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ABSTRACT

In self-gravitating N-body systems, small perturbations introduced at the start, or infinitesimal errors that are produced by the nu-
merical integrator or are due to limited precision in the computer, grow exponentially with time. For Newton’s gravity, we confirm
earlier results that for relatively homogeneous systems, this rate of growth per crossing time increases with N up to N ∼ 30, but that
for larger systems, the growth rate has a weaker scaling with N. For concentrated systems, however, the rate of exponential growth
continues to scale with N. In relativistic self-gravitating systems, the rate of growth is almost independent of N. This effect, however,
is only noticeable when the system’s mean velocity approaches the speed of light to within three orders of magnitude. The chaotic
behavior of systems with more than a dozen bodies for the usually adopted approximation of only solving the pairwise interactions in
the Einstein-Infeld-Hoffmann equation of motion is qualitatively different than when the interaction terms (or cross terms) are taken
into account. This result provides a strong motivation for follow-up studies on the microscopic effect of general relativity on orbital
chaos, and on the influence of higher-order cross-terms in the Taylor-series expansion of the Einstein-Infeld-Hoffmann equations of
motion.

Key words. stars: kinematics and dynamics – methods: numerical

1. Introduction

Soon after the first gravitational N-body problems were com-
puted (von Hoerner 1960; Aarseth & Hoyle 1964; van Albada
1968), Miller (1964) questioned the validity of such simula-
tions. The nature of his concern was based on the intrinsically
chaotic behavior of Newton’s law of gravity. Errors during inte-
gration are introduced by the limited precision of the computer,
together with the limited accuracy of the numerical integration
scheme. The exponential growth of both sources of errors then
contributes to the lack of reproducibility in N-body simulations
(Boekholt et al. 2020).

In an attempt to acquire a converged solution to the 25-body
problem, Hayli (1970) integrated Newton’s equations of mo-
tion using various precisions on a 60 bit CDC 6400, a 64 bit
IBM 360/365, and an 80 bit Honeywell-Bull CII 90–80. He
found that although identical initial realizations were used, he
acquired a different answer for the final positions and velocities
of the 25 objects in his calculations, even with the same algo-
rithm and time step. He argued that the difference in precision
of the floating-point unit was responsible for the lack of repro-
ducibility of the results. Because the IEEE standard for floating-
point arithmetic (IEEE 754) was only introduced in 1985, the
discrepancy identified by Hayli (1970) could also have origi-
nated from differences in round-off in the least significant digit of
the various machines. We still encounter this problem in today’s
Graphical Processing Units (GPU), which have limited preci-

sion (Fortin et al. 2012). These sources of errors, time step, and
round-off make individual solutions to the N-body problem no-
toriously unreliable, although statistically, they may still have
the correct phase-space distribution characteristics (Boekholt &
Portegies Zwart 2015; Hernandez et al. 2020). The common
agreement on round-off among computer manufacturers, com-
piler designers, and operating systems hides this problem by
generating identical output when the same initial realization is
run using different hardware and operating systems, so long as
the same source code is run on a single core, and compilers are
not too different.

It is a common assumption among N-body practitioners that
the microscopic unpredictability and the consequential loss of
reproducibility is irrelevant so long as the global phase-space
characteristics are still representative of true physics. It remains
an article of faith that such a statistical validity holds for the
Newtonian N-body problem (Heggie 1991). Chaos, however,
leads to unpredictability due to temporal discretization, round-
off, and uncertainty in the initial realization (Miller 1964). Un-
predictability due to chaotic behavior and the consequential loss
of reproducibility may then lead to incorrect physical results.

After the pioneering work of Hayli (1970), the problem
of characterizing chaos in self-gravitating N-body systems re-
ceived little attention until the late 1980s (except possibly in
Zadunaisky 1979, in which the focus was on the computer’s pre-
cision), when computers became sufficiently powerful to address
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the problem for larger N (Heggie 1988; Kandrup & Smith 1991,
1992; Kandrup et al. 1992; Goodman et al. 1993; Gurzadyan
& Kocharyan 1994; Kandrup et al. 1994; Fukushige & Makino
1994). Goodman et al. (1993) and Fukushige & Makino (1994)
provided excellent overviews of the underlying arguments for
this chaotic behavior in few- and many-body systems, respec-
tively.

Even today, the chaotic N-body problem is hard to address
adequately using digital computers, and there is still no analytic
solution. We address three aspects of the problem here: 1) the
veracity of a solution for N = 4 to 1024, 2) the scaling of the
growth of errors to large N >∼ 105, and 3) the effect of general
relativity on the chaotic behavior of N-body systems. The termi-
nology used in this text is explained in the glossary in Portegies
Zwart & Boekholt (2018). Loosely speaking, a reprehensive so-
lution is a solution in which the errors introduced during inte-
gration exceed the system size. For a veracious solution, this is
not the case. For N = 3, Boekholt & Portegies Zwart (2015)
demonstrated that veracious N-body solutions give statistically
indistinguishable results as an ensemble of converged solutions.
They called this behavior Nagh Hoch, to signify the importance
of consistent statistical ensemble average behavior of veracious
solutions to the chaotic self-gravitating N-body problem. It is not
clear if this concept also holds for larger N.

Hernandez et al. (2020) studied Nagh Hoch by running en-
sembles of reprehensible numerical solutions for planetary sys-
tems. They integrated a single 3 · 10−5 mass planet in a circular
orbit at a distance of 0.29 (in dimensionless N-body units, Hénon
1971) from the star, together with a test particle in the same
plane at apocenter and with an eccentricity of 0.19 and semima-
jor axis 0.21. The calculations were conducted for 200 e-foling
timescales using four different algorithms for solving the equa-
tions of motion. They found that for a sufficiently large sample
of initial realizations and a tolerably small time step, the results
of the various integrators are statistically indistinguishable. We
conclude from their simulation results that their adopted repre-
hensive N-body algorithms for a system of two planets complies
to Nagh Hoch. They argue that a relative integration error <∼ 0.05
is sufficient to preserve the quality, consistent with Boekholt &
Portegies Zwart (2015), who argued that a time step smaller than
2−5 is sufficient to preserve ergodicity in the outcome space.

Ideally, one would like to perform large N-body simulations
to a converged solution, but this is unrealistic, even on modern
digital computers. We can achieve converged solutions for N up
to about 1k particles for several crossing times, leading to a se-
ries of veracious solutions. At the moment, however, a longer
evolution or a larger number of particles are too costly. How-
ever, we demonstrate that the chaotic behavior of these systems
is reprehensive and confirm that they show statistically indistin-
guishable chaotic behavior. We subsequently perform reprehen-
sible N-body simulations for up to 128k particles.

The interest in scaling to N � 3 is in part motivated by
understanding the chaotic nature of galaxies. Dense stellar sys-
tems, such as globular clusters [N = O(106)], are highly chaotic
(Parvulesco 1924; Carpintero et al. 1999). Galaxies (N → ∞) are
considered collisionless because their relaxation time exceeds
the Hubble time (Binney & Tremaine 2008). For sufficiently
large N the background potential becomes smooth, and the col-
lisionless assumption becomes increasingly applicable (Muzzio
& Mosquera 2004; Muzzio et al. 2009). However, due to the
point-particle granularity of the potential, the microscopic ex-
ponential instability remains present in the system (Valluri &
Merritt 2000). Even large N-systems are therefore affected by
the chaos in small-N subsystems. It is nonetheless unclear how

the microscopic exponential instability propagates to the macro-
scopic structure of the stellar system as a whole. At which value
of N does the system exhibit the transition from chaotic small-N
to smooth large-N systems?

Heggie (1988) argued that the dynamics N-body systems un-
der Newton’s equations of motion are dominated by encounters
at an impact parameter of about r/N1/2. Since chaos is driven
by encounters, the Lyapunov timescale then has a similar scal-
ing1. In a pioneering study, Goodman et al. (1993) discussed this
scaling and found a transition in the chaotic behavior around
N ' 32. They argued that the Lyapunov timescale is propor-
tional to the dynamical crossing time tλ ∝ γtcr/ ln(ln(N)) over all
values of N. For large N (>∼ 32), the constant γ is smaller, lead-
ing to a weaker dependence on the Lyapunov timescale (see also
Kandrup & Smith 1992; Kandrup 1998). Hemsendorf & Merritt
(2002) found a similar transition, but argued in favor of scaling
tλ ∝ 1/ ln(N) over the entire range of N. In this latter study,
however, the perturbed particle is evolved in a static background
(Hemsendorf & Merritt 2002), and it is not clear if their dif-
ferent scaling resulted from this particular assumption or from
the slightly different potential. We therefore extend the range for
which the Lyapunov time was determined to N = 128k using
reprehensive N-body solutions, allowing us to test the scaling of
the Lyapunov timescale to large N in an actual self-gravitating
system. In addition, we chose various initial density profiles: a
smooth profile (as in Goodman et al. (1993)), a Plummer profile
(1911, as in Hemsendorf & Merritt 2002) , and a King profile
(Wo = 12, King 1966, just for fun).

The change in slope near N ' 32 pinpoints the transition
from chaotic behavior driven by local few-body relaxation (for
N <∼ 32) to far-field many-body relaxation. This transition can
globally be understood by comparing the dynamical crossing
time tcross with the two-body relaxation time trlx , which can be
approximated by (Spitzer 1971; Spitzer & Hart 1971b,a; Spitzer
1987)

trlx '
(

N
8 ln(N)

)
tcross. (1)

This relation indicates that for N >∼ 32, the relaxation timescale
exceeds the crossing time. It remains unclear, however, which
underlying process determines the slope.

Hemsendorf & Merritt (2002) argued in favor of the same
scaling for all N and suggested that a galaxy with 1012 stars
would have a Lyapunov timescale of tλ ≈ tcr/30 or tλ ∼ 8 Myr,
whereas Goodman et al. (1993) argued for a Lyapunov timescale
that is roughly an order of magnitude larger. Regardless of ei-
ther of the two scaling relations, the Galaxy would be subject
to chaotic motion on a fraction of the crossing timescale, and
would therefore not be representable by the collisionless Boltz-
mann equation (Boltzmann 1872).

For the Solar System, there seems to be a difference as well,
this time, in terms of chaotic behavior. In the Newtonian case,
resonances between Jupiter and Mercury greatly enhance the ec-
centricity of the orbit of the latter planet. This may eventually
lead to a collision between Mercury and the Sun (Laskar et al.
1992; Milani & Nobili 1992). However, the inclusion of rela-
tivistic effect tends to stabilize the system, resulting in the much-
reduced probability that Mercury collides with the Sun (Laskar
& Gastineau 2009). Based on our results, we tend to agree with

1 Throughout this manuscript, we use the terms Lyapunov exponent
and Lyapunov timescale for brevity, where we should write the largest
positive global Lyapunov exponent (or timescale, for that matter).
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the increased stability of the Solar System when considering rel-
ativistic mechanics. Interestingly, the global Lyapunov timescale
for the Solar System is not dissimilar from the galactic result, be-
ing ∼ 5 Myr (Laskar et al. 1992) to >∼ 6.8 Myr (Applegate et al.
1986) or even slightly longer (Duncan & Quinn 1993; Batygin
et al. 2015).

We argue that ensembles of reprehensive N-body solutions,
from N = 4 to 1024 (1k), give statistically the same chaotic
behavior as the converged solutions. This trend holds at least
up to N = 1k, for which we acquire converged solutions for 10
Hénon time units (equivalent to four crossing times). It becomes
rather unpractical to continue with converged solutions for N ≥
1k.

Regardless of the large-N behavior of the chaotic self-
gravitating systems under Newton’s forces, we also study the
relativistic case. Rather than solving Einstein’s field equations
directly, we address relativistic dynamics through an expansion
to the gravitational field in terms of v/c, which expresses the
speed of light (c) in dimensionless N-body units in terms of
the velocity of the particles (v). The zeroth order in this ex-
pansion represents Newton’s equations of motion, which does
not depend on the velocity. The first-order post-Newtonian term
(the 1-PN) is proportional to v2/c2, describes the motion of
N Schwarzschild black holes, and is known as the Einstein-
Infeld-Hoffmann (EIH) equation (Einstein et al. 1938). Lorentz
& Droste (1917) worked out a first generalization for these post-
Newtonian N-body equations of motion, but the final formula-
tion was realized by Einstein et al. (1938).

Our study is motivated by the generally adopted view that the
radiation-induced dissipation in general relativity quenches the
chaotic behavior of the N-body system. Spyrou (1975, but see
also, Wanex 2002; Cornish & Levin 2003; Galaviz 2011; Neilsen
et al. 2014) demonstrated that the pairwise post-Newtonian ex-
pansion to 2.5th order is chaotic in democratic three-body sys-
tems. They also studied the gravitational-wave signal for such
systems (Gültekin et al. 2006). Chaotic behavior was not demon-
strated for relativistic systems with more than three particles.

We adopt the EIH equation and compare the degree of chaos
measured in systems from N = 3 to N = 1k with the Newtonian
solutions (v/c → 0). Our approach, however, is limited to first-
order post-Newtonian correction terms for the EIH equations of
motion. The 1-PN terms are not dissipative and therefore are not
expected to result in less chaotic behavior when compared to
Newton’s equations of motion.

The motivation for performing our a study is somewhat aca-
demic because it is currently unclear to which degree large-N
relativistic systems appear in nature or how frequently they emit
gravitational waves in an observable wavelength. Galactic nuclei
are probably the most promising places to find multiple super-
massive black holes orbited by intermediate-mass black holes
or other compact objects. Portegies Zwart et al. (2006) argued
that the Galactic center would be populated by a steady pop-
ulation of a dozen intermediate-mass black holes within a few
milliparsec of the supermassive black hole. In addition, there
could be many stellar-mass black holes and a rich population
of neutron stars in the Galactic center (Muno et al. 2004; Ri-
moldi et al. 2015). These black holes may merge, producing ob-
servable gravitational-wave signals (Pretorius 2005; Abbott et al.
2017) and high-velocity recoiling black holes (Campanelli et al.
2007). Similar, but less extreme, situations may be present in the
cores of some globular clusters (Banerjee et al. 2010; Banerjee
2021). Banerjee & Kroupa (2011) even speculated that clusters
composed only of dark objects might exist, which could be co-
pious sources of gravitational radiation. Recently, Gieles et al.

(2021) argued that the globular cluster Palomar 5 may host such
a central collection of compact objects and that in the coming
100 Myr, its entire core may be composed of black holes. With
the current rather large virial radius, the dynamics in this cluster
is not expected to be subject to strong relativistic effects, how-
ever.

It would be interesting to determine the gravitational-wave
signature of such chaotic systems and maybe even search for
them in the data collected by gravitational-wave observatories.
An analysis like this was done for hierarchical triples (Galaviz
& Brügmann 2011; Meiron et al. 2017; Robson et al. 2018; Lim
& Rodriguez 2020; Will 2021), but not for N > 3.

2. Methods

In the gravitational many-body problem, N objects move un-
der the attractive influence and space-time distortions of each
other. We use three independently developed implementations
of the force-law and integration method. One of these is the
code ph4 (see Appendix A, McMillan 2014), which is designed
for the problem of N point masses under a Newtonian force
law with regular hardware and compiler-supported precision (see
sec. 2.1) For chaotic systems, one may desire more control over
the precision and accuracy of the integrator because reprehensi-
ble N-body calculations provide insufficient trust due to round-
off and integration errors that grow exponentially with time. On
the other hand, veracious calculations are also reprehensible, but
are statistically indistinguishable from the converged solutions
(Boekholt & Portegies Zwart 2015). We therefore also perform
calculations using Brutus (Portegies Zwart & Boekholt 2014),
which allows us to control these parameters with a tolerance ε
and word-length Lw (see 2.2).

The relativistic calculations are performed up to the first
post-Newton order using the pairwise approximation and the full
EIH equations of motion. The relativistic N-body code is called
Hermite_GRX, and it is described in sect 2.3. The equations of
motion in ph4 and Hermite_GRX are integrated using the Her-
mite algorithm (Makino 1991) or an adaptation of it to accom-
modate the velocity dependence of the acceleration. In Brutus,
the equations of motion are solved with a second-order Verlet
(1967) scheme.

We finally use these three methods to study chaos in the
large-N limit. Large here means ∼ 1k for the post-Newton case
and converged Newton solutions, and up to N = 128k for repre-
hensible Newtonian solutions. Each of the codes is interfaced as
a community code to the Astronomical Multipurpose Software
Environment (Portegies Zwart & McMillan 2018). We describe
these implementations in Appendix A.3.3.

2.1. Regular N-body calculations

According to Newton’s laws of motion, the acceleration ai on
particle i is given by the sum over all other particles (Newton
1687):

ai = −

n∑
j=1
j,i

Gm j

r3
i j

ri j. (2)

Here mi is the mass of particle i, and ri j is the relative position
vector from particle i to j: ri j ≡ ri − r j. Newton’s constant is
G = O(10−10 N/kg2/m2), but in our calculations, G ≡ 1 (Hénon
1971; Heggie & Mathieu 1986).
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Integration was performed in 64-bits using IEEE 754 Stan-
dard for floating-point arithmetic under the Linux operating sys-
tem with kernel version 5.8.0-48-generic. CPU calculations were
performed on an 192 core Intel Xeon E7-8890 v4 worksta-
tion running at 2.20 GHz. Parallelization was realized using the
Message Passing Interface (version Open MPI 4.0.3) (Portegies
Zwart et al. 2008). For simulations with N > 1k we adopted
the GPU version of ph4, which uses the Sapporo GPU library
(Portegies Zwart et al. 2007; Gaburov et al. 2009) running on
Xeon E-2176M CPU with Quadro P2000 Max-Q GPU. The
GPU has 4 GB GDDR5 RAM, but is not equipped with error
correction, potentially leading to non-IEEE compliant errors in
the calculations.

2.2. Arbitrarily precise N-body calculations

The Hermite algorithm is a fourth-order scheme that reaches a
relative energy error dE/E ' 10−15 with a time-step parame-
ter η ' 10−4 for a distribution of equal-mass objects in a viri-
alized homogeneous distribution in space. All our calculations
were performed with η = 0.01. Round-off and time-step errors
become important for smaller time steps when integrating for
more than ∼ 10 crossing times, resulting in a systematic growth
of the energy error. This growth scales ∝ η2. Although small,
typically about 1/1016 (in relative coordinates), these errors drive
the eventual irreproducibility of the simulations through expo-
nential growth. This irreproducibility is undesirable when one
is interested in studying chaotic motion. We therefore also per-
formed calculations with Brutus (Boekholt & Portegies Zwart
2015), an N-body code that allows us to integrate any N-body
system to arbitrary precision. In Brutus we control the different
sources of error by adopting the Gragg-Bulirsch–Stoer algorithm
(Bulirsch & Stoer 1964; Gragg 1965). In this algorithm, one per-
forms a single step using a Verlet integrator (Verlet 1967), then
repeats that same step using half the step size. Now the relative
error between the two solutions can be determined by taking the
absolute value of the differences in each coordinate. If this er-
ror is smaller than some predetermined tolerance, the result is
accepted, and the next step is calculated. Otherwise, the same
step is repeated with a quarter time step. This procedure is re-
peated until the relative error between two subsequent solutions
is smaller than the tolerance (see Press et al. 1992).

We controlled the discretization error with arbitrary-
precision arithmetic, using the GMP (Granlund & the GMP devel-
opment team 2012; Granlund & Team 2015) and MPFR libraries
(Fousse et al. 2007) instead of conventional double precision.
This allowed us to control the round-off error by changing the
number of digits, which we express in a word-length Lw. A word-
length Lw = 64 bits then corresponds approximately to the usual
16-decimal place precision in standard IEEE 754 floating-point
operations on current regular microprocessors.

In practice, we only specified the tolerance and calculated the
word length Lw ∈ Z with (Boekholt & Portegies Zwart 2015),

Lw = int(32 − 4 log10(ε)). (3)

A converged solution to n decimal places is achieved by itera-
tively repeating a calculation that started with one selected re-
alization of the initial conditions with lower tolerance for each
subsequent calculation. This process is repeated until the first n
decimal places of the final phase-space coordinates of two sub-
sequent iterations lead to identical values for the first n digits in
the positions and velocities of all particles. When the numerical
solution has achieved this state of convergence, it is deemed to
be definitive (Portegies Zwart & Boekholt 2018).

Calculation typically started with tolerance ε = 10−5 (Lw =
52) for N ≤ 64, reducing the tolerance by a factor 105 upon
subsequent calculations. For high values of N, we started with
ε = 10−20 (Lw = 112), reducing the tolerance by a factor 1010

upon subsequent calculations. With ε = 10−40 (Lw = 192), all
solutions up to N = 1k have converged to n = 3 decimal places
(the adopted convergence limit).

Calculation time with Brutus scales ∝ N2, but due to the ex-
pense of the large mantissa calculations, the offset in computer
time is long. In addition, several recalculations may be needed
before a converged solution is achieved. In figure 1 we present
the scaling of the calculations with Brutus (ochre symbols show
the mean of the computing time for that particular N). The lines
to higher values indicate the upper limit for a single most ex-
pensive calculation for each value of N. These still scale roughly
proportional to N2, but are often ∼ 100 times more costly than
the average.

2.3. Einstein-Infeld-Hoffmann solver

Between 1907 and 1915, Einstein developed general relativity
(see Weinstein 2012; Poisson & Will 2014, for an interesting
read on the history of this development) and viewed gravity
as the result of the curvature of space-time (Einstein & Gross-
mann 1914; Einstein 1915a,b; Hilbert 1915). The Einstein field
equations dictate the gravitational interaction between particles,
but these equations are nonlinear and notoriously hard to solve.
Schwarzschild (1916) found the first nontrivial solution to the
Einstein field equations: the Schwarzschild metric describes a
point-like particle. A rotating black hole was first described an-
alytically as a solution to the field equations by Kerr (1963). To-
day, there are rather standard software implementations to solve
for general relativistic dynamical systems (Mewes et al. 2018;
Babiuc-Hamilton et al. 2019), even including magnetic fields
(Mewes et al. 2020). However, simulating multiple black holes
in a relativistic context is somewhat expensive in terms of com-
puter time.

A numerically cheaper solution is the Einstein-Infeld-
Hoffmann equations (Will 2014; Poisson & Will 2014; Will
2021), in which the acceleration of body i, ai is given by

ai = −
∑
j,i

Gm j

r3
i j

ri j

+
1
c2

∑
j,i

Gm j

r3
i j

ri j

4Gm j

ri j
+ 5

Gmi

ri j
+

∑
k,i, j

Gmk

r jk

+4
∑
k,i, j

Gmk

rik
−

1
2

∑
k,i, j

Gmk

r3
jk

(ri j · r jk)

−v2
i + 4vi · v j − 2v2

j +
3
2

(v j · ni j)2
]

−
7

2c2

∑
j,i

Gm j

ri j

∑
k,i, j

Gmk

r3
jk

r jk

+
1
c2

∑
j,i

Gm j

r3
i j

ri j · (4vi − 3v j)vi j. (4)

Here ni j = ri j/ri j, vi j ≡ vi − v j, and r̂i j = ri j/|ri j| is the unit
vector along ri j. To conserve energy, an addition term has to be
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introduced that depends on the 1 PN approximation,

E =
1
2

∑
i

mi

v2
i −

∑
j,i

Gm j

ri j


+

1
c2

∑
i

mi

[3
8

v4
i +

3
2

v2
i

∑
j,i

Gm j

ri j

+
1
2

∑
j,i

∑
k,i

G2m jmk

ri jrik

−
1
4

∑
j,i

Gm j

ri j

(
7vi · v j + (vi · r̂i j)(v j · r̂i j)

)]
, (5)

P =
∑

i

mivi +
1

2c2

∑
i

mivi

v2
i −

∑
j,i

Gm j

ri j


−

G
2c2

∑
i

∑
j,i

mim j

ri j
(vi · r̂i j)r̂i j . (6)

Eq. 4 gives the full EIH equations of motion. The first term
in Eq. 4 (zeroth-order term in the Taylor expansion) is identical
to Eq. 2 and represents Newton’s acceleration. The other terms
reflect post-Newtonian corrections. Several of them depend on
velocity, and the penultimate term contains the accelerations of
the other particles, making it expensive to compute.

Eq. 4 is first order, but higher-order post-Newtonian correc-
tions exist, although only under the assumption of pairwise in-
teractions. The three-body Hamiltonian, and therefore the cor-
responding equations of motion, are known in closed form to
second post-Newtonian order O(v4/c4) (Schäfer 1987; Lousto
& Nakano 2008a), and the two-body equations of motion up to
3.5 PN order, or O(v7/c7) (Futamase & Itoh 2007; Itoh 2009).

Due to the summations over pairs of particles in Eq. 4, the
motion of one particle due to a second particle depends on the
other particles in the system. As a consequence, the EIH equa-
tions of motion scale as O(N3), rather than the usual scaling to
O(N2) for Newton’s case. This scaling is confirmed in figure 1.

We implemented the pairwise and the full EIH equations of
motion to 1-PN order using a fourth-order Hermite predictor-
corrector scheme (see sect. 2.1). We refer to Hermite_GR1P as
the pairwise equations of motion, and to Hermite-GRX for the
EIH solution to 1-PN order. To illustrate the working of the var-
ious implementations, we present figs. 2, 3, and 4 for orbits of
the N = 2, N = 4, and N = 16 Newtonian case, 1-PN pairwise
equations of motion, and for the full EIH equations of motion to
first order. For these simulations, we adopted black hole masses
of 106 M�, in a 1 pc cube. Equivalent to specifying the mass of
the system, we can also use the relative speed of light v/c. In
Hénon units, in which G = M = 1, Newton’s kinetic energy of a
system of N bodies with total mass M is Ekin = 0.5Mσ2 = 1/4,
with a velocity dispersion σ2 = 1/2 (Heggie & Mathieu 1986).

All the initial conditions in this study are virialized according
to Newton’s equations of motion (see sect. 2.4), and therefore in
Hénon units, the scaled velocity v = 1/

√
2, which sets the scal-

ing of our N-body simulations. We specify the relative scaling
with respect to mass or size by changing the speed of light, or
v/c. In the numerical implementation, this parameter is speci-
fied through the parameter ζ, which is the reciprocal of v/c (see
sect. A.3.8). For clarity, in the main paper, we only use v/c as
free parameter.
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Fig. 1. Scaling of the various integration methods as a function of the
number of particles (N). The classic Newton integrations scale as ∝ N2,
as indicated with the solid and dashed dark blue lines. The pairwise first
expansion scales similarly, but tends to be slightly slower than the pure
Newton expansion. The Einstein-Infeld Hoffmann equations to first or-
der scale ∝ N3, making large calculations that include the cross-terms
unpractical. The scaling presented for Brutus is based on the calcula-
tions presented here. The bullet points indicate the mean timescale for
acquiring a converged solution, and the line pointed upward ends at the
single most expensive calculation in our sample of simulations for that
particular N. For ph4, we included the regular implementation as well
as the GPU-enabled version (to the right), running on an Intel Xeon
CPU E5620 operating at 2.40GHz and NVIDIA G96 (Quadro FX580),
running on a generic 64-bit Ubuntu Linux kernel 2.6.35-32.

2.4. Initial conditions

Initial conditions were generated in standard IEEE double pre-
cision (Lw = 64). This introduces a discrepancy with the low-
N (≤ 64) experiments, for which the initial iteration was per-
formed with Lw = 52, but if convergence is already achieved for
ε = 10−10 (Lw = 72), round-off at the 13th mantissa (the limit-
ing precision for Lw = 52) cannot have propagated to the first 3
decimal places.

We adopted the initial conditions from Goodman et al.
(1993). All objects then have the same mass and are distributed
in a unit cube in phase space (position and velocity) using dimen-
sionless N-body units. After generating random positions and
velocities, the system was moved to the center-of-mass frame
and scaled to virial equilibrium for the Newtonian solution. The
simulation runs with a finite speed of light also used the identi-
cal initial realizations as for the Newtonian case. The slight de-
viations from virial equilibrium in the relativistic initial condi-
tions have no effect on our results because we started measuring
the phase-space distance at t = 1, and by that time, the system
was well virialized. We validated and confirmed this statement
by recalculating all simulations for N = 16 with v/c = 0.01,
for which we scaled the initial conditions to virial equilibrium
for v/c = 0.01 by adapting masses and velocities according to
Buchdahl (1964), however. The difference between the Newto-
nian and the relativistically virialized initial conditions was neg-
ligible.

The number of runs performed varied for each code and the
number of particles, as listed in Table 1. In the second column,
we list the number of runs performed with ph4. For the other
runs, with Hermite_GRX and Brutus, the same initial realiza-
tions were adopted, but sometimes this was a subset. These cal-
culations were performed up to N = 1k using the same number
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Fig. 2. Orbital evolution of two black holes of masses 106 M� with an
initial separation of 0.819 au integrated for half a day for three integra-
tions, pure Newton expansion, Newton with expansions to first order,
and the full first-order Einstein-Infeld-Hoffmann equations. The first
two are precisely on top of each other, and we plotted the first-order
pairwise solution last. The last two solutions are identical because the
cross-terms do not lead to deviations from the first-order expansions.
The post-Newton orbits are not closed, as in the Newtonian case (green).
No separate scaling of v/c is applied here because the system is initial-
ized in physical units.
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Fig. 3. Orbital evolution of four of 106 M� black holes with the same
integrators as in fig. 2.

of runs with the same initial conditions as in Goodman et al.
(1993).

We performed an additional series of simulations using
ph4 and Hermite_GRX, but with realizations generated using
a Plummer (1911) sphere and a King model (Wo = 12, King
1966).

The main reason not to perform larger simulations includ-
ing the EIH equations is their unfavorite scaling of the computer
time with N, which we depict in fig. 1. We estimate approxi-
mately one year of integration for N ∼ 104 with the current CPU
implementation.
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Fig. 4. Orbital evolution of 16 of 106 M� black holes with the same
integrators as in fig. 2.

N Nruns
ph4 Hermite_GRX Brutus

3 100 — —
4 200 200 200
8–64 100 100 100
128 20 10 10
256 10 10 3
512 10 2 2
1024 10 – 2
2048–16384 10 – –
65536 6 – –
131072 2 – –

Table 1. Number of simulations performed per implementation and
number of particles. The simulations for different codes use exactly the
same initial realizations: The 200 initial realizations for N = 4 are iden-
tical for the ph4, Brutus, and Hermite_GRX.

2.5. Measuring the Lyapunov timescale

Measuring the Lyapunov timescale for the gravitational N-body
system is not trivial. Several methods for deriving this quality
have been proposed. One method uses the geodesic-deviation
vector-technique (Weinberg 1972; Nieto et al. 2003) for two
nearby orbits with projection operations and with time as an in-
dependent variable (Wu & Huang 2003), and the two-nearby re-
alizations without projection operations and with time as an in-
dependent variable. We adopted the last, which may be more ex-
pensive to calculate, but is considerably simpler for large N, and
it is least affected by underlying assumptions. This same tech-
nique was adopted in Goodman et al. (1993), which means that
our analysis at least starts from the same assumptions. Strictly
speaking, the Lyapunov timescale is defined properly from some
starting point until the system dissolves (Urminsky & Heggie
2009; Mel’nikov et al. 2013). Because this definition is rather
unpractical, particularly for large N, we stopped the calculations
at 10 N-body time units (equivalent to Goodman et al. 1993).

The degree of chaos in the simulation was measured using
the evolution of the phase-space distance between two almost
identical initial realizations (see § 2.4). The second realization
was constructed by increasing the Cartesian x coordinate of a
randomly selected particle with a value of 10−7 (in dimensionless
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N-body units). Just to emphasize, this initial displacement is 10
million times shorter than the size of the initial extent of the N-
body system. The perturbed realization is therefore not in strict
equilibrium, but deviates from Newton’s equilibrium potential
energy by O(10−7/N2).

We integrated both initial realizations to 10 N-body time
units while saving a snapshot every 0.1N-body time units, re-
sulting in 100 snapshots per run. The phase-space distance was
determined by taking the difference in position and velocity be-
tween the same particles in each snapshot, and summing them,

ln(δ) =
1
2

ln
[∑

(rb − ra)2 + (vb − va)2
]
. (7)

This leads to a phase-space distance as a function of time. To cal-
culate the Lyapunov exponent, we only used the data from t = 1
to a maximum of either t = 10, or the first moment in which the
phase-space distance exceeded 0.1. The choice of starting the
Lyapunov timescale measurements at t = 1 guarantees that the
system is in virial equilibrium even in the most relativistic cases.
We subsequently performed a least-squares fit to the phase-space
distance evolution. The fitted slope (in log space) to this phase-
space distance evolution gives the Lyapunov exponent. The Lya-
punov timescale tλ is the reciprocal of the Lyapunov exponent.

This procedure is slightly different than what was used in
Goodman et al. (1993), who adopted tλ = 9/(ln(δt=10)− ln(δt=1)),
but results in a better estimate of the global Lyapunov timescale.
We stopped our measurement when δ ≥ 0.1 because due to
conservation of the phase-space characteristics, the system then
grows on a relaxation timescale, rather than on a Lyapunov
timescale, and δ saturates when it becomes on the order of unity
(Hut & Heggie 2002). For very chaotic systems, the procedure
adopted by Goodman et al. (1993) leads to an underestimate of
the Lyapunov exponent and therefore to an overestimate of tλ, as
is the case for N >∼ 1k King models (see, e.g., in fig. 13).

3. Results

3.1. Chaos in large-N Newtonian systems

In fig. 5 we show an example for an 1k-body system, starting
with the initial conditions of Goodman et al. (1993). The gray
square in the middle represents these initial conditions; parti-
cles, according to Goodman et al. (1993), are initialized in a unit
cube. One calculation (bullet points) gives the result of the un-
perturbed solution. The perturbed solution is not shown, but the
colors of the particles give the phase-space distance between the
final perturbed and unperturbed solutions. The black bullet point
toward the top right corner of the gray area identifies the (ran-
domly selected) particle for which the initial x-coordinate was
increased by 10−7. The least (red) and most (blue) chaotic par-
ticles are represented as lines. The overplotted thin black curves
show the orbit of the perturbed solution.

Figure 5 illustrates Miller’s (1964) point that a small per-
turbation in a single object leads to large variations in the fi-
nal phase-space distribution. In fact, most objects experience a
strong variation, whereas only a minority of objects are hardly
affected. In fig. 6 we plot the distribution of phase-space dis-
tances (log10(δ)) for the calculation of fig. 5.

The degree to which particles are affected by a small ini-
tial perturbation depends on the number of particles in the sys-
tem. This is illustrated in fig. 6, where we show the distribu-
tion of phase-space distance between a perturbed and an un-
perturbed solution for the same simulation as in fig. 5 using 1k
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Fig. 5. Distribution of phase-space distances in a cluster with 1024 par-
ticles. Units are dimensionless N-body units (Hénon 1971). The gray
shaded region indicates the initial conditions in a virialized unit cube.
One particle, indicated with the black bullet point, is displaced by 10−7

along the Cartesian x coordinate. The final conditions (at t = 10) of the
unperturbed particles are represented with the bullet points. The color
and size of the points represents the phase-space distance measured over
the duration of the simulation (10 N-body time units), and ranges over
about four orders of magnitude. The majority of objects experience con-
siderable change in their orbits, but some are hardly perturbed. Calcu-
lations were performed using Brutus until convergence to 3 decimal
places, which requires a tolerance of τ = 10−40.
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Fig. 6. Distribution of phase-space distances for individual particles δi
in the simulations with N = 4 (red) and those with N = 1024 (blue)
after integrating for t = 10 N-body time units. The data for N = 4
are the result of 200 runs. For N = 1024, we adopted the run used in
fig 5. Calculations were performed using Brutus until the solution was
converged.

particles, and compare this distribution with 200 simulations of
N = 4. The small-N systems (red histogram) exhibits a much
weaker response to a perturbing particle than the large-N sys-
tems (blue); few-body systems are less chaotic than large-N sys-
tems (at least for this selection of initial conditions, and under
Newton’s forces).

The different behavior for small-N systems compared to
large-N systems motivated Goodman et al. (1993) and Hem-
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Fig. 7. Estimate of the Lyapunov timescale as a function of the number
of particles. Here the horizontal axis is not linear, but in ln(ln(N)) to
illustrate the scaling proposed in Goodman et al. (1993). The different
symbols and colors represent different calculations (see legend). The
vertical bars, plotted for Newton’s Hermite only, show the root-mean-
square of the dispersion in the series of solutions. The error bars in the
results obtained with Brutus are statistically indistinguishable from the
presented bars.

sendorf & Merritt (2002) to conduct their analysis and study the
source of chaos in small versus large N-body systems. In fig. 7
we show the results of Goodman et al. (1993) and compare them
with converged solutions using Brutus up to N = 1k and rep-
rehensible solutions using ph4 for up to N = 128k. The con-
sistency between the results obtained by Goodman et al. (1993)
(red), Brutus (blue), and ph4 (ochre) gives us confidence in the
validity of the nonconverged (reprehensible) N-body solutions
by Goodman et al. (1993) and using the regular Hermite algo-
rithm implemented in ph4 without going through the elaborate
process of reaching a converged solution for N > 1k.

The scaling we observe in fig. 7 is consistent with that found
by Goodman et al. (1993) over the entire range they explored,
from N = 4 to N = 512. We therefore conclude that 1) repre-
hensible simulations are adequate for studying short-timescale
Lyapunov exponent measurements for relatively homogeneous
systems, and 2) the Lyapunov timescale tλ ∝ γtcr/ ln(ln(N)),
with γ = −1.39 for N <∼ 32 and shallower with γ = −0.498
for N >∼ 32.

3.2. Chaos in large-N relativistic systems

To study the degree of chaos in the relativistic regime, we used
the EIH equations of motion with initial realizations (masses, po-
sitions, and velocities) identical to those used in the Newtonian
simulations. Therefore the latter initial conditions are in virial
equilibrium for the Newtonian case, but not for the highly rela-
tivistic cases. Whereas the Newtonian N-body initial realizations
and calculations were scale free, we have to relax this assump-
tion when introducing the speed of light. Since our calculations
scale with mass M, size R, or velocity v, we have the option to
qualify the scaling by just changing v/c. Here v/c → 0 corre-
sponds to the Newtonian case (because in that case, c → ∞);
higher values of v/c indicate a more relativistic regime.

We started by confirming that for v/c→ 0, we reproduce the
results from fig 7. As long as v/c <∼ 10−4, the results of the rela-
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Fig. 8. Distribution of phase-space distances for individual particles in
the simulations with N = 4 (red) and for N = 64 (blue) after integrat-
ing for t = 10 N-body time units. The data for 200 runs were used
for each histogram. Calculations were performed using Hermite_GRX
using v/c = 0.01 (top panel) and for v/c = 0.002 (bottom panel).

tivistic integration can hardly be distinguished from the Newto-
nian case (see also figure 9).

This is further illustrated in figure 8, where we present two
histograms for N = 4 (red) and N = 64 (blue) for v/c = 0.010
(top panel) and v/c = 0.002 (bottom). In the top panel, the dis-
tribution in phase-space distance for both N = 4 and N = 64
are comparable, although the dispersion for N = 64 is some-
what larger. When we reduce the speed of light (expressed as
the parameter v/c), both distributions move toward higher val-
ues of δ. For v/c = 0.002 (bottom panel), the systems, though
still somewhat relativistic, have mean and median values that al-
ready approach the Newtonian values. We recall that with this
adopted scaling, the system would correspond to a cluster with a
total mass of ∼ 1 M� at a size scale of ∼ 436 au. Such a cluster
of stars appears insufficiently relativistic for the degree of chaos
in the equations of motion to be affected noticeably.

However, for v/c = 0.0005, which corresponds to a size
scale four times larger, or equivalently, to a system four times
more massive, the measurements in the Lyapunov timescale start
to deviate from the Newtonian case. When we further decrease
v/c <∼ 10−4, the mean and median values of both distributions
are statistically indistinguishable from the Newtonian case. The
dispersion, particularly noticeable for N = 64, remains skewed
to low values of δ.
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Fig. 9. Lyapunov timescale as a function of v/c for N = 4 (green) and
N = 64 (blue). The Newtonian case (run with ph4) is presented as ar-
rows in orange. The vertical bars, only for the green points, indicate the
dispersion in the simulation results. The short horizontal dotted green
line indicates the lowest value for the Lyapunov timescale reached for
v/c = 10−3 for N = 4.

In fig. 9 we present the median Lyapunov timescale for N = 4
and N = 64 as functions of v/c. For the asymptotic Newtonian
case, v/c → 0, the Lyapunov timescale converges to the me-
dian for the Newtonian case. The dispersion in the distribution
in the relativistic case remains somewhat larger, however, even
for v/c → 0, for which 〈tLy〉 = 1.61 ± 2.36, compared to the
Newtonian case, for which 〈tLy〉 = 1.71 ± 1.68.

We suspect that these small systematic effects (which are not
statistically significant) could result from a few encounters suf-
ficiently close to be affected by general relativity. For the ex-
treme relativistic case, v/c >∼ 0.001, the Lyapunov timescale
rises quickly to 〈tLy〉 = 3.89 ± 0.64. We present the results for
v/c >∼ 0.02 (two green points to the right), even though these are
beyond the regime where the 1-PN Taylor-series expansion to
the EIH equations of motion is valid (see sect. 4.2). We therefore
limit further analysis to v/c <∼ 0.010.

For N = 4, we observed a minimum in the Lyapunov
timescale for v/c ∼ 10−3 (signified by the horizontal dotted green
line in fig. 9). The change in behavior for less and more relativis-
tic systems might be interpreted as a signature that the adopted
Taylor expansion starts to break down, but for v/c >∼ 10−3 , the
post-Newtonian terms should still be valid. We expect the low-
N configurations to break down earlier when they are evolved
with time because they are more relaxation dominated than the
large-N systems.

With a typical distribution in velocities matching a truncated
Maxwellian, a small fraction (∼ 2.9 %) of the systems has a ve-
locity that exceeds the mean dispersion by factor of 3. Even for a
value of v/c >∼ 0.05, the fraction of stars with a velocity v >∼ 0.3c
is smaller than 1/107, and it is unlikely that when integrating
over only 10 Hénon units, the post-Newtonian Taylor-series ex-
pansion breaks down.

In fig. 10 we present measurements for the Lyapunov
timescale for the post-Newtonian equations of motion. For N <∼
4, the EIH equations of motion as well as the pairwise 1-PN
terms show similar chaotic behavior in the sense that the rela-
tivistic system is less sensitive to initial perturbations than the

101 102

N

10−2

10−1

100

101

L
ya

p
u

n
ov

ti
m

e
sc

al
e

[N
b

od
y

u
n

it
s]

GHH93

EIH v/c = 0.010

EIH v/c = 0.005

EIH v/c = 0.002

1-PN v/c = 0.010

1-PN v/c = 0.005

Fig. 10. Lyapunov timescale as a function of N for Goodman et al.
(1993) (red bullets) compared to the various relativistic solutions. In
blue we present the solutions using 1-PN pair-wise terms with a scal-
ing to the speed of light of v/c = 0.010 and twice this value. For
the EIH equations of motion we show the case for v/c = 0.010 in
green, twice and four times this value. The top blue curve fits tλ '
0.255 + 13.43e−0.371N for v/c = 0.005, and tλ ' 0.051 + 5.50e−0.115N

for v/c = 0.010.

Newtonian case. For N >∼ 20, the pairwise 1-PN terms result in
smaller Lyapunov timescales compared to Newton’s equations
of motion, whereas the EIH equations of motion continue to re-
sult in a rather large Lyapunov timescale compared to the New-
tonian case. The Lyapunov timescales for the EIH equations of
motion are roughly twice as large as for the Newtonian case for
v/c = 0.005 and roughly four times as large for v/c = 0.010.

The effect of N on the degree of chaos in the equations of
motion is further illustrated in figure 11. Here we show for N =
4, N = 16, and for N = 64 the ratio of the pairwise 1-PN solution
as a function of the full EIH equations of motion. The relativistic
calculations were performed with v/c = 0.010.

For N = 4, the Newtonian case shows a smaller average
Lyapunov timescale than the two relativistic cases. This was
also confirmed in the three-body simulations by Boekholt et al.
(2021), who found no significant difference in the chaotic behav-
ior of Newtonian versus relativistic systems. When N increases,
the distribution of the Lyapunov timescale for the EIH equations
of motion continues to be large compared to the Newtonian case,
but the value for the pairwise 1-PN terms tends to drop to less
than 1/10th of the Newtonian solution. We conclude that if one
is interested in the dynamical behavior of N >∼ 4 black holes, the
pairwise 1-PN terms do not reliably represent the chaotic behav-
ior expected for such a relativistic system. The pairwise 1-PN
terms address pairs of compact objects, whereas the EIH equa-
tions of motion should give a more reliable representation for
relativistic systems of N ≥ 3. We expect this difference to persist
for the higher-order Taylor expansion terms.

4. Discussion

4.1. Consequences of the 1-PN terms

Phase-space volume is preserved in a solution to a conservative
Hamiltonian system, but shrinks in a dissipative system (Shiva-
moggi 2014), as is the case in general relativity. The contraction
of the phase-space volume gives rise to an attractor, and as a
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Fig. 11. Estimate for the Lyapunov timescale for the pairwise 1-PN
terms as a function of the full EIH equations of motion for three choices
of N, 4 (dark blue), 16 (aquamarine), and 64 (green). Both, the pairwise
1-PN calculation and the one including the cross terms, are represented
as fraction of the Newtonian solution. All relativistic simulations adopt
v/c = 0.010.

consequence, can have bounded trajectories (Bergé et al. 1987).
It is not a priori clear, however, how dissipation in an otherwise
conservative system affects chaotic motion (Lakshmanan & Ra-
jasekar 2003). We find that in the conservative 1-PN regime, the
chaotic behavior of N-body systems is already affected. In partic-
ular, for N >∼ 10, simulations that only include the 1-PN pairwise
terms behave differently than when the 1-PN cross-terms for the
EIH equations of motion are incorporated into the simulations.
The behavior of relativistic systems with v/c >∼ 0.005 and for
N >∼ 10 is considerably less chaotic than their less-relativistic
v/c <∼ 10−3 and Newtonian counterparts.

4.2. Validity of the post-Newtonian terms

In this study, we rely on the post-Newtonian expansion of the
EIH equations of motion. Ideally, we would have adopted full
general relativity in our N-body calculations, but this is some-
what beyond the scope of our study and is numerically challeng-
ing.

In an attempt to quantify the validity of the post-Newtonian
expansion adopted here, we compared the apsidal motion of the
orbit-averaged evolution for a two-body system with total mass
M, semimajor axis a, and eccentricity e. We write the relative
velocity in a circular orbit in terms of the gravitational radius,
rg = GM/c2 , and the speed of light as

c '
√

GM/(10rg). (8)

The Taylor-series expansion then starts to break down for v ≡
c/
√

10 ∼ 0.3c (Will 2011). During our N-body calculations, we
kept track of this velocity to ensure that the Taylor series expan-
sion in our calculations remained reliable. However, this safety
check does not guarantee that our results are not affected, partic-
ularly for high values of v/c.

In the regime in which the Taylor-series expansion of the EIH
equations of motion breaks down, the 1-PN terms adopted here
are insufficient to capture the correct physical behavior. In this
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Fig. 12. Relative importance in the apsidal motion of the 1-PN terms in
comparison to the 2-PN terms.

case, the 2-PN terms become essential for the correct physical
interpretation of the numerical results. By definition, the 2-PN
terms are smaller than the 1-PN terms because the former scale
as v/c and the latter as v2/c2. On the other hand, both terms ap-
proach each other for more relativistic systems, with v → c. It
is somewhat tricky to give an absolute measure when the 2-PN
terms should be used in addition to the 1-PN terms. In a gen-
eral N-body problem, stars may approach each other at a short
distance with relatively high velocities with respect to c. When
such an encounter is a one-time event in the nondissipative limit,
the lack of precision in the PN terms is not expected to make a
great difference in the eventual results (Will 2011). Reprehensive
simulations are therefore sufficient to derive the largest global
positive Lyapunov exponent for the system.

In an attempt to quantify the relative importance of 1-PN
with respect to the 2-PN terms, we compared the apsidal motion
of the orbit-averaged evolution for a two-body system with a
total mass M, semimajor axis a, and eccentricity e. We write
(Iorio 2020)

ω̇2PN/ω̇1−PN ' (rg/a)(1/12)(28 − e2)/(1 − e2). (9)

In fig. 12 we show as a function of v/c the relative drift in the
apsidal motion for the 1-PN and 2-PN terms for two bodies in a
circular orbit at 100rg,

v/c = (1/c)
√

GM/a
√

(1 + e)/(1 − e). (10)

The boundary at which the post-Newtonian expansion is no
longer reliable is indicated by the dashed vertical line, near
v/c ' 0.4, which happens when the two objects approach within
10rg. If we compare this boundary to the range in v/c in figure 9,
we find that all lie below the boundary, and we therefore argue
that the increase in the Lyapunov timescale toward the relativis-
tic regime is physical and not a numerical artifact.

4.3. Other initial density profiles

The initial conditions adopted in Goodman et al. (1993) have a
homogeneous phase-space distribution within the adopted limits,
and they do not represent any observed stellar systems (Portegies
Zwart et al. 2010). Clusters of stars are better represented with
a Plummer (1911) distribution or a King (1966) model. For this
reason, we also performed a series of calculations with these dis-
tributions. One series of Newtonian calculations used Plummer
models and King models with dimensionless depth of W0 = 12
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Fig. 13. Estimated Lyapunov timescale for the Newtonian case with
particles distributed in a Plummer sphere (blue) and a King model (yel-
low). In addition, we show results for the King model, but for the EIH
equations of motion with v/c = 0.010 (green). Here the x-axis is in
ln(ln(N)).

(which is rather concentrated), and one set of calculations used
the EIH equations of motion for the King model case (with iden-
tical initial realizations).

In figure 13 we present the Lyapunov timescales for these
simulations as functions of N. The Newtonian Plummer case
shows a slightly smaller Lyapunov timescale than the homoge-
neous distribution used in Goodman et al. (1993). The Plummer
distribution is consistent with the initial conditions adopted by
Hemsendorf & Merritt (2002), and their results are consistent
with our results for the Plummer sphere, see figure 13 (black
points).

The Newtonian King model with W0 = 12 is considerably
more chaotic than the homogeneous initial realization adopted
in Goodman et al. (1993), at least given that for N >∼ 103 we
were unable to measure a reliable Lyapunov timescale because
the phase-space distance grew beyond δ = 0.1 within 1 N-
body time unit. King models with a central potential depth of
W0 = 12 turn out to be considerably more chaotic than Plum-
mer models (for N >∼ 40), while Plummer models are expected
to behave more chaotically than a homogeneous distribution of
particles. This is not a complete surprise because the choice of
W0 = 12 places the model near core collapse (at least in its den-
sity profile). The growth of an initial phase-space distance be-
tween two subsequent calculations with almost identical initial
relations is then dominated by few-body interactions in the core.
One could argue that the entire chaotic behavior of the star clus-
ter is driven by few-body interactions in the cluster center. Since
some complex three-body interactions are fundamentally unpre-
dictable (Boekholt et al. 2020), the dynamical evolution of the
entire cluster will be unpredictable.

The extreme relativistic case, with v/c = 0.01, shows a sim-
ilar characteristic again as the homogeneous initial realizations,
but a rather different scaling when adopting the King model.
In the Newtonian case, King models tend to have considerably
smaller Lyapunov timescales, but when extremely relativistic,
they tend to be more regular than the Newtonian case Fig 10.

5. Conclusions

We have numerically analyzed the rate at which neighboring so-
lutions of the equations of motion for N self-gravitating bod-
ies diverge in the Newtonian regime, but also with the 1-post-
Newtonian expansion terms for the pairwise approximation and
the Einstein-Infeld-Hoffmann equations of motion. Our results
can be interpreted as the rate of growth of the error in an N-body
solution, caused by uncertainties in the initial conditions or er-
rors produced numerically during integration.

Our Newtonian simulations were repeated with higher preci-
sion and accuracy until a converged solution was achieved. Due
to computer limitations, this was performed for N up to 1024
particles. For large particle numbers (and for the relativistic sim-
ulations), we used reprehensible N-body solutions, and we con-
firmed them to be veracious for N up to 1k particles.

The motivation to study the growth of errors stems from
our desire to understand the role of chaos in these systems. The
macroscopic distribution of material in the Galaxy may not be af-
fected by microscopic chaos. But the Galaxy is built up of small
subsystems of stars, each of which exhibits chaotic behavior, and
the range of the Newtonian force law causes chaos in these mi-
croscopic systems to propagate to the Galaxy at large. Chaos in
the Galaxy is then governed by the chaos in small N subsystems
and not by the global slow (on timescales longer than the dy-
namical timescale) variations of the orbits of stars in a smooth
potential.

We confirm the earlier result of Goodman et al. (1993)
and Hemsendorf & Merritt (2002) that the divergence in N-
body systems grows exponentially, with an e-folding timescale
on the order of the crossing time. Our results agree with the
tλ ∝ tcross/ ln(ln(N)) scaling of Goodman et al. (1993) and are
inconsistent with a tcross/ ln(N) scaling.

Our conclusions are listed below.

1. For a homogeneous distribution of equal-mass particles in
virial equilibrium, the e-folding timescale for the growth of
an initial perturbation in an N-body system, the so-called
Lyapunov timescale, scales for small systems of N <∼ 32
as tλ/tcross = (0.88 ± 0.12) − (1.39 ± 0.13) ln(ln(N)). For
larger systems of N >∼ 32, the Lyapunov timescale scales
as tλ/tcross = (−0.094 ± 0.129) − (0.498 ± 0.066) ln(ln(N)).

2. For an initial Plummer distribution, the e-folding timescale
is smaller than the homogeneous initial realizations by about
a factor of 5 but preserves the same trend, or for N >∼ 32, it
fits tλ/tcross = (−0.475 ± 0.018) − (0.528 ± 0.010) ln(ln(N)).

3. For more concentrated models, such as a King model with
W0 = 12, the scaling is comparable to the slope observed
in the homogeneous unit-cube or the Plummer distribution,
with tλ/tcross = (1.346 ± 0.110) − (2.212 ± 0.107) ln(ln(N)),
but extending somewhat farther, to N ' 64. For larger N, the
slope is much steeper, tλ/tcross = (4.970 ± 2.03) − (4.813 ±
1.147) ln(ln(N)), indicating that these systems are chaotic for
large N on a timescale smaller than a crossing time.

4. If a small perturbation is introduced into a single particle of
a large N-body system, all particles are affected within a few
crossing times.

5. For self-gravitating systems with v/c <∼ 10−3, the phase-
space mixing of relativistic N-body systems is indistinguish-
able from the Newtonian case. This limit is already reached
for a total of ten black holes of 10 M� confined to a spherical
volume of radius 10−3 pc.

6. For highly relativistic systems, v/c >∼ 0.002, the EIH equa-
tions of motion to 1-PN are considerably less chaotic than
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their Newtonian counterpart over all values of N. The Lya-
punov timescale scales with tλ/tcross = 6.63 ± 1.68 −
ln (3.72 ± 2.04 ln(N)).

7. For small N (<∼ 10), the pairwise 1-PN terms give similar
phase-space mixing to the EIH equations of motion.

8. For N > 4, the pairwise 1-PN corrected equations of motion
become considerably more sensitive to perturbations in the
initial conditions compared to the EIH equations of motion.
The former show considerably shorter Lyapunov timescales
compared to their Newtonian counterparts, whereas the latter
has even longer Lypaunov timescales.

9. We conclude that the Galaxy is intrinsically chaotic on a very
short timescale because of the chaotic behavior of micro-
scopic few-body interactions in the centers of star clusters.
The chaotic behavior of these small-N systems propagates on
a local crossing timescale to the entire star cluster, affecting
the orbits of neighboring stars and clusters, and eventually,
the entire Galaxy.

10. The pairwise terms for N > 3 give a different dynamical
behavior for relativistic N-body systems compared to the full
EIH equations of motion.

Considering the effect of the full EIH equations of motion on
a relativistic cluster of compact objects, and the potential conse-
quences for observations with laser interferometric gravitational
wave observatories, we look forward to implementing and study
the effect of higher-order cross-terms in general relativistic N-
body simulations. We do realize, however, that these calculations
do not have the most favorable scaling of the computer time with
respect to N.

Public data

The source code, input files, simulation data, and data processing
scripts for this manuscript are available at figshare under DOI
10.6084/m9.figshare.xxxx.

Software used for this study

This work would have been impossible without the follow-
ing public open-source packages and libraries: Python (van
Rossum 1995), matplotlib (Hunter 2007), numpy (Oliphant
2006), MPI (Gropp et al. 1996; Gropp 2002), and AMUSE
(Portegies Zwart et al. 2018, available for download at https:
//amusecode.org). Sapporo GPU library (Portegies Zwart
et al. 2007; Gaburov et al. 2009), MPFR library (Fousse et al.
2007) of the GMP library (Granlund & the GMP development
team 2012).

A (python notebook) tutorial for students is available
at https://github.com/amusecode/Tutorial. All the N-
body codes used in this study are available in the AMUSE repos-
itory at amusecode.org.
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Energy consumption of this calculation
The calculations using Brutus are elaborate and took about 107

CPU seconds. The other two sets of calculations are comparable
in expense, totaling about a year of single CPU usage. Using
the tool http://green-algorithms.org/, we calculated our
energy consumption to be about 3.32 MWh. At Dutch electricity
rates, this would produce about 1.8 kiloton CO2, but since the
computers used are powered by either Dutch wind or Norwegian
hydroelectric power (through certificates) the net CO2 emission
should be negligible.
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Appendix A: Implementation of the numerical
method

The Newtonian solver and the post-Newtonian terms are imple-
mented in C and C++ and interfaced with the Astrophysics Mul-
tipurpose Software Environment (AMUSE for short, Portegies
Zwart & McMillan 2018). In this appendix, we discuss the sim-
ple Hermite predictor-corrector Newtonian N-body solver called
ph4 and the post-Newtonian solver called Hermite_GRX. The
former solves Newton’s equations of motion quite accurately, but
is unable to achieve converged solutions. The other code adopts
the post-Newtonian approach in which we address the pairwise
EIH equation as well as the so-called cross-terms (Einstein et al.
1938). All equations are implemented to 1-PN order.

The Newtonian code, ph4, is optimized for parallel opera-
tions using the Message Passing Interface (MPI, Gropp et al.
1996; Gropp 2002), and for GPU using the Sapporo library
(Portegies Zwart et al. 2007; Gaburov et al. 2009). The post-
Newtonian implementation, Hermite_GRX is parallelized using
hyperthreading, but not using MPI, and it does not support GPU
operations. In this code, however, few-body interactions are reg-
ularized using quaternions.

In the following sections, we discuss the various implemen-
tations and optimizations. We also perform some test calcula-
tions to demonstrate the efficiency and accuracy of the various
implementations.

Appendix A.1: Fourth-order Hermite integration scheme

Here we describe the fourth-order Hermite predictor correc-
tor implementation in ph4 and Hermite_GRX briefly. The first
solves Newton’s equations of motion; the second also includes
various solvers for addressing the post-Newtonian expansion
terms.

Appendix A.1.1: Predict, evaluate, and correct scheme

The Hermite integration scheme is a family of implicit numerical
methods for solving ordinary differential equations. Introduced
by Makino (1991), the fourth-order integration scheme is written

y(t + h) = y(t) +
y(1)(t) + y(1)(t + h)

2
h (A.1)

+
y(2)(t) − y(2)(t + h)

12
h2 + O

(
h5

)
,

which has a local truncation error of O
(
h5

)
, resulting in a global

truncation error of O
(
h4

)
. We denote the i-th derivative with re-

spect to t using (·)(i) or with Einstein’s convention. The sixth-
and eight-order schemes, derived by Nitadori & Makino (2008),
are not implemented here.

Because the scheme is implicit, a fixed-point iteration to
solve eq. A.2 is needed,

y[i+1](t + h) = y(t) +
y(1)(t) + y(1)

[i] (t + h)

2
h (A.2)

+
y(2)(t) − y(2)

[i] (t + h)

12
h2.

Here we used a truncated Taylor expansion around t as the initial
(boundary) condition

y[0](t + h) = y(t) + hy(1)(t) +
h2

2
y(2)(t). (A.3)

This sequence converges to the limit y(t + h), which ends the
current time step. In practice, a single iteration suffices when the
time step h is small.

Each integration step then consists of

1. prediction of the positions and velocities at the next time step
t + h,

r̃i+1 = ri + vih + 1
2 ãih2 + 1

6 jih
3, (A.4a)

ṽi+1 = vi + aih + 1
2 jih

2. (A.4b)

Here r, v, a, and j = da
dt ≡ ȧ represent vectors for the posi-

tion, velocity, acceleration, and jerk, respectively. The jerk j
is dotted, which in this case does not indicate a time deriva-
tive. Predicted values are indicated with the ˜(·).

2. Acceleration and jerk are calculated using the predicted po-
sitions and velocities (eq. A.4).

3. A subsequent correction is applied to the position and veloc-
ity at the next time step using the predicted accelerations and
jerks,

vi+1 = vi + 1
2 (ai + ãi+1)h + 1

12 ( ji − j̃i+1)h2, (A.5a)

ri+1 = ri + 1
2 (vi + vi+1)h + 1

12 (ai − ãi+1)h2. (A.5b)

The corrected velocities increase the order of the method to
O

(
h4

)
. In such a predict, evaluate, and correct (PEC) scheme, the

fixed-point iteration can be described as P(EC)n for n iterations.

Appendix A.1.2: Variable time step

We use variable but shared time steps. After every step, a new
time-step size is determined based on the minimum interparticle
collision timescale, calculated from unaccelerated linear motion
and the freefall time,

h = ηmin
i, j,i

(
|ri j|

|vi j|
,

|ri j|

|(mi + m j)ai j|

)
. (A.6)

Here ri j, vi j, ai j are the relative distance, velocity, and accelera-
tion between particles i and j, and mi is the mass of particle i. The
minimum is taken over each pair of particles (i, j), and over the
two estimates of the collision time. Here the time-step parame-
ter η is introduced to control the time-step size and therewith the
accuracy (and speed) of the integration scheme. Ler values of η
generally correspond to smaller errors and a longer integration
wall-clock time. The default value in AMUSE, η = 0.03, gener-
ally leads to acceptable accuracy at a reasonable speed: in many
cases, η = 0.1 probably suffices (Portegies Zwart & Boekholt
2014). For safety, we adopted η = 0.01 for our calculations.

The adopted variable time step removes the time-symmetric
properties of the integration. The fundamental idea behind time-
symmetrization is to prevent systematic drift in any conserved
quantity. Time reversibility then introduces the same drift with
opposite sign.

A time-symmetric algorithm exhibits the same drift in both
directions of time, resulting in identical absolute drifts when
integrating forward and backward with time. This is a desir-
able quality of an integrator because we consider Nature to con-
serve energy and angular momentum (see also Portegies Zwart
& Boekholt 2018, for a discussion on the arrow of time due to
the chaotic behavior of self-gravitating systems and uncertainties
on the smallest scales).
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One can reintroduce time-symmetry by selecting a symmet-
ric time step, for example, by taking the average of some func-
tion at either side of the integration step (Hut et al. 1995),

h = 1
2 (k(tb) + k(te)). (A.7)

Here k(t) is a function to determine the step size at the beginning
tb and at the end te = tb + h of the integration step. This implicit
expression requires fixed-point iteration to evaluate

h[0] = k(tb), (A.8a)

and the eventual time step when the sequence converges be-
comes

h[i+1] = 1
2
(
k(tb) + k(tb + h[i])

)
. (A.9a)

Generally, the sequence converges in a single iteration (Hut et al.
1995).

Appendix A.1.3: Splitting the jerk

Calculating the jerk is expensive in terms of computer time be-
cause it requires three passes over all particles. To avoid eval-
uating the jerk directly, we use a central numerical derivative,

j(t) =
a(t + h) − a(t − h)

2h
+ O

(
h2

)
. (A.10)

Here the accelerations are calculated using the Taylor expanded
positions and velocities of the particles,

r(t ± h) = r(t) ± hv(t) + 1
2 h2a(t) + O

(
h3

)
, (A.11a)

v(t ± h) = v(t) ± ha(t) + O
(
h2

)
. (A.11b)

The numerical calculation of the jerk is equally expensive as the
analytic calculation because it requires two additional acceler-
ation calculations per jerk. We reduce the computational com-
plexity by the time step h of the previous integration step and
the backward derivative. This allows us to reuse the previous
steps’ positions and velocities for calculating the jerk at the cur-
rent time step.

Using a first-order derivative instead of the analytical expres-
sion for the jerk leads to a reduced accuracy, but this is corrected
for by splitting the acceleration into two parts: the Newtonian
part, and a perturbing part,

a(t) = aNewton(t) + apert(t). (A.12)

We note here that we already introduced a perturbation, which in
the EIH equations of motion will be the post-Newtonian terms.
The Newtonian jerk can now be calculated analytically and at
negligible cost compared to calculating the perturbing accelera-
tion. The perturbing jerk is calculated from the numerical back-
ward derivative,

j(t) = jNewton(t) +
apert(t) − apert(t − h)

h
+ O

(
h2

)
. (A.13)

This operation increases the memory requirement by storing two
accelerations for each particle.

The algorithm is made to be self-starting by defining the per-
turbing acceleration of the previous integration step ai−1,pert, as
it depends on the jerk of the first iteration ji. For this, we chose
ai−1,pert = ai,pert, so that ji,pert = 0. This decreases the local trun-
cation error of the first step toO

(
h4

)
, but its impact on the results

is small because only one step is taken.

Appendix A.2: Regularization

Regularizing the equations of motion for two bodies (or more)
in a close encounter improves computational performance and
accuracy. The main reason to introduce regularization, however,
is to prevent a devision by zero for extremely close approaches
between particles (Kustaanheimo & Stiefel 1965; Mikkola &
Tanikawa 1999). Regularizing the post-Newtonian expressions
is harder than the regular Newtonian case because of the veloc-
ity dependence on the acceleration (Mikkola & Merritt 2006,
2008a). Here we derive the regularized equations of motion in
post-Newtonian few-body encounters using quaternions (Wald-
vogel 2006), but we start with a brief overview on quaternions

Appendix A.2.1: Quaternions

Quaternions are an extension of complex numbers to three com-
plex base quaternions i, j , and k (Waldvogel 2006). A quater-
nion u is constructed from four real numbers u` ∈ R for ` =
0, 1, 2, 3,

u = u0 + u1i + u2 j + u3 k, (A.14)

with the multiplicative identities

ii = j j = kk = i jk = −1, (A.15)

from which we derive the other products,
i j = − ji = k,
jk = −k j = i,
ki = −ik = j.

(A.16)

From these, the noncummatative property of quaternion multi-
plication is evident. We define the conjugate of quaternion u,

u = u0 − u1i − u2 j − u3 k, (A.17)

which leads to the definition of the norm

|u|2 = uu = uu = u2
0 + u2

1 + u2
2 + u2

3. (A.18)

The star conjugate of u then is

u? = u0 + u1i + u2 j − u3 k. (A.19)

We associate the vector r = (r0, r1, r2) ∈ R3 to quaternion u as

u = r0 + r1i + r2 j. (A.20)

When describing real-world coordinates, quaternions have a
vanishing component in k (Waldvogel 2006).

Appendix A.2.2: Equations of motion

Regularization is applied to pairs of particles. They, particle i = 1
and i = 2, are located at phase-space coordinate ri with velocities
vi, and masses mi. The equations of motion are

r̈i = −
Gm j

r3 (r j − ri) + ai. (A.21)

The acceleration ai for particle i consists of all perturbing (post-
Newtonian) and Newtonian accelerations, excluding the Newto-
nian acceleration between particle i and j. The center of mass

rcm =
m1r1 + m2r2

m1 + m2
, (A.22)
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and the relative position

r12 = r2 − r1, (A.23)

we rewrite these equations of motion as

r̈ = −
µ

r3 r + P, (A.24)

and

r̈cm =
m1a1 + m2a2

m1 + m2
. (A.25)

Here µ = G(m1 + m2) is the gravitational parameter, and P =
a2 − a1 the relative perturbing acceleration.

The above equations of motion have a singular point at r =
0. We integrate the center of mass separately from the relative
position, and rewrite the equation of motion in such in a way
as to remove this singular point. This is achieved by remapping
the world position to a regularized position quaternion u, from
which we calculate the world position

r = uu?. (A.26)

The quaternion r now has vanishing component k and can there-
fore be transformed into a vector, from which it follows that

r = |r| = |u|2 = uu. (A.27)

A (nonunique) solution to the inverse of eq. A.26 is

û =
r + |r|

√
2(|r| + r0)

. (A.28)

The position vector, r, is almost entirely oriented in the negative
r-direction, and the denominator is close to zero. Without loss
of generality, we can avoid large numerical errors by swapping
indices i = 1 and 2, resulting in the negation of r.

The regularization time τ is

dt = r dτ. (A.29)

The equations of motion for the regularized position is written
in regularized time:

u(2) = − 1
2 bu + 1

2 rPu?. (A.30)

Here b is the binding energy of the binary,

b =
µ

r
−

1
2
|ṙ|2 =

µ − 2|u(1)|2

|u|2
. (A.31)

For an unperturbed two-body system, P = 0, the binding energy
b is constant, and the equation of motion describes the harmonic
oscilator. For a perturbed two-body system, the expression re-
sembles a perturbed harmonic oscilator. The greatest advantage
of this approach is that this equation of motion has no singular
points, not even for r = |u|2 = 0. This improves the performance
for small perturbations when numerically integrating the equa-
tions of motion of a highly eccentric binary, and it improves the
accuracy for perturbed binaries.

The binding energy (eq. A.31) is not regularized, and errors
continue to increase in close encounters (Funato et al. 1996a).
This problem is mitigated by also integrating the binding energy
numerically. When the binding energy changes slowly with time
as a function of the perturbing accelerations, we find

b(1) = −〈r′, P〉. (A.32)

Here the 〈(·), (·)〉 is the vectorial scalar product. An initial condi-
tion for u(1) is

û(1) = 1
2 vu?. (A.33)

This expression gives a small correction to the original deriva-
tion by Waldvogel (2006) and Waldvogel (2008): it can be ver-
ified by substitution in eq. A.31, to derive the binding energy
in world coordinates. For the reciprocal eq. A.33, the right-hand
side multiplication with u? leads to

v = 2
r u̇u? ≡ 2

r u(1)u?. (A.34)

One can also formulate the Kustaanheimo-Stiefel (hereafter
KS Kustaanheimo & Stiefel 1965) regularized equations of mo-
tion in terms of the perturbing potential (Stiefel & Scheifele
1975), which can be advantageous in some cases, although it
only applies to cases when the potential is independent of ve-
locity (not the case for general relativity). Moreover, Stiefel and
Steifele (1975, see pages 30 and 31) argued that it is numerically
more efficient to formulate the equations of motion in terms of
the total energy, not just the Kepler energy (see their eq. (A.31)).
The equations of motion can also be cast into the form of reg-
ular elements (Stiefel & Scheifele 1975, their pages 90 and 91)
that are advantageous for perturbed two-body systems because
the regular elements remain exactly constant for nonperturbed
systems (i.e., the two-body system is integrated analytically).

Appendix A.2.3: Numerical integration

We solve the equations of motion using the Hermite scheme in
the PEC formulation (see sect. A.1.1), with ∆τ ≡ κ. The resulting
intergration scheme is described below.

1. Predict the regularized position, regularized velocity, and
binding energy at the end of the current integration step,

ũi+1 = ui + u(1)
i κ + 1

2 u(2)
i κ2 + 1

6 u(3)
i κ3, (A.35a)

ũ(1)
i+1 = u(1)

i + u(2)
i κ + 1

2 u(3)
i κ2, (A.35b)

b̃i+1 = bi + b(1)
i κ + 1

2 b(2)
i κ2. (A.35c)

Then predict the center-of-mass position and velocity from
eq. A.4.

2. Evaluate the regularized acceleration, regularized jerk, and
the derivatives of the binding energy at the end of the current
integration step, according to eqs. A.30 and A.32,

u(3) = 1
2

(
−b(1)u − bu(1) + r(1) Pu? + rP(1)u? + rP(u(1))?

)
,

(A.36a)

b(2) = −〈r(2), P〉 − 〈r(1), P(1)〉. (A.36b)

The test-particle integrator by Hamers et al. (2014) adopts a
similar integration scheme for the KS coordinates.

3. Correct the regularized position, regularized velocity, and
binding energy at the end of the current integration step,

u(1)
i+1 = u(1)

i + 1
2 (u(2)

i + ũ(2)
i+1)κ + 1

12 (u(3)
i − ũ(3)

i+1)κ2, (A.37a)

ui+1 = ui + 1
2 (u(1)

i + u(1)
i+1)κ + 1

12 (u(2)
i − ũ(2)

i+1)κ2, (A.37b)

bi+1 = bi + 1
2 (b(1)

i + b̃(1)
i+1)κ + 1

12 (b(2)
i − b̃(2)

i+1)κ2. (A.37c)

The corrected velocity in the corrector for the position makes the
scheme fourth order (Mikkola & Merritt 2006).
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Appendix A.2.4: Regularized time-step considerations

The regularized time step is determined using

s = ηmin


√
|u(2)||u|
|u(3)||u(1)|

,
|u(1)|

|u(2)|

, (A.38)

which is a variation on the time steps suggested by Funato et al.
(1996a). To advance model time, we need to convert this κ into
h, which, according to Funato et al. (1996a), is done with

h ≡ T (κ) = t(1)
1
2

κ + 1
24 t(3)

1
2

κ3 + 1
1920 t(5)

1
2

κ5. (A.39)

Here t(i)
1
2

is the i-th derivative of t with respect to τ from the begin

time τb to τ = τb + 1
2κ , given by

t(1)
1
2

= |u|2, (A.40a)

t(3)
1
2

= u(2)u + 2|u(1)|2 + uu(2), (A.40b)

t(5)
1
2

= u(4)u + 4u(3)u(1)
+ 6|u(2)|2 + 4u(1)u(3)

+ uu(4). (A.40c)

Here u and all its derivatives are evaluated at half time-steps,
using a Taylor expansion at the beginning of the integration step
τb, using the approximated regularized snap and crackle,

sb ≡ u(4)
b = −6

u(2)
b − u(2)

e

κ2 −
4u(3)

b + 2u(3)
e

κ
, (A.41a)

cb ≡ u(5)
b = 12

u(2)
b − u(2)

e

κ3 + 6
u(3)

b + u(3)
e

κ2 . (A.41b)

Equation A.39 has O
(
κ7

)
, ensuring an accuracy of O

(
κ6

)
in the

final integrated time. The inverse of this transformation cannot
be found analytically. We use Newton-Rapson iteration,

κ[0] =
h
|ub|

2 , (A.42a)

κ[i+1] = κ[i] −
T (κ[i]) − b
|u 1

2
|2

. (A.42b)

Here u 1
2

is given by a third-order Taylor expansion. In practice,

convergence to machine precision is reached in four iterations.

Appendix A.2.5: Selecting the regularized particle pair

Selection of which particles are to be regularized is done by cal-
culating a regularization criterion for each pair of particles. We
then sort the resulting list of pairs, only keeping the Nreg highest-
graded pairs. Here Nreg is a free parameter. We then regularize
all particle pairs if they have the smallest norm of the relative
acceleration

Qreg =
G(m1 + m2)

r2 . (A.43)

The resulting complete integration steps are listed below.

1. Select pairs of particles that need to be regularized and re-
solve their step.

2. Predict all unregularized particles and all regularized pairs of
particles.

3. Convert coordinates of regularized particles into world coor-
dinates.

4. Evaluate acceleration and jerks for all pairs of particles, ex-
cluding the Newtonian interaction between regularized pairs.

5. For regularized pairs, calculate derivatives for the accelera-
tion, jerk, and binding energies.

6. Correct all unregularized particles and all regularized pairs
of particles.

7. Convert coordinates of regularized particles into world coor-
dinates to synchronize the whole system of particles.

To symmetrize the global time step, we first need to sym-
metrize the time steps in their own coordinate system. Regular-
ized time steps need to be symmetrized in regularized time and
then need to be transformed into a world time step.

Appendix A.3: Implementation

Appendix A.3.1: ph4

The N-body integrator ph4 uses a fourth-order Hermite scheme
similar to that described in §A.1.1, with some differences in de-
tail. Its origin lies in the kira integrator, which was part of the
Starlab software suite (Portegies Zwart et al. 1998), but most
of the complicating elements in kira , such as treatments of arbi-
trary multiples and close encounters, and stellar and binary evo-
lution, have been removed to be replaced in the AMUSE model
by separate community modules communicating at the Python
level. The data structures in ph4 are deliberately kept simple,
making for a robust module that is easy to manage as a stan-
dalone tool, and ph4 facilitates parallelism as well as GPU ac-
celeration, as discussed below.

Although ph4 uses individual block time steps internally, its
basic mode of operation, like that of most AMUSE modules (see
section A.3.3), is to take an N-body system, typically synchro-
nized at some initial time t0, and integrate it forward to some
new time t1. The ph4 module uses individual block time steps
(McMillan 1986), with essentially the same logic as described
by Makino (1991) and used in Starlab. Each particle i has its
own current time ti and time step δti. By rounding all steps down
to powers of 2, we open the possibility that many particles can be
advanced simultaneously. Specifically, it is often the case that at
any stage of the calculation, multiple “i-particles” have the same
next time tnext = ti + δti, allowing a one-time parallel prediction
of all field positions and velocities,

r̃ j = r j + v jh j + 1
2 a jh2

j + 1
6 j jh

3
j

ṽ j = v j + a jh j + 1
2 j jh

2
j

(where h j = tnext − t j) and parallel computation of the predicted
accelerations and jerks of the i-particles,

ãi = −

n∑
j=1
j,i

Gm j

r3
i j

r̃i j, (A.45)

j̃i = −

n∑
j=1
j,i

Gm j

r3
i j

ṽi j +
3(ṽi j · r̃i j)r̃i j

r2
i j

 , (A.46)

where, as before, r̃i j = r̃i − r̃ j and ṽi j = ṽ j − ṽ j.
The corrector step in ph4 differs from the more elegant ver-

sion described in §A.1.1, with the formulation chosen to allow
the use of the traditional Aarseth (1985) time step formula. Us-
ing the available derivative information at the beginning and end
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of the step, we can estimate the next two derivatives in the Taylor
series for the position and the velocity (Makino 1991), snap and
crackle,

si ≡ äi =
−6(ai − ãi) − δti(4 ji + 2 j̃i)

δt2
i

(A.47)

ci ≡
...a i, =

−12(ai − ãi) + 6δti( ji + j̃i)
δt3

i

, (A.48)

(see also Eqs. A.41a and A.41b), leading to the correction

ri = r̃i +
δt4

i

24
si +

δt5
i

120
ci (A.49)

vi, = ṽi +
δt4

i

6
si +

δt5
i

24
ci. (A.50)

The new time step is (Aarseth 1985)

δti = η

√
|ãi||si| + | j̃i|2

| j̃i||ci| + |si|
2

(A.51)

(where η is an accuracy parameter), rounded down to a power
of 2. We note in passing that ph4 departs from kira in the use
of a novel and more efficient block-scheduling algorithm, which
reorders the block step (tnext) list and hence determines the next
time step in O(1) steps per i particle.

The specialization of ph4 that causes it to perform well, that
is, the removal of most of the complicating physics, in principle
also limits its range of applicability. The code can be coupled to
other physics solvers or other gravity modules on different scales
through the AMUSE framework, see section A.3.3.

Appendix A.3.2: Hermite_GRX

We implemented the EIH equations of motion in regularized and
nonregularized forms in standard C++11 (ISO 1998). Our im-
plementation includes the correction terms for EIH equations of
motion, and we include the calculation for the energy and linear
momentum for validation.

The code is parallelized using threads, but not with MPI,
and it is not GPU-enabled. We implemented the post-Newtonian
cross terms using two particle sets: one set of N particles that
are affected by general relativity, and one set of n particles that
is purely Newtonian. In principle, all particles can be consid-
ered relativistic, or all can be Newtonian. In the first case, the
code performance scales with N3, otherwise with the usual N2.
In general, the code scales ∝ N3 + nN2 + n2. In the case of a
galactic nucleus, N = 1 represents the supermassive black hole
and the rest of the particles n for the other stars.

We implemented

– 1PN EIH for the full EIH equations of motion, resulting in
an O

(
N3

)
time complexity.

– 1PN Pairwise, which neglects the acceleration dependence
of the velocity in the EIH equations of motion, resulting in a
O

(
N2

)
algorithm.

– 1PN GC Crossterms for the integration of supermassive
black holes in galactic nuclei in which one massive object
includes the cross terms with the low-mass objects, but the
low-mass objects are not relativistic.

In Hermite_GRX, we implemented several numerical
schemes, which include

– Hermite, for the standard Hermite predictor-corrector inte-
grator with variable but shared time step (Makino 1991).

– SymmetrizedHermite, which is a time-symmetrized version
of the Hermite integrator (Hut et al. 1995).

– RegularizedHermite, which includes regularized close ap-
proaches for pairs of particles using KS regularization. This
implementation still uses the standard Hermite scheme for
time integrations.

– SymmetrizedRegularizedHermite, which adopts Regular-
izedHermite, but with symmetrized time step (Funato et al.
1996b).

Appendix A.3.3: Implementation in the Astrophysics
Multipurpose Software Environment

The Astrophysics Multipurpose Software Environment is a nu-
merical framework for multiscale and multiphysics simulations
(Portegies Zwart & McMillan 2018). AMUSE uses numerical
implementations for a wide variety of physical processes, includ-
ing gas dynamics, star formation, stellar evolution, gravitational
dynamics, circumstellar disk evolution, and radiative transport.
Other physical processes, such as stellar and binary evolution,
the Galactic tidal field or hydrodynamical processes can be ac-
commodated through the AMUSE framework. One complica-
tion in multibody dynamics is the formation of substructures,
such as binaries and triples.

The treatment of such local condensations, but also of close
encounters in unsoftened systems, is a much lower-level issue
and requires special treatment. AMUSE does contain N-body
modules that include specialized treatment of close encoun-
ters, but most do not, and because the guiding principle behind
AMUSE is to separate functionality as much as possible, ph4 and
ph4 like many other modules, relies on the multiples module
to manage close encounters and any long-lived binary and mul-
tiple systems that arise. In multiples, a binary or stable multi-
ple, once identified, is treated as an unperturbed object, possibly
with the inclusion of secular internal evolution terms until it has
a close encounter with another object in the system. At that point,
the interaction is treated as a few-body scattering, which even-
tually results in the creation of new stable objects that are then
reinserted into the ph4 or ph4 integration. The multiplesmod-
ule is described in more detail in (Portegies Zwart & McMillan
2018, Sect. 4.5).

Hermite_GRX can also be combined with multiples
through the AMUSE framework, but due to the local regular-
ization strategies using quaternions (see section A.2), this is not
always necessary.

In AMUSE, at least two independently developed implemen-
tations for each of the domain-specific solvers are available. This
Noah’s Ark approach (Portegies Zwart et al. 2009) allows the
user to swap one simulation code for another without any further
changes to the runtime environment (codes, scripts, or underly-
ing hardware) and without the need to recompile. It is nonintru-
sive in the sense that underlying numerical implementations do
not require any modifications or recompilation.

The environment is tuned for running on high-performance
architectures. It also includes support for GPU and massive task-
based parallelism (using message-passing parallelism or open
multiprocessing parallelism).

Appendix A.3.4: Stopping conditions

In the AMUSE framework, codes are interfaced to allow the
generation of a homogeneous and self-consistent simulation en-
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vironment for performing multiscale and multiphysics simula-
tions. Many of the codes in AMUSE are not build for this pur-
pose, but for operating within a specific domain and parameter
range. Due to the interaction with other codes, the underlying
simulation engines (called community codes) may be forced to
operate outside their usual domain range. If this goes well, the
particular community code crashes with the appropriate memory
core dump. In AMUSE, however, such an interrupt is caught by
the framework without resulting in a crash.

In a general simulation environment, this would be the mo-
ment another code takes over to continue the calculation in a
different part of parameter space, another temporal or spatial do-
main, or including different physics. In AMUSE, this problem
is addressed by introducing stopping conditions to interrupt the
particular simulation domain that the underlying code is unsuited
to handle.

In ph4 and Hermite_GRX, we implemented three different
stopping conditions. When any of these interrupts is initiated, the
code returns control to the AMUSE framework, where the event
can be handeled appropriately. By default, the stopping condi-
tions are turned off. The three stopping conditions are described
below.

– collision_detection
All particles have a property called radius, which is used
to check for collisions between pairs of particles. At each
integration step, we check whether two stars approach each
other within the sum of their radii. For this, we assume that
the particles within that internal code-time step move in a
straight line,

r(s) = rb + (re − rb). (A.52)

Here rb and re are the positions at the beginning and end
of the current time step, respectively. If the relative distance
between two particles is smaller than the sum of their radii
for some value of s, the interrupt collision_detection is
initiated.

– Wall_clock_time_out_detection
The interrupt is initiated when the code takes too long in
terms of the wall-clock time to evolve to a specified model
time.

– maximum_number_of_integration_steps_detection.
This is initiated when the evolution to the required model
time takes more than a predetermined number of time steps
to reach the end time of the simulation.

Appendix A.3.5: Parallelization by message-passing in
Hermite_GRX

Solving the EIH equations of motion scales ∝ N3, making it a
rather slow N-body code. In addition to regularization, we speed
the code up by parallelizing it. We do this by multithreading with
C++11. Communication between threads can be done in shared
memory, which is implemented through the standard library.

Appendix A.3.6: Parallelization by message-passing in ph4

The most important departure of ph4 from kira is the use of
MPI parallelism and GPU acceleration in ph4 to increase per-
formance on parallel architectures and GPU-supported systems.
Although kira in Starlab was designed to run on a single pro-
cessor, it can operate in parallel using MPI (Portegies Zwart et al.
2008), but its normal mode of operation is with special-purpose

GRAPE-6 (Makino & Taiji 1996, 1998) or GPU through the sap-
poro library.

A significant difference from the kira formulation is that
in ph4, all global ( j-data) calculations are implemented as MPI
parallel tasks with an arbitrary number of workers, and each
worker is optionally GPU accelerated using the sapporo2 li-
brary (Gaburov et al. 2009; Bédorf et al. 2015). This allows
an arbitrary number of GPUs to be configured per MPI worker
(subject to the availability of hardware), with all options set-
table from the Python-level interface to ph4. The resulting boost
in speed makes the GPU-accelerated version of ph4 one of the
best-performing direct (N2) N-body codes in the AMUSE suite
(see Fig 10 in Portegies Zwart et al. (2013)). We illustrate the
higher speed of the GPU-accelerated version of ph4 in Fig. 1.

Appendix A.3.7: Parallelization by message-passing in
Brutus

In Brutus, the i-parallellization scheme is implemented, that is,
in the double-force loop, the outer for-loop is parallelized (
Makino (2002)). The numbers in arbitrary-precision data type
are converted into an array of characters that are subsequently
communicated through MPI. When it is received, the data type
is converted back into arbitrary-precision variables.

Appendix A.3.8: Speed of light

Hermite_GRX, ph4, and Brutus operate internally in dimen-
sionless N-body units, for which G = 1, the total mass M = 1,
and the virial radius R = 1. When we scale to physical units, like
in a 106 M� star cluster with a 1 pc virial radius, we have to in-
troduce scaling between the physical units and the N-body units.
In AMUSE, this is done with a converter (Portegies Zwart &
McMillan 2018).

In Hermite_GRX, we use the relative speed of light param-
eter ζ in terms of the mean velocity in N-body units ( 1

2

√
2), and

size

v =

√
Gm

r
. (A.53)

The speed of light in physical units also has to be converted
into N-body units. In Hermite_GRX, we do this by defining the
relative speed of light, or the relativisticality of the conditions,
as

ζ =
1
2

√
2/v. (A.54)

For m = 106 M� and r = 1 au, we obtain ζ = O(2.4 · 10−5), and
for r = 1 pc, we obtain ζ = O(0.01). Here the system becomes
Newtonian for ζ → 1, and lower values of ζ mean a more rel-
ativistic system. The assumption of the Tailor-series expansion
tends to break down for ζ >∼ 0.3 (see sect. 4.2 or better, read
(Will 2011)).

In the main paper we express the speed of light in terms of
the velocity dispersion v/c, which is more natural. The conver-
sion from ζ to v/c is vnbody = 1/

√
2:

v/c = vnbody/cnbody = vnbody/(ζc). (A.55)

Appendix A.3.9: Example

In Listing 2 and 1, we showed a rudimentary AMUSE script for
calculating the evolution of N black holes to 1-PN EIH equations
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Listing 1. source listing for simulation gravitating system.

d e f g r a v i t y ( bod ie s ,
c o n v e r t e r ,
i n t e g r a t o r ,
d t_param =0 .1 ,
t _ e n d = 2 0 0 | u n i t s . y r ) :

g r a v i t y = HermitePN ( c o n v e r t e r )
gp = g r a v i t y . p a r a m e t e r s
gp . d t_param = dt_param
gp . p e r t u r b a t i o n = ’1PN_EIH ’
gp . i n t e g r a t o r = i n t e g r a t o r
gp . l i g h t _ s p e e d = c o n s t a n t s . c
gp . num_th reads = 1

g r a v i t y . p a r t i c l e s . a d d _ p a r t i c l e s ( b o d i e s )
sc = g r a v i t y . s t o p p i n g _ c o n d i t i o n s . \

c o l l i s i o n _ d e t e c t i o n
sc . e n a b l e ( )
E t o t _ i n i t = g r a v i t y . k i n e t i c _ e n e r g y +\

g r a v i t y . p o t e n t i a l _ e n e r g y
f r o m _ g r a v i t y = g r a v i t y . p a r t i c l e s . \

new_channe l_ to ( b o d i e s )

d t = 0 .001 * t _ e n d
w h i l e g r a v i t y . g e t _ t i m e () < t _ e n d :

t ime = g r a v i t y . model_ t ime + d t
g r a v i t y . evo lve_mode l ( t ime )
f r o m _ g r a v i t y . copy ( )

Ekin = g r a v i t y . k i n e t i c _ e n e r g y
Epot = g r a v i t y . p o t e n t i a l _ e n e r g y

E t o t = Ekin + Epot
dE = ( E t o t _ i n i t −E t o t ) / E t o t
p r i n t ( " T =" , g r a v i t y . g e t _ t i m e ( ) ,

"M =" , b o d i e s . mass . sum ( ) ,
"E = " , E to t ,
" Q = " , −Ekin / Epot )

p r i n t ( " dE =" , dE )

i f s c . i s _ s e t ( ) :
p r i n t ( " C o l l i s i o n d e t e c t e d =" ,

l e n ( sc . p a r t i c l e s ( 0 ) ) )
r e s o l v e _ c o l l i s i o n ( sc ,

g r a v i t y ,
b o d i e s )

g r a v i t y . s t o p ( )

of motion (including the cross terms). Listing 2 showed how to
start the code, and Listing 1 showed the main event loop. Here
we adopted the symmetrized regularized Hermite integrator with
the full EIH equations of motion to first order. We adopted a
radius of the particles of 10GM/c2.

Listing 2. Source listing for simulation gravitating system.

mass = 1 . e+6 | u n i t s . MSun
s i z e = 0 . 0 0 1 | u n i t s . pc
conv = nbody_sys tem . n b o d y _ t o _ s i ( mass ,

s i z e )
b o d i e s = new_plummer_model ( 1 0 , conv )
b o d i e s . r a d i u s = S c h a r t z s c h i e l d ( b o d i e s . mass )
i n t e g r a t o r = ’ S y m m e t r i z e d R e g u l a r i z e d H e r m i t e ’

g r a v i t y ( bod ie s ,
i n t e g r a t o r ,
c o n v e r t e r ,
d t_param = o . dt_param ,
t _ e n d = o . t _ e n d )

−2000 0 2000 4000 6000 8000 10000 12000
x [au]

−2000

0

2000

4000

y
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u
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Fig. A.1. Integration of an N = 10 Plummer sphere with a virial radius
of 1 mpc and a total mass of 107 equal-mass black holes for 200 years.

Appendix B: Validation of the code

Appendix B.1: Two-body systems

Appendix B.1.1: Integrator performance

The Newtonian solution for the equations of motion for two par-
ticles was described by Kepler (1609). In the absence of general
relativity, the solution is static, with the exception of the mean
anomaly. As a first test, we check the conservation of these the-
oretically conserved Keplerian elements for one orbit.

We varied the initial eccentricity e0 and time-step param-
eter η and adopted masses of M = 106 M�, m = 50 M�,
an initial semimajor axis a0 = 1 mpc, and an initial eccen-
trity e0 ∈ {0.1, 0.5, 0.9}. For the time-step parameter η ∈
{0.03, 0.01, 0.003, 0.001} , and we integrated for one orbital pe-
riod (Kepler 1609),

P = 2π

√
a3

0

G(M + m)
. (B.1)

In figs. B.1 and B.2 we show the relative errors in energy and ec-
centricity in these integrations for the unregularized and the reg-
ularized Hermite integrator, respectively. For each calculation,
the error in the energy and eccentricity reaches a maximum near
pericenter.

The relative error in the regularized Hermite integration in
fig. B.2 is one orders of magnitude smaller than the unregular-
ized integrator error (see Figure B.1). As intended in its design,
the regularized Hermite integrator performes equally in terms of
conserving energy and angular momentum compared to the non-
regularized integrator for low-eccentricity orbits, and consider-
ably better for eccentric orbits.
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Fig. B.1. Relative error in the energy (top row of panels) and eccentricity (bottom row) for integrating a two-body system using the Her-
mite integrator without post-Newtonian terms for initial eccentricities e0 ∈ {0.1, 0.5, 0.9} (from left to right), for time-step parameters η ∈
{0.03, 0.01, 0.003, 0.001} (top to bottom in blue, green, red, and orange, respectively).
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Fig. B.2. Relative integration errors in the energy (top row of panels) and eccentricity (bottom row) for one orbit using the regularized Hermite
integrator for Newton’s equations of motion for initial eccentricities e0 ∈ {0.1, 0.5, 0.9} (left to right panels, respectively), for various time step
parameters η ∈ {0.03, 0.01, 0.003, 0.001} (in colour: blue, green, red and orange, respectively).

In fig. B.3 we present the secular drift in en-
ergy as a function of η for initial eccentricities
e0 ∈ {0.01, 0.1, 0.5, 0.9, 0.99, 0.999, 0.9999}. The same set
of initial conditions were adopted in Hamers et al. (2014).
These integrations were performed for tend/P = 103 and
tend/P = 3.4 × 105. As expected for a fourth-order integrator,
the integration error scales with O

(
η4

)
. The regularized Hermite

integrator outperforms the other integrators in terms of energy
conservation for high eccentricity. The nonregularized integra-
tors have a secular growth of the energy error. We therefore
prefer the regularized integration for the long-term evolution of
highly eccentric orbits.
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Fig. B.3. Relative energy errors for integration for tend/P = 103 and tend/P = 3.4 × 105 for initial eccentricities e0 ∈

{0.01, 0.1, 0.5, 0.9, 0.99, 0.999, 0.9999} as a function of the time-step parameter η. The various integrators are indicated with colors (see legend).

Appendix B.1.2: Post-Newtonian corrections

General relativity changes the dynamics of astronomical sys-
tems. This results in variations in the evolution of the orbital
elements for two-body systems.

The secular evolution in the argument of periastron forms
one of the major tests for general relativity. The osculating ele-
ments, instantaneous orbital parameters under the influence of
a perturbing acceleration, can be derived from the perturbing
acceleration using Lagrange’s planetary equations (de Lagrange
1772; Merritt 2013).

We numerically integrated Lagrange’s planetary equations
for the first-order post-Newtonian perturbation using Euler’s
method (Euler 1760). We decreased the time step until the solu-
tion convergenced. For the earlier adopted binary, we used initial
eccentrities e0 ∈ {0.1, 0.5, 0.9} . The resulting theoretical osculat-
ing elements are presented in fig. B.4. The post-Newtonian terms
become more important for larger eccentricities because near pe-
riastron, the relative velocity of the particles becomes large while
the distance becomes smaller for higher eccentricities.

Direct numerical integration of the equations of motion
should reproduce these osculating elements, and in particular,
the secular change in the argument of periastron. We used the
same binary as before and a post-Newtonian perturbation to inte-
grate one orbit. For a two-body system, the EIH equations of mo-
tion reduce to the pairwise approximation. In fig. B.5 we present
the relative error of the osculating elements integrated using the
regularized Hermite and compare them to the theoretical predic-
tion. We also show the integration error in total energy, including
the post-Newtonian energy (eq. 5).

The error in the osculating element remains finite, even for
very low values of η. The discrepancy is largest near pericen-
ter and smallest near apocenter. The maximum relative error we
observe in fig. B.5 in the first post-Newtonian correction is sev-
eral orders of magnitude smaller than the theoretical predictions,
making an implementation error improbable. The discrepancy
between the theoretical value and the numerical results may well
be caused by round-off, in particular since the post-Newtonian
corrections require quite a large number of operations per step
and the time step is small. With a time-step parameter η = 10−3

and ∼ 103 operations per post-Newtonian evaluation, we expect
the round-off error to grow by some six orders of magnitude over
one orbital period. With the adopted 16 mantissa implementa-
tion, we then arrive at a mean error of about O

(
106

)
, which is

consistent with the observed energy error (bottom row of panels
in fig. B.5).

For validation and verification, we recalculated the same ini-
tial conditions using ARCHAIN (Mikkola & Merritt 2008b).
The results are indistinguishable from our implementation. The
discrepancy between the numerical N-body result and the con-
verged semianalytic solution then manifests itself in two inde-
pendently developed codes. We argue that the conserved energy
corresponding to the equations of motions truncated to first post-
Newtonian order contains some second post-Newtonian terms
that are ignored. Because these terms have order O

(
v4/c4

)
, they

tend to be important for higher eccentricity and near pericenter,
which is precisely what we observe in our simulations.

We caution about judging the accuracy of an N-body sim-
ulation based on energy conservation alone, in particular when
considering the second-order post-Newtonian terms (Portegies
Zwart & Boekholt 2018). On the other hand, the secular evolu-
tion of the energy does not seem to be affected. For the 1-PN
terms (including the cross terms) adopted in the main paper, the
enery is conserved.

Appendix C: Relativistic von Zeipel-Lidov-Kozai
effect

There are only a few known solutions to the three-body problem.
In addition to several semianalytic solutions to resonant cases,
such as we find in periodic braids (Moore 1993; Montgomery
1998), there is also a theory about the general behavior of hierar-
chical three-body systems. In this section, we focus on the latter,
in particular since there is a rich body of literature about the as-
sociated phenomena observed in hierarchical triples. We refer to
this theory as von Zeipel-Lidov-Kozai cycles (von Zeipel 1910;
Lidov 1962; Kozai 1962), and there is copious literature about
the theory (Efimov & Sidorenko 2020; Hamers 2021), its deeper
consequences (de Elía et al. 2019), or the observational aspects
(Stephan et al. 2020). Here we adopt the von Zeipel-Lidov-Kozai
effect of testing the three-body methods for Newtonian and rela-
tivistic dynamics.

Appendix C.1: Newtonian von Zeipel-Lidov-Kozai problem

Numerical and analytical dynamical stability arguments (Geor-
gakarakos 2008) indicate that most triples with comparable
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Fig. B.4. Osculating elements as a function of time for a binary with a stellar mass 50 M� in orbit around a 106 M� supermassive black hole in a
a = 1 mpc orbit with an initial eccentricity e0 ∈ {0.5, 0.7, 0.9}. Only the argument of periastron, ω, shows a secular variation (bottom panel).

masses and mutual distances are dynamically unstable and ul-
timately decay into a binary and a single star. Counterexamples
exist, however, in which the three stars form a stable and periodic
braid. Some of these solutions are even stable to second-order
post-Newtonian order (Lousto & Nakano 2008b). Although dy-
namically unstable triples are rare, they are of considerable the-
oretical importance. From an observational perspective, they are
also of interest because they lead to relatively high-velocity stars
or stellar mergers.

Except for braids, stable triples are always hierarchical in
the sense that they can be described as an inner binary and a
third body that orbits the center of mass of the inner binary at a
distance much larger than the separation of the inner binary, as
shown schematically in Figure C.1. Such hierarchical triples are
rather common, and Tokovinin (2014) estimated their fraction
among solar-type stars in the solar neighborhood ∼ 13 %.

An important aspect in the dynamics of hierarchical triples is
the periodic exchange of orbital angular momentum between the
inner and outer binary. Such coupling is only effective when the
relative inclination between the two orbital planes of the inner
and outer orbits exceed some critical value

irel,crit = arccos
(√

3
5

)
≈ 39.2◦. (C.1)

In this case, the inner binary and the relative inclination evolve
periodically. To first nonzero order, this periodicity conserves

Lz ∝

√
1 − e2

1 cos (irel) = constant. (C.2)

During such von Zeipel-Lidov-Kozai cycles, the orbital energies
remain constant, which leads to constant semimajor axes. Dur-
ing such a cycle, the eccentricity of the inner binary can reach
values as high as e1 ∼ 1 − 10−6, as we show in Figures C.3 and
C.4. Such highly eccentric orbits are easily subject to tidal effects

or the emission of gravitational waves, and could lead to stel-
lar collisions (Antognini & Thompson 2016). Fortunately, such
high-eccentricity encounters are not expected to naturally occur
in large N-body systems, except in the presence of hierarchical
multiple subsystems. If such high eccentricities are relevant, the
entire integration scheme, the Taylor expansion adopted for the
post-Newtonian terms, and the possibility of tidal effect should
all be reconsidered.

One great advantage of von Zeipel-Lidov-Kozai cycles is the
possibility of deriving the secular evolution analytically by av-
eraging over the inner and outer orbits. Here we assume that the
orbital parameters vary slowly compared to the outer orbit: the
timescale on which the orbital angular momentum of the inner
binary varies is small compared to the inner orbital period (An-
tonini et al. 2014). Direct numerical integration of the equations
of motion of hierarchical triples remains important for validating
the underlying assumption on the system’s hierarchy.

In Figure C.2 we present the result of several such numerical
integration of some von Zeipel-Lidov-Lidov cycles together with
the relation between e1 and irel. The lowest-order approximation
for von Zeipel-Lidov-Kozai cycles is the result of the quadrupole
term in the multipole expansion that is used in the derivation. The
corresponding timescale is approximately (Naoz et al. 2013b)

tNewton
quad ∼

2πa3
2(1 − e2

2)
3
2
√

m1 + m2

a
3
2
1 m3

√
G

, (C.3)

in which the eccentricity reaches a maximum value of

e1,max =

√
1 − 5

3 cos2(itot). (C.4)

The latter expression is only valid in the limit in which the
octopole terms vanish, the test particle quadrupole order limit
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Fig. B.5. Relative errors in semimajor axis, eccentricity, argument of pericenter and post-Newtonian energy for a relativistic binary composed of
a 50 M� star in orbit around a 106 M� supermassive black hole in a a = 1 mpc orbit with an initial eccentricity e0 ∈ {0.5, 0.7, 0.9}. The initial
eccentricity was chosen to be e0 ∈ {0.5, 0.7, 0.9}. The integration was done using a regularized Hermite integrator, using a time step parameter of
η ∈ {0.03, 0.01, 0.003, 0.001} to show convergence (blue, green, red, and orange, respectively).

(Naoz et al. 2013a), in which a2 � a1. When the octupole-level
terms become important, they can be seen as a modulation of
von Zeipel-Lidov-Kozai cycles. The importance of the octupole-
level variations can be quantified by considering the ratio of the
octupole to quadrupole-level coefficients,
C3

C2
=

15
4
εM

e2
. (C.5)

Here C2 and C3 are the quadrupole- and octupole-level coeffi-
cients given by Naoz et al. (2013a), and εM is the relative impor-
tance of the octupole-level term in the secularized Hamiltonian,

εM =

(
m1 − m2

m1 + m2

) (
a1

a2

)  e2

1 − e2
2

 . (C.6)

This suggests that octupole-level variations are important for ec-
centric inner-binaries with high-mass components. We note here
that εM is independent of the mass of the third (outer) body m3,
but depends on its orbital parameters a2 and e2. The timescale of
the octupole variation can be defined in a similar fashion,

tNewton
oct ∼

4
15
ε−1

M tNewton
quad . (C.7)

Naoz et al. (2013a) demonstrated that this octupole variation can
have consequences on the maximum eccentricity reached dur-
ing the evolution of the system. The induction of variations in
the relative inclination itot over time can lead to a flip in the in-
ner binary’s orbit. The maximum eccentricity is reached at the
moment the flip occurs (see eq. C.4).
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Inner binary (a1, e1)

m1
m2

m3

Outer binary (a2, e2)

Fig. C.1. Schematic image of a hierarchical binary, consisting of the inner binary with masses m1 and m2, orbiting each other with a semimajor axis
a1 and an eccentricity e1, orbited by a third mass m3, with semimajor axis a2 and eccentricity e2. This figure is not to scale, as typically a2 � a1.
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Fig. C.2. A few Kozai-Lidov cycles with their distinctive signature of high-eccentricity (low 1 − e1) spikes. On the right, the eccentricity and
relative inclination are plotted against each other from t = 0 to t = 10000 yr, including the analytical prediction (based on the initial conditions and
conservation of linear momentum in Equation C.2). The thickness of this line is due to numerical integration errors. Initial condition is a binary of
masses m1 = 1 MJup and m2 = 1 M�, semimajor axis a1 = 0.005 AU, and eccentricity e1 = 0.001, orbited by a third body of mass m3 = 106 M� at
semimajor axis a2 = 51.4 AU, eccentricity e2 = 0.7, and relative inclination irel = 95◦. Integration was done using a regularized Hermite integrator
with a time-step parameter of η = 0.01.

We demonstrated in sect. B that the unregularized Hermite
scheme is prone to introducing integration errors for highly ec-
centric orbits. This may pose a problem while integrating triples
that are subject to von Zeipel-Lidov-Kozai cycles, for which the
inner binary can become highly eccentric. We illustrated this in
fig. C.3, wherethe inner binary reaches an eccentricity in excess
of 1 − 10−6 at t ∼ 4 Myr , leading to a relative integration error
of about eight orders of magnitude larger than when integrating
a circular orbit. The result of regularized Hermite scheme for the
same triple is presented in fig. C.4, showing a considerably better
conservation of energy, and it is also faster.

Appendix C.2: Relativistic von Zeipel-Lidov-Kozai problem

Triple star systems that are subject to von Zeipel-Lidov-Kozai
cycles may be affected by general relativity, in particular, when
this leads to highly eccentric orbits. Since these cycles are the
result of secular resonances between an inner and an outer orbit,
variations in the parameters of the inner binary on a timescale
similar to the secular resonance tend to quench the effect and
reduce the extremes in the von Zeipel-Lidov-Kozai cycles.
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Fig. C.3. Kozai cycles integrated using the Hermite integrator with a time-step parameter of η = 0.001. Initial condition was a binary with masses
m1 = 1 MJup and m2 = 1 M� with semimajor axis a1 = 6 AU and eccentricity e1 = 0.001 orbited by a third body of mass m3 = 40 MJup at a distance
a2 = 100 AU and eccentricity e2 = 0.6. The initial relative inclination was itot = 65◦. These initial conditions are identical to Figure 3 of Naoz
et al. (2013a). The integration errors in both the energy and the semimajor axis of the inner binary rapidly rise at t ∼ 4 Myr, where the inner binary
reaches maximum eccentricity.
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Fig. C.4. Kozai cycles integrated using the regularized Hermite integrator with a time-step parameter of η = 0.003. Initial conditions are identical
to those in Figure C.3, using a similar wall-clock run time. The large integration errors at high eccentricities are now absent, as regularization is
applied to the inner binary.

The timescale on which the inner binary orbit is affected by
general relativity is (Naoz et al. 2013b)

t1PN
i ∼ 2π

a
5
2
1 c2(1 − e2

1)

3G(m1 + m2)
3
2

. (C.8)

We define the relative (dimensionless) parameter R as the ratio
between the 1-PN terms and Newtonian quadrupole timescales

for a circular inner orbit,

R =
t1PN
i

tNewton
quad

∣∣∣∣∣∣∣
e1=0

=
1
3

(a1/R1)4

(a2/R3)3

1

(m3/m1)2(1 − e2)
3
2

. (C.9)

Here R1 and R2 are the gravitational radii of the inner binary and
the outer orbiting tertiary body. They are given by

R1 =
G(m1 + m2)

c2 , (C.10a)
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and

R2 =
Gm3

c2 , (C.11a)

respectively.
A maximum in the eccentricity of the inner orbit is induced

when the timescale for which the inner orbit evolves due to gen-
eral relativity is on the same order as one von Zeipel-Lidov-
Kozai cycle due to classical Newtonian resonance. The criteria
for this to happen are R ∼ 1 and m3 � m1 > m2 (Naoz et al.
2013b).

In fig. C.5 we compare Hermite_GRX with the results pre-
sented in Naoz et al. (2013b, see their fig.5). For the initial condi-
tions, we used a star with planet that orbit a supermassive black
hole. The inner binary, the star and planet, have masses m1 =
1 M� and m2 = 0.001 M�, with semimajor axis a1 = 105R1, ec-
centricity e1 = 0.001, and inclination irel = 65◦ with respect to
the outer orbit. The third body is a supermassive black hole with
mass m3 = 106 M� and orbits the inner binary with a semimajor
axis a2 and eccentricity e2 = 0.7 for various values of R. The
system is evolved to tend = stNewton

quad for three value of s, where
we adopted a time-step parameter η = 0.003 for s = 10 and
s = 100, and η = 0.002 for s = 300. The maximum eccentricity
reached during this time interval for various values of R is plot-
ted in fig. C.5. Some minor deviation from the theoretical curve,
in particular for s = 10 is caused by our incomplete sampling
because we only determined the eccentricity of the inner orbit
near apocenter. In addition, the distance between the third body
to the inner binary also introduces variations in the eccentricity
of the inner orbit.

In fig. C.5 we show the resonant-like eccentricity excita-
tion discussed in Naoz et al. (2013b). Our calculations are inte-
grated directly, whereas Naoz et al. (2013b) conducted an orbit-
averaged integration, using test particles with 1-PN including
terms only up to O

(
a−2

1

)
and O

(
a−2

2

)
and the term, whereas we

perform a direct N-body integration of the full EIH equations of
motion to 1-PN with finite masses.

The first peak in the resonant structure of the eccentricity
in fig. C.5 is shifted to R ∼ 0.65 with respect to to R ∼ 0.55
in fig. 5 of Naoz et al. (2013b). The calculations performed by
Naoz et al. (2013b) adopted orbit averaging, which gives a con-
siderable speed-up compared to direct integration. On the other

hand, however, this may lead to missing the collision because the
maximum eccentricity is reached in a time interval that is shorter
than the orbital period of the outer binary. Orbit averaging over
the outer orbit then lacks the resolution to resolve the maximum
eccentricity in the inner orbit, whereas in the direct N-body inte-
gration presented in fig. C.5, we do resolve the evolution of the
eccentricity of the inner orbit.

Naoz et al. (2013b) further discussed the possibility of or-
bital flips when including relativistic effects, even in the absence
of considerable variations at the Newtonian octupole moments,
which form the usual cause of orbital flips. In their fig. 7, they
presented a specific case for an inner binary with m1 = 10 M�,
m2 = 8 M�, a1 = 10 AU, and e1 = 0.001 that is orbited by a
m3 = 30 M� tertiary body with semimajor axis a2 = 502 AU and
eccentricity e2 = 0.7 and inclined by irel = 94◦ to the plane of the
inner binary. According to eq. C.6, the high mass ratio of the in-
ner binary suppresses the octupole-level (Newtonian) effects. By
integrating these initial conditions, including the EIH equations
of motion using the regularized Hermite integrator with a time-
step parameter η = 0.0003, we do not observe such a orbital flip,
as we show in fig. C.6.

The origin of this discrepancy is not so clear. The Newtonian
case does not show orbital flips, and we see no direct argument
for the presence of orbital flips when adopting the EIH equa-
tions of motion. On the other hand, when integrating the EIH
equations of motion, we acquire a considerable error in the to-
tal energy when the binary reaches its highest eccentricity. This
is caused by the large perturbation of the post-Newtonian terms
when the inner binary reaches pericenter. As a result, this system
is hard to integrate numerically. Our integration with a time-step
parameter η = 0.0003 integrated for 1 Myr took ∼ 5 days on a
regular workstation and reached a minimum relative inclination
of irel,min = 93◦.

Overall, our regularized Hermite integrator performs well
and gives results that are consistent with previous calculations.
Discrepancies with secular evolution calculations can be under-
stood from the lack of inner-orbit resolution in the latter. We
therefore see no reason to doubt our implementation of the reg-
ularized and post-Newtonian terms.
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Fig. C.5. Maximum eccentricity reached after tend = NtNewton
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m1 = 1 M�, m2 = 0.001 M�, m3 = 106 M�, a1 = 105R1, itot = 65◦, e1 = 0.001, e2 = 0.7, and a2 was varied to simulate different R. An eccentricity
excitation around R = 0.65 is evident. Simulations were performed using a regularized Hermite integrator with a time-step parameter of η = 0.003
for N = 10 and N = 100 and η = 0.002 for N = 300. Each data point is an independent simulation that took a wall-clock time of ∼ 20 min for
N = 10, ∼ 3 hours for N = 100, and ∼ 12 hours for N = 300.

40

60

80

100

120

140

0 2 4 6 8 10

i to
t
(i

n
de

gr
ee

s)

t (in Myr)

10−5

10−4

10−3

10−2

10−1

100

1
−

e 1

10−16
10−14
10−12
10−10
10−8
10−6
10−4
10−2
100

0 2 4 6 8 10

[a
1(

t)
−

a 1
(0

)]
/a

1(
0)

t (in Myr)

10−16
10−14
10−12
10−10
10−8
10−6
10−4
10−2
100

[E
(t

)−
E

(0
)]
/E

(0
)

Fig. C.6. Kozai-Lidov cycles for identical initial conditions as in Naoz et al. (2013b), showing no orbital flips, in contrast to the orbital flips
shown in that paper. The initial conditions of this direct numerical integration consist of a similar-mass inner binary (m1 = 10 M�, m2 = 8 M�,
a1 = 10 AU, e1 = 0.001) orbited by a third body (m3 = 30 M�, a2 = 502 AU, e2 = 0.7), inclined by irel = 94◦ relative to the inner binary. Integration
was done using Newtonian (blue line) and the EIH equations of motion (green striped line) using a regularized Hermite integrator with a time-step
parameter η = 0.0003.
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