal electron ve-
locity to the speed of light. It is also corrected for relativistic
effects,

βT =
vT

c
=
√

2tr
(√

1 + t2r − tr
)1/2

, (B34)

where tr is defined by Eq. (A7).This expression provides the
requirement βT < 1 for any temperature, and can be de-
rived from the condition ∂f(p)/∂p = 0, where f(p) ∼
p2 exp(−

√
1 + p2/tr) is the probability distribution of elec-

tron momenta in accordance with the relativistic Maxwell-
Jüttner distribution, and p = |v|/c

√
1− v2/c2 is the module

of the dimensionless relativistic momentum.
In expression (B30) as well as in all the following expres-

sions for the cyclotron opacities, the Gaussian broadening
function is used instead of integration over the electron mo-
menta. It is acceptable for tr � 1, but for the high tempera-
ture cases the resonance condition is not fulfilled for the high
energy electrons with the momenta directed to the observer.
Therefore, we cut the cyclotron opacity at energies higher
than the cutoff energy

Ecut,s =
mec

2√
1− µ2

(√
1 + 2sB/Bcr − 1

)
(B35)

which is determined separately for the fundamental resonance
and every harmonic, see, e.g. Schwarm et al. (2017).

For the case of the vacuum domination we also use the
approximations for the opacities near the fundamental reso-
nance from Pavlov et al. (1980a). The opacity at the funda-
mental resonance in X-mode is

κ11 ≈
√
π

~cρ
E2
p

E

1

2βT|µ|
exp(−x2

1). (B36)

This expression is correct, if the value V βTµ(1 − µ2) > 1
(see detail in Pavlov et al. 1980a). In the opposite case we
use Eq. (B30). The same condition we use for separation of
the expressions describing the opacities near the fundamental
resonance in O-mode.
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The opacities near the harmonics in X-mode for the case
of the vacuum dominance are taken from Melrose & Zhelez-
niakov (1981)

κs1 ≈
√
π

~cρ
E2
p

E

1

βT|µ|
κV

(s− 1)!
exp(−x2

s), (B37)

where

κV =
sinh(E/2kBT )

(exp(E1/kBT ))− 1)s

(
εE(1− µ2)

2E1

)s−1

. (B38)

Here ε = E/mec
2 is the relative photon energy. These ex-

pressions are correct for the case kBT ∼ Ecyc. The cyclotron
opacity is important for the Rosseland opacity computation
in this case only.

All the opacities near the fundamental resonance and the
harmonics in O-mode for the case of the vacuum domination
are computed using the expressions for the opacities in X-
mode

κs2 ≈ κs1
(
µ2 +

E1

4kBT
β2

T

)
, (B39)

but the separation condition for the harmonics is the same as
for continuum opacities, i.e. we use Eq. (B39) if E > EV. In
fact the transition of the cyclotron opacity across the vacuum
resonance is much more complicated (see, e.g. Pavlov et al.
1980a) and we did not consider it here in detail.

Examples of cyclotron opacities are presented in Fig. B2.
It reproduces Figs. 5a and 6a published by Mushtukov et al.
(2016). It is clear that our simplified approach reproduces
well the resonance and harmonic energies, although the line
widths are slightly underestimated (especially for µ → 0)
because we ignore the natural Landau level width, and the
opacities in the harmonics are overestimated. The cyclotron
opacities are presented together with the continuum electron
scattering opacities at low energies.

All the expressions presented above are not sufficiently cor-
rect at high temperatures and using of them leads to cy-
clotron opacity overestimation. This is the reason why we do
not use them for the cyclotron harmonic opacities at temper-
atures above 45 keV and the large angles provide too broad
harmonics for the plasma domination case. At these condi-
tions we use the opacities derived from the fitting formulae
for the high-temperature cyclotron-synchrotron emissivities
obtained by Pandya et al. (2016):

κjsyn =
ksyn

ρ
(X ± Y ), (B40)

where the sign ” + ” corresponds to X-mode, and the sign
”− ” corresponds to O-mode. Here

ksyn =

√
2π

27
e2ne

√
1− µ2 Ecyc exp(−ε1/3)B−1

E , (B41)

X = (ε1/2 + 211/12ε1/6)2, (B42)

and

Y = (ε1/2 + at2
11/12ε1/6)2, (B43)

where

at =
7t

24/25
r + 35

10t
24/25
r + 75

. (B44)

Figure B2. Dependence of the cyclotron plus continuum electron

scattering opacities on the relative photon energy for a plasma
with temperature kBT = 20 keV, ρ = 10−3 g cm−3, and B = 2.2.×
1012 G. All the opacities are computed for the vacuum domination
case.

The dimensionless relative energy ε = E/Ec is the photon
energy normalized by the energy

Ec =
2

9
Ecyct

2
r

√
1− µ2, (B45)

and BE is the Planck function. The opacity determined by
Eq. (B40) is used as the cyclotron opacity of the harmonic if
kBT > 45 keV and the plasma domination case. The opacities
near the fundamental resonance and all the opacities for the
case of the vacuum dominance are computed using Eqs.(B30),
(B36), (B37), and (B39) for any plasma temperature.

B3 Two-photon pair production

Interaction of two photons with energies E and E′ can
create an electron-positron pair, if their common relative en-
ergy in the centre-of-momentum frame exceeds the pair mass,
εε′(1 − µ′) > 2, where µ′ is the cosine of the angle between
the directions of the photon propagations, and ε = E/mec

2 is
the relative photon energy. The corresponding opacity is de-
scribed in detail by Beloborodov (1999). We simplified his
expressions as we considered pair creation by the almost
isotropic blackbody radiation. As a result the opacity is

κγγ(E) =
2π

cρ

∞∫
0

BE′ dE
′

E′

+1∫
−1

(1− µ′)σγγ(εc) dµ′. (B46)
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Figure B3. Dependence of the cyclotron plus continuum electron
scattering opacities on the relative photon energy for a plasma

with temperature kBT = 20 keV, ρ = 10−3 g cm−3, and B = 2.2.×
1012 G. All the opacities are computed for the vacuum domination

case.

Here σγγ(εc) is the cross-section of the two-photon interaction

σγγ(εc) =
3σT

8ε2
c

(
2 +

2

ε2
c

+
1

ε4
c

)
ln
(
εc +

√
ε2

c − 1
)

(B47)

−3σT

8ε2
c

(
1 +

1

ε2
c

)√
1− 1

ε2
c

,

depending on the relative photon energy in the centre-of-
momentum zc

εc = (ε′/εthr)
1/2, (B48)

where

εthr =
2

ε(1− µ′) . (B49)

The cross-section σγγ(εc) equals zero if ε′ < εthr.

B4 One-photon pair production in a strong magnetic field

In a strong magnetic field a single photon with energy ε⊥ ≡
ε
√

1− µ2 > 2 can transform to an electron-positron pair. We
consider here this process as an additional opacity, and use
two approximate expressions for the attenuation rate. The
first one was presented by Daugherty & Harding (1983) and
we use it for the strong enough magnetic field B > 0.5Bcr. If
the photon energy is larger than the ε⊥ > 2, then

κ1γ(µ,E) ≈ 0.23
αf
λC

B
√

1− µ2

Bcr
exp

[
−4f(E,B)

3χ

]
1

ρ
. (B50)

In the opposite case, ε⊥ < 2, the considered opacity equals
zero, κ1γ = 0. Here the variable χ is determined as

χ =
ε⊥
2

B

Bcr
, (B51)

the fitting function is

f(E,B) ≈ 1 + 0.42
(ε⊥

2

)−2.7
(
B

Bcr

)−0.0038

, (B52)

and αf ≈ 1/137 is the fine-structure constant. The presented
one-photon annihilation opacity is averaged over the photon

polarizations and over the photon energy, smearing the nu-
merous saw-edges existing in the accurate attenuation rate.

At relatively low magnetic fields Eq. (B50) significantly
overestimates the correct pair creation rate. For this case an-
other approximation, suggested by Baring (1991), is used:

κ1γ(µ,E) ≈ αf
λC

B
√

1− µ2

ε2
⊥Bcr

Λ(ε⊥) exp

[
−φBcr

4B

]
1

ρ
. (B53)

Here

Λ(ε⊥) =
3ε2
⊥ − 4

(ε⊥ + 2)2

√
ε2
⊥ − 4

ζφ
, (B54)

φ = 4ε⊥ − ζ(ε2
⊥ − 4), (B55)

and

ζ = log

(
ε⊥ + 2

ε⊥ − 2

)
. (B56)

Examples of the κ1γ(µ,E) dependence on photon energy for
three different magnetic field strengths are shown in Fig. B3.

APPENDIX C: DATA FILES AND THE
INTERPOLATION CODE

The arXiv “Source Files” contain the files with the
grid Rosseland opacities across and along magnetic
field lines. The opacity database is also available via
https://github.com/alexandermushtukov/RT mag opacity.
The opacities represented in different files are computed
under different assumptions about contribution of electron-
positron pair. In particular, the files contained in archives
ross1.zip and ross2.zip correspond to the opacities across
and along the field respectively with the pairs in thermody-
namic equilibrium and opacities due to pair creation taken
into account. The files contained in archives ross3.zip and
ross4.zip correspond to the opacities across and along the
field respectively with no pairs, but the opacities due to pair
creation taken into account. The files contained in archives
ross5.zip and ross6.zip correspond to the opacities across
and along the field respectively computed without pairs
participation at all.

Every archive file contains information about the Rosseland
opacities calculated for 14 values of magnetic fields lgB=
10.5, 11.0, 11.5, 11.75, 12.0, 12.25, 12.5, 12.75, 13.0, 13.25,
13.5, 14.0, 14.5, 15.0, where B is measured in Gauss, for 19
values of mass density, from lg ρ= -6 to 3 with the step 0.5,
and for 85 values of temperature, from lg T =0 to 2.52 with
the step 0.03.

Every archive file is organised as a set of 14 two-dimensional
tables of the opacities collected in separate data files named
like ross1 b1175.dat. Every two-dimensional table is com-
puted for the magnetic field strength marked in the file name.
In the example above, the magnetic field strength corresponds
to lgB= 11.75. Each table consists of 85 rows corresponding
to the grid temperatures and 21 columns. In the first col-
umn, the temperature in units of keV is presented, in the
second column, the values lg T are presented, and in the
rest columns, the values of the Rosseland mean opacities for
19 values of the plasma density are presented, starting with
lg ρ=−6 (third column).
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We also provide an interpolation code finding the Rosse-
land opacity for given values of B, T , and ρ inside of the grid,
and a test code. Both codes are in file ross intSn.f. Before use,
all the data files have to be unpacked into the same directory
with the code (or possibly in a separate directory, but in this
case, the accurate ways to them have to be determined by
open() operators).

The interpolation subroutine abross1(istart,rho,ttt,bb,abrss)
has three input parameters bb≡ B(G), ttt≡ kBT (keV), rho≡
ρ(g cm−3), one output parameter abross≡ κR, and one key
istart. Before interpolation, a choice of the type of the neces-
sary Rosseland opacities has to be made, which is coded as
rossN. For this aim, the subroutine abross1 has to be called
with the key istart=N and arbitrary values of other input pa-
rameters. Then the necessary interpolation can be performed
by calling the subroutine with istart=0 and the actual values
of the input parameters. It is possible to make as many opac-
ity interpolations as it is necessary after the establishment of
some Rosseland opacity type. A new call of the subroutine
with another istart=N ′ has to be performed if it is necessary
to find another Rosseland opacity type, coded as rossN’.

MNRAS 000, 1–?? (2022)


	1 Introduction
	2 Method
	3 Results
	4 Conclusions
	A Electron and ion number densities
	B  Specific opacities
	B1 Continuum opacity
	B2 Cyclotron opacity
	B3 Two-photon pair production
	B4 One-photon pair production in a strong magnetic field

	C Data files and the interpolation code

