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We present a novel way of modeling common envelope evolution in binary and few-body systems.
We consider the common envelope inspiral as driven by a drag force with a power-law dependence
in relative distance and velocity. The orbital motion is resolved either by direct N -body integration
or by solving the set of differential equations for the orbital elements as derived using perturbation
theory. Our formalism can model the eccentricity during the common envelope inspiral, and it gives
results consistent with smoothed particles hydrodynamical simulations. We apply our formalism to
common envelope events from binary population synthesis models and find that the final eccentricity
distribution resembles the observed distribution of post-common-envelope binaries. Our model can
be used for time-resolved common-envelope evolution in population synthesis calculations or as part
of binary interactions in direct N -body simulations of star clusters.

I. INTRODUCTION

Common envelope (CE) evolution is the process dur-
ing which one component of a binary star gets engulfed
in the envelope of its companion. During this phase, the
gaseous envelope becomes gravitationally focused and ex-
erts a drag force onto the stars, which begin to inspiral
towards each other. CE evolution ends when either the
two stars merge or the envelope is (partially) ejected. If
the envelope is ejected and the two stars survive, the
post-CE binary separation is much shorter than the ini-
tial one. Originally proposed to explain the existence of
short-period dwarf binaries [1–3], CE evolution is now
the key process of many other astrophysical phenomena,
from gravitational wave sources [e.g. 4–7, see 8 and ref-
erences therein], to X-ray binaries [9, 10], and type Ia
supernovae [11–13].

CE evolution is arguably one of the least understood
phases of interacting binary stars. From the observa-
tional point of view, direct detection of CE is exception-
ally elusive, first because of its short duration (a few years
for the rapid inspiral phase, and possibly up to 105 yr for
the complete envelope ejection [14–16]), and second be-
cause the binary is hidden by the CE, making it appear
as a giant star. Nevertheless, luminous red novae, a new
class of transients, have been claimed as a promising can-
didate of CE events [17–19].

Theoretical models of CE also have their share of lim-
itations. Hydrodynamical simulations are computation-
ally expensive, and they either are not able to model
the entire CE evolution or miss some physical ingredi-
ents (e.g., recombination of the envelope’s gas, radia-
tive and convective transport) [20–31]. Similar consid-
erations apply to 1D models of CE evolution, which can
follow the slow, self-regulating evolution of the CE in-
spiral better than 3D hydrodynamics but miss other key
aspects [23, 32–38]. Conversely, all demographic studies
of compact object formation adopt much simpler ana-
lytic formalisms [1, 12, 39–43]. One of the most widely
adopted formalisms is the αλ model, which is based on
a simple energy balance equation that takes into account
the binding energy of the envelope (parametrized by λ)
and the efficiency of CE inspiral (parametrized by α, see
section III A for more details). Because of its straight-
forward implementation and computational ease, most
binary population synthesis (BPS) codes adopt the αλ
model [e.g. 7, 44–53].

However, simplicity comes at a cost. Being based on
an energy balance equation, the αλ model completely ne-
glects angular momentum. Consequently, it is not pos-
sible to meaningfully predict the post-CE eccentricity in
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BPS codes, which is always set to zero1. While most
observations suggest that, in fact, CE events circularize
the binaries, some observations of post-CE systems show
residual, non-negligible eccentricities [54–58].

Another drawback is that CE evolution in BPS codes
is instantaneous, i.e., it consists of a jump in orbital sep-
arations from the pre-CE semimajor axis to the post-CE
one. In BPS codes, this makes it impossible to handle
other processes that may occur during CE evolution, like
supernovae explosions. This issue is exacerbated when
combining BPS codes with direct N -body codes [59, 60]
or secular evolution codes for multiple stellar systems
[61, 62], which poorly handle discontinuities in the evo-
lution.

In this paper, we propose an alternative approach for
CE evolution that can overcome these limitations and
can be applied to N -body and BPS codes alike.

The main assumptions of our model are presented in
section II. Using perturbation theory, we derive the rate
of change in orbital semimajor axis a, eccentricity e, and
argument of pericenter ω due to the drag (section II A).
In section III we discuss how the halting of the CE inspi-
ral can be incorporated in our model, either by assuming
self-similar expansion of the envelope or by estimating
the energy losses with the αλ model. We compare our
model with hydrodynamical simulations to find the most
suitable form for the drag force in section IV. Finally, we
apply our model to CE evolution triggered by the excita-
tion of eccentricity in triple systems (section V A), and to
CE in isolated binary evolution (section V B). Compar-
ing our model with the CE evolution in BPS codes, we
find that our model predicts non-zero orbital eccentrici-
ties, similar to the observations. This and other results
are summarized in section VI.

II. DRAG FORCE FORMALISM

We consider that the two bodies undergoing CE evolu-
tion are experiencing a drag due to the surrounding gas.
We assume that the drag force is always opposite to the
bodies’ velocity vectors, and express it in the following
general form:

F = −C vl P (r) v̂ , (1)

where C is a dimensional constant, l is a real number that
sets the drag force dependence on the relative velocity.
P (r) is a function representing the drag force dependence
on radius. In this paper, we examine a power-law form
for the function P (r) (section II A).

1 BPS codes like bse use the CE energy loss first to circularize the
orbit. In principle, they may allow a final eccentric orbit if the
energy loss is less than that required to circularize the binary. In
practice, this is never the case when significant shrinking of the
orbit occurs.

To better motivate the choice of the drag force, we
compare Equation 1 with the expression for the fluido-
dynamical drag force:

Fdrag = −1

2
ρ v2CDA . (2)

In the expression above, ρ represents the local den-
sity of the fluid, A is the cross-sectional area of the body
immersed in the fluid, and CD is a dimensionless coeffi-
cient that depends on the Reynolds and Mach numbers.
At high Mach numbers, CD = 2, while at low Mach and
Reynolds numbers CD ∝ 1/v, which makes the force scale
as Fdrag ∝ v.

Equation 2 refers to the fluidodynamical drag force of a
body immersed in a viscous fluid. On the other hand, the
drag force during CE evolution is thought to be caused by
the dynamical friction from the gravitationally focused
gas, as supported by hydrodynamical simulations. Nu-
merical experiments have further shown that the gravi-
tational drag is well expressed by Equation 2, albeit with
a different dimensionless coefficient [26, 63, 64].

Equation 1 reduces to Equation 2 if l = 2 and P (r) :=
Aρ. Therefore, the function P (r) expresses the depen-
dency of the gas density ρ(r) and cross-sectional area
A(r) as a function of the distance between the two bod-
ies.

If acceleration from the drag force is small compared to
the mutual gravity, and once given an analytic expression
for P (r), we can apply the classical tools of perturbation
theory and derive the evolution of the binary’s orbital
elements.

In the following sections, we choose an analytically
convenient form for P (r) and derive the corresponding
differential equations for the orbital elements. As a first
approximation, we consider the two bodies to be point
masses of mass m1 and m2, located at the center of mass
of each star, corresponding to the stellar cores. Mass
loss and transfer can be added as extra terms in a sec-
ond step [e.g. 65]. For completeness, in the Appendix A,
we present the additional terms in ȧ, ė, ω̇ that describe
the change in orbital elements under the assumption of
isotropic mass loss. Knowing that the force in Equation 1
has no component outside the plane of the binary, we can
decompose the acceleration into its radial and tangential
components:

f = fr r̂ + fν ν̂ . (3)

From these we derive the time derivative of the binary
semimajor axis a, eccentricity e, argument of pericenter
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ω and true anomaly ν:

ȧ =
2a2

µ
(ṙ fr + r ν̇ fν) , (4)

ė =
1− e2

e

(
ȧ

2 a
− ḣ

h

)
, (5)

ω̇ =
h

eµ

(
2 + e cos ν

1 + e cos ν
fν sin ν − cos νfr

)
, (6)

ν̇ =
(1 + e cos ν)2

(1− e2)3/2

√
µ

a3
− ω̇ , (7)

where h = |r × v| is the magnitude of the specific an-
gular momentum and µ = G(m1 + m2) is the standard
gravitational parameter.

The above equations describe the evolution of the bi-
nary as a function of time. However, they are still phase-
dependent, in the sense that they depend on the true
anomaly ν of the binary at any given time. On the other
hand, the equations that are commonly employed in BPS
codes are orbit-averaged.

We can derive the secular equations from Equations 4–
6 by averaging over the mean anomaly M . Given
a phase-dependent derivative q̇(ν), the corresponding
orbit-averaged equations can be derived as:

〈q̇〉 =
1

2π

∫ 2π

0

q̇(ν)dM =
1

2π

∫ 2π

0

(1− e2)3/2

(1 + e cos ν)2
q̇(ν)dν .

(8)

In the next sections, we focus mainly on the phase-
dependent equations. The orbit-averaged expressions
suitable for the inclusion in BPS codes are presented in
the Appendix B.

A. Power-law radial dependence

A general form for P in Equation 1 is a power-law
P (r) = r−k. In this case, the acceleration has a magni-
tude of

f = −C vl

rk
, (9)

and C has physical dimensions [C] = L1−l+kT l−2. We
choose a power-law force mainly because it is analytically
convenient to treat. In our forthcoming work, we will
focus on a more realistic density profile for the envelope.

Keeping the exponents l and k, we derive the follow-
ing set of ordinary differential equations for the orbital
elements:

ȧ = −2C µ
l−1
2 a

3−l−2k
2 (1− e2)−

l+1+2k
2 (1 + e cos ν)k (1 + e2 + 2e cos ν)

l+1
2 , (10)

ė = −2C µ
l−1
2 a

1−l−2k
2 (1− e2)−

l−1+2k
2 (1 + e cos ν)k (1 + e2 + 2e cos ν)

l−1
2 (e+ cos ν) , (11)

ω̇ = −2Cµ
l−1
2 a−

l−1+2k
2

(1− e2)−
l−1+2k

2

e
(1 + e cos ν)k (1 + e2 + 2e cos ν)

l−1
2 sin ν , (12)

ν̇ =
(1 + e cos ν)2

(1− e2)3/2

√
µ

a3
− ω̇ . (13)

For l = 2 (and even numbers), Equations 10–13 gain

a term in
√

1 + e2 + 2e cos ν which makes the integral in
the orbit-averaged Equation 8 impossible to be expressed
in closed form because it gives rise to an elliptic integral.
Alternatively, the elliptic integral can be tabulated as a
function of e.

The value of C sets the timescale of the CE inspiral,
and it relates to the density of gas in the envelope. How-
ever, we treat it at first as a given constant to inves-
tigate the qualitative behavior of Equations 10–13. We
therefore define a dimensionless CE efficiency χa = P/τa,
where P is the binary period and τa = |a/ȧ| is the char-
acteristic timescale of the binary’s inspiral. Setting e = 0

in Equation 10, the expression for χa is:

χa = Cπµ
l−2
2 a

4−l−2k
2 . (14)

We can then use Equation 14 to find the values of C for
models with different k, l but similar inspiral time. For
the perturbative equations to be valid, the drag force
needs to be weaker than the mutual gravitational accel-
eration, hence 0 < χa � 1.

We now integrate numerically Equations 10–13 and
compare them with direct N -body integration, in which
we apply the force of Equation 9 directly as a perturba-
tive force over the Newtonian equations.

For the integration of the perturbative equations, we
employ an adaptive Runge-Kutta method of order 8(5,3).
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The direct N -body integration is computed with the Her-
mite integrator from the amuse software environment
[66, 67]. The drag force is added as a velocity kick every
1/100th of an orbital period.

In the following examples, the binary star has masses
m1 = 81 M� and m2 = 32 M�, an initial semimajor axis
a0 = 4000 R� and eccentricity e0 = 0.2. Because we have
not yet introduced a self-limiting mechanism to stop the
inspiral, we stop the integration once the binary semi-
major axis reaches 40 R�. For both the N -body and the
perturbative integration we choose l = 1, 2, k = 0, and
set χa = 0.05. The binary is initialized just before peri-
center passage, at ν = 270◦. The initial argument of
pericenter is ω = 90◦.

Figure 1 shows the result of the integrations for l = 2
and l = 1. The two curves agree to a satisfactory degree,
but the perturbative equations take ∼50 less computa-
tional time to integrate. For l = 2, the binary eccentricity
decreases on average but oscillates during one orbital pe-
riod, with the eccentricity decreasing at the pericenter
and increasing at the apocenter. In contrast, for l = 1,
the eccentricity oscillates around a constant value and
the inspiral proceeds at constant eccentricity. In both
cases, the long-term evolution of ω appears to disagree
between the perturbative equation and direct integration.
As apparent from Equation 12, the argument of pericen-
ter is supposed to only oscillate around a median value,
without any long-term deviation. We attribute the dis-
crepancy to the simple implementation of our N -body
model rather than to some inaccuracy of the perturba-
tive equations. Performing the orbit-averaging on Equa-
tions 11–12 for l = 1, k = 0, further confirms that the
eccentricity and argument of pericenter remain constant
over long timescales (see Appendix A).

It is clear that a drag force linear in the velocity (l = 1)
does not agree with our naive expectations of CE evolu-
tion circularizing the binary. We will see later that in-
troducing a radial dependency in the force can quickly
circularize the binary, even for l = 1. Having now vali-
dated our set of equations with the N -body integration,
we now investigate the effect of radial dependency, con-
trolled by the parameter k.

The same system integrated with k = 1 and k = 2
is shown in Figure 2. Here we set the binary with dif-
ferent initial eccentricities to appreciate the effect of ra-
dial dependency on the circularization timescale. Even
a moderate radial dependency (k = 1, f ∝ 1/r) intro-
duces strong orbit circularization, and the drop in the
semimajor axis occurs mostly at the pericenter.

For l = 2, k = 1, the final eccentricity after the binary
reaches our target semimajor axis is negligible, while for
l = 1, k = 1 the binary still retains some eccentricity
after the inspiral.
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FIG. 1. Evolution of semimajor axis (a), eccentricity e, ar-
gument of pericenter ω and true anomaly ν for a CE inspiral
using the model in Equation 9 with l = 2, k = 0 (top panel)
and l = 1, k = 0 (bottom panel). The blue curves were ob-
tained integrating Equations 10–13, while the orange curves
are the result of direct N -body integration with the drag force
applied as a perturbation. The two curves overlap to a great
extent.

B. Drag force from first principles

Let us now examine how the expression for the force
should depend on r and v using only theoretical princi-
ples. Besides the explicit dependency in v2, Equation 2
may include a hidden dependency in the cross-section
area A. In our case, the cross-section identifies the size
of the sphere around the perturbing body where the gas
becomes gravitationally focused. According to the Hoyle-
Lyttleton-Bondi accretion theory [68–70], the radius of
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FIG. 2. Evolution of semimajor axis a, eccentricity e, argu-
ment of pericenter ω. For a CE inspiral using the model in
Equation 9 with l = 2, k = 1 (top panel), l = 1, k = 2 (middle
panel) and l = 1, k = 2 (bottom panel). Each curve indicates
a different starting eccentricity.

this sphere is

Ra =
2Gm

c2s + v2
, (15)

where cs is the sound speed of the gas and m is the mass
of the perturber. Given that the orbital velocity is much
higher than the sound speed in the envelope, we can ap-
proximate Ra ≈ 2Gm/v2. Consequently, A ∝ v−4 and
the force appears to scale inversely proportional with the
velocity: f ∝ v−2. To first order, the scaling v−2 is
the same as that of the dynamical friction force in colli-
sionless or gaseous media [71–77]. However, integrating
Equation 11 reveals that for negative l the eccentricity
increases rather than decreases with time. The physical
reason is the following. In the Hoyle-Lyttleton-Bondi ac-
cretion model, as the velocity increases, the size of the
gravitationally focused fluid decreases accordingly, lead-
ing to the drag force being stronger at the apocenter,
where the orbital velocity has a minimum, rather than
at the pericenter, where the velocity is the highest. Con-
sequently, the perturber loses more energy and angular
momentum at apocenter than at pericenter. The net ef-
fect is that the orbit becomes more radial after the apoc-
enter passage than it can circularize at the pericenter.

This is especially true for l = −2. Large values of k can
mitigate the increase of the eccentricity, because the fac-
tor r−k makes the drag force stronger at pericenter than
at apocenter. However, only a very steep radial den-
sity profile can prevent the growth of the eccentricity for
l = −2. Numerical integration shows that the eccentric-
ity grows faster than exponentially for k < 3. In practice,
for l = −2, k < 3, a single apocenter passage at high ec-
centricities (e & 0.5) can make the orbit radial e ' 1. We
demonstrate this rigorously in the Appendix C, where we
analyze the evolution of the eccentricity for l = −2 by
orbit-averaging Equation 11. This behavior is clearly an
artifact of the simplified physics adopted in the dynami-
cal friction model. One issue can stem from the fact that,
as the eccentricity increases, the ram pressure at the peri-
center also increases, likely supplanting the gravitational
drag as the force driving the orbital decay. Moreover,
dynamical friction forces with scaling ∝v−2 are based on
the assumption of a body traveling in a uniform, infi-
nite medium, while the envelope of a giant producing the
drag force on companion is not uniform nor infinite. The
gravitationally focused fluid does not travel in a straight
line, always directly behind the companion, but follows
perturbed Keplerian trajectories. Finally, spiral density
waves that generate during the inspiral can also apply
a torque on the binary, but their effect cannot be eas-
ily modeled without introducing axisymmetry. For these
reasons, hereafter we consider only positive values of l
of the drag force model, considering it an ‘effective’ drag
force rather than one purely caused by dynamical fric-
tion and gravitational focusing. Our choice is further
confirmed by the comparison with hydrodynamical sim-
ulations (section IV), which consistently show a decrease
in the eccentricity [78], and previous numerical studies



6

on the gravitational drag force in wind tunnel simula-
tions [63, 64].

In general, the loss of tangential velocity due to the
dynamical friction is necessary for the inspiral motion at
the first place, and acts against the tidal circularization.
In addition, past studies and simulations shows that even
an initial circular orbit developed some eccentricity by
the end of the inspiral [22, 78–81].

On the other hand, values of k may be linked to the
radial density profile of the giant star. Whether or not
the envelope density profile could be approximated by a
power-law, one-dimensional stellar profile is unlikely to
represent the stellar structure during the CE inspiral be-
cause the presence of the secondary into the primary’s
envelope will significantly affect its density profile. Be-
sides this, the stellar structure of the primary might be
altered even prior to the inspiral phase due to mass trans-
fer and tidal forces. These considerations further moti-
vate us to regard the profile in Equation 9 as an effective
force rather than strictly associate it to a specific physical
mechanism.

C. Analytic solutions for zero eccentricity

For zero initial eccentricity, the dependency on the true
anomaly disappears, and we are left with a single differ-
ential equation for a:

ȧ = −2Cµ
l−1
2 a

3−l−2k
2 . (16)

Defining the parameter m = (3− l−2k)/2, this equation
has the following solutions:

a =
1−m

√
a1−m0 − 2(1−m)Ctµ

l−1
2 m 6= 1 , (17)

a = a0e
−2Ctµ(l−1)/2

m = 1 . (18)

The decay is exponential for m = 1, which corresponds
to the case l = 1, k = 0.

III. HALTING THE INSPIRAL

So far, we have neglected any self-limiting mechanism
to the binary inspiral. However, in a realistic CE evo-
lution, the orbital energy is spent on unbinding the en-
velope, which may result in its complete ejection. The
detailed mechanism of envelope ejection during a CE
event is still under discussion. In many hydrodynami-
cal simulations, the envelope is never fully ejected, but
it simply extends to larger separations while remaining
bound to the binary [21, 22, 80, 82–85]. Additional
mechanisms, such as hydrogen and helium recombina-
tion [23, 27, 30, 31, 86] or dust-driven winds [16], have
been invoked to explain the complete envelope ejection.

While our simple 0-dimensional model cannot capture
as many details as a full 3D hydrodynamical simulation,

it is still tempting to seek a self-limiting mechanism for
our CE model, which may be analytically tractable. In
this section, we discuss the possible models and their
limitations.

A. Using the αλ formalism

The simplest way to halt the inspiral phase is to rely on
the αλ model. In the αλ, the orbital energy lost during
CE is calculated on the basis of an energy balance equa-
tion. The binding energy of the envelope is parametrized
by λ in the following expression [41]:

Ebind = −Gm1,envm1

λR
, (19)

where m1,env is the mass of the envelope. When both
stars are giants at the onset of CE, the binding energy of
both envelopes is included in Equation 19.

The binding energy is compared to the difference in
orbital energy

∆Eorb = −Gm1,cm2

2af
+
Gm1m2

2ai
, (20)

where ai and af are the pre- and post-CE semimajor axes.
The parameter α is introduced before equating Equa-

tion 19 and Equation 20, and represents the CE efficiency.
The final expression from which the final semimajor axis
af is calculated reads as:

Gm1,cm1,env

R
= αλ

(
Gm1,cm2

2af
− Gm1m2

2ai

)
. (21)

In BPS codes, sometimes αλ are used together as a single
parameter, although this approach creates a degeneracy
between the binding energy estimate and CE efficiency.
A better approach is to estimate λ from detailed 1D stel-
lar evolution models [50, 87–91].

We can use the αλ formalism together with the drag
force formalism presented in section II. This choice has
the advantage of producing results consistent with the αλ
(by construction), while still allowing for non-zero final
eccentricity and avoiding discontinuities in the evolution
of the semimajor axis.

We can express the expected orbital energy loss by
rewriting Equation 21 as

∆Eorb =
1

αλ

Gm1m1,env

R
. (22)

While using the drag force formalism, we can then keep
track of the orbital energy loss as

Ėorb =
Gm1m2

2a2
ȧ , (23)

and we can stop the integration as soon as the accumu-
lated orbital energy loss equates Equation 22:

∆Eorb =

∫ tend

t0

Ėorbdt . (24)
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As stated earlier, Equation 23 takes into account for
the energy losses caused by drag force only. Although it
is straightforward to add the additional derivative terms
accounting for mass changes (see Appendix A), finding an

expression for the mass loss Ṁ := ṁenv consistent with
the αλ model is not as simple. The reason is that the αλ
model is fine-tuned to result in the complete ejection of
the envelope as soon as the inspiral ends. This is possible
because it uses a simple energy balance equation. How-
ever, the drag force model decouples mass loss and energy
loss, allowing for inspirals to end before the envelope is
fully ejected. A possible way to couple mass loss and
inspiral is to impose that the mass loss ṁenv is propor-
tional to the rate of orbital decay due to the drag force,
times the remaining envelope mass, ṁenv ∝ menvȧ/a.
However, this coupling would need to be precisely fine-
tuned to achieve the envelope ejection only when the to-
tal ∆Eorb equates to the amount prescribed by the αλ
model.

We believe that this is not a drawback of the model,
but a feature that enables a more realistic modeling of
the CE phase. In fact, recent studies point out that a
fraction of the envelope will likely remain bound to the
core after the inspiral has stalled [38, 92].

B. Self-similar expansion

In reality, the energy loss goes into unbinding the enve-
lope, so that its density decreases, the drag force becomes
weaker, and the inspiral stalls.

The binding energy of a non-rotating star can be cal-
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FIG. 3. Evolution of semimajor axis (top) and eccentricity
(bottom) as a function of time, assuming self-similar expan-
sion of the envelope. The colors indicate different initial bind-
ing energy of the envelope, parametrized by the λ parame-
ter (Equation 19). Blue: no envelope expansion. Orange:
λ = 0.2. Green: λ = 0.5. Red: λ = 1. Purple: λ = 2. We set
χa = 0.05.

culated with the following integral:

Ebind =

∫ M

mc

(Eint −
Gm

r
)dm , (25)

where Eint is the internal energy, while the second term is
the gravitational term. In the past, only the gravitational
binding energy was taken into account, but recent works
have begun to include the thermal energy Eint term and
even recombination energy [89, 91, 93, 94].

A simple approach is to assume that the envelope ex-
pands homologously, conserving mass. Given an expan-
sion factor g(t), the density ρ as a function of time and
position can be expressed as:

ρ(t, r) =
1

g(t)3
ρ0

(
r

g(t)

)
, (26)

where ρ0 is the original density at time t = 0 so that g(t =
0) = 1 (see [95] for an analogous method with a constant
expansion factor). Intuitively, the density at position r
and time t is the density of the original profile at the
old position r′ = r/g, rescaled by a factor g3 in order to
conserve the mass. The radius of the envelope at time t
is therefore R(t) = R0g(t). For a polytropic sphere, the
binding energy B is proportional to the inverse of the
radius, so that we can write:

B(t) =
B0

g(t)
. (27)

Equating the orbital energy losses Ėorb to the binding
energy losses:

Ḃ = −ġ B0

g2
= Ėorb , (28)

so that the expansion factor g(t) evolves as:

ġ = −mredµ

2a2
ȧ

B0
g2 , (29)

where mred is the reduced mass. This equation can be
integrated alongside Equations 10–13, but requires an
initial estimate of the initial binding energy B0. It is
possible to use the classic λ parametrization of B0 (Equa-
tion 19).

Changes in the local density ρ(t, r) reflect on the drag
force through the parameter C. Because the power-law
model assumes that ρ0(r) ∝ r−k, it follows from Equa-
tion 26 that C(t) = C0/g(t)3−k, which closes our set of
equations.

Figure 3 shows the common envelope evolution of a
1 M� giant, 0.6 M� companion binary with the inclusion
of the expansion factor. Here the initial orbit has an
eccentricity of 0.2 and a semimajor axis of 100 au. To
estimate the initial binding energy, we assume that the
radius of the giant star is R = 83 R� and its core mass
0.39 M�. The introduction of the envelope expansion
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makes the inspiral self-limiting: as the gas density de-
creases, the inspiral slows down until it stalls. The final
value of both eccentricity and semimajor axis depends
on the value of the binding energy, parametrized by λ.
Lower binding energies (larger values of λ) halt the inspi-
ral sooner, leaving the binary at larger separations and
higher eccentricity.

IV. COMPARISON WITH
HYDRODYNAMICAL SIMULATIONS

As explained in section II A, the drag force model can
be considered as an effective model that can reproduce
the underlying physics of common envelope inspiral. It
is difficult to assess a priori which values of l, k, and
C better describe the complex physics at play. For this
reason, we compare the power-law model with smoothed-
particle hydrodynamical simulations of eccentric CE run
by [78]. Figure 4 compares the core separation between
the semi-analytic model and four simulations with differ-
ent stellar parameters and initial orbital eccentricities.
We note, that while here we consider the location of the
cores where the center of mass of each star is, this is not
necessarily the case in the hydrodynamical simulations,
where the envelope is not limited to a spherical expan-
sion. The left panels of Figure 4 show a CE event between
a 8 M� giant and a 2 M�, while the right panels involve
a 1 M� giant with a 0.6 M� companion. We compare the
hydrodynamical simulations with the self-similar expan-
sion model of section III B, choosing different values of
k, C and λ, but fixed l = 2.

The semi-analytic model can reproduce the CE inspiral
of the hydro simulations with relatively good agreement.
Even though the 1D density profile of the giant star’s
envelope roughly follows a power-law exponent of .3,
the inspiral is well reproduced by k = 1. For the right
panels of Figure 4, the simulations with 1 M� giant and
a 0.6 M� companion have a much faster inspiral than the
k = 1 model, and k = 1.5 better matches the separation
decay.

The two different stellar models are better matched
by a different power-law index k, confirming our ansatz
that the radial part P (r) of the drag force represents the
local density. On the other hand, the estimated power-
law k is significantly shallower than the radial density
profile of the 1D stellar evolution model. This might
be caused by the fact that the stellar profile has been
significantly altered by the tidal field of the companion.
In real systems, the stellar profile might have been further
altered by mass transfer and tidal spin up.

In addition to the stellar density profile, the equation
of state of the star plays a crucial role in the unbind-
ing of the CE material and the stalling of the inspiral.
In particular, more massive stars are radiation-pressure
dominated, and therefore they have a lower binding en-
ergy than low-mass stars. Hydrodynamics simulations
have showed that CE events of red supergiant stars end

at a larger separation and with a higher fraction of un-
bound mass when radiation pressure and recombination
energy contributions are included [30, 31, see also 94].

In our model, besides adopting a different value of k,
differences between massive and low-mass stars can be
incorporated into the initial binding energy B0 when us-
ing the self-similar expansion assumption, or into the pa-
rameter λ, in the same way it is to the αλ model. This
is agreement with the best-match values of λ estimated
from the comparison in Figure 4, which are λ ' 0.25 for
the low-mass model and λ ' 0.5 for the high-mass one.

V. APPLICATIONS TO ASTROPHYSICAL
SCENARIOS

A. CE triggered by the von Zeipel-Kozai-Lidov
mechanism in triples

In hierarchical triple systems, a stellar binary is orbited
by a tertiary star. The tertiary may affect the orbital evo-
lution of the binary through gravitational interactions,
giving rise to the so-called von Zeipel-Kozai-Lidov (ZKL)
mechanism, wherein the eccentricity of the inner binary
can be excited to extremely high values [96–100]. The
ZKL mechanism has been invoked to explain a variety
of astrophysical phenomena, for example, gravitational
wave mergers of compact objects [e.g. 101], type Ia super-
novae detonation from white dwarf collisions [e.g. 102], or
evolutionary pathways in interacting stellar triples [e.g.
103].

In stellar triples, the high eccentricity during a ZKL cy-
cle can trigger tidal interaction, mass transfer, and even
CE evolution [e.g. 103, 105]. While it is straightforward
to include tidal and mass transfer interactions in N -body
or triple stellar evolution codes [61, 106–108], no analytic
self-consistent CE model for few-body systems exists yet
[see also 29, 109]. Here we show how our drag force model
can be included in direct N -body codes, enabling the
modeling of CE in hierarchical triples and even higher
multiple systems.

Figure 5 shows the evolution of a triple system con-
sisting of a 66 M�, 2771 R� giant with a 29 M� main
sequence companion, and a tertiary 29 M� star. The ter-
tiary is inclined by 90◦ with respect to the inner binary,
which gives rise to ZKL oscillations. During the first ZLK
cycle, the eccentricity of the inner binary grows enough
that the secondary enters into the envelope of the pri-
mary. In the absence of drag forces or collisions, the ZLK
cycle continues and the eccentricity naturally decreases
again (dotted lines in Figure 5). This happens because,
in the absence of binary interactions, this configuration
is stable and the triple could undergo another ZLK cy-
cle, with the eccentricity oscillating between ∼0.06 and
0.96. When we include the drag force, the binary semi-
major axis begins to decay as soon as the secondary is
engulfed by the primary (solid lines in Figure 5). How-
ever, the drag is too weak to damp the increase in eccen-
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FIG. 4. Comparison of the binary separation evolution for four hydrodynamical simulations and the power-law drag force
model. From top to bottom, left to right: simulations 8R2G5, 8R2G-0, 1R06P5, 1R06P7 from Glanz and Perets [78]. For
clarity, we compared models in 8R2G-0 from the second apocenter approach, where the CE rapid plunge-in began. The blue
line is the separation obtained from the hydrodynamical simulations, while the thick purple line is the power-law model. All
the semi-analytic curves use the quadratic drag force (l = 2). The left panels use a drag force linearly decreasing with radius
(k = 1), while the right panel adopts a power-law of k = 3/2. The top-right panel shows the difference between k = 1 and
k = 3/2.

tricity, which continues to rise and decay following the
ZKL cycle. However, as the semimajor axis decreases,
the perturbation from the tertiary star becomes weaker,
and the eccentricity decreases slowly. We stop the simu-
lation once the energy released by the drag force matches
the binding energy of the envelope, as calculated using
the prescriptions of Claeys et al. [91]. In the end, the
semimajor axis has shrunk by a factor of 20, retaining
an eccentricity of ∼0.35. Conversely, αλ model predicts
a similar final semimajor axis (af ' 634 R�), but with
zero final eccentricity.

In this example, we focused on the main differences
between our common envelope prescription and the αλ
model. Therefore, we have neglected other forces, like
tidal interactions or mass transfers prior to the CE event.
Additional forces to model these effects can be easily in-
cluded [65, 110], but they would be limited to altering
the binary parameters prior to the CE event.

B. CE in isolated binary stellar evolution

BPS codes employ the αλ model, meaning that they
cannot estimate the eccentricity of binaries after CE
events. In the bse code and derivatives, the final ec-
centricity is set to zero after practically every CE evo-
lution. However, this is in tension with the observation
of systems believed to be post-CE binaries, such as close
binaries with a subdwarf B/O star. In fact, while most
studies assume zero eccentricity for such systems, a few
post-CE binaries show eccentricities up to ∼0.15 [54–58].

We have extracted a sample of CE episodes from 2659
runs of a modified version of bse [104], and we have re-
run them with our new model, using the perturbative
equations of section II A. The bse runs were obtained
from the following setup. The initial mass function (IMF)
of primary stars follows Kroupa’s IMF [111] with the min-
imum and maximum masses of 10 and 150 M�, respec-
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soon as the energy released by the drag equals the binding
energy of the envelope. Evolved by means of direct N -body
integration with an Hermite scheme [66, 67].

tively. Mass ratios of secondary stars to primary stars
are distributed uniformly between 0 and 1. The semi-
major axis distribution is uniform in a logarithmic scale
between 1 and 106 R�. The eccentricity distribution is
thermal. The single star evolution is Hurley’s model [45]
with stellar metallicity Z = 0.002. We adopt common
envelope parameters α = 1 and Claeys’s λ [91]. The
common envelope evolution sets in under the same crite-
ria as [87].

bse already includes recipes for the tidal circulariza-
tion of close binaries and orbital changes due to mass
and momentum transfer. Nonetheless, many systems en-
ter the CE phase with a significant eccentricity, as shown
by the blue distributions in Figure 6. This is consis-
tent with the population synthesis study of Vigna-Gómez
et al. [28], which estimated that at least 18% of the bi-
naries will be eccentric at the onset of the Roche lobe
overflow that leads to the CE event. This result is also
supported by detailed studies on the tidal evolution of
evolving giants with close companions [112].

For all the runs with our common envelope formalism,
we adopt l = 2, k = 1 and χa = 0.05. As described
in section III A, we make our model consistent with the
αλ model by stopping the integration once the energy
released by the drag force equals the binding energy of
the envelope. We also avoid applying the drag once the
secondary is outside the envelope of the primary.

Our model allows to estimate the eccentricities after
CE, which are not necessarily zero. This is clear from
Figure 6, which compares the distributions of pericenter
distances and eccentricity before and after CE evolution.
While the final eccentricity distribution is indeed peaked
at zero, there is a tail of systems with some residual ec-
centricity, up to ef ∼ 0.2. This is surprisingly similar to

the observed distribution, even though our simulations
consider CE of a broad range of stellar types, and not
just of subdwarf O/B stars or white dwarfs [see Fig. 2
from 58]. Given that the residual eccentricities in our
model are very small, the final pericenter distribution
does not differ significantly from the one obtained from
bse.

VI. SUMMARY

In this paper, we presented a new semi-analytic model
of CE evolution, which can be incorporated in N -body
and BPS codes alike. Even though our model is based
on simple assumptions, it offers several advantages with
respect to previous models. First, it can be easily incor-
porated into N -body codes, enabling the modeling of CE
evolution in hierarchical triple and higher multiple stellar
systems without the need of running expensive hydrody-
namical simulations. Finally, it can be made consistent
with the αλ model, widely used in BPS codes, with the
advantage of being able to follow the CE inspiral and
provide the final eccentricity of the binary.

Even though our model is still mostly phenomeno-
logical, i.e., relying on convenient (albeit arbitrary)
parametrizations, it lays the foundations for a more pre-
dictive semi-analytical model of CE evolution. We ex-
plore this direction in our forthcoming work, which will
focus on incorporating improved physics into the model,
including more realistic density profiles, angular momen-
tum exchange, and mass loss.

Appendix A: Mass loss prescriptions

For completeness, we write here the equations of mo-
tion for adiabatic mass loss or mass gain. If both particles
accrete or lose mass isotropically (i.e., with no net linear
momentum transfer onto the particles), at rates ṁ1, ṁ2,

we can write the total mass change as Ṁ = ṁ1 + ṁ2.
From energy conservation, it is possible to derive the net
force per unit-mass acting on the reduced mass system:

f = − Ṁ

2M
v . (A1)

We can see that this perturbative force amounts to
a linear drag, that is Equation 9 with l = 1, k = 0,
and C = Ṁ/2M . Consequently, the equations of motion
follow from Equations 10–13:

ȧ = −Ṁ
M

a

1− e2
(1 + e2 + 2e cos ν) , (A2)

ė = −Ṁ
M

(e+ cos ν) , (A3)

ω̇ = −Ṁ
M

sin ν

e
. (A4)
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These equations can be added directly to the drag force
equations, once a suitable expression for Ṁ is provided.

Note that these equations are valid as long as the per-
turbative force in Equation A1 is relatively small com-
pared to the Newtonian one. If this is not the case, a
better description is provided by the impulsive approxi-
mation, which assumes instantaneous mass loss [113].

Equations A2–A4 can also be orbit-averaged by inte-
grating them over the mean anomaly (see Equation 8,
and, e.g., 114). The resulting secular equations are:

〈ȧ〉 = −Ṁ
M
a , (A5)

〈ė〉 = 0 , (A6)

〈ω̇〉 = 0 . (A7)

In other words, assuming isotropic and adiabatic mass
changes, the only net secular effect is the change in the
binary semimajor axis, while the eccentricity and the ap-
sidal orientation are not affected. This is in agreement
with the bottom panel of Figure 1, which shows the inte-
grated evolution of the orbital elements for a drag force
with l = 1, k = 0. Neglecting the fast oscillations on the
orbital timescale, the semimajor axis decreases exponen-
tially (as a straight line in the log-linear plot) while ω and

e remain constant, in agreement with Equations A5–A7.

Appendix B: Orbit-averaged equations

Equations 10–13 express the evolution of the binary
orbital elements, including the true anomaly ν, while
BPS and triple evolution codes adopt secular equations
that average out the dependency on ν. It is not easy to
obtain orbit-averaged expressions for generic power-law
exponents l and k, so we write here the orbit-averaged
expressions for the most physically relevant cases.

In the following, the functions K(x), E(x), and Π(x, y)
are the complete elliptic integrals of the first, second, and
third kind, respectively. The orbit-averaged argument of
pericenter 〈ω̇〉 is zero for all the reported cases. Finally,
to simplify the writing, we make use of the following aux-
iliary variables:

x = − 4e

(e− 1)2
, (B1)

y =
4e

(e+ 1)2
, (B2)

z =
2e

e+ 1
, (B3)

w =
2e

e− 1
. (B4)
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1. f ∝ v2 (l = 2, k = 0)

〈ȧ〉 =
C
√
aµ

(1− e2)π

[
(e+ 1)(e− 1)2E (x)− (e+ 1)2(e− 1)E (y)− (7 + e2)(e+ 1)K (x)

+ (7 + e2)(e− 1)K (y) + 4(e+ 1)2Π (w, x) + 4(e− 1)2Π (z, y)

]
,

(B5)

〈ė〉 =
C

eπ

√
µ

a

[
(e+ 1)(e− 1)2E (x)− (e+ 1)2(e− 1)E (y)− (3 + e2)(e+ 1)K (x)

+ (3 + e2)(e− 1)K (y) + 2(e+ 1)2Π (w, x) + 2(e− 1)2Π (z, y)

]
.

(B6)

2. f ∝ v2

r
(l = 2, k = 1)

〈ȧ〉 =
2C

(e2 − 1)π

√
µ

a

[
2(e+ 1)E (y) + 2(1− e)E (x) + 2(e− 1)K (y)

− 2(e+ 1)K (x) + (e+ 1)2Π (w, x) + (e− 1)2Π (z, y)

]
,

(B7)

〈ė〉 =− 2C

aeπ

√
µ

a

[
(e+ 1)E (y) + (1− e)E (x) + 2(e− 1)K (y)

− 2(e+ 1)K (x) + (e+ 1)2Π (w, x) + (e− 1)2Π (z, y)

]
.
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3. f ∝ v2

r2
(l = 2, k = 2)

〈ȧ〉 =− 2C

3a(e2 − 1)2π

√
µ

a

[
− (e2 + 1)(e− 1)E (x) + 7(e2 + 1)(e+ 1)E (y)

+ (e2 − 1)(e+ 1)K (x)− (e2 − 1)(e+ 1)K (y)

]
,

(B9)

〈ė〉 =
C

3a2e(e2 − 1)2π

√
µ

a

[
− (e2 + 1)(e− 1)E (x) + (13e2 + 1)(e+ 1)E (y)

+ (e2 − 1)(e+ 1)K (x)− (e2 − 1)(e+ 1)K (y)

]
.

(B10)

In Figure 7 we compare the numerical integration with
the phase-dependent equations (Equations 10–13 with
l = 2, k = 0) and the orbit-averaged counterparts (Equa-
tions B5–B6). As expected, the orbit-averaged evolution
does not exhibit any oscillations on the orbital timescale,
but represents the average value of semimajor axis and
eccentricity over one orbit.

Appendix C: Evolution of the eccentricity with
dynamical friction forces (l = −2)

In this section we analyze the evolution of the eccen-
tricity for l = −2. This case corresponds to the dynam-
ical friction force in collisionless and collisional media,
wherein a massive body moving in sea of smaller bodies
is slowed down by the overdensity that forms in its wake.
We note that, during the finalization of this manuscript,
Szölgyén et al. [115] posted an analysis of this case using
a simplified toy model, finding that k = 3 is the boundary
between the increase and decrease in eccentricity. Our re-
sults agree with their estimate, and in this Appendix we
provide a complete explanation grounded in perturbation
theory.

We begin our analysis by considering that for l = 2,
Equation 11 reads as:

ė =− 2Cµ−
3
2 a

3−2k
2 (1− e2)

3−2k
2

(1 + e cos ν)k(1 + e2 + 2e cos ν)−
3
2 (e+ cos ν) .

(C1)

After applying the orbit-averaging technique from Equa-
tion 8, the integrand function obtains the following form:

ė

2π

dM

dν
=h(C, µ, a)(1− e2)3−k(1 + e cos ν)k−2

(1 + e2 + 2e cos ν)−
3
2 (e+ cos ν) ,

(C2)

where

h(C, µ, a) = −Cµ
− 3

2 a
3−2k

2

π
. (C3)

After carrying out all the constant terms, the integral in
ν contains only

I(ν, e) =(1 + e cos ν)k−2(1 + e2 + 2e cos ν)−
3
2 (e+ cos ν)

(C4)

Unfortunately, we were not able to find a generic solu-
tion to the integral

I(e) =

∫ 2π

0

I(ν, e)dν (C5)

for arbitrary values of k. It is however possible to derive
analytic solutions for fixed values of k. We derived the
analytic expressions of 〈ė〉 for k = 1, 2, 3, 5, and show the
integral −I(e) for different values of k in Figure 8. Here
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FIG. 8. Values of the integral −I(e) that arises when orbit
averaging Equation C1, that is the rate of change in eccen-
tricity for a dynamical friction force (l = −2). Each curve
corresponds to a different value of k. For k = 3, 〈ė〉 = 0 and
the derivative of the eccentricity changes sign, from positive
(k > 3) to negative (k < 3).
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we quote only the complete expression for k = 3:

〈ė〉 =
2C

πa3/2(e+ 1)2µ3/2

[
(e− 1)E (x) + (e+ 1)E (y)

]
,

(C6)

where we have used the notation of the previous section.
It can be shown that for |e| < 1, (e − 1)E (x) = −(e +
1)E (y) and consequently 〈ė〉 = 0 for k = 3.
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