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ABSTRACT
In order to understand grain-surface chemistry, one must have a good understanding of the reaction rate parameters. For diffusion-
based reactions, these parameters are binding energies of the reacting species. However, attempts to estimate these values from
grain-surface abundances using Bayesian inference are inhibited by a lack of enough sufficiently constraining data. In this work,
we use the Massive Optimised Parameter Estimation and Data (MOPED) compression algorithm to determine which species
should be prioritised for future ice observations to better constrain molecular binding energies. Using the results from this
algorithm, we make recommendations for which species future observations should focus on.
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1 INTRODUCTION

Interstellar dust grains are a crucial component of interstellar chem-
istry.Many gas-phase complex organic molecules (COMs) have been
detected in our galaxy in cold and hot cores (Boogert et al. 2015).
There is evidence to suggest that much of the observed chemistry
takes place on the grain surfaces as opposed to the gas-phase and
that these observed gas-phase molecules simply evaporate from the
grains some time after formation. As such, if one wishes to under-
stand how such complex organic molecules are formed, one must
have a thorough understanding of grain-surface chemistry (Herbst &
van Dishoeck 2009; Caselli & Ceccarelli 2012).
In order to better understand howgrain surface chemistry proceeds,

it is important to know the reaction rate parameters. For grain-surface
reactions, these parameters may not necessarily be the rates them-
selves, but rather parameters that are more specific to the reaction
rate mechanism. For diffusion-based reactions, which are typically
taken to be the dominant grain-surface reaction mechanism, the re-
action rate parameters of relevance are the binding energies of the
reacting species and reaction activation energy barriers (Hasegawa
et al. 1992). Much experimental work has been done to determine
these, but there are often significant disagreements, due to differ-
ing laboratory conditions (see Penteado et al. (2017) for a survey of
binding energy values).
There exist a variety of methods to estimate the binding ener-

gies, ranging from experimental approaches (He et al. 2016) to
density functional theory (Ferrero et al. 2020) to machine learn-
ing approaches (Villadsen et al. 2022). However, in our work to
estimate these reaction rate parameters given observed abundances,
Bayesian inference is typically employed. Bayesian inference has be-
come a ubiquitous tool in astrophysics and has recently found more
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use within the field of astrochemistry. Previous work has considered
the rate-parameter estimation problem (Holdship et al. 2018; Heyl
et al. 2020) and has shown that the paucity of available grain-surface
species abundances inhibits precise estimates of these rate param-
eters. The problem due to the lack of sufficiently constraining data
has been somewhat ameliorated by considering the network structure
(Heyl et al. 2020) or the underlying chemical mechanisms to reduce
the dimensionality of the problem (Heyl et al. 2022). However, it
remains the case that many binding energies cannot be constrained
to the point that they would be useful in chemical codes. This is
clear from a survey of the literature which shows quite significant
disagreements for some binding energy values (McElroy et al. 2013;
Wakelam et al. 2017; Quénard et al. 2018).

Observations of the ices have typically considered the molecular
vibration transitions in the infrared region (Boogert et al. 2015). A
number of space telescopes such as the Infrared Space Observatory
(ISO) and Spitzer have provided observations of ice band profiles
that have been used to determine molecular abundances. However,
until now there has been insufficient resolution of the absorption
band profiles. The James Webb Space Telescope (JWST) observes
in the infrared wavelength range of 0.6 - 28 `m. It provides higher
spectral resolution observations of up two magnitudes, especially in
the 5-8 `m range which potentially contains the vibrational modes
of several molecules of interest (Boogert et al. 2015; Boogert 2016).
This is particularly important as infrared spectroscopy reveals the
features of various functional groups which differ by species but
can have similar values (Boogert 2016). As such, having greater
resolution will ensure that the various absorption band profiles can
be disentangled.

In this work, we wish to provide recommendations of which
species should be prioritised for future ice observations in order
to reduce the uncertainties on the binding energy values. To achieve
this, we make use of the "Massive Optimised Parameter Estimation
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2 J. Heyl et al.

and Data compression" (MOPED) algorithm (Heavens et al. 2000,
2017; Heavens et al. 2020). A key output of the MOPED algorithm
is a measure of how strongly knowledge of a species ice phase abun-
dance would constrain the binding energies.
We start by explaining the chemical code and network we will

use throughout this work in Section 2. Section 3 will be dedicated
to explaining the approach we take in this work, specifically our use
of Bayesian inference and the MOPED algorithm. We follow this up
in Section 4 by showing the results of the Bayesian inference and
the MOPED algorithm as well as by discussing the observational
implications of our findings. We briefly conclude in Section 5.

2 THE CHEMICAL CODE AND NETWORK

2.1 The Chemical Code

In this work, the gas-grain astrochemical codeUCLCHEM (Holdship
et al. 2017) was used to model the chemistry of a collapsing dark
cloud. The cloud was taken to collapse isothermally at 10K from 102
cm−3 to 106 cm−3 over a period of 5 million years. By the end of this
collapse, we expect the ice phase abundances to be representative of
a dark cloud.

2.2 Grain Surface Chemistry

2.2.1 Grain Surface Diffusion

It is important to understand the grain surface mechanisms, as this is
needed to show why this work considers binding energies as the key
parameters that govern the reaction rates.
We assume all grain surface reactions take place via the Lang-

muir–Hinshelwood mechanism and use the formalism described in
Hasegawa et al. (1992) which was implemented in UCLCHEM in
Quénard et al. (2018). We believe this is a reasonable assumption as
previous work has shown that including Eley-Rideal reactions does
not strongly affect surface abundances (Ruaud et al. 2015). Accord-
ing to the formalism, the rate at which two species A and B react via
diffusion is given by:

𝑘𝐴𝐵 = ^𝐴𝐵

(𝑘𝐴
ℎ𝑜𝑝

+ 𝑘𝐵
ℎ𝑜𝑝

)
𝑁𝑠𝑖𝑡𝑒𝑛𝑑𝑢𝑠𝑡

, (1)

where 𝑁𝑠𝑖𝑡𝑒 is the number of sites on the grain surface and 𝑛𝑑𝑢𝑠𝑡
is the dust grain number density.
In equation 1, 𝑘𝑋

ℎ𝑜𝑝
is the thermal hopping rate of species 𝑋 on

the grain surface which is defined as:

𝑘𝑋
ℎ𝑜𝑝

= a0 exp
(
−𝐸𝐷

𝑇𝑔𝑟

)
, (2)

where 𝐸𝐷 is the diffusion energy of the species, 𝑇𝑔𝑟 is the grain
temperature and a0 is the characteristic vibration frequency of species
𝑋 . The diffusion energy is a fraction of the binding energy of the
species, 𝐸𝑏 . In this work, this fraction is taken to be 0.5, in line with
Quénard et al. (2018). While it is known that this value can vary
between 0.3 and 0.8, there is significant uncertainty within that range
(Garrod & Pauly 2011). Furthermore, the value is not expected to
play a significant role at 10 K (Vasyunin et al. 2017).
The characteristic vibration frequency, a0, is defined as:

a0 =

√︂
2𝑘𝑏𝑛𝑠𝐸𝑏

𝜋2𝑚
, (3)

where 𝑘𝑏 is the Boltzmann constant, 𝑛𝑠 is the grain site density and
𝑚 is the mass of species.While there exists some debate regarding
the validity of this expression (see Minissale et al. (2022) for a more
detailed discussion), this equation for the characteristic vibration
frequency is what is used in UCLCHEM. While a more accurate
equation that takes into account the rotation partition function of the
desorbing molecules should be used, this will not affect the ability
of Bayesian inference to constrain the binding energies of species of
interest, which is the aim of this paper.
The final term, ^𝐴𝐵 , which gives the reaction probability is:

^𝐴𝐵 = max
(
exp

(
−2𝑎

ℏ

√︁
2`𝑘𝑏𝐸𝐴

)
, exp

(
− 𝐸𝐴

𝑇𝑔𝑟

))
, (4)

where ℏ is the reduced Planck constant, ` is the reduced mass,
𝐸𝐴 is the reaction activation energy, 𝑘𝑏 is Boltzmann’s constant and
𝑎 = 1.4 Angstrom is the thickness of a quantum mechanical barrier.
While values between 1 and 2 Angstrom have been used (Hasegawa
et al. 1992; Garrod & Pauly 2011; Vasyunin et al. 2017), Quénard
et al. (2018) found that a value of 1.4 Angstrom matched the ice
composition best. The reaction probability represents the competition
between the quantum mechanical probability of a tunnelling through
a rectangular barrier of thickness 𝑎, which is the first term, and the
thermal reaction probability, which is the second term.

2.2.2 Reaction-diffusion competition

Amodification needs to be made to the ^𝐴𝐵 term to take into account
the possibility that species might diffuse or evaporate before they
can react with each other. This is the reaction-diffusion competition
(Chang et al. 2007; Garrod & Pauly 2011). The reaction probability
is now defined as:

^
𝑓 𝑖𝑛𝑎𝑙

𝐴𝐵
=

𝑝𝑟𝑒𝑎𝑐

𝑝𝑟𝑒𝑎𝑐 + 𝑝𝑑𝑖 𝑓 𝑓 + 𝑝𝑒𝑣𝑎𝑝
, (5)

where 𝑝𝑟𝑒𝑎𝑐 , 𝑝𝑑𝑖 𝑓 𝑓 and 𝑝𝑒𝑣𝑎𝑝 represent the probabilities of
species A and B reacting, diffusing and evaporating per unit time,
respectively. These quantities are defined as:

𝑝𝑟𝑒𝑎𝑐 = max(a𝐴0 , a
𝐵
0 )^𝐴𝐵 (6)

,

𝑝𝑑𝑖 𝑓 𝑓 = 𝑘𝐴
ℎ𝑜𝑝

+ 𝑘𝐵
ℎ𝑜𝑝

(7)

and

𝑝𝑒𝑣𝑎𝑝 = a𝐴0 exp

(
−
𝐸𝐴
𝑏

𝑇𝑔𝑟

)
+ a𝐵0 exp

(
−
𝐸𝐵
𝑏

𝑇𝑔𝑟

)
. (8)

We replace ^𝐴𝐵 with ^
𝑓 𝑖𝑛𝑎𝑙

𝐴𝐵
in Equation 1,.

Overall, we find that Equations 1-8 show that the key quantities are
a0, 𝑘𝑋ℎ𝑜𝑝 , 𝐸𝑏 and 𝐸𝐴. The first three are all functions of the binding
energies of the reacting species, indicating the binding energies are
the crucial parameters. We assume that the activation energies in
Equation 4 are well-known. This is reasonable, as these should be
independent of the ice composition (unlike the binding energies)
and can be determined theoretically or experimentally. Many of the
reactions would also be expected to have zero activation energy as
they are radical-radical reactions (Quénard et al. 2018).

MNRAS 000, 1–10 (2015)



Using MOPED to identify most constraining ice observations 3

2.3 The Chemical Network

The chemical network consists of a gas-phase network taken from
UMIST12 (McElroy et al. 2013) and a grain-surface network based
on Quénard et al. (2018) and expanded to include the reactions from
Garrod et al. (2008); Minissale et al. (2016); Quan et al. (2010);
Fedoseev et al. (2016); Belloche et al. (2017); Song&Kästner (2016);
Garrod & Herbst (2006).
We believe the gas phase network is comprehensive and suffi-

ciently accurate that any deficiencies in the network will not have a
great effect on our results. The gas-phase network was benchmarked
against observations in McElroy et al. (2013). The abundances of
species freezing out from the gas phase are likely to be approxi-
mately correct and we therefore only need to be concerned by the
accuracy and completeness of the grain surface network. We operate
under the assumption that the gas-phase network is complete.
Our grain surface network is less comprehensive but we argue

it is sufficient to reproduce the abundance of major species, given
the results of Makrymallis & Viti (2014); Holdship et al. (2018);
Heyl et al. (2020, 2022) which used smaller networks. The network
includes the freeze out of all species, hydrogenation reactions of
all species up to their saturated forms, and radical-radical reactions
that have been shown to be efficient in laboratory experiments, as
well as other diffusion reactions from the literature (see above). By
including all reactions known to be the main routes through which
species like H2O and CH3OH are formed on the grain surfaces, our
network is sufficient to produce accurate ice phase abundances of
these species. Therefore, we can properly predict how important the
binding energies of those species are to the surface chemistry.

3 ANALYTICAL APPROACH

3.1 Parameters

The aim of this work is to determine the binding energies of the
chemically reactive species. While it would be ideal to determine the
binding energies of all species in the network, the reality of the situ-
ation is that this is not strictly necessary. In Heyl et al. (2022), it was
demonstrated that at 10K, a moderate difference in binding energies
between two species results in a significant difference in reaction
rates. As such, one can significantly reduce the dimensionality of the
problem one is trying to solve by only considering the most diffusive
species. These are those species that will be the more reactive species
with the greater hopping frequency for at least one reaction in the
network. The more reactive species were determined by considering
the literature. Even though there is widespread disagreement about
the values of the binding energies, there is less disagreement about
the hierarchy of binding energy values. This can be seen by con-
sidering the values given in Wakelam et al. (2017), McElroy et al.
(2013) and Penteado et al. (2017). For reactions where the literature
was not definitive in specifying which species had the lower binding
energy, both species’ binding energies were included as parameters.
The binding energies we considered as parameters were the binding
energies of H, H2, C, CH, N, CH3, NH, CH4 and O.

3.2 Bayesian Inference

3.2.1 Introduction to Bayesian Inference

The goal is to estimate the binding energies of the most diffusive
species in this network. We represent these parameters of interest as
a vector, E = (E𝑏,𝐻 , E𝑏,𝐻2 , E𝑏,𝐶 , E𝑏,𝐶𝐻 , E𝑏,𝑁 , E𝑏,𝐶𝐻3 , E𝑏,𝑁𝐻 ,

Species Abundances relative to H Source

H2O (4.0 ± 1.3) × 10−5 Cloud

CO (1.2 ± 0.8) × 10−5 Cloud

CO2 (1.3 ± 0.7) × 10−5 Cloud

CH3OH (5.2 ± 2.4) × 10−6 Cloud

NH3 (3.6 ± 2.6) × 10−6 LYSOs

CH4 (2.3 ± 2.1) × 10−6 LYSOs

HCOOH (2.4 ± 1.3) × 10−6 LYSOs

NH+
4 (3.8 ± 1.5) × 10−6 Cloud

Table 1. The abundances and uncertainties taken for the network adapted
from Boogert et al. (2015).

E𝑏,𝐶𝐻4 , E𝑏,𝑂). UCLCHEM was modified so that it took these val-
ues as an input and output all the final abundances of grain-surface
abundances. We represent the 72 grain-surface abundances as a vec-
tor Y = (𝑌1, 𝑌2...𝑌72). The mapping between E and Y is simply
UCLCHEM and we can write this as Y = 𝑓 (E).
In order to solve the inverse problem, we require abundance mea-

surements of grain-surface species, d. These are listed in Table 1.
These are taken from Boogert et al. (2015).
Bayes’ Law can be used to determine the posterior distribution of

the binding energies given the data:

𝑃(E|d) = 𝑃(d|E)𝑃(E)
𝑃(d) , (9)

where 𝑃(E|d) is the posterior probability distribution, 𝑃(E) is the
prior, 𝑃(d|E) is the likelihood and 𝑃(d) is referred to as the evidence.
The prior distribution encodes the initial understanding of the bind-
ing energy distribution. The likelihood gives the data’s likelihood as
a function of the binding energies. Within the likelihood function,
the physical model is encoded. The evidence serves as a normalising
factor and represents the marginalised likelihood. The posterior dis-
tribution represents the updated probability distribution of reaction
rates based on the data, the prior distribution, and the physical model.

3.2.2 Implementation

The prior for all binding energies was specified as uniform distribu-
tion between 400 K and 2000 K. The abundance measurements in
Table 1 were assumed to be Gaussian which allowed for the specifi-
cation of a Gaussian likelihood function:

𝑃(d|E) =
𝑛𝑑∏
𝑖=1

1
√
2𝜋𝜎𝑖

exp

(
− (𝑑𝑖 − 𝑌𝑖)2

2𝜎2
𝑖

)
, (10)

where 𝑛𝑑 is the number of observations and𝜎𝑖 is the uncertainty of
the 𝑖th observation. Only the species for which there are abundances
are indexed over.
The UltraNest Python package (Buchner 2021) was used for the

Bayesian inference, which is based on the MLFriends algorithm
(Buchner 2016, 2019). The package also outputs the maximum
likelihood-estimator, 𝑬𝑴𝑳 . We will use this later for the MOPED
algorithm.

MNRAS 000, 1–10 (2015)



4 J. Heyl et al.

3.3 The MOPED Algorithm

The aim of the MOPED algorithm is to determine which of the 𝑀
species in our chemical network need to be prioritised for future
ice observations in order to best constrain the posteriors for our 𝑝
parameters. In our situation, 𝑝 = 9 and 𝑀 = 72. In other words,
we wish to determine which species will provide us with the most
information upon its detection.
Recall that wewish to determine a set of parameters 𝑬. The species

that are found to be important may include the species already listed
in Table 1, in which case we would aim to improve the uncertainties
surrounding their values. However, it is also possible that we would
need to detect species that have not been detected yet.
All of our future measurements will be have some instrumental

uncertainty. For our purposes, we assume the uncertainty on each
measurement will be the same. We define a covariance matrix to
summarise this: C = 𝑑𝑖𝑎𝑔(𝜎21 , 𝜎

2
2 , ...𝜎

2
𝑀
). By operating under this

assumption that we can measure any species to the same level of
abundance uncertainty, we are aiming to determine which species
would be the most useful to detect. In general, it might be the case
that different species have different levels of uncertainty.
It is likely that some species will be significantly more impactful

in providing information about the parameters of interest. As such,
we need to identify the species in question. To this end, we will
use a filtering technique developed by Heavens et al. (2000, 2017);
Heavens et al. (2020) who propose using a linear combination of
the final abundances of network, 𝒀 , to compress data points. Such a
compression would be of the form:

𝑐𝛼 = 𝒃𝑻𝜶𝒀 , (11)

where 𝛼 ranges from 1 to 𝑝 and 𝒃𝜶 is a set of orthonormal linear
filters, such that each one contains as much information about that
parameter that is not contained in any other 𝒃𝜶 .𝒀 represents a vector
containing the final abundances for some arbitrary value of E. As a
fiducial model, we typically take 𝑬 = 𝑬𝑴𝑳 , which we can determine
using the Bayesian inference discussed in Section 3.2. Using the
maximum-likelihood parameters as a fiducial model has been found
to be sufficient (Heavens et al. 2000, 2017). The value of each 𝑐𝛼 will
ultimately bemore strongly influenced by the components 𝒃𝜶 that are
larger in magnitude. As there is one species for each component, this
means that if a component has a greater magnitude then it contains
more information about that parameter.
The vectors 𝒃𝜶 are given by

b1 =
C−1Y,1√︃

Y,𝑇1 C−1Y,1

(12)

and

b𝛼 =
C−1Y,𝛼 −∑𝛼−1

𝛽=1 (Y,𝑇𝛼b,𝛽)b,𝛽√︃
Y,𝑇𝛼C−1Y,𝛼 −∑𝛼−1

𝛽=1 (Y,𝑇𝛼 b,𝛽 )2
, (13)

whereY,𝛼 is the partial derivative ofYwith respect to the param-
eter 𝛼. The equations for 𝑏𝛼 were derived in Heavens et al. (2000)
through a Lagrange multiplier procedure. The iterative process of
determining each linear filter 𝒃𝜶 from previous ones is akin to the
Gram-Schmidt orthogonalisation. This ensures that all the filters are
orthonormal, that is

𝒃𝑻𝜶𝑪𝒃𝜷 = 𝛿𝛼𝛽 , (14)

which is important because it means that all the filter vectors
are uncorrelated. Note also that each component of 𝑏𝛼 is weighted
towards species which are low in noise, as measured by the inverse
covariance matrix, as well as species with a greater impact on the
parameter, as determined by the values in Y,𝛼.
Ultimately, we find that vector of abundances of all species 𝑥

which has dimensionality M has been reduced to 𝑝 numbers, where
𝑝 < 𝑀 . This data compression is lossless, which means the same
information is included in the 𝑝 values of 𝑐𝛼. This was originally
stated in Tegmark et al. (1997) and proven in Heavens et al. (2000).
Recall that the magnitude of each component of 𝒃𝜶 gives a weight-

ing for that species’ influence on the parameter 𝛼. To determine the
best species to prioritise detection for, we simply add the absolute
values of the components of 𝒃𝜶 for species across all 𝛼. That is, we
perform the sum over our linear filters

𝑝∑︁
𝛼=1

[|𝑏1𝛼 |, |𝑏2𝛼 |..., |𝑏𝑀𝛼 |] . (15)

We now have a “filter sum" for each of the 𝑀 species in our
network. We can rank the species by their filter sum in order to
determine which ones have the greatest impact on our parameters.

4 RESULTS

4.1 Results of the Bayesian Inference

Figure 1 shows the marginalised posterior distributions for the bind-
ing energies of interest. The marginalised prior distribution is also
plotted for comparison. It is clear that, with the exception of atomic
hydrogen’s binding energy, the marginalised posterior distributions
differ very little from the prior suggesting a lack of sufficiently con-
straining data. It is for this reason that we now use the MOPED
algorithm to identify species we need to detect to better constrain
our posterior distributions.

4.2 Using MOPED

We now look to use the MOPED algorithm to allow us to make
predictions about which grain-surface species need to be detected in
order to better constrain the posterior distribution. The maximum-
likelihood estimate (MLE) from the inference was taken and partial
derivatives taken around this point. It was found that near the MLE
the partial derivatives of Y with respect to the binding energies of C,
NH, CH4 and O were equal to the zero vector. This implies that for
binding energies near the MLE, the reaction rates of the network are
not sensitive to changes in the binding energies of these species. As
such, these parameters were not included when calculating the filter
values in the MOPED algorithm.
Figure 2 shows the sum of the filters for all grain-surface species.

The greater the filter sum, the more important it is to detect that
molecule. Additionally, one must also consider the likely abundance
of each species, as the species will only be observable in the ices if its
abundance is above some minimum threshold. We therefore believe
that future ice observations should prioritise species that have a high
filter sum as well as a high abundance. In order to provide estimates
of the abundances, we inserted the maximum-likelihood estimator
values for the binding energy, 𝑬𝑴𝑳 , into UCLCHEM and obtained
the fitted abundances for all the species. Figure 3 is a scatter plot of
the filter sum values against the abundances for each species. From
this plot, we are able to identify high-importance species that are

MNRAS 000, 1–10 (2015)
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Figure 1. Marginalised posterior distributions of the binding energies of the diffusive species of interest. Also plotted is the prior distribution on the binding
energies. With the exception of H, most binding energy distributions differ very little from the prior distribution. This is due to the lack of enough sufficiently
constraining data. This motivates the need for further ice observations to reduce the variance of the distributions.
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Figure 2. Bar chart showing the filter sums for each species in ascending order. Species with a larger filter sum should be prioritised for detection. Many of
the species we observe are the intermediate species formed during the creation of the saturated species in Table 1. This indicates that understanding these
intermediate products is essential to better constraining the binding energies of interest. We also note that many of the highest-ranked species have already been
detected. This suggests that future observations should aim to improve the level of precision of these abundance measurements.
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Figure 3. Scatter plot depicting filter sum against the predicted abundances when the MLE for binding energies are inserted into UCLCHEM. Given constraints
on instrumental uncertainties, we should look to prioritise species that are not only important, as determined by their filter sums, but that can also be realistically
detected. These include saturated species such as #CH4, #NH3, #CO2 and #H2O, but also their precursors.

also likely to be detectable in the ices. However, one needs to also
account for which species are realistic targets from a chemical point
of view. This is discussed in the next subsection.

4.3 Observational Implications

TheMOPED analysis has resulted in a clear ranking of which species
should be targeted in future ice observations. This ranking is shown
in Figure 2. Of course we note that many of these species have
very low abundances and others are difficult to detect in absorption.
Diatomic molecules, atomic species and all radicals except CO will
be neglected in our considerations of which species to consider.
We briefly return to the issue of the network’s reliability which

was first discussed in Section 2.3. Whilst one can be confident in
the abundances of CH4, H2CO, CH3OH and H2O as their networks
are experimentally derived (Fuchs et al. 2009; Ioppolo et al. 2011;

Chuang et al. 2016; Qasim et al. 2020), other species should be
viewed more skeptically. This is particularly the case for sulphur.
Many works indicate sulfur may primarily be locked in other forms
(Vidal et al. 2017; Woods et al. 2015). It may be that the sulphur
reaction network is incomplete. Most concerning is H2S which the
model suggests is the primary sulphur reservoir on the grains. Ob-
servations of ices have never detected H2S but have instead provided
upper limits of ∼10−6(Boogert et al. 2015). The most likely value
of the H2S abundance derived here is lower than this limit and so
it may be correct. However, there are other species in the network
such as CS whose surface chemistry is not well-understood (Woods
et al. 2015). Taking this into consideration, it could be argued that
observers should instead target species such as H2CO or HCNwhich
have similar filter sums and more reliable networks despite their
lower predicted abundances.

There is much to be gained from obtaining more precise mea-

MNRAS 000, 1–10 (2015)
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Figure 4. Marginalised posterior distributions of the binding energies of the diffusive species of interest. We also plot the prior distribution and the posterior
distributions when when the uncertainty on water’s abundance is reduced to 10−6. We observe that this has a significant effect on the marginalised posterior
distributions of H and O, indicating that there is promise in improving the abundance measurements for species that have already been detected.
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surements for the abundances of species listed in Table 1. All of
these species except for HCOOH and NH+4 have high filter sums and
high abundances in the fitted model. However, the uncertainties on
the measured abundances are often 50% of the measured value. Our
MOPED analysis shows that it would actually be much more valu-
able to determine these abundances to a smaller degree of uncertainty
than it would be tomeasure the abundance of new species. To demon-
strate, the effect of reducing the uncertainties on the abundances, we
redid the Bayesian analysis, but reduced the uncertainty on water’s
abundance to 10−6. Figure 4 shows the resulting binding energy pos-
teriors. We observe significant changes in the posterior distributions
for H and O. This suggests that there is much promise in improving
the measured ice abundances for those molecules. Many of the ab-
sorption band profiles for these species are in the wavelength range
of JWST, but especially in the 5-8 `m range that will have higher
resolution compared to Spitzer (Boogert et al. 2015). This is promis-
ing as it is certain that H2O and the other abundant species can be
observed and telescope time simply needs to be dedicated to further
constraining their abundances.
The infrared absorption profile of HCN has been studied recently

in a laboratory setting (Gerakines et al. 2022). Values for selected
IR absorptions of amorphous HCN at 10 K were given including the
C-H stretch (3.19 `m), the C≡N stretch (4.75 `m) and the HCN bend
(12.12 `m). These as well as the combination and overtone features
are well within the range of wavelengths that JWST will consider. As
such, this would be a viable target molecule.
While there might be some uncertainties relating to the sulphur

network, H2S has indeed a high fitted abundance as well as a high
filter sum, hence it could potentially remain a target. There currently
only exists an upper limit for the abundance of H2S which was noted
in Smith (1991). This work identified a an S-H stretch mode at 3.925
`m, with Fathe et al. (2006) identifying an S-H stretching overtone
mode at 1.982 `m.
SiH4 is known to have several modes in the range 2.21 - 11.32 `m

range (Kaiser & Osamura 2005a,b). These are all within the range
that will be considered by JWST.
H2CO has its C=O stretching mode at around 5.8 `m, but this

region is also host to other species with a C=O bond such as acetalde-
hyde, formic acid and formamide (Keane et al. 2001; Terwisscha van
Scheltinga et al. 2021). It is thought to have another feature at 3.46
`m, which is however considerably weaker (Keane et al. 2001). It is
for this reason that JWST’s increased resolution in the 5-8 `m region
would prove useful in separating out the various components.

5 CONCLUSION

In this work, we have utilised the MOPED algorithm to identify the
species that would best constrain binding energies. Bayesian infer-
ence was found to result in poorly-constrained marginalised poste-
rior distributions for the binding energies. This was due to the lack
of enough sufficiently constraining data. The MOPED algorithm al-
lowed us to determine which ice species should be prioritised for fu-
ture ice observations in such a way that they would further constrain
the posteriors. By then considering which species in the fitted model
have the highest filter sums as well as the largest abundances, we
come up with a list of species that should be targeted. These species
are H2O, CO2, NH3, CH4, CO, CH3OH, H2CO, HCN, H2S. While
some of these species have not been detected, some of them have,
which suggests that more precise measurements of these species is
necessary. We also comment on which features of each species are
likely to appear in the wavelength range considered by JWST.

There are some limitations to this work. While our chemical net-
work is for the most part reliable and reflects the current under-
standing in the literature, there are still some uncertainties relating
to particular species, such as sulphur. As such, if detecting sulphur
species were a priority for future observations, thenmoreworkwould
need to be done to be completely confident of the sulphur network.
Finally, one assumption that is made is that any species that will

be detected will have the same level of uncertainty. This might not
necessarily be true. The MOPED algorithm will favour species that
have a strong dependence on the parameters, but also those which are
low in variance. We have made use of the former, but not the latter
in this work. For now, the results of this work are a proof-of-concept
of the utility of the MOPED algorithm for this task.
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