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Abstract
ALMA observations have shown that there is discrepancy between the disk mass

estimate from CO emission and disk masses estimated from other tracers. This

discrepancy has been interpreted as lower than expected CO abundance in the warm,

surface layers of the disk. Recent work by Ruaud et al. claims that the low observed

C O fluxes can be explained with a ISM abundance of CO, that is 10  w.r.t. H  by

including hydrostatic equilbrium in the model density setup. We show that the Ruaud et

al. low CO fluxes are due to an unrealistic temperature structure in the outer disk, due

to an interaction of their dust model and hydrostatic equilibrium at their inner model

edge. Furthermore, we show with our own modeling that a parametric model does a

better job at matching the measured outer disk temperature structure.
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1. Introduction
The advent of ALMA, and the increase in protoplanetary disk observations, opened a

new window on the gas-rich phase. Whereas the expectation was that gas disk mass

measurements with ALMA would be straightforward using CO isotopologues, reality is

more complex. Different disk mass measurements, based on dust continuum emission,

dust physics, accretion rates, gravitational potentials, hydrogen deuteride, and N H ,

consistently overpredict the CO derived gas masses. A flurry of theoretical and

modeling work has tried to explain this discrepancy, which also exists for H O and other

carbon-tracers. Most of these focus on either dynamical processes that lower the total

abundance of carbon in the surface layers or chemical processes that transform the CO

into other, unobservable species (e.g., CO  and CH OH ice). Both processes decrease

the CO emission, but only by invoking them in tandem does the CO abundance drop

enough to explain CO fluxes (see Miotello et al. 2022, for a review).

Recent work by Ruaud et al. (2022) claims that the low observed C O fluxes can be

explained without having to invoke a dynamical process that lowers total available

carbon and oxygen in the surface layers of the disk. In their models they are able to

reproduce the low fluxes by including CO conversion into CO  and a vertical structure

that follows hydrostatic equilibrium (HEq), with the latter being the driving force for the

low CO fluxes.

2. Analysis
To test the hypothesis of Ruaud et al. (2022) that HEq combined with CO to CO

conversion lowers CO fluxes we ran a set of DALI models (Bruderer et al. 2012;

Bruderer 2013) solving for HEq using a setup similar to that of Ruaud et al. (2022).

Specifically, the same gas mass (0.05 M ) surface density profile (γ = 1), overall gas-to-

dust ratio (100) and stellar spectrum (TW Hya, Herczeg et al. 2004) are adopted. Our

initial parametric model assumes a height of h = 0.1 at 100 au, and a flaring angle of ψ = 

0.3. We tracked the evolution of the CO isotopologue J = 3–2 line flux through the

iterations of gas temperature and HEq calculations using the DALI standard network

that does not include conversion of CO into CO . After the 25 iterations we removed all

the CO at temperatures below 30 K to simulate the optimal case of the conversion

scheme outlined by Ruaud et al. (2022). The model structures and flux progression can

be seen in Figure 1. It is clear that with just these processes the decrease is only a

factor of 4, clearly not the order of magnitude or more that is required to match
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observations. Furthermore, the impact of HEq on the observed flux is small when

compared to chemical conversion. These effects agree with previous studies.

Specifically, in a comparison between parameterized and HEq models it was found that

inclusion of HEq drives up the CO flux and that a parameterized model was a better fit

to the SED, CO ladder, and atomic oxygen lines (Woitke et al. 2016).12
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Figure 1. DALI models showing density, CO abundance, CO isotopologue

fluxes and CO temperature profiles. The top two panels show a parametric

model while the middle two panels show a model after 25 iterations of solving

for HEq. Orange and red lines show T  = 20 and 30 K, respectively. These

roughly correspond to the freeze-out temperature of CO and the maximal

temperature at which CO can be converted to CO  in chemical models. The

isotopologue fluxes are shown for the original parametric models, for all 25

iterations of the HEq. The last iteration is shown again separately, but now with

all gaseous CO under 30 K removed to mimic optimal CO conversion. These

fluxes are compared with the fluxes from the Ruaud et al. (2022) model as well

as the TW Hya observations. In the bottom right, CO abundance weighted

temperature profiles are shown for the Ruaud et al. (2022) model as well as

three DALI models: parametric, HEq and HEq with CO conversion. These are

compared with measured CO temperatures from TW Hya (Schwarz et al. 2016),

AS 209 and IM Lup (Law et al. 2021). Temperatures are measured from optically

thick CO (gray) and C O (black).

dust
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So why does the Ruaud et al. (2022) model produce integrated fluxes that are

significantly lower than other models in the literature? The reason can be found in the

interaction between their dust model and the HEq calculation. In the inner region of the

model, directly behind the inner edge of the model at 1 au, there is a plume of material

with a very high vertical extent. Features like this are consistent between in HEq

models, but they do not agree with observational constraints (Figure 1 McClure et al.

2013; Woitke et al. 2016). In the Ruaud et al. (2022) model the effect is amplified by the

dust model, which links grain size and density structure. The lower midplane density

leads to a lower maximum grain size and more small grains, which are lofted vertically.

This increases the amount of starlight that is reprocessed, creating an plume that is

optically thick to the bulk of the stellar radiation field up to a z/r ∼ 0.15, which shadows

the disk to very large radii. This is the z/r range that contains a large fraction of disk

mass at T = 20–40 K in the parameterized DALI and HEq models. The shadow cools the

gas and dust, especially impacting the atmosphere between 20 and 40 K that is

responsible for the bulk of disk emission, lowering the temperature in this layer to below

20 K. As such, a larger fraction of CO is frozen out and emission is suppressed in the

Ruaud et al. (2022) models compared to previously published parametric models

(Miotello et al. 2016) as well as our HEq models.

The small amount of mass in the 20–40 K region in the Ruaud et al. (2022) models is in

contradiction with CO gas temperature measurements, which independently find that

the bulk of the CO gas is close to the freeze-out temperature of 20 K (Pinte et al. 2018;

Schwarz et al. 2018; Law et al. 2021). The Ruaud et al. (2022) as well as the DALI HEq

model do not match these observations (Figure 1). Only the parametric model has

enough cold CO gas to match these observations. Therefore we conclude that a

parametric model with a lower CO abundance is still a better match to observations

than HEq models.
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