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ABSTRACT

We present a novel method to identify candidate high redshift quasars (HzQs; (z & 5.5), which are unique probes of supermassive
black hole growth in the early Universe, from large area optical/infrared photometric surveys. Using Gaussian Mixture Models to
construct likelihoods and incorporate informed priors based on population statistics, our method uses a Bayesian framework to assign
posterior probabilities that differentiate between HzQs and contaminating sources. We additionally include deep radio data to obtain
informed priors. Using existing HzQ data in the literature, we set a posterior threshold that accepts ∼90% of known HzQs while
rejecting > 99% of contaminants such as dwarf stars or lower redshift galaxies. Running the probability selection on test samples of
simulated HzQs and contaminants, we find that the efficacy of the probability method is higher than traditional colour cuts, decreasing
the fraction of accepted contaminants by 86% while retaining a similar fraction of HzQs. As a test, we apply our method to the
Pan-STARRS Data Release 1 (PS1) source catalogue within the HETDEX Spring field area on the sky, covering 400 sq. deg. and
coinciding with deep radio data from the LOFAR Two-metre Sky Survey Data Release 1 (LoTSS DR1). From an initial sample of
∼5× 105 sources in PS1, our selection shortlists 251 candidate HzQs, which are further reduced to 63 after visual inspection. Shallow
spectroscopic follow-up of 13 high probability HzQs resulted in the confirmation of a previously undiscovered quasar at z = 5.66
with photometric colours i− z = 1.4, lying outside the typically probed regions when selecting HzQs based on colours. This discovery
demonstrates the efficacy of our probabilistic HzQ selection method in selecting more complete HzQ samples, which holds promise
when employed on large existing and upcoming photometric data sets.

Key words. (Galaxies:) quasars: supermassive black holes – Galaxies: high-redshift – Methods: statistical

1. Introduction

Studying large statistical samples of high-redshift quasars
(HzQs) is essential for understanding the formation and evo-
lution of super-massive black holes (SMBH) in the early Uni-
verse. The presence of Gunn-Peterson (GP) troughs (Gunn &
Peterson 1965) in the spectra of HzQs at z ∼ 6, due to near-
complete absorption of Lyα photons by the increasingly neutral
intergalactic medium (IGM) along the line-of-sight, make them
crucial probes of cosmic reionisation (EoR; Fan 2006; Becker
et al. 2015). These GP troughs can in turn be used to photomet-
rically identify large samples of HzQs, and the proliferation of
wide area multi-band photometric surveys at optical wavelengths
such as the Sloan Digital Sky Survey (SDSS; Abazajian et al.
2003) and the Panoramic Survey Telescope and Rapid Response
System surveys (Pan-STARRS; Chambers et al. 2016) has en-
abled the discovery of statistically significant samples of bright
quasars at high redshifts, with now over ∼500 confirmed HzQs
at z > 5 (see Ross & Cross 2020, for a compilation).

For HzQs at z ∼ 6, towards the end of the EoR, the GP
trough falls between the i- and z-band filters. Therefore, in the
context of the SDSS and Pan-STARRS surveys (carried out us-
ing the u, g, r, i, z, and y filters), quasars at z ∼ 6 may be identi-
fied through pin-pointing ‘i-dropout’ sources, that show extreme
i−z colours. Searches for HzQs using photometric dropout tech-
niques over large areas of the sky often employ linear cuts in

magnitude and colours (e.g. Bañados et al. 2015, 2016). For ex-
ample, a colour cut of i− z > 1.5 to 2.5 is typically implemented
in addition to magnitude cuts to ensure a balance between the se-
lection of robustly detected HzQs and the exclusion of as many
contaminating foreground sources as possible, which are often
M, L and T-type brown dwarf stars in the Milky Way (Fan et al.
2001; Willott et al. 2005; Bañados et al. 2016; Jiang et al. 2016).

A radio detection can considerably aid in removing fore-
ground contaminants such as dwarf stars that do not emit per-
sistent radio continuum emission at the sensitivity of current ob-
servations (e.g. Burningham et al. 2016), as around 10% of HzQs
are seen to be ‘radio-loud’ (radio loudness being defined as the
ratio between rest frame radio and optical flux density) even out
to high redshifts (e.g. Bañados et al. 2015). However, overlap-
ping deep radio data is often not available for the large sky areas
covered by optical surveys from which candidate HzQs are se-
lected. Deep radio continuum surveys of large sky areas, such
as the Low-Frequency Array (LOFAR) Two Metre Sky Survey
(LoTSS; Shimwell et al. 2019), can therefore potentially provide
valuable additional information that could help improve HzQ se-
lection and minimise the probability of contaminants.

While selection based on optical and infrared colours from
large area surveys has been highly successful in identifying some
of the most distant HzQs currently known (e.g. Fan et al. 2001;
Willott et al. 2010; Bañados et al. 2016; Matsuoka et al. 2016,
2018; Pipien et al. 2018; Reed et al. 2019), the use of linear cuts
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may lead to potential biases in the samples of HzQ candidates.
A binary cut in colour and magnitude may inevitably lead to a
loss of promising HzQ candidates. Additionally, Mortlock et al.
(2012) argued that linear cuts result in uniform grouping of high
S/N candidates with more marginal ones that lie near the edges
of the selection region, possibly making spectroscopic follow-up
harder to prioritise. Finally, HzQs lying close to the limits of the
redshift ranges probed by colour selections may be missed due to
the GP trough not being fully sampled by the relevant broadband
filters used for dropout selection. For example at redshifts of z ∼
5.5, the i-dropout selection may result in certain sources being
missed, possibly presenting a gap in our understanding of SMBH
evolution and/or the later stages of cosmic reionisation (Yang
et al. 2017).

Additionally, binary selection criteria are often unable to
properly account for the observational uncertainties in the ob-
served properties for either individual sources or the population
of sources being targeted. To overcome these limitations specif-
ically in the case of identifying HzQs, a probabilistic selection
as opposed to a binary selection may represent a better way to
both obtain more complete samples of HzQs as well as assign
higher probabilities for spectroscopic follow up to more promis-
ing candidates. Bovy et al. (2011) introduced an implementation
of Gaussian mixture modelling (GMM) that assumes and then
deconvolves a model of the underlying population of sources
from data, leading to a robust estimate of probability distribution
of sources such as HzQs even from noisy measurements. Such an
approach has been successfully employed to assign probabilities
and better select low and intermediate redshift quasar candidates
from SDSS data (e.g. Bovy et al. 2011, but see also Bailer-Jones
et al. 2008; Richards et al. 2009).

Further complexities can be introduced in these models to
improve the probability assignment, for example by also tak-
ing into account the respective prior probabilities of the different
contaminants – particularly dwarf stars in the Galaxy – based
on their spatial distribution and number densities on the sky.
Such an approach was implemented by Mortlock et al. (2012)
for HzQs where prior information about populations that exhibit
HzQ-like colours was used to assign a contamination (and as a
result HzQ) probability and reduce the number of contaminants,
leading to the discovery of a quasar at z = 7.1 (Mortlock et al.
2011). However, the initial selection of HzQ candidates in the
probabilistic approach of Mortlock et al. (2012) still relied on
linear colour cuts, and could potentially suffer from the same
incompleteness issues as faced by other colour-based HzQ se-
lections.

Therefore, there remains room for improvement in proba-
bilistic HzQ selection methods, by more accurately constrain-
ing the luminosity and sky distributions of possible contami-
nants to obtain more complete samples of HzQs. In this work we
build upon the probabilistic approach of selecting HzQs based
on posterior probability estimation using informed priors and
likelihood estimation utilising GMMs. We also we make use
of deep radio observations of the HETDEX spring field taken
as part of the LoTSS first data release (LoTSS DR1; Shimwell
et al. 2017), using radio detection as an additional prior to min-
imise foreground contamination. With the combination of multi-
wavelength data and a probabilistic approach, we aim to develop
a selection technique capable of uncovering more complete sam-
ples of HzQs from large area surveys, while minimising the num-
ber of contaminating sources present in these sample.

This paper is organised as follows. In Section 2 we describe
the data sets that are used, and the here used HzQ selection
method is described Section 3. In Section 4 we apply our se-

lection method to the data sets, obtaining probabilistically se-
lected HzQ candidates. In Section 5 we present spectroscopic
follow-up for a handful of high-priority HzQ candidates iden-
tified, and report the discovery of a previously undiscovered
quasar at z ∼ 5.7. In Section 6, we discuss the performance of our
selection method, application to incoming large sky survey data
sets and the possible implications of the discovery of P144+50.
Finally, in Section 7 we summarise the findings of this paper.

Throughout this paper we assume a Planck 2015 cosmology
(Planck Collaboration 2015), with H0 = 67.8 km s−1 Mpc−1,
ΩM = 0.308, and ΩΛ = 0.692. All magnitudes are given in the
AB system (Oke & Gunn 1983), unless otherwise stated.

2. Data

2.1. Pan-STARRS

The primary data set used to identify HzQ candidates in this
study is Pan-STARRS Data Release 1 (PS1). The PS1 survey
covers 3π steradian of the sky, including the entire northern
hemisphere (Chambers et al. 2016), reaching 5σ depths of 23.3,
23.2, 23.1, 22.3, 21.3 AB in the g,r,i,z and y optical filters, re-
spectively.

We first retrieve a sample of sources from the PS1 data
archive1, and although no colour cuts are made for the initial se-
lection, a number of other criteria are applied to reduce the full
PS1 sample down to the appropriate parameter space and more
manageable numbers. Since we are primarily interested in HzQs,
we require a non-detection in the g and r filters, while requiring
a robust detection in the i, z, and y filters. The non-detections are
attributed to magnitudes fainter than the 5σ limiting magnitudes
in the photometric filters published by the PS1 team, or values
of −999 as this value is the magnitude assigned in case of a non-
detection in a particular band.

As a proof of concept, we also restrict our analysis to the sky
area corresponding to the HETDEX Spring field, which is advan-
tageously covered by deep radio data at 150 MHz from LoTSS
DR1 (see Section 2.2). The selection criteria for obtaining an ini-
tial sample from the PS1 catalogue can thus be summarised as
follows:

160◦ < R.A. < 232◦

42◦ < Dec. < 62◦

rP1 > 23.2 OR rP1 = −999
gP1 > 23.2 OR gP1 = −999
iP1 > 0, zP1 > 0, yP1 > 0

Furthermore, objects with flags from the PS1 processing pipeline
indicating bad or low quality detections are excluded to remove
sources that have poor photometric data, following Table 6 of
Bañados et al. (2014). From these criteria, a sample of ∼5 × 105

sources with complete photometric data is retrieved.

2.2. Radio data

The radio data used in this study is taken from LoTSS DR1
(Shimwell et al. 2017), which is a low frequency radio con-
tinuum survey covering over 424 sq.deg of the northern hemi-
sphere that reaches a median sensitivity of 71µJy beam−1. Con-
sequently, radio sources that are considered are based on the
5σ LoTSS DR1 catalogues, have a flux density of at least 350

1 https://panstarrs.stsci.edu
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µJy. Full details about the data reduction, processing, final im-
ages and source catalogues creation are presented in Shimwell
et al. (2019), with robust optical cross identifications presented
in Williams et al. (2019) and accompanying photometric red-
shifts in Duncan et al. (2019). We additionally make use of early
LOFAR ‘deep-fields’ data in the Boötes field (Williams et al.
2018), which coincides with the HETDEX Spring field sky area.

Visual inspection of the radio and optical images of initial
HzQ candidate samples drawn from PS1 demonstrated that dusty
red galaxies at intermediate redshifts (0 . z . 3) represented an
additional potential contaminant population that could also emit
significant radio continuum emission. The Boötes deep field data
from Williams et al. (2018) therefore acts as a primary reference
for those sources where the high-quality optical data enables ro-
bust photometric redshifts.

2.3. Ancillary data

Several other data sets are utilised for training, testing, or val-
idation of the GMM algorithms implemented in this work, or
in accurate construction of priors. As a validation sample for
HzQs, we use the sample of confirmed HzQs compiled by Baña-
dos et al. (2016) containing all z > 5.6 quasars known as of
March 2016.

As a reference data set for dwarf stars in the Milky Way, we
use a catalogue of brown dwarfs observed in PanSTARRS by
Best et al. (2017). From the same work we use data on the mean
absolute magnitudes of different dwarf types in PS1, which are
also used for constructing their sky densities.

3. High redshift quasar selection

Having outlined the data sets that will be used to implement our
new HzQ selection, in this section we describe the ingredients
that go into the construction and implementation of our GMM
based HzQ selection method.

Our HzQ selection method builds upon probabilistic selec-
tion of HzQs using a Bayesian framework presented by Mortlock
et al. (2012), which does not rely on binary colour/magnitude
cuts and incorporates additional prior knowledge about quasars
and other contaminants to predict the likelihood of a source se-
lected from a large area survey being a HzQ. For HzQs at z & 5.6,
therefore, a flexible algorithm can be constructed that can com-
pute the probability for any given source based on its iP1, zP1 and
yP1 magnitudes.

We begin by first defining the posterior distributions for the
classes of objects that are likely to occupy the photometric pa-
rameter spaces typically occupied by HzQs. We recall that the
posterior probability of a source being part of any particular pop-
ulation can be calculated using Bayes’ theorem:

P(Ck |X) =
P(Ck)L(X|Ck)∑N
i=1 P(Ci)P(X|Ci)

. (1)

where P(Ck) is the prior probability of an object belonging to
class k, and L(X|Ck) is the likelihood of the given source being
part of class k, normalised over all N possible classes and their
associated probabilities.

In reality when considering the measurements of astronom-
ical objects, additional factors related to both the distribution of
sources on the sky as well as survey limitations must be ac-
counted for when deriving probability estimates. More gener-
ally, considering these additional factors and the features f =
{ f1, f2, ..., fn} of a source that differentiates it from other sources

in the data, the prior probability of sources belonging to class k
with parameters θk is calculated as:

P(Ck |f, det) =

∫
ρ(θk)P(det|θk,Ck)dθk . (2)

where ρ(θk) is the sky density, and P(det|θk,Ck) is the probability
that the source is detected in the survey.

For sources detected in a flux limited survey, the parame-
ters θk most relevant to the probability are the magnitudes of
the source classes in different filters, described by mk. In this
case the features, f, would describe the observed magnitudes
of a given source in different filters, m̂. Therefore, to calculate
the prior we marginalise over the relevant magnitude space. The
prior is then combined with the likelihood in the ‘weighted evi-
dence’ term, describing the evidence that the source in question
belongs to a given class:

Wk(m̂, det) =

∫
ρ(mk)P(det|mk,Ck)L(m̂|mk,Ck)dmk , (3)

where L(m̂|mk,Ck) is the likelihood of the features of a source
belonging to an object of class k. With this, Eq. 1 can be rewritten
as

P(Ck |m̂, det) =
Wk(m̂, det)∑N
i=1 Wi(m̂, det)

. (4)

Having rewritten the equation to calculate the posterior probabil-
ity of any given class of objects detected in a survey in terms of
its apparent magnitude, below we describe the classes of sources
that we consider in our search for complete samples of HzQs.

3.1. Source classes

Successful implementation of our HzQ selection method re-
quires the proper identification of all classes of sources rele-
vant that overlap with the HzQ parameter spaces. As a result,
not every class of astrophysical source needs to be considered,
which may also be considered as setting the prior of non-relevant
source classes to zero. The relevant classes consist of the target
HzQ population and a set of contaminating populations occupy-
ing the same feature space. Therefore, we identify three relevant
populations: HzQs, dwarf stars within the Milky Way, and inter-
mediate redshift dusty galaxies with red observed-frame optical
colours. To model these populations we require data with PS1
magnitudes for each.

As mentioned previously, we use the Galactic brown dwarf
stars catalogue from Best et al. (2017), and the deep multi-
wavelength galaxy catalogues in the Boötes field from Williams
et al. (2018) containing photometric measurements for inter-
mediate redshift dusty galaxies. Both catalogues contain ∼104

sources, which is sufficient to model the colour space reliably
without being biased by scatter in individual sources.

The same, however, is not true for the catalogue contain-
ing ∼200 confirmed HzQs. Therefore, to model the distribu-
tion of the quasar population in the colour spaces probed, we
simulate the rest-frame UV spectral energy distributions (SEDs)
for a population of quasars using a distribution of power laws,
α ∼ N(1.30, 0.38), following the distribution presented by Cris-
tiani et al. (2016). These power law SEDs are then combined
with emission lines using the SDSS quasar template from Van-
den Berk et al. (2001).

To simulate then a population of high redshift quasars, each
simulated quasar spectrum (continuum + emission lines) is red-
shifted. The redshift is drawn from the the redshift distribu-
tion following the co-moving luminosity functions as defined

Article number, page 3 of 15
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in Mortlock et al. (2012), Eq. (13), in the redshift range of
5.6 < z < 6.5. A redshift dependent IGM absorption from
Madau (1995) is then applied to simulated spectra, and the spec-
tra are then convolved with the Pan-STARRS photometric filters
(using prescriptions built into the smpy python package2). As
we are only interested in obtaining a reasonable distribution in
colour space, the results are not dependent on the absolute flux of
the quasars. This method of generating quasar spectra results in a
reliable distribution of HzQ colours and to maintain consistency
with the number of contaminants available to model, we simu-
late a total of 104 quasars in this manner. This method of simu-
lating quasars rests on the assumption that both the Vanden Berk
et al. (2001) template spectrum and power law distribution from
Cristiani et al. (2016) are valid to higher redshifts as well. While
beyond the scope of this paper, more reliable samples of quasars
could be generated using parametric SED modelling, which can
account for intrinsic changes in quasar spectra as a function of
luminosity and redshift (e.g. Temple et al. 2021)

3.2. Likelihoods & Gaussian Mixture Modeling

In order to estimate the likelihood of a source belonging to a cer-
tain population that is considered in this study, we model each
relevant population in the iP1 − zP1, zP1 − yP1 colour space. To
do this, we use Gaussian mixture models (GMMs). A GMM
assumes that the probability density of a population can be
described by a finite number of weighted Gaussian functions
(Reynolds 2009). Therefore, to obtain a probability density, N
Gaussian functions each with mean µi and variance Σi are given
a weight wi, with the condition that the N weights sum up to
unity as follows:

p(x) =

N∑
i=1

wiN(µi,Σi) , (5)

0 ≤ wi ≤ 1,
N∑

i=1

wi = 1 . (6)

The GMM is implemented in a machine learning algo-
rithm, which optimises the parameters using Expectation-
Maximisation (Dempster et al. 1977). To estimate the number
of components needed to model each population adequately, the
Bayesian information criterion (BIC) is used (Wit et al. 2012).
This use of machine learning techniques to model various pop-
ulations in colour space is a deviation from the method pre-
sented in Mortlock et al. (2012), and this is where the novelty
of our method compared to traditional techniques relying on bi-
nary cuts in the colour space is highlighted best. The resulting
likelihood of any given source belonging to a population follows
directly from the GMM:

L(m̂|mk,Ck) =

N∑
i=1

wiN(µi,Σi) . (7)

Furthermore, we use an extension of the classical GMM al-
gorithm which implements extreme deconvolution, XDGMM
(Holoien et al. 2017). This implementation is particularly suited
for noisy data, as it deconvolves the noisy distribution of the pop-
ulation in order to capture the underlying distribution more ac-
curately. This method thus makes use of the uncertainties in the
data, both for deconvolving the models and to assign likelihood

2 https://github.com/dunkenj/smpy

to input data. As the error bars are folded into the covariance ma-
trix of the GMMs, sources with larger uncertainties are assigned
lower likelihood. The GMM algorithm is used to model the pre-
viously defined populations (quasars, dwarf stars, galaxies) in
iP1 − zP1, zP1 − yP1 colour space. The log likelihoods (assuming
a constant error in magnitude) of the resulting GMMs are shown
in Figure 1, along with the sources used to create the models
for each population, in the left plot simulated quasars, and in the
middle and right plots the sources from the reference catalogues
(Best et al. 2017; Williams et al. 2018, respectively). The Gaus-
sian components for each mixture model is also shown, with 4
components for HzQs, 6 components for dwarf stars, and one
component for galaxies. The number of components that mini-
mizes the BIC is chosen for each population separately.

3.3. Detection Prior

Many sources in our sample have faint magnitudes, extending
all the way down to the PS1 detection limit. This makes ob-
taining accurate detection priors necessary to not only differenti-
ate between real and fake sources, but also robustly characterise
the various populations of sources considered, especially at the
faintest magnitudes.

Since the fraction of real sources detected as a function of
source magnitude in PS1 (Metcalfe et al. 2013) is relatively well
described by a sigmoid function, the detection priors we use for
PS1 detected sources in this study are calculated as:

P(det|mk,Ck) =
[
1 + exp

(
4.84 · (m f ilt − m f ilt,1/2 − 0.4s)

)]−1
,

(8)

where m f ilt is the magnitude of a source in one of the Pan-
STARRS filters, m f ilt,1/2 is the 50% magnitude depth of said fil-
ter, and s is a binary value that depends on the source type:

s =

{
0 if star/point source
1 if galaxy/extended source

(9)

which is a relevant statistic for differentiating between point
sources and extended sources.

3.4. Radio detection prior

Deep radio continuum data from LoTSS DR1 is used to com-
plement the available optical data from Pan-STARRS, providing
radio detections for a subset of the selected sources. To properly
account for radio-detected sources, we modify the source clas-
sification based on the likelihood of radio detection, which we
implement through the inclusion of an additional radio detection
parameter, fR,k, into the detection prior. Through this radio de-
tection prior, if a radio counterpart in the LoTSS DR1 images
of the input source is present, the radio detection is taken into
consideration when computing the HzQ posterior probability.

For HzQs, roughly ∼10% of the quasar population (e.g.
Hooper et al. 1995) is ‘radio-loud’. This relation seems to hold
at higher redshifts, as Bañados et al. (2015) reported a radio-
loud fraction of ∼ 10% for z > 5 quasars at 1.4 GHz. Recent
results from deep LOFAR survey data at lower redshifts have
suggested that there is no dichotomy between radio-loud and ra-
dio quiet quasars, and that 30% of quasars can detected by LO-
FAR surveys (Gurkan et al. 2019). Similar fractions are found
in LoTSS DR2 (36% at > 2σ significance; Gloudemans et al.
2021) at z & 5.0. A reasonable assumption therefore would be to
set fR,k = 0.3 for HzQs as the radio detection prior.
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Fig. 1. Log likelihood of quasars (left), dwarf stars (middle), and low redshift galaxies (right) modelled by a Gaussian mixture model in colour
space. The red ellipses indicate the 3-sigma extents of the individual deconvolved Gaussians (4 components for quasars, 6 components for dwarf
stars, 1 component for galaxies). The quasar likelihoods are assigned using photometry from simulated quasar spectra as highlighted in Section
3.1, whereas the photometry for dwarf stars and low redshift galaxies are taken from their respective reference catalogues, Best et al. (2017) and
Williams et al. (2018), respectively (black dots). The dashed line in the left panel marks the commonly defined colour cut at i − z = 2.0.

For stars, including brown dwarf stars, the radio-loud frac-
tion is very low, with Kimball et al. (2009) finding about one in
a million stars may be detected at radio wavelengths. However,
low-frequency radio data combined with unparalleled sensitivity
from LoTSS represents a new parameter space for the detection
of radio signal from stars, as demonstrated by the recent dis-
covery of polarised radio emission from a cold brown dwarf star
(Vedantham et al. 2020). Nevertheless, bright, non variable radio
continuum emission sufficient to be detected in LoTSS imaging
will be significantly rarer for brown dwarf contaminants than for
luminous quasars or galaxies. Therefore, the probability of a ra-
dio detected source in our sample being a brown dwarf star is
virtually zero, with fR,k = 10−6 for dwarf stars.

For red, dusty galaxies at intermediate redshift, we find from
the deep multi-wavelength catalogues based on deep LOFAR
data in the Boötes field (Williams et al. 2018) that only a small
fraction (∼1%) of these galaxies has a radio detection. Therefore,
we set fR,k = 10−2 for the galaxy population.

We note that these radio detection priors currently represent
order of magnitude accuracy, and with deeper data collected over
larger areas of the sky by current and future radio surveys, the
radio detection priors can be improved upon to further enhance
the probability assignment method for HzQs.

3.5. Sky densities

The sky densities of the source classes represent a significant
prior, especially given the very rare nature of HzQs that makes
any given source on the sky more likely to be a star or foreground
galaxy. This prior can also differ depending on the apparent mag-
nitude of the source and in this section we describe the calcula-
tion of the sky density priors for source populations considered
in this study.

3.5.1. M,L,T dwarfs

Since the dwarf star contaminants are all within the Milky Way,
the number density of dwarf stars at distance d from the Earth

Table 1. Values of the various parameters used in Eq. (10) with errors as
determined by Chen et al. (2001). The galactic latitude (l) and longitude
(b) used here signify the centre of the HETDEX field.

Parameter Value
R� 8600 ± 200 pc
Z� 27 ± 4 pc
hR 2250 ± 1000 pc
hZ 330 ± 3 pc
l 120 deg.
b 65 deg.

and galactic latitude (l) and longitude (b) can be estimated as-
suming a galactic model (e.g. Chen et al. 2001) as

ni(d, l, b) = n0,i exp
(
−

d cos b cos l
hR

)
exp

(
−
|Z�| + d sin b

hZ

)
(10)

where Z� is the height of the Sun or Earth above the galactic
plane, and hZ and hR are the characteristic height and distance
scales for stars in the Milky Way, respectively (see also Ca-
ballero et al. 2008). The fiducial values of the various param-
eters used to calculate the sky densities of dwarf stars are given
in Table 1.

Given the magnitude range specified, every dwarf type will
have a slightly different heliocentric distance at which they will
appear in the sample. To calculate this, the absolute PS1 mag-
nitudes of each dwarf type are used from the Best et al. (2017)
catalogue. We calculate the sky density for each magnitude bin
by integrating the spatial density over the cone covering the sky
area. For a single stellar type, this results in

ρi(mi) =

∫ d2

d1

ni(D)D2dD, (11)

where D is the distance in parsec. The total sky density of all
contaminating dwarfs is thus calculated by the sum of the densi-
ties ρi of all stellar dwarf types.
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Fig. 2. Expected number density of the galaxy populations as a function
of apparent magnitude in PS1 i, z and y bands, extrapolated from the
deep multi-wavelength galaxy catalogue in the Boötes field (Williams
et al. 2018).

3.5.2. Galaxies

A significant fraction of sources in the PS1 data described in
Section 2 are identified as faint red galaxies. As mentioned pre-
viously, the information for this population is primarily taken
from the Boötes multi-wavelength photometric catalogue from
Williams et al. (2018), also containing photometric redshifts that
allows us to select such galaxies in the redshift range 0 . z . 3.
As this is a less well-defined astrophysical population compared
to quasars and dwarf stars, we have no luminosity function to
model their observed sky density. Instead, we use the apparent
magnitudes of these galaxies in the PS1 i, z and y filters to model
their distribution as a function of apparent magnitude in a given
filter. We model the distribution with the Kernel Density Estima-
tion (KDE) technique (Silverman 2017), where we use a band-
width h = 0.1 to get a smooth and continuous representation of
the data.

This population of galaxies is made up of the population
identified in the Boötes field, selected with the same criteria as
the main PS1 sample (see Section 2.1). The Boötes field covers
an area of S ' 11.6 deg2 on the sky, and we use this to convert
the modelled distribution of galaxies to sky densities. Assuming
that the galaxies are isotropically distributed, these sky densities
are independent of the direction in which we observe, making
the model valid for data in the HETDEX field as well. The re-
sulting sky densities of galaxies detected in the PS1 i, z and y
band data as a function of AB magnitude are shown in Figure 2.

3.5.3. High redshift quasars

Density functions of HzQs can be expressed in terms of the lumi-
nosity functions at high redshifts, which are poorly constrained
compared to lower redshifts due to a lack of statistical samples
(e.g. Manti et al. 2017). Using observations of quasars across
redshifts, Mortlock et al. (2012) derived a redshift and absolute
magnitude dependent co-moving luminosity function for HzQs.

In order to calculate absolute magnitudes from the range of
observed magnitudes in all relevant PS1 filters, K-corrections to
the quasar spectra are calculated. The same method is used with
which we simulated quasar magnitude in Section 3.1, by apply-
ing redshift dependent Lyman absorption from the intervening

IGM based on redshift to the quasar SED templates from Van-
den Berk et al. (2001). We note that we do not account for the
presence of ionised proximity zones around the HzQs. The Ly-
man absorbed and redshifted spectra are divided by the unaltered
SED templates, and convolved with the relevant PS1 filters to
obtain the K-corrections (following Hogg et al. 2002).

Finally, integrating the redshift and magnitude dependent
HzQ luminosity density, Φq(M, z), from Mortlock et al. (2012)
over the observed redshift cone yields the sky density of HzQs

ρq(mq) =

∫ Dco,2

Dco,1

Φq(M, z) D2
co dDco (12)

where Dco is the co-moving distance in Mpc, integrated over
the distances (Dco,1, Dco,2) corresponding to the redshift range
probed.

3.6. Full posterior

For the full photometric sample outlined in Section 2 we cal-
culate the evidences for each class using the priors and likeli-
hoods outlined above. The final quasar posterior probability is
then constructed as

Pq(m̂, det) =
Wq(m̂, det)∑N
i=1 Wi(m̂, det)

(13)

where the weighted evidence is calculated based on the priors
obtained using the i, z and y magnitudes and likelihoods in the
i − z and z − y colour spaces for each source

Wk(m̂, det) =∫
ρk(i, z, y)P(det|i, z, y,Ck)L(m̂|i − z, z − y,Ck)didydz . (14)

As a result, every source with a measured i, z and y band
magnitude in the PS1 catalogue can be robustly assigned a prob-
ability of being a HzQ. In the following section we apply our
HzQ selection method to publicly available photometric data
from PS1, in a bid to identify previously undiscovered HzQs at
z & 5.5.

4. Implementing the quasar selection algorithm

Having defined all the necessary components for our HzQ prob-
ability assignment method, in this section we apply it to data
taken from PS1 as described in Section 2. When provided the
iP1, zP1 and yP1 magnitudes of any source, our method described
above should yield a posterior probability, Pq, that the source is
a HzQ.

4.1. Candidate HzQ samples

Due to the sky density priors giving a much greater weight to
non-quasar likelihoods, we must define a posterior threshold that
is capable of capturing the quasar population while largely re-
jecting other foreground contaminants. Using PS1 photometry
of known quasars at z > 5.5 from Bañados et al. (2016), we
find that a posterior threshold of Pq > 5 × 10−4 accepts ∼90%
of the quasar population. The same threshold also rejects more
than 99% of dwarf stars and low redshift galaxies, as is shown in
Figure 3.

We introduce an additional requirement ensuring a good
quality detection in PS1 to remove spurious detections, saturated
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Fig. 3. Posterior quasar probabilities of the different populations as-
signed by our HzQ selection method. The chosen posterior threshold of
Pq > 5 × 10−4 is shown using the dashed line, which retains ∼ 90%
of the known quasar population while rejecting > 99% of foreground
contaminant populations.

counts, and other instances resulting in bad photometry in the
catalogue, by ensuring that the parameter iQfPerfect > 0.85.
We exclude sources which do not adequately fit any of the mod-
elled populations by removing sources which have low likeli-
hood scores from all GMMs,

log
∑

k

Lk > −10 . (15)

Having established the adequate posterior threshold that max-
imises the chances of identifying HzQs and minimises the inci-
dence of foreground contaminants, we now proceed to run our
novel HzQ selection method on the photometric data in the i,
z and y bands queried from PS1. Our initial data set contained
∼5 × 105 sources, out of which 508 sources were selected with
probability above the set threshold. Finally, 263 sources satisfied
the additional good quality detection requirement, of which 12
sources had an accompanying LOFAR detection.

To investigate the selection function introduced by our algo-
rithm to identify candidate HzQs, in Figure 4 we show the cumu-
lative distribution function (CDF) of zP1 magnitudes of sources
lying above the probability threshold of being HzQs (red line),
along with the CDF of the zP1 magnitudes of all the sources that
were passed through the algorithm (black line). Very clearly, our
algorithm preferentially classifies objects with brighter zP1 mag-
nitudes job as candidate HzQs, placing a stronger emphasis on
capturing the Lyα break which manifests itself as higher i − z
photometric colours. The brighter zP1 magnitudes also ensure
that sources classified as candidate HzQs are securely detected
at redder wavelengths. The zP1 mag distribution for sources with
high HzQ probabilities peaks at zP1 ≈ 19, with objects fainter
than zP1 > 21 very rarely selected, as it would be impossible to
constrain the Lyα break in objects with the faintest zP1 magni-
tudes. The comparison shown in Figure 4, therefore, serves as a
validation for our new HzQ selection algorithm.

The 263 candidate HzQs lying above the posterior thresh-
old of Pq > 5 × 10−4 selected from our method represent
a very small fraction (∼ 0.05%) of the initial data set. Our
strict threshold clearly results in a drastic reduction in the num-
ber of candidate HzQs, which can subsequently be visually in-
spected through which additional spurious, extended, or other-
wise undesired sources can then be rejected. The main aim of

Fig. 4. Cumulative distribution function (CDF) of zP1 magnitudes of
the sources classified as candidate HzQs (red line) compared with the
full PS1 photometric sample (black line). Our algorithm preferentially
assigns higher HzQ priorities to sources that are brighter and securely
detected in the zP1 band, ensuring that the Lyα break resulting in higher
i − z colours is securely constrained.

visual inspection was to identify clearly spurious sources that
may have been missed as such by the quality selection param-
eter (iQfPerfect). Examples include contamination by bright
stellar spikes, cosmic ray residuals and grouped bright pixels.
We additionally rejected candidates that showed extended mor-
phologies, as HzQs are highly likely to appear as point sources
in PS1 images. The visual inspection was carried out by JDW,
AS and KJD, with mutual agreement being required in order to
reject a candidate.

As a result, our conservative approach to visual inspection
resulted in a large fraction of HzQ candidates being rejected,
with 65 sources, 11 of which have a radio detection, remaining
as good HzQ candidates suitable for spectroscopic follow up.
The entire sample is summarised in Figure 5, where the discrim-
inating power of the posterior calculation can be appreciated.
Further details of the sources can be found in Table A.1. Note-
worthy is a cluster of sources around z − y = 1.5, which rep-
resents a subset of the sources that have a detection in LoTSS.
In total, 4417 sources in the full catalogue have a LOFAR coun-
terpart, none of which would be selected if no radio counterpart
was present. The addition of radio data has given higher signif-
icance to these sources, and shows that the method can robustly
take into account the additional information provided by a radio
detection.

4.2. Comparison with colour selection

In this section we test the efficacy of our Bayesian HzQ selec-
tion method compared to the traditional colour and magnitude
based selection. We note that ∼30% of sources that were as-
signed high HzQ probabilities lie below the traditional i − z > 2
colour cut (Figure 5), and may potentially be missed by studies
relying on binary colour/magnitude cuts for HzQ searches. To
compare results, we apply a colour cut of i − z > 2 on the full
PS1 sample, which selects 634 sources. This shows that even
though sources below the colour cut can be above the probabil-
ity threshold, many sources above the cut are also rejected. To
investigate if these sources are rightfully rejected/accepted, we
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Fig. 5. Distribution of sources in the zP1 − yP1 vs iP1 − zP1 diagram of the full PS1 sample (grey points), high probability HzQs (black circles) and
the candidate HzQs selected for spectroscopic follow up (red circles) and those with a radio detection (red squares). The traditional colour cut at
i − z = 2 is marked using the black dashed line, demonstrating that our method assigns a high HzQ probability to several sources that lie below
this selection. We also mark P144+50 (red star) in the colour-colour plot, which was discovered using our method at a redshift of z = 5.66 and
with i − z = 1.4 lies below the standard photometric selection employed in other studies.

can run the algorithm on the data sets described in Section 3.1,
and compare them with a i − z > 2 colour cut.

For the HzQ sample, we simulate 104 HzQs using the same
method as described in Section 3.1. We also assign z-band mag-
nitudes to the simulated quasars following a log-normal distri-
bution based on the magnitude distribution of HzQs from Ross
& Cross (2020). From the z-band magnitude the i- and y-band
magnitudes are automatically assigned based on the colours of
the quasars. The algorithm is run on this sample and as for
the PS1 sample, only sources above the probability threshold of
Pq = 5 × 10−4 are accepted. Through this we find 7614 (76%)
HzQs above the probability threshold, while 7388 (74%) are
above the i− z > 2 colour cut. Much like in the sample described
above, the probability cut rejects sources above the colour cut
and vice versa, such that an important difference between the
methods is in which parts of colour space are probed.

As both Bayesian selection as well as colour selection meth-
ods return roughly the same number of HzQ candidates, we test
the efficacy of selection by repeating the same experiment with
the contaminant populations. For the brown dwarf population,
we use the Best et al. (2017) catalogue containing ∼104 sources,
and using the above mentioned probability threshold selection,
our algorithm shortlists 14 (0.15%) known brown dwarfs as can-
didate HzQs. The colour selection, however, selects 68 (0.72%)
brown dwarfs as HzQ candidates.

Using the low/intermediate redshift galaxy catalogues from
Williams et al. (2018) containing ∼104 sources, our algorithm
classifies only 1 (0.01%) galaxy as a candidate HzQ, compared

to 36 (0.38%) galaxies being classified as HzQ candidates based
on colour selection. Overall, we find that our method rejects a
larger percentage of contaminants, while retaining a similar frac-
tion of HzQs compared to a simple i − z > 2 colour selection,
implying a higher overall efficacy.

We note that in i − z colour based selections, often an addi-
tional colour criterion of z−y < 0.5 is applied (e.g. Bañados et al.
2014) to further remove contaminants. Applying these i − z > 2
and z − y < 0.5 cuts on our simulated HzQs, brown dwarf and
galaxy catalogues, we find that all brown dwarfs are eliminated
and 28 galaxies are classified as candidate HzQs. However, these
cuts only retain 58% of HzQs from our simulated sample, clearly
showing that although a large fractions of contaminants are elim-
inated by using colour cuts based on i, z and y band photometry,
several HzQs may also be missed by such a selection.

The possible addition of radio data further improves the ef-
ficacy of HzQ selection, and we consider a sample where all
sources have counterparts in the radio. Using the assumed radio
detection rates in Section 3.4, we see almost all quasars with a
radio detection are accepted (91%). This fraction is purely con-
sidering the amount of sources that are above the probability
threshold, which is in addition to the increase in probability for
these quasars across the board. Effectively all dwarf stars are
eliminated from the sample, while as before 0.01% of galaxies
are retained. This shows that the addition of radio data can be ex-
tremely valuable to identifying HzQs, and significantly increases
the purity of the resulting candidate sample.
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In Figure 6 the results of the colour and probability selection
on the test samples of HzQs (left) brown dwarfs (middle) and
galaxies (right) are summarised. Here it is clear that the proba-
bility selection method handily rejects contaminants that occupy
the same colour space as HzQs and would normally be included
in colour selection. Notable is that though both methods recover
a similar amount of HzQs, different subsets are selected, as the
probability selection recovers a significant fraction of HzQs be-
low the colour cut, while also rejecting a portion of HzQs above
the colour cut that lies close to the colour space of brown dwarfs.
As HzQs with i − z < 2 have generally lower redshifts, this
demonstrates that the probability selection can be especially ef-
fective in recovering HzQs at z ∼ 5.6.

5. Spectroscopic follow-up

To demonstrate the efficacy of our quasar selection method and
confirm the nature of the candidate sources, we obtained spec-
troscopy primarily targeting the Lyα lines for the most promis-
ing HzQs identified by our selection method. Our final sample
of high quality HzQ candidates, however, still contained an im-
practical number of sources for additional spectroscopic obser-
vations, and therefore we assigned priorities to sources in our
final sample based on available independent ancillary data pri-
marily at infrared wavelengths, which were crucially not used in
the probability assignment using our method.

We first cross-matched our candidate HzQ sample with the
AllWISE Data Release catalogue3, which builds upon the data
collected by the Wide-field Infrared Survey Explorer (WISE;
Wright et al. 2010) mission by additionally including data from
the NEOWISE surveys (Mainzer et al. 2011). The AllWISE data
contains photometry in the WISE W1, W2, W3 and W4 bands,
offering wavelength coverage in the range 3.4 − 22 µm. We ad-
ditionally cross match our sample with the UKIRT Hemisphere
Survey (UHS, Dye et al. 2018) data release containing deep J-
band imaging and source catalogues over ∼ 12700 deg2 of the
sky.

We used this ancillary data to assign priorities to sources in
our candidate HzQ sample for spectroscopic follow-up. First, we
assigned higher priority to sources with lower |zP1 − yP1| and
|yP1 − J|, which brings us closer to the locus of colours from
known HzQs at z > 5.5. Next, based on the infrared colours
seen in the sample of known HzQs from Bañados et al. (2016),
which was also used as a validation sample for this study, we
assigned higher priorities to sources that satisfied the following
conditions:

W2 −W3 > 0
−0.2 < W1 −W2 < 0.85
−0.7 < yP1 −W1 < 2.2

Lastly, the brightest sources in our sample were assigned higher
priority, purely to make the process of spectroscopic follow-up
more efficient. Having assigned a priority for spectroscopic fol-
low up to each candidate HzQ, we now describe our spectro-
scopic observations below.

5.1. Description of observations

The spectroscopic observations of our candidate HzQs presented
in this work were obtained using the Intermediate Dispersion

3 https://wise2.ipac.caltech.edu/docs/release/allwise/

Spectrograph4 (IDS) on the 2.5m Isaac Newton Telescope (PI:
Wagenveld, Program: N17). The observations were taken over a
period of 6 nights in Spring 2019, during which 13 of the high-
est priority candidate HzQs were observed. Three nights were
unfortunately lost due to bad weather, and the remaining three
nights had favourable conditions with an average seeing of 0.5”
from 6 to 8 April 2019.

The observations were taken using the R400R grating in the
Red arm of the spectrograph, with a slit width of 1.5 arcseconds
and slit length of 3 arcminutes. Standard afternoon calibrations
were performed with both lamp and sky flats taken before each
observing night. A flux standard was observed at the beginning
and the end of each night. We used CuAr+CuNe lamps for wave-
length calibration, which were observed at the position of each
target before the sky exposure.

The targets were observed in blocks of 1800s, with total in-
tegration times per source ranging from 3600s to 7200s. Due
to telescope limitations and higher priority assigned to brighter
sources, only sources brighter than a z-magnitude of 20.5 were
observed. Blind offsetting was used to acquire faint targets and
standard data reduction procedures that include bias subtrac-
tion, flat-fielding, sky subtraction, wavelength calibration and
flux calibration were performed using a custom python based
data reduction pipeline written by our team5, which is based on
ccdproc (Craig et al. 2021).

Of the 13 targets observed in this run, 11 could not be con-
clusively classified based on the spectra obtained. In most cases
only very faint continuum was spotted with potential narrow
lines. Unfortunately the signal to noise (S/N) of the continuum
or the emission lines for these sources was not sufficient to un-
ambiguously determine redshifts or classify the sources as either
dwarf stars in the Milky Way or low redshift galaxies. Three
of the observed sources had an accompanying radio detection,
but did not contain strong emission line features in their spectra.
However, the clear absence of a strong Lyα line or a break blue-
ward of Lyα in their spectra indicated that these sources were
unlikely to be quasars at z & 5.5.

High S/N spectra, however, were obtained for two sources in
our sample, one of which was conclusively classified as a brown
dwarf star owing to clear, broad absorption features in the con-
tinuum arising from molecules such as TiO (e.g. Reiners et al.
2007), which often mimic the Lyα break found in the spectra of
HzQs.

The other source, PSO J144128.715+502239.463 (shortened
to P144+50 hereafter) was convincingly classified as a previ-
ously undiscovered, luminous quasar at a redshift of z = 5.66,
and in the following section we describe the observed properties
of this newly discovered HzQ.

5.2. P144+50 – a luminous quasar at z ≈ 5.7

The most luminous and promising source of the candidate sam-
ple, P144+50 has a very clear point-source like structure across
the available broad band photometry, as illustrated in Figure 7.
This luminous quasar was most likely missed by earlier searches
owing to its relatively low iP1 − zP1 colour of 1.4, which may
be excluded by traditional binary colour cuts. Although no ra-
dio counterpart for this quasar was identified within the LoTSS
DR1 catalogues, P144+50 was still assigned a probability of
Pq = 0.01 from our method, demonstrating that our novel HzQ
selection method is capable of assigning realistically high prob-

4 http://www.ing.iac.es/astronomy/instruments/ids/
5 https://github.com/aayush3009/INT-IDS-DataReduction
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Fig. 6. Distribution of sources in the zP1 − yP1 vs iP1 − zP1 diagram of the test samples of HzQs (left), brown dwarfs (middle), and galaxies (right).
Sources not selected with any method are marked in grey. Sources selected with i − z > 2 colour cut (dashed line) but rejected by the probability
selection are marked as a diamond shape with a black edge. Notably, the z − y < 0.5 colour cut (dotted line) rejects all brown dwarfs from the test
sample, but also a large portion of the simulated quasar sample.

Fig. 7. P144+50 in optical and infrared bands. In the WISE images it is blended with the neighbouring galaxy. Given the fact that the quasar is
brighter in those bands while the galaxy drops off, and that its WISE magnitudes are consistent with that of other HzQs, it is likely that most of
the emission in the WISE bands comes from the quasar.

abilities even to non-radio detected HzQs. In Table 2 we give
the apparent magnitudes of P144+50 in the available optical and
infrared filters.

The 1D spectrum of P144+50, shown in Figure 8 displays
a bright and broad strong Lyα feature, with a clear break in
the spectrum blueward of the line, showing the Gunn-Peterson
trough. The peak of the Lyα line suggests a redshift of z = 5.66.
No other rest-frame UV emission features are identified, how-
ever the Si ii absorption feature may be present.

We additionally detect a Lyα forest, and faint signs of the
presence of an ionised proximity zone around this QSO. Addi-
tional flux is detected around the rest-frame Lyβ and O iv wave-
lengths. Unfortunately, due to the limited S/N of our INT obser-
vations any meaningful constraints on either the proximity zone

or the neutrality of the intervening IGM along the line-of-sight
due from the Lyα forest cannot be derived. Therefore, deeper
follow-up observations with larger telescopes facilities are re-
quired to draw robust conclusions.

Demonstrating perfectly the merits of the new HzQ selection
method introduced in this paper, P144+50 is a bright, hitherto
undiscovered quasar at z = 5.66. Its rest-frame UV magnitude,
M1450 = −27.22, puts it at the brighter end of the quasar lumi-
nosity function at z ∼ 6 (Manti et al. 2017) and amongst the most
luminous quasars currently known at this redshift. Given that the
sky area covered by our search is ∼1% of the full sky, and the
sensitivity of spectroscopic observations restringing the follow
up to only those sources with magnitudes brighter than 20.5 AB,
it is not improbable that other such undiscovered quasars ex-

Article number, page 10 of 15



J. D. Wagenveld et al.: Revealing new high redshift quasar populations through Gaussian mixture model selection

Fig. 8. 1D spectrum of P144+50 taken using the IDS instrument on the 2.5m Isaac Newton Telescope (INT). The characteristic break blueward of
the Lyα line is clearly visible, unambiguously identifying it as a high redshift quasar with a redshift of z = 5.66 based on its Lyα emission. Some
flux is seen around the expected Lyβ and O IV features. Besides Lyα, there are no clear emission lines visible in the spectrum due to the limited
sensitivity of the INT. The orange line indicates the noise level of the spectrum.

Table 2. Observed optical and infrared magnitudes of P144+50 in all
filters relevant to probability calculation and priority assignment.

Filter Magnitude (AB)
PS1 g > 23.2
PS1 r > 23.2
PS1 i 20.71 ± 0.03
PS1 z 19.31 ± 0.02
PS1 y 19.41 ± 0.03
UHS J 19.34 ± 0.06
WISE W1 18.22 ± 0.04
WISE W2 18.21 ± 0.05
WISE W3 17.46 ± 0.28

ist within the large sky surveys, which may have been missed
searches relying on binary colour selection.

Additionally, the P144+50 lies within the redshift range in-
vestigated by Yang et al. (2017), demonstrating that our GMM-
based HzQ selection approach is able to successfully identify
quasars within the so-called ‘redshift gap’ often encountered by
HzQ searches employing optical broadband selection. Thanks to
the increased discriminatory power provided by our algorithm,
GMM-based HzQ searches might provide a powerful method for
more complete samples of HzQs, including those that lie within
the redshift gaps in ground-based optical broadband searches.

6. Future prospects

The Bayesian quasar selection method presented in this work is
built from priors informed by empirical relations and likelihood
models from machine learning, as opposed to binary cuts in op-
tical/infrared magnitudes and colours. As a result, this method
relies heavily on the accuracy of priors derived for both HzQ
populations as well as common contaminants in HzQ searches.
Therefore, the priors can be improved in an iterative fashion by

folding in the results from the ever increasing spectroscopic con-
firmation of candidate HzQs selected from photometric surveys.

The inclusion of additional photometric data can also help
to improve the priors, resulting in a more accurate HzQ prob-
ability assignment. For example, J band and WISE photometry
for known HzQs and contaminants can be used to improve the
estimation of priors, which for this work have only been used to
shortlist candidate HzQs for spectroscopic follow up. Expanding
the model to include these additional dimensions can further in-
crease its precision and reliability due to the increased colour in-
formation available, as well as extend its application for searches
of HzQ at even higher redshifts.

The range of redshifts selected for this analysis (5.6 < z <
6.5) was selected to enable validation with known HzQs that
were selected using i − z photometric colours. However, given
that samples of HzQs can be simulated for training and existing
HzQs can be used as validation for our selection method, other
redshift ranges can be probed. For example, searches for HzQs
at z > 6.5 can be readily carried out using our algorithm by us-
ing a handful of known HzQs at these redshifts, selected based
on their z − y colours. Although the efficacy of the method may
not be as high for selecting z > 6.5 HzQ candidates, owing to
the lower number of HzQs known at these redshifts that could
be used for training and validation. As mentioned earlier, the in-
clusion of more photometric data may help improve the priors
for HzQs at the highest redshifts.

As the method should be extendable to larger datasets, one
potential bottleneck will be excising the remaining unwanted
sources after assigning probability. For the sample described in
this paper this final step was done through visual inspection of
263 high probability candidates. For much larger initial sample
size, this method is no longer feasible. From the visual inspec-
tion we performed, most of these unwanted sources were re-
jected on grounds of either being spurious, having incorrect mag-
nitude, or appearing extended. Spurious sources are essentially
removed if we force all sources to have a counterpart in WISE
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and/or UHS. As these magnitudes are used anyway assign prior-
ity to sources (Section 5), it will be doubly advantageous to im-
plement such a selection. Incorrect magnitudes can be remedied
by performing photometry directly on the Pan-STARRS images.
Finally, there is clear need to differentiate between point sources
and extended sources. There are several ways to do this with
the Pan-STARRS catalogues, such as comparing PSF and Kron
magnitudes of sources6 (Farrow et al. 2013). These methods of
differentiating between point sources and extended sources how-
ever become less reliable towards lower magnitudes, where we
expect more quasars. We note here that efforts are currently un-
derway to use machine learning techniques to morphologically
classify radio sources (e.g. Mostert et al. 2021), which could
suitably be extended to morphological classification of candidate
HzQs from optical images.

We have shown the discriminatory power of our HzQ se-
lection method and demonstrated that it is possible to shortlist
manageable numbers of high quality HzQ candidates from large
photometric data sets. With the aforementioned flexibility and
room for improvement, our algorithm can potentially be applied
to even larger, deeper surveys of the sky enabled by existing
state-of-the-art and upcoming ground- and space-based optical
and infrared observatories such as the Vera C. Rubin Observa-
tory (Ivezić et al. 2019), Euclid (Laureijs et al. 2011), the Nancy
Grace Roman Space Telescope (formerly known as WFIRST;
Spergel et al. 2015), and existing large surveys such as the Kilo-
Degree Survey (KiDS; De Jong et al. 2013) and Dark Energy
Survey (DES; The Dark Energy Survey Collaboration 2005) to
name a few.

Finally, while the z = 5.66 quasar discovered in this analy-
sis is undetected in LoTSS radio continuum imaging, the high
detection fraction of known z > 5 sources within the 5700 deg2

of the forthcoming LoTSS Data Release 2 (36% at > 2σ signifi-
cance; Gloudemans et al. 2021) illustrates that the radio contin-
uum observations can provide valuable additional information
for HzQ selection and remains a powerful tool to crucially ex-
clude contamination from Galactic dwarf stars. Relatively shal-
low but large area existing radio surveys such as FIRST (Becker
et al. 1995) and NVSS (Condon et al. 1998) carried out with the
Very Large Array (VLA) that have led to the discovery of several
radio-loud quasars at z & 5 (e.g. Bañados et al. 2015), and TGSS
Alternative Data Release (Intema et al. 2017) covering ∼ 37000
sq/ deg. of the sky at 150 MHz, which has already led to the dis-
covery of the most distant radio selected galaxy currently known
(Saxena et al. 2018). The full LoTSS data release will offer sen-
sitive radio coverage over very large sky areas over the north-
ern hemisphere, enabling the inclusion of radio priors for a large
number of candidate HzQs. These sky areas and sensitivities will
be improved by upcoming ultra-deep radio surveys such as those
by the Square Kilometre Array (SKA; Dewdney et al. 2009) and
its precursors like MeerKAT (Jonas 2016) and ASKAP (Hotan
et al. 2021) enabling even fainter radio detections.

Therefore, the HzQ selection method presented in this work
is flexible, and has room for improvement given the availability
of deep photometric data over large parts of the sky via exist-
ing and future large area sky surveys across wavelengths. Our
method presents also provides a robust framework within which
the additional radio information can be incorporated to poten-
tially identify even radio-faint quasars in the early Universe.

6 https://outerspace.stsci.edu/display/PANSTARRS/How+
to+separate+stars+and+galaxies

7. Summary and conclusions

In this paper we have presented a novel method for selecting can-
didate high redshift quasars (HzQs; z & 5) from large photomet-
ric data sets, making use of informed priors and Gaussian mix-
ture models (GMMs) within a Bayesian framework. Our method
attempts to capture the HzQ population more completely com-
pared to traditionally used binary cuts in optical magnitudes and
colours, while minimising the likelihood of contamination from
foreground sources such as dwarf stars in the Milky Way and
lower redshift dusty galaxies.

Our novel selection method builds upon previous works em-
ploying Bayesian selection of HzQ candidates using informed
priors. The novelty of our methods lies in using GMMs to obtain
likelihoods in optical colour-colour spaces using photometry of
populations of known and simulated HzQs, as well as common
contaminants such as M, L and T brown dwarf stars and low red-
shift dusty galaxies that often mimic the observed optical photo-
metric properties of HzQs. Additional priors based on the secu-
rity of optical detections, respective sky densities of the source
populations as well as a radio detection are used to calculate the
probability of a particular source detected in a large photometric
sky survey being a candidate HzQ.

We run our GMM based HzQ search method on photometric
data from the publicly available Pan-STARRS DR1 (PS1) over a
limited area on the sky, coinciding with deep radio imaging from
LoTSS in the HETDEX Spring field covering ∼ 400 square de-
grees. Using in particular photometry in the PS1 i, z and y bands,
we assign candidate HzQ probabilities to ∼ 5×105 sources from
PS1. Adopting a HzQ posterior probability threshold that results
in the selection of ∼ 90% of known HzQs at z & 5.5 and the
rejection of & 99% of known foreground contaminants such as
dwarf stars or low redshift galaxies, we shortlist 263 candidate
HzQs with high probabilities. By visually inspecting these can-
didates to spot any obvious artefacts, we select 63 sources in
the final high probability candidate HzQ sample, which can sub-
sequently be followed up spectroscopically. To test the efficacy
of the method, we run the probability selection on test samples
of simulated HzQs and previously used samples of dwarfs an
galaxies. We find that the efficacy of the probability method is
higher than traditional colour cuts, decreasing the fraction of ac-
cepted contaminants by 86% while retaining a similar fraction
of HzQs. While more stringent colour cuts decrease the contam-
inant fraction to levels similar to that of the probability selection,
less HzQs are recovered. The efficacy of the probability selec-
tion is increased further once radio data is taken into account,
reducing the fraction of contaminants by 99% compared to the
traditional colour cut at the cost of selecting only quasars that
have a radio detection.

Follow-up spectroscopic observations were then carried out
for the highest priority HzQ candidates from our sample, with
13 candidates targeted with the 2.5m Isaac Newton Telescope.
Although the nature of 11 out of these 13 candidates could not
be confirmed owing to low signal-to-noise ratios in the relatively
shallow spectra, a lack of strong Lyα emission or Lyα absorption
present in the spectrum was used to rule out a very high redshift
nature.

However, the exact nature of 2 candidates could be estab-
lished, with one being a brown dwarf star and the other be-
ing a previously undiscovered, luminous quasar at z = 5.66
(P144+50). The spectrum of P144+50 shows a strong and broad
Lyα line, with a strong break in the spectrum bluewards of Lyα
indicative of a Gunn-Peterson trough. P144+50 has a rest-frame
UV magnitude of M1450 = −27.22, putting it at the very bright
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end of the luminosity function at this redshift. This HzQ was
likely missed by earlier searches owing to its i − z photometric
colour of 1.4, which falls below the traditional limits requiring
i − z > 1.5.

The discovery of this previously undiscovered, luminous
quasar at z = 5.66 serves as a validation of our novel HzQ selec-
tion method, indicating that a probabilistic method of selecting
HzQs from large photometric surveys may perform better at re-
turning more complete samples of HzQs as opposed to binary
selections based on cuts in optical/infrared colours or magni-
tudes. Our method has room for improvement with the inclusion
of more photometric data when calculating posterior probabili-
ties, and as such can be employed on larger incoming sky surveys
to discover new quasars, into the epoch of reionisation.
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Appendix A: HzQ candidates

Table A.1. High probability HzQ candidates

Name iP1 zP1 yP1 LoTSS Flux Pq Observed
(mJy)

PSO J151528.1+421313.8 21.49 ± 0.11 19.58 ± 0.04 20.03 ± 0.18 1.6 × 10−3

PSO J115421.7+421840.7 21.68 ± 0.12 19.32 ± 0.06 20.64 ± 0.17 5.8 × 10−1

PSO J150748.8+422307.8 21.50 ± 0.06 19.45 ± 0.00 19.90 ± 0.26 3.0 × 10−3

PSO J123718.4+422839.6 22.27 ± 0.04 20.09 ± 0.18 20.63 ± 0.16 1.4 × 10−3

PSO J124208.8+423946.4 22.15 ± 0.01 20.04 ± 0.15 20.21 ± 0.13 8.4 × 10−4 Yes
PSO J124911.0+425105.3 22.11 ± 0.05 20.13 ± 0.15 20.98 ± 0.21 8.3 × 10−4

PSO J125047.9+430833.7 22.17 ± 0.01 19.55 ± 0.09 19.66 ± 0.14 1.3 × 10−1

PSO J123203.0+432745.0 21.94 ± 0.14 19.64 ± 0.17 20.47 ± 0.15 4.4 × 10−3

PSO J124221.7+434033.2 21.70 ± 0.06 20.27 ± 0.00 20.65 ± 0.11 1.4 × 10−3

PSO J122900.5+441359.8 21.61 ± 0.05 19.39 ± 0.16 20.24 ± 0.17 8.8 × 10−3

PSO J121800.4+453150.9 21.78 ± 0.17 19.38 ± 0.10 20.53 ± 0.15 5.2 × 10−2

PSO J120837.0+454149.4 22.15 ± 0.17 19.79 ± 0.16 20.55 ± 0.17 2.9 × 10−3

PSO J114519.9+454428.0 21.63 ± 0.04 19.93 ± 0.00 20.80 ± 0.17 2.1 × 10−2

PSO J112111.5+461150.9 21.47 ± 0.17 19.55 ± 0.11 20.87 ± 0.19 1.5 × 10−3

PSO J142738.5+473727.4 21.24 ± 0.11 20.70 ± 0.02 21.38 ± 0.00 1.1 × 10−2

PSO J150321.1+480022.9 21.84 ± 0.07 17.61 ± 0.01 20.50 ± 0.19 1.0
PSO J151021.5+490023.1 21.69 ± 0.27 18.21 ± 0.02 20.70 ± 0.18 1.0
PSO J144128.7+502239.4 20.71 ± 0.03 19.31 ± 0.02 19.41 ± 0.03 1.1 × 10−2 Yes
PSO J112418.7+504151.3 21.78 ± 0.05 20.08 ± 0.00 20.73 ± 0.18 4.7 × 10−3

PSO J152639.5+520303.0 21.44 ± 0.02 17.29 ± 0.01 19.90 ± 0.16 1.0
PSO J144047.0+520934.6 21.00 ± 0.10 18.95 ± 0.04 20.44 ± 0.17 8.3 × 10−1

PSO J121906.9+524229.8 21.35 ± 0.03 19.90 ± 0.02 19.81 ± 0.06 5.2 × 10−4 Yes
PSO J120853.9+540651.1 21.37 ± 0.05 19.92 ± 0.00 20.53 ± 0.19 8.2 × 10−4

PSO J110945.2+574348.4 21.62 ± 0.04 17.88 ± 0.01 19.73 ± 0.17 1.0
PSO J112328.2+595614.9 21.42 ± 0.08 18.70 ± 0.00 20.52 ± 0.18 1.0
PSO J135335.3+600430.6 21.51 ± 0.04 20.73 ± 0.04 21.69 ± 0.00 2.5 × 10−3

PSO J152721.9+610352.3 21.08 ± 0.14 18.79 ± 0.01 18.19 ± 0.01 7.3 × 10−3 Yes
PSO J141715.5+615224.3 22.00 ± 0.16 19.52 ± 0.15 20.54 ± 0.17 1.7 × 10−2

PSO J112052.2+472605.0 21.36 ± 0.07 19.99 ± 0.12 20.71 ± 0.16 1.10 ± 0.10 3.4 × 10−3

PSO J141837.2+474852.2 22.65 ± 0.35 21.32 ± 0.11 20.43 ± 0.19 3.29 ± 0.11 7.2 × 10−4

PSO J113104.0+475003.9 21.64 ± 0.17 19.67 ± 0.12 19.86 ± 0.15 0.44 ± 0.10 2.8 × 10−2 Yes
PSO J123823.6+475933.1 21.13 ± 0.05 19.91 ± 0.18 20.41 ± 0.15 0.69 ± 0.15 2.1 × 10−3

PSO J131244.6+495724.5 21.62 ± 0.22 20.28 ± 0.16 20.23 ± 0.19 0.43 ± 0.09 7.8 × 10−4 Yes
PSO J123626.6+501036.9 21.51 ± 0.08 20.16 ± 0.20 20.97 ± 0.41 0.64 ± 0.09 2.3 × 10−3

PSO J124654.9+501623.7 21.71 ± 0.19 20.65 ± 0.13 19.35 ± 0.00 0.67 ± 0.11 1.2 × 10−3

PSO J112037.6+502404.9 21.82 ± 0.20 20.81 ± 0.16 19.44 ± 0.22 0.45 ± 0.12 6.7 × 10−4

PSO J134157.7+512952.2 21.96 ± 0.19 20.93 ± 0.12 19.49 ± 0.16 31.89 ± 0.16 7.8 × 10−4

PSO J130926.4+525922.1 21.82 ± 0.20 20.70 ± 0.17 19.50 ± 0.17 0.97 ± 0.10 8.0 × 10−4

PSO J113311.2+420443.2 21.50 ± 0.04 19.68 ± 0.00 20.17 ± 0.11 1.4 × 10−3

PSO J123740.1+420851.0 22.06 ± 0.14 20.13 ± 0.19 20.63 ± 0.16 7.3 × 10−4

PSO J151948.4+423446.7 21.99 ± 0.17 19.96 ± 0.00 19.88 ± 0.18 2.1 × 10−3 Yes
PSO J124059.8+431019.5 22.14 ± 0.18 20.26 ± 0.17 20.74 ± 0.17 7.0 × 10−4

PSO J140022.9+433822.2 22.11 ± 0.30 19.56 ± 0.02 18.40 ± 0.02 1.2 × 10−3

PSO J145612.6+442417.2 21.71 ± 0.01 20.12 ± 0.20 20.12 ± 0.10 5.4 × 10−4 Yes
PSO J114416.9+443451.0 21.36 ± 0.05 19.50 ± 0.15 19.70 ± 0.15 2.5 × 10−3 Yes
PSO J135622.5+453320.5 21.83 ± 0.18 19.88 ± 0.00 19.99 ± 0.18 1.5 × 10−3

PSO J123757.3+465507.2 21.73 ± 0.20 20.25 ± 0.04 20.61 ± 0.16 5.7 × 10−4

PSO J124016.5+473737.9 21.58 ± 0.03 19.55 ± 0.10 20.39 ± 0.24 1.7 × 10−3

PSO J124300.0+481418.3 22.81 ± 0.28 20.96 ± 0.29 20.47 ± 0.17 7.4 × 10−4

PSO J124203.1+495354.1 21.44 ± 0.05 19.91 ± 0.20 20.62 ± 0.18 6.3 × 10−4

PSO J124656.0+503223.3 21.47 ± 0.04 19.96 ± 0.17 20.63 ± 0.16 6.2 × 10−4

PSO J131523.9+513827.7 21.57 ± 0.07 18.58 ± 0.02 19.99 ± 0.14 2.7 × 10−3

PSO J143229.1+534741.1 21.94 ± 0.18 20.18 ± 0.00 20.68 ± 0.20 7.4 × 10−4

PSO J124450.2+585817.8 21.37 ± 0.09 19.73 ± 0.13 20.33 ± 0.08 9.4 × 10−4

PSO J144448.1+600520.3 21.46 ± 0.08 20.04 ± 0.17 20.46 ± 0.20 6.1 × 10−4
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Table A.1. continued

Name iP1 zP1 yP1 LoTSS Flux Pq Observed
(mJy)

PSO J131842.1+600706.5 21.67 ± 0.08 19.67 ± 0.00 20.45 ± 0.19 1.7 × 10−3

PSO J133347.7+603212.6 21.62 ± 0.08 20.01 ± 0.33 19.99 ± 0.04 6.1 × 10−4 Yes
PSO J132006.7+605705.4 21.92 ± 0.18 19.81 ± 0.13 20.12 ± 0.14 2.6 × 10−3

PSO J131356.0+614833.6 21.65 ± 0.11 20.12 ± 0.17 20.33 ± 0.17 5.7 × 10−4

PSO J120732.9+492944.0 21.50 ± 0.07 20.63 ± 0.42 19.16 ± 0.05 1.16 ± 0.10 5.6 × 10−4 Yes
PSO J115605.5+444105.3 21.68 ± 0.05 19.33 ± 0.21 20.76 ± 0.18 8.2 × 10−4

PSO J105545.9+445655.8 21.69 ± 0.11 19.77 ± 0.26 19.71 ± 0.06 2.6 × 10−3 Yes
PSO J130519.1+464845.5 21.86 ± 0.20 20.22 ± 0.18 20.59 ± 0.17 5.7 × 10−4

PSO J124059.4+483522.9 21.70 ± 0.18 19.71 ± 0.23 19.92 ± 0.18 3.0 × 10−3 Yes
PSO J150531.3+610408.5 21.74 ± 0.10 20.02 ± 0.13 19.70 ± 0.20 7.5 × 10−4
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