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ABSTRACT

We present a method for fast evaluation of the covariance matrix for a two-point galaxy correlation function (2PCF) measured with the Landy–
Szalay estimator. The standard way of evaluating the covariance matrix consists in running the estimator on a large number of mock catalogs, and
evaluating their sample covariance. With large random catalog sizes (random-to-data objects’ ratio M � 1) the computational cost of the standard
method is dominated by that of counting the data-random and random-random pairs, while the uncertainty of the estimate is dominated by that of
data-data pairs. We present a method called Linear Construction (LC), where the covariance is estimated for small random catalogs with a size of
M = 1 and M = 2, and the covariance for arbitrary M is constructed as a linear combination of the two. We show that the LC covariance estimate
is unbiased. We validated the method with PINOCCHIO simulations in the range r = 20−200 h−1 Mpc. With M = 50 and with 2 h−1 Mpc bins, the
theoretical speedup of the method is a factor of 14. We discuss the impact on the precision matrix and parameter estimation, and present a formula
for the covariance of covariance.

Key words. cosmology: observations – large-scale structure of Universe – methods: data analysis – methods: statistical

1. Introduction

The next generation of telescopes for cosmology surveys, such
as Euclid (Laureijs et al. 2011), the Vera Rubin Observatory
(Ivezić et al. 2019), DESI (DESI Collaboration 2016), or the
Nancy Grace Roman Space Telescope (Akeson et al. 2019), will
soon greatly improve the quality and quantity of data for galaxy
clustering and lensing measurements. Their main aim is to illu-
minate the dark sector of cosmology, to test Einstein’s gravity
on large scales, and to find signatures of the physics of inflation
such as primordial non-Gaussianities.

Galaxy clustering is one of our most powerful cosmologi-
cal probes (Cole et al. 2005; Eisenstein et al. 2005; Alam et al.
2005; Alam et al. 2021). However, galaxies are biased tracers of
the nonlinear density field and their selection is subject to sev-
eral different effects, such as fluctuations in exposure time, noise

? This paper is published on behalf of the Euclid Consortium.

level, Milky Way extinction, photometry calibration error, sam-
ple contamination among others (e.g., Jasche & Lavaux 2017;
Monaco et al. 2019; Kalus et al. 2019; Merz et al. 2021). Thus,
their clustering will contain entangled information of mat-
ter clustering, galaxy bias, and observational systematics. The
uncertainty will be represented by a covariance matrix. The
inverse of the covariance matrix, the precision matrix, will be
used in the likelihood analysis to infer cosmological parameters
and their covariance. An accurate quantification of the cluster-
ing covariance under all the sources of uncertainty is therefore
of paramount importance for the success of a survey.

It is customary to construct covariance matrices of galaxy
clustering by using large samples of hundreds, if not thou-
sands, of mock galaxy catalogs in the past light cone (e.g.,
Manera et al. 2013; Kitaura et al. 2016). Any known selection
effects are applied to the mock catalogs, after which the clus-
tering signal is measured with the same procedure as the one
used for the actual data catalog. This sample of clustering
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measurements makes it possible to construct a brute-force
numerical sample covariance. This approach has many advan-
tages. It is conceptually simple, and the covariance built this
way is positive-definite by construction. The estimation error of
the covariance and its propagation to parameter estimation are
well understood (Taylor et al. 2013; Taylor & Joachimi 2014;
Hartlap et al. 2007; Dodelson & Schneider 2013; Percival et al.
2014, 2022; Sellentin & Heavens 2016). The sample covariance,
however, is computationally expensive to construct; the vari-
ance of the covariance estimate decreases proportionally to 1/N,
where N is the number of simulations, so getting the error down
to a 10% level requires about 100 independent realizations, and
∼10 000 realizations for a 1% level.

This raises two related problems: on the one hand, the pro-
duction of such mocks, which are typically addressed with
approximate methods to bypass the high cost of N-body sim-
ulations (Monaco 2016); on the other hand, the measurement
of galaxy clustering of thousands of mocks, which can be a
bottleneck for a processing pipeline. Several strategies have
been proposed to reduce the cost of covariance estimation.
These include precision matrix expansion (Friedrich & Eifler
2018), tapering (Paz & Sánchez 2015), eigenvalue decom-
position (Gaztañaga & Scoccimarro 2005), linear shrinkage
(Pope & Szapudi 2008), sparse precision matrix estimation
(Padmanabhan et al. 2016), and nonlinear shrinkage (Joachimi
2017).

In this work we focus on the estimation of the two-point cor-
relation function (2PCF) and its covariance. In the special case of
Gaussian fluctuations, the 2PCF contains all information on the
statistical properties of the galaxy distribution. A concrete exam-
ple would be the European Space Agency’s Euclid cosmology
mission, and in particular its spectroscopic sample of Hα emit-
ting galaxies (Euclid Collaboration 2022). This galaxy sample
is expected to be as large as 20–30 million galaxies in the red-
shift range 0.9–1.8. The Euclid Consortium plans to represent
the covariance matrix of the 2PCF with a few thousand mock
catalogs. The time needed to measure the 2PCF of such a large
number of mocks will be one major contributor to the whole
pipeline from raw images to cosmological parameter inference.

The Landy–Szalay estimator (Landy & Szalay 1993) has
become the standard estimator in galaxy clustering science. In
addition to the actual galaxy catalog, the Landy–Szalay estima-
tor requires a random catalog, which represents a uniform distri-
bution of points within the survey volume considered, modulated
with same weighting and selection as the data catalog. The 2PCF
is then built as a combination of data-data (DD), data-random
(DR), and random-random (RR) pair counts. The estimator is
unbiased at the limit of an infinite random catalog, and, when
the fluctuations are small, it yields the minimum-variance solu-
tion for the correlation function.

Since the random catalog is usually much larger (in num-
ber of objects) than the data catalog, the computational cost of
the estimator is dominated by the cost of the RR counts. Glass-
like random catalogs (Dávila-Kurbán et al. 2021) have been pro-
posed as a way of reducing the required random catalog size. A
straightforward way to reduce the cost is to coadd RR pair counts
from a collection of small subcatalogs, rather than counting the
pairs in one large catalog, thus omitting pairs between subcata-
logs. This natural idea has been applied in many studies without
explicit mention, or without assigning a name to it. We refer to
this approach as the “split” method, thusly named because of the
idea of “splitting” a large random catalog into several small ones.
The term was coined in Keihänen et al. (2019), where the effect
of the size of the random catalog on the estimator error is studied

in a systematic way, and it is shown that the effect of the split-
ting on the estimation error is negligible. It is also shown that the
optimal relation between the accuracy and computational cost is
achieved when the subcatalogs have the same number of objects
as the data catalog.

Even with a split random catalog, most of the computation
time goes into the counting of the RR and DR pairs, while the
estimation error is dominated by the scatter of the data points.
The same applies to the sampling of the covariance matrix, the
cost of which is N times that of a single 2PCF estimation. Using
a single random catalog for all measurements can reduce the cost
of the RR counts, but then counting the DR pairs becomes the
next bottleneck.

In this paper we introduce a way of speeding up the covari-
ance estimation, specific to the Landy–Szalay estimator. We aim
to show that the covariance matrix for a 2PCF estimate can be
constructed using a significantly smaller random catalog than
what was used in the construction of the 2PCF itself.

The paper is organized as follows. In Sect. 2 we present the
method and its theoretical background. In Sect. 3 we discuss
the accuracy of the method, derive a covariance of covariance,
and discuss implications for parameter estimation. In Sect. 4
we describe the simulations we used for the validation of the
method. In Sect. 5 we present our results, comparing the accu-
racy and speed of the new method to those of the sample covari-
ance. We give our conclusions in Sect. 6.

This work has made use of the 2PCF code developed by the
Euclid Consortium.

2. Method

2.1. Landy–Szalay estimator

We denote the number of objects in the data catalog by Nd, and in
the random catalog by Nr. We assume that the two-point correla-
tion function is estimated with the Landy–Szalay estimator, with
the additional twist of the “split” option, as follows. The random
catalog is split into M subcatalogs, where M is called the split
factor. RR pairs are counted within each subcatalog and coad-
ded, but pairs of objects in two distinct subcatalogs are omitted.
Each subcatalog will have to obey the same statistical proper-
ties and have the same sky coverage as the full catalog. In other
words, each subcatalog must itself be a valid random catalog.
Splitting the random catalog reduces the computational cost of
2PCF estimation significantly, for a negligible loss of accuracy
(Keihänen et al. 2019). The optimal split factor has been shown
to be M = Nr/Nd, that is to say the random catalog is split into
subcatalogs of the same size as the data catalog. For fixed Nr, this
minimizes the variance of the correlation function for a given
computation time, or minimizes the computation time required
to reach a given target variance. From here on we parametrize
the size of the random catalog as Nr = MNd.

The random catalog is usually constructed to be significantly
larger than the data catalog, in order that the estimation error is
dominated by the scatter of the data points rather than that of the
random points. In this work we use as baseline the value M = 50,
the value adopted for the Euclid galaxy clustering study.

The Landy–Szalay estimator is

ξ̂(r) :=
dd(r) − 2dr(r)

rr(r)
+ 1, (1)

where dd(r), dr(r), and rr(r) denote the normalized data-data,
data-random, and random-random pair counts in a separation
bin. Following the notation of Keihänen et al. (2019), we use the
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vector r to denote the generalized separation vector. Vector r
may refer to a physical separation distance, or, more generally,
to an arbitrary bin in 1D, 2D, or 3D space. The normalized data-
data pair count is

dd(r) :=
DD(r)

Nd(Nd − 1)/2
, (2)

where DD(r) is the unnormalized pair count. This is unaffected
by the split. Similarly, the normalized data-random count is
given by

dr(r) := M−1
M∑

i=1

DRi(r)
N2

d

= M−1
M∑

i=1

dri(r), (3)

where DRi is the pair count between the data catalog and the ith
random subcatalog. Since the dependence on the random catalog
is linear, this too is unaffected by the split.

The normalized random-random count with split can be writ-
ten as

rr(r) := M−1
M∑

i=1

RRi(r)
Nd(Nd − 1)/2

= M−1
M∑

i=1

rri(r), (4)

where RRi is the unnormalized pair count from the ith sub-
catalog. With this notation, the split Landy–Szalay estimator
becomes

ξ̂(r) =
dd(r) − 2

M
∑

i dri(r)
M−1 ∑

i rri(r)
+ 1. (5)

We use the hat (ξ̂) to indicate that this is an estimate of the true
correlation function ξ.

The computational cost of the estimator is roughly propor-
tional to the total number of pairs counted. The cost of the split
estimator is proportional to 1

2 N2
d
(1+3M), while without split the

cost grows proportional to 1
2 N2

d
(1 + 2M + M2).

2.2. Covariance

We consider the estimated correlation function in two distance
bins r1 and r2, which may or may not be the same. We want to
estimate the covariance

cov
[
ξ̂(r1), ξ̂(r2)

]
:=

〈[
ξ̂(r1) − 〈ξ̂(r1)〉

] [
ξ̂(r2) − 〈ξ̂(r2)〉

]〉
. (6)

The brackets 〈〉 denote an average over an infinite ensemble
of data realizations, for fixed cosmology and survey geometry.
Since we consider the actual measured correlation function to
represent one such realization, the covariance is a measure of
the statistical uncertainty in the measured correlation function.

Assume we have N mock catalogs and corresponding ran-
dom catalogs, with the same sky coverage, masking etc. as the
actual survey catalog. Let ξ̂i(r), i = 1 . . .N denote the set of cor-
relation functions estimated from these mocks. An unbiased esti-
mate of the covariance is given by the sample covariance

Ĉ
[
ξ̂(r1), ξ̂(r2)

]
:=

1
N−1

N∑
i=1

[
ξ̂i(r1) − ξ̄(r1)

] [
ξ̂i(r2) − ξ̄(r2)

]
, (7)

where

ξ̄(r) :=
1
N

N∑
i=1

ξ̂i(r) (8)

is the estimated mean. The required number of mocks will
depend on the accuracy requirement of the application in ques-
tion. For few percent-level accuracy in parameter error bars,
N & 1000 is required.

Throughout this paper we use a convention where the symbol
Ĉ with a hat denotes a numerical estimate of a covariance, and
either cov or C denotes the true (ensemble average) covariance.
Specifically, Ĉ is reserved for the sample covariance estimate,
constructed as in Eq. (7) (see Table 1).

The computational cost of constructing the sample covari-
ance, obviously, is N times the cost of a single 2PCF estimate. In
this paper we show that a given level of accuracy can be reached
with a significantly lower CPU cost. For this goal, we now break
the covariance of the Landy–Szalay estimator into pair count
covariances.

Following the notation of the Landy–Szalay paper, we write

dd(r) = 〈dd(r)〉 [1 + α(r)] ,
dri(r) = 〈dr(r)〉

[
1 + βi(r)

]
, (9)

rri(r) = 〈rr(r)〉
[
1 + γi(r)

]
.

The brackets 〈〉 indicate an ensemble average. Thus α, βi, γi cap-
ture the variation of the pair counts around their average. By
definition, 〈α〉 = 〈β〉 = 〈γ〉 = 0. Inserting these into the Landy–
Szalay estimator yields

ξ̂(r) =
〈dd(r)〉 [1 + α(r)]

〈rr(r)〉
[
1 + M−1 ∑

i γi(r)
]

− 2
〈dr(r)〉

[
1 + M−1 ∑

i βi(r)
]

〈rr(r)〉
[
1 + M−1 ∑

i γi(r)
] + 1. (10)

For the ensemble averages it holds that 〈dr(r)〉 = 〈rr(r)〉 and
〈dd(r)〉 = d(r)〈rr(r)〉, where we define

d(r) := 1 + ξ(r). (11)

If the RR counts are large, as is usually the case, then γi(r) � 1,
and [1+ M−1 ∑

i γi(r)]−1 ≈ 1−M−1 ∑
i γi(r). Assuming α, β, γ �

1, we can drop the quadratic terms, and the estimator becomes

ξ̂(r) ≈ d(r)
[
1 + α(r) − M−1∑

iγi(r)
]

− 2
[
1 + M−1∑

iβi(r) − M−1∑
iγi(r)

]
+ 1 (12)

and as ensemble average 〈ξ̂(r)〉 = d(r) − 1. The deviation from
the ensemble average is

ξ̂(r) − 〈ξ(r)〉 (13)

≈ d(r)
[
α(r) − M−1∑

iγi(r)
]
− 2M−1 [∑

iβi(r) −
∑

iγi(r)
]
.

Inserting Eq. (13) into Eq. (6) yields a combination of cross-
correlation terms between α, β, γ. We now consider each of them
in turn, and make use of our knowledge of their statistical prop-
erties to calculate the expectation values.

Let us begin with the term

M−2
∑

i j

〈γi(r1)γ j(r2)〉. (14)

Indices i, j label independent random subcatalogs, all of which
are statistically identical. We therefore have 〈γi(r1)γ j(r2)〉 = 0
for i , j, and 〈γi(r1)γi(r2)〉 = 〈γ(r1)γ(r2)〉, where we drop the
subscript to indicate an ensemble average that is the same for all
subcatalogs. The covariance element becomes

M−2
∑

i j

〈γi(r1)γ j(r2)〉 = M−1〈γ(r1)γ(r2)〉. (15)
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Based on similar arguments we can write

M−1
∑

i

〈α(r1)βi(r2)〉 = 〈α(r1)β(r2)〉 (16)

and

M−1
∑

i

〈α(r1)γi(r2)〉 = 〈α(r1)γ(r2)〉 . (17)

Assuming that the random catalog and the data catalog are
independent would allow us to drop the 〈α(r1)γi(r2)〉 terms. This
is however not necessarily always true. If the characteristics of
the observed data catalog (mask, selection function) are used for
the generation of the random catalog, a correlation may arise
between the data catalog and the random catalog. Although such
correlations are likely to be small, the assumption of indepen-
dence is not relevant for the method we are developing, and we
will thus not implement it.

When dealing with the terms involving β and γ, we split the
sums into i = j and i , j parts, to obtain

M−2
∑

i j

〈βi(r1)β j(r2)〉

= M−1〈β(r1)β(r2)〉 +
(
1 − M−1

)
〈β(r1)β(r2)〉cr. (18)

Here the subscript cr (‘cross’) denotes that we are dealing with
DR counts that involve two distinct random subcatalogs, how-
ever correlated through the shared data catalog.

Based on similar arguments, we obtain:

M−2
∑

i j

〈βi(r1)γ j(r2)〉

= M−1〈β(r1)γ(r2)〉 +
(
1 − M−1

)
〈β(r1)γ(r2)〉cr. (19)

As in the case of 〈αγ〉, assuming independence between the ran-
dom catalog and the data catalog would allow us to drop the
second term, but this assumption is not relevant for the method
under discussion.

We introduce a more concise notation, where we drop the
arguments r1 and r2, and each term is interpreted as a sym-
metrized version of itself. When d is involved, it is paired with
the first element. For instance, d〈αβ〉 is to be read as

d〈αβ〉 =
1
2

[
d(r1)〈α(r1)β(r2)〉 + d(r2)〈α(r2)β(r1)〉

]
, (20)

similarly for the other pairs. In this notation, the covariance takes
the form

cov
[
ξ̂(r1), ξ̂(r2); M

]
= d2

[
〈αα〉 + M−1〈γγ〉 − 2〈αγ〉

]
− 4d

[
〈αβ〉 − 〈αγ〉 − M−1〈γβ〉 − (1 − M−1)〈γβ〉cr + M−1〈γγ〉

]
+ 4

[
M−1〈ββ〉 + (1 − M−1)〈ββ〉cr

− 2M−1〈βγ〉 − 2(1−M−1)〈βγ〉cr + M−1〈γγ〉
]
, (21)

where the third argument (M) indicates the size of the random
catalog.

We have expressed the Landy–Szalay covariance in terms of
pair-count covariances. We are now arriving at an observation
that is central for the method we are developing. Every term in

Eq. (21) is either independent of M, or proportional to M−1. The
covariance is thus of the form

cov
[
ξ̂(r1), ξ̂(r2); M

]
= A(r1, r2) +

1
M

B(r1, r2). (22)

Suppose we know the covariance for two distinct random-
catalog sizes M = Ma and M = Mb > Ma. We readily see that
Eq. (22) holds when

A(r1, r2) =
Mb

Mb − Ma
cov

[
ξ̂(r1), ξ̂(r2); Mb

]
−

Ma

Mb − Ma
cov

[
ξ̂(r1), ξ̂(r2); Ma

]
B(r1, r2) =

MaMb

Mb − Ma

{
cov

[
ξ̂(r1), ξ̂(r2); Ma

]
− cov

[
ξ̂(r1), ξ̂(r2); Mb

] }
. (23)

To construct the covariance for an arbitrary value of M, it
is sufficient to estimate the covariance for two smaller random-
catalog sizes Ma and Mb. This is much cheaper than running the
estimator with a large M. Equations (22) and (23) can then be
used to construct the covariance for the actual random catalog
size. This is the basic idea behind our proposed method.

2.3. Linear construction

We now consider how Ma and Mb should be chosen. The largest
reduction in computational cost is obtained with Ma = 1 and
Mb = 2. With Mb = M the method reduces to the conventional
sample covariance.

We now argue in favor of selecting Mb = 2Ma. This allows
us to use the random catalogs efficiently, as we now proceed to
explain. For each mock data catalog we generate two indepen-
dent random catalogs of same size Ma. We evaluate the M = Ma
covariance with either of the two sets, and take the average. This
is the Ma covariance to enter the formula (23). For the 2Ma
covariance, we take the combined data of the two Ma random
catalogs. This procedure reduces the scatter of the estimate, com-
pared to generating a new 2Ma random catalog, since the corre-
lated fluctuations cancel. We return to this point in Sect. 3 where
we consider the accuracy of the estimated covariance quanti-
tatively. To further save CPU time we save the DR and RR
pair counts from the M = Ma simulations, and construct the
M = 2Ma 2PCF from the saved pair counts, saving the CPU cost
of another run with M = 2Ma. Throughout the rest of this paper
we set Mb = 2Ma.

Our method is summarized formally as follows. We denote
by Ĉi j an estimated covariance matrix between two elements
ξ(ri), ξ(r j) of the correlation function. Indices i, j may refer to
different distance bins, or to elements picked from different mul-
tipoles.

We denote the correlation function estimated from a data cat-
alog D and a random catalog R as ξ̂(D,R), and the sample covari-
ance over the set of mocks as Ĉi j(ξ̂). We now have one data cat-
alog D and two random catalogs R1 and R2, both of size Ma.
We construct estimates for the covariances with M = Ma and
M = 2Ma (which we denote by Ĉa

i j and Ĉb
i j, respectively) as

Ĉa
i j := 1

2 Ĉi j

[
ξ̂(D,R1)

]
+ 1

2 Ĉi j

[
ξ̂(D,R2)

]
Ĉb

i j := Ĉi j

[
ξ̂(D,R1 ∪ R2)

]
. (24)
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From these we construct two component matrices

Âi j := 2Ĉb
i j − Ĉa

i j

B̂i j := 2Ma

[
Ĉa

i j − Ĉb
i j

]
(25)

and the final covariance as

ĈLC
i j := Âi j + M−1B̂i j. (26)

We refer to the covariance of Eq. (26) as the linear construc-
tion (LC) covariance.

The computational complexity of the Landy–Szalay estima-
tor is roughly proportional to 1

2 N2
d (1 + 3M), of which 1

2 N2
d goes

to DD pairs, N2
d M to DR pairs, and 1

2 N2
d M to RR pairs. The

cost of our proposed approach is 2 · 1
2 N2

d (1 + 3Ma) per realiza-
tion. This is assuming the 2PCF estimation code is run twice,
which involves counting the DD pairs twice. If that is avoided,
the cost is further reduced to 1

2 N2
d (1 + 6Ma). With M = 50 and

Ma = 1, the gain with respect to sample covariance is a factor
of 151/7 ≈ 21.6, and increases with increasing M. Moreover,
our result readily yields an extrapolation to infinite M, that is,
we know what would be the estimator variance if we could use
an infinite number of random points, and how much the variance
with a finite M differs from that.

It is important to note that the presented derivation is based
on very general assumptions on how the Landy–Szalay estima-
tor is build from pair counts, and on the definition of variance.
We do not make assumptions on the survey geometry, or which
physical processes cause the scatter in the random counts, nor do
we assume Gaussianity. The proposed method is thus valid for a
very wide class of galaxy distributions.

Another important aspect to note is that the same procedure
can be applied to any linear function of the correlation func-
tion. The only requirement is that the decomposition of Eq. (22)
remains valid. In particular, the method applies as such to the
multipoles ξ`(r) of the correlation function, and to the projected
correlation function, since both are linear functions of the under-
lying 2-dimensional correlation function. It also applies to a
rebinned correlation function.

3. Error analysis

We note that ĈLC is a noisy estimate of the underlying true
covariance C. Thus it is itself a random variable, and we can
define a covariance for it. In the following we analyze the error
of the covariance estimate, and derive a covariance of covariance
for both the sample covariance and the LC covariance.

3.1. Gaussian distribution

We consider first the general case of four random variables
x, y,w, z. For each of these we assume to have N independent
realizations. An unbiased estimate of the covariance C(x, y) is
obtained as

Ĉ(x, y) :=
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ), (27)

where x̄ = 1
N

∑N
i=1 xi, and similarly for ȳ. It can be shown that

cov
[
Ĉ(x, y), Ĉ(z,w)

]
=

1
N
〈x′y′z′w′〉 −

1
N
〈x′y′〉〈z′w′〉

+
1

N(N − 1)
(
〈x′z′〉〈y′w′〉 + 〈x′w′〉〈y′z′〉

)
, (28)

Table 1. Symbols used in this work.

Symbol Meaning

Nd Number of objects in the data catalog
Nr Number of objects in the random catalog
M Ratio M = Nr/Nd, split factor
Ma Reduced random catalog size
N Number of realizations
ξ(r) True two-point correlation function
ξ̂(r) Estimate of the correlation function
r Generalized (1D,2D, 3D) bin
C True covariance
Ĉ Estimated covariance
Ĉ(x, y) Numerical covariance of x, y
Ĉref Reference covariance
C̃ Covariance normalized to diagonal=1
A,B Component matrices of the LC method
Â, B̂ Estimates of the component matrices
Ĉa

i j, Ĉ
b
i j Covariance estimates for M = Ma and M = 2Ma

D, D̂ Combination A + B/(2Ma) and its estimate
ĈSmp Sample covariance
ĈLC LC covariance
β Linearized data model
F βT C−1β, inverse parameter covariance

where x′, y′, z′,w′ represent a deviation from the distribution
mean, x′ = x − 〈x〉. This is a general result that does not assume
Gaussianity. For a Gaussian distribution

〈x′y′z′w′〉 = 〈x′y′〉〈z′w′〉 + 〈x′z′〉〈y′w′〉 + 〈x′w′〉〈y′z′〉. (29)

If x, y, z,w are Gaussian distributed, Eq. (28) simplifies into

cov
[
Ĉ(x, y), Ĉ(z,w)

]
=

1
N − 1

[
C(x, z)C(y,w) + C(x,w)C(y, z)

]
. (30)

3.2. Sample covariance

We can readily apply the results from above to the sample covari-
ance. We take x, y, z,w to represent elements of the correlation
function, as estimated through Landy–Szalay. We denote these
elements by ξ̂i, ξ̂ j, ξ̂k, ξ̂l. Different indices refer both to different
distance bins, and to elements picked from different multipoles.

We denote the sample covariance for brevity by ĈSmp
i j ≡

Ĉ(ξ̂i, ξ̂ j). Assuming that the ξ̂ estimates follow the Gaussian dis-
tribution, the covariance of the sample covariance is

cov
(
ĈSmp

i j , ĈSmp
kl

)
=

1
N − 1

(CikC jl + CilC jk)

≈
1

N − 1

(
ĈSmp

ik ĈSmp
jl + ĈSmp

il ĈSmp
jk

)
. (31)

In particular for the diagonal elements

cov
(
ĈSmp

ii , ĈSmp
kk

)
=

2
N − 1

[
C(ξi, ξk)

]2
≈

2
(
ĈSmp

ik

)2

N − 1
. (32)

The 1σ uncertainty of a diagonal element of the sample covari-
ance matrix is a fraction of

√
2/(N − 1) of the diagonal element

itself. For N = 5000 this gives a 2% error (1σ). The off-diagonal
part inherits the correlated structure of the covariance.
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3.3. Linear construction

We can make use of Eq. (30) to derive covariance of covari-
ance for the LC method as well. The basic data sets are now two
sets of M = Ma estimates of the correlation function, which we
denote by x and x′. Again we assume that x, x′ follow a Gaussian
distribution. As described in Sect. 2.2, the M = Ma covariance
is constructed as

Ĉa
i j = 1

2

[
Ĉ(xi, x j) + Ĉ(x′i , x

′
j)
]
. (33)

For M = 2Ma we construct the correlation function from the
combined pair counts of the M = Ma case. For large pair counts
(when α, β, γ � 1) ξ̂i ≈

1
2 (xi + x′i ), as we see from Eq. (12). The

covariance is then

Ĉb
i j = Ĉ

[
1
2 (xi + x′i ),

1
2 (x j + x′j)

]
=

1
4

[
Ĉ(xi, x j) + Ĉ(x′i , x

′
j) + Ĉ(xi, x′j) + Ĉ(x′i , x j)

]
. (34)

The LC covariance for arbitrary M is constructed as

ĈLC
i j = Âi j + M−1B̂i j, (35)

where now

Âi j = 2Ĉb
i j − Ĉa

i j = 1
2 Ĉ(xi, x′j) + 1

2 Ĉ(x′i , x j)

B̂i j = 2Ma(Ĉa
i j − Ĉb

i j)

= 1
2 Ma

[
Ĉ(xi, x j) + Ĉ(x′i , x

′
j) − Ĉ(xi, x′j) − Ĉ(x′i , x j)

]
. (36)

Here we see the importance of constructing Ĉa
i j and Ĉb

i j from the
same pair counts: The auto-correlation terms in Âi j cancel out.
In terms of x, x′ the LC covariance is then

ĈLC
i j = 1

2 (1 −
Ma

M
)
[
Ĉ(xi, x′j) + Ĉ(x′i , x j)

]
+

Ma

2M

[
Ĉ(xi, x j) + Ĉ(x′i , x

′
j)
]
. (37)

We are now ready to construct the covariance of the LC
covariance. Correlating the four terms of Eq. (37) yields 16
terms, each of which, with the use of Eq. (30), splits further into
two terms. Taking into account that x and x′ have identical sta-
tistical properties we finally arrive at

cov
(
ĈLC

i j , Ĉ
LC
kl

)
(38)

=
1

N−1

DikD jl + DilD jk +

(
1

2Ma
−

1
M

)2

(BikB jl + BilBkl)

 ,
where we have defined

Dik := Aik +
1

2Ma
Bik, (39)

and A,B are ensemble average versions of (36). Using Ci j =

Ai j + M−1Bi j the result can be worked into the alternative form

cov
(
ĈLC

i j , Ĉ
LC
kl

)
(40)

=
1

N − 1

[
CikC jl + CilC jk

+

(
1

2Ma
−

1
M

)
(DikB jl + BikD jl + DilB jk + BilD jk)

]
.

This allows a direct comparison with the sample covariance
(Eq. (31)). The first line equals the covariance of the sample

covariance. The second line represents additional error due to
the reduced random catalog. When M = 2Ma, the LC covari-
ance becomes equivalent to the sample covariance.

For all of the elements of Eqs. (40) or (38) we already have
an estimate: Cik ≈ ĈLC

ik , Bik ≈ B̂ik, Dik ≈ Âik + B̂ik/(2Ma). Thus
we have a practical way of estimating the error of the LC covari-
ance estimate.

3.4. Precision matrix and parameter estimation

The covariance matrix provides an account of the uncertainty in
the 2PCF estimate. In many applications one is more interested
in the inverse covariance, or the precision matrix

Ψ := C−1. (41)

The precision matrix enters a likelihood model, and is an ingre-
dient in a maximum-likelihood parameter estimate. The prop-
erties of the precision matrix, when computed from the sample
covariance, are relatively well understood. The inverse sample
covariance is biased, but the bias can be corrected for with a
multiplicative correction factor that only depends on the length
of the data vector and on the available number of samples (see
Anderson 2003; Hartlap et al. 2007, and references therein).

The effect of the accuracy of the precision matrix on
parameter estimation has been studied by Taylor et al. (2013),
Taylor & Joachimi (2014), Dodelson & Schneider (2013),
Percival et al. (2014, 2022) and Sellentin & Heavens (2016).
Taylor et al. (2013) present a remarkably simple result for the vari-
ance of the trace of the precision matrix. Dodelson & Schneider
(2013) and Percival et al. (2014) compute the expected increase
of estimated parameter errorbars due to the propagation of the
sampling error of the covariance matrix. The increase is captured
in a multiplicative factor that depends on the length of the
data vector and on the number of independent parameters.
Sellentin & Heavens (2016) use a fully Bayesian approach to
incorporate the uncertainty of the estimated covariance into
the likelihood function, for a more realistic likelihood which
takes the form of a t-distribution. To have a clear interpretation
of parameter posteriors in the case of a sample covariance
matrix, Percival et al. (2022) propose a formulation of Bayesian
priors that makes the parameter posteriors to match those in
a frequentist approach of Dodelson & Schneider (2013) or
Percival et al. (2014).

None of these results, unfortunately, generalize for the LC
covariance, without further assumptions on the survey charac-
teristics or on the parametric model. However, we do have the
covariance of covariance, which can be used to assess the impact
of covariance accuracy to a specific application, once the details
are known. In the following we present some general observa-
tions.

One important aspect to note is that the LC covariance can-
not be guaranteed to be positive-definite under all circumstances.
This follows from the fact that the component matrix Â is con-
structed as a difference between two numerical covariances. If
the actual covariance matrix is close to singular, random fluctu-
ations in the numerical estimate may bring the smallest eigen-
values on the negative side. We recommend that if the inverse
covariance is needed, the eigenspectrum of the matrix is verified
first.

The precision matrix can be expanded as Taylor series as

Ĉ−1 = (C + ∆)−1 ≈ C−1 − C−1∆ C−1 + C−1∆ C−1∆ C−1, (42)

where C is the true covariance and ∆ the deviation of the esti-
mate from it. The last term is the source of bias in the precision
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matrix, which exists even if the covariance estimate is unbiased
(〈∆〉 = 0). A bias in the precision matrix does not, however,
translate into a bias in parameter estimation. The maximum-
likelihood parameter estimate (without prior) is given by

p̂ = (βT Ĉ−1β)−1βT Ĉ−1y, (43)

where p̂ (length np) represents the vector or estimated parame-
ters, y (length nb) is the data vector, Ĉ is the covariance estimate,
and

βiα =
∂yi

∂pα
(44)

is the linearized data model connecting the parameters to the
data. One readily sees that the parameter estimate of Eq. (43)
is unbiased regardless of Ĉ, and, if the covariance is biased by
a multiplicative factor, the estimate is actually unaffected. It is
therefore more interesting to look at the parameter covariance
than at the bias of the precision matrix alone.

Following the example of Hartlap et al. (2007) we now insert
the expansion of Eq. (42) into the parameter estimate of Eq. (43).
We obtain for the parameter covariance

〈δpδpT 〉 = F−1 + F−1βT C−1〈∆ C−1∆〉C−1βF−1

− F−1βT C−1〈∆ C−1βF−1βT C−1∆〉C−1βF−1, (45)

where

F := βT C−1β. (46)

If the covariance of covariance is of the general form

〈∆i j∆kl〉 =
1

N − 1
(UikV jl + UilV jk) (47)

(as is the case for both sample covariance and LC) where U and
V are arbitrary matrices, we find

〈∆X∆〉i j =
1

N − 1
[
(UXT V)i j + Ui jTr(XT V)

]
, (48)

where again X is an arbitrary matrix. We use Eq. (40) in combi-
nation with Eqs. (45) and (48) to derive for the parameter covari-
ance the result

〈δpδpT 〉 = F−1
(
1 +

nd − np

N − 1

)
+

(
1
2 −

Ma
M

) 1
N − 1

{
F−1RF−1 + F−1RT F−1

− F−1PF−1QF−1 − F−1QF−1PF−1

+ F−1PF−1
[
Tr(C−1D) − Tr(F−1Q)

]
+ F−1QF−1

[
Tr(C−1B) − Tr(F−1P)

] }
, (49)

where

P := βT C−1BC−1β,

Q := βT C−1DC−1β, (50)

R := βT C−1BC−1DC−1β.

F−1 is the parameter covariance in the case where the data
covariance C is known exactly. The first term represents the
parameter covariance for sample covariance, a result in line
with Dodelson & Schneider (2013). The rest is additional scat-
ter specific for the LC method, and is dependent on the paramet-
ric model. Again we see that the additional terms vanish with
M = 2Ma. Once the parametric model and β are fixed, and
one has an estimate for C in the form of the LC covariance,
Eq. (49) provides a practical recipe for estimating the parameter
covariance.

4. Simulations

4.1. Cosmological mocks

To validate the LC method, we applied it to the computa-
tion of the 2PCF covariance matrix of simulated dark matter
halo catalogs, and compared it to their sample covariance. We
used mock catalogs produced with version 4.3 of PINOCCHIO1

(PINpointing Orbit Crossing Collapsed HIerarchical Objects)
algorithm (Monaco et al. 2002; Munari et al. 2017). This code
is based on Lagrangian perturbation theory, ellipsoidal collapse
and excursion sets approach. It is able to generate catalogs of
dark matter halos, both in periodic boxes and in the past light
cone, that closely match the mass function and the clustering
of simulated halos without running a full N-body simulation.
The particular configuration we used (see Colavincenzo et al.
2019) was run with ΛCDM cosmology using parameter val-
ues presented in Table 2. The simulation box had sides of
length L = 1500 h−1 Mpc sampled with 10003 particles of mass
2.67 × 1011 h−1 M�. The smallest identified halos consisted of
30 particles, which translates to masses of 8.01 × 1012 h−1 M�.
The mock catalogs we used correspond to a snapshot of the sim-
ulation in a periodic box at redshift z = 1. The 10 000 realiza-
tions were run with the same configuration, but with different
seeds for random numbers. As a consequence the number of
halos in each PINOCCHIO realization is subject to sample vari-
ance. The mean number of halos in a box is 780 789 and varies
from box to box by +0.3

−0.4%. This corresponds to a number density
of 2.3 × 10−4 (h−1 Mpc)−3.

The PINOCCHIO mocks contain the halo positions in real
space and their peculiar velocities, in a periodic box. To imi-
tate a real survey more closely we mapped the halo positions
into redshift space. We worked within the plane-parallel assump-
tion; we constructed a periodic redshift-space box by shifting
the halo positions along the x-axis according to the peculiar
velocity component along the same axis. In order to compute
the correlation function multipoles, we must define the location
of the observer with respect to the simulation box. To preserve
the plane-parallel assumption, we moved the observation point
along the x-axis to a distance of 106 h−1 Mpc from the box.

To mimic the geometry of a tomographic survey with a lim-
ited redshift coverage we selected a slab-like subset of the full
simulation box. The thickness of the slab is L/5 = 300 h−1 Mpc.
This geometry is shown in Fig. 1. The mean number of halos
in the slab is one fifth of that of the full box (156 158 objects)
and varies by ±3%. For the corresponding random catalogs we
generated random coordinates homogeneously inside the slab
using the method random.rand of the numpy python library.
The number of random points in each slab is M times the num-
ber of halos, so the size of each random catalog is also slightly
different.

The area of the simulation slab corresponds to a solid angle
of 1400 square degrees at z = 1, which is 9.4% of the 15 000 deg2

sky coverage of the Euclid spectroscopic survey (Laureijs et al.
2011; Euclid Collaboration 2022). The thickness of the slab cor-
responds to a redshift bin of ∆z ≈ 0.2. The mean number of
objects in the slab corresponds to 5% of the survey (30 million
objects). The small number of objects in the simulation made it
possible to construct the sample covariance for a large number
of realizations, and thus to compare the accuracy and efficiency
of the LC method against that of the sample covariance.

We had 10 000 halo catalog realizations at our disposal. We
divide them into two sets of 5000 realizations. We computed

1 https://github.com/pigimonaco/Pinocchio
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Table 2. Parameter values for the PINOCCHIO simulation used in our
analysis.

H0 Ωm ΩΛ Ωb σ8 ns

0.695 0.285 0.715 0.044 0.828 0.9632

0 200 400 600 800 1000 1200 1400
x [h 1Mpc]

0

200

400
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1200

1400

y
[h

1 M
pc

]

Fig. 1. Geometry of the mock catalogs used in our analysis. Blue points
are the full simulation box and orange points are the slab we use for our
analysis. Projected here is a slice of thickness of 100 h−1 Mpc.

the sample covariance of one set, and used it as the reference
covariance, against which we compared the other estimates. The
reference covariance represents the best knowledge we have
on the true covariance. We used the other set of 5000 realiza-
tions to compute both the LC covariance and the sample covari-
ance, which we then compared with the reference covariance.
This way we were able to estimate how much of the difference
between the LC covariance and sample covariance was caused
purely by the limited number of realizations.

We generated 10 000 random catalogs of size Nr = 50Nd,
5000 for the reference covariance, and 5000 for the sample
covariance LC was compared with. In addition we generated
10 000 random catalogs of size Nr = 1Nd. We used a set of 5000
to serve as catalog R1 in Eq. (24), and another set of 5000 as
catalog R2.

4.2. Random mocks

In the case of PINOCCHIO mocks we do not know the actual
covariance exactly. We can only compare against the reference
covariance, which itself is estimated from a finite data set. To
have a test case where we know the true covariance, we ran
another simulation using a purely random distribution of points
as our data catalog. For this purpose we generated another set of
10 000 random mocks and used these in the place of the data cat-
alog. Otherwise the setup was exactly the same as with PINOC-
CHIO mocks. We used the same slab geometry and point density,
with the exception that each data catalog (and correspondingly
each random catalog) realization has the same number of points:
Nd = 2.3× 10−4 (h−1 Mpc)−3 × 6.75× 108 (h−1 Mpc)3 = 155 250.
The correlation function for the random distribution is zero,
and for the covariance, as well as for the covariance of the
covariance, an analytic result can be derived. This allowed us to
directly compare the estimated covariance against the expected
result.

4.3. Constructing the covariance

To validate the LC method, we computed the correlation func-
tion of the mock catalogs and constructed the LC covariance.
Since we were looking for maximal reduction in the computa-
tional cost, we set Ma = 1, i.e. we used random catalogs of same
size as the data catalog.

We computed the correlation function of the simulated
galaxy distribution using the 2PCF code developed for the Euclid
mission. The code implements the Landy-Szalay estimator with
split random catalog, and stores as a by-product the DD, DR,
and RR pair counts, which we need for the construction of
the LC covariance. We used the Euclid code to compute the
2-dimensional correlation function ξ̂(r, µ), where r is the dis-
tance between a pair of galaxies, and µ is the cosine of the
angle between the line-of-sight and the line segment connect-
ing the galaxy pair. We used bin sizes ∆r = 1 h−1 Mpc and
∆µ = 0.01, and computed the correlation function for the dis-
tance range r ∈ [0, 200] h−1 Mpc. For some tests we needed also
the 1-dimensional correlation function, which we obtained by
coadding the pair counts in µ dimension. For each data catalog,
we ran the code three times: once to construct the M = 50 cor-
relation function, and twice with M = 1 random catalogs to pro-
duce the pair counts we needed for the construction of the LC
covariance.

We constructed the LC and sample covariance estimates with
an external code, which takes as input the precomputed pair
counts. To ensure consistency, we recomputed the correlation
functions from the pair counts. Having the precomputed pair
counts on disk also left us the possibility of combining bins into
wider ones. The run time of this external code is negligible, the
CPU usage being fully dominated by the run-time of the Euclid
code.

We computed the correlation function multipoles from the
two-dimensional correlation function as

ξ`(r) :=
2` + 1

2

∫ 1

−1
ξ(r, µ) P`(µ) dµ, (51)

where P`(µ) are Legendre polynomials (` = 0, 2, 4). The M = 50
correlation function multipoles, as estimated from the simula-
tion slabs, are depicted in Fig. 2. We show the mean over 5000
realizations, and a single realization. For this small survey size,
a single realization deviates strongly from the ensemble mean,
and the errors are strongly correlated between distance bins.

The calculation of the covariance of covariance in Sect. 3
relies on the assumption that the elements of the correlation
function follow a Gaussian distribution, at least approximatively.
To verify the validity of this assumption, we plot the distributions
of selected correlation function elements in Fig. 3. The assump-
tion of approximative Gaussianity seems well justified. We note
that Gaussianity is only required for the covariance of covari-
ance to be valid. The LC covariance itself does not rely on any
particular distribution.

5. Results

5.1. Random mocks

We begin by examining the one-dimensional 2PCF of the ran-
dom mocks. As explained above, we ran tests using randomly
distributed points in place of the data catalog. This has the
benefit that we know exactly the expected correlation function
(zero). We also have an accurate analytic estimate for the true
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Fig. 2. Correlation function multipoles. Mean over 5000 PINOCCHIO
realizations and a single realization. The shaded area around the single
realization curve is the 1σ error envelope, computed as the standard
deviation of the available realizations.
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25 h−1 Mpc and r = 125 h−1 Mpc. Along with the histograms we show
the corresponding best-fit Gaussian distribution in orange.

covariance. From Keihänen et al. (2019) we have

cov
[
ξ̂(r1), ξ̂(r2)

]
=

δ12

Gp(r2)

(
2

Nd(Nd − 1)
+

4
NdNr

+
2

Nr(Nd − 1)

)
≈

δ12

Gp(r1)
2

Nd(Nd − 1)

(
1 + 3M−1

)
, (52)
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Fig. 4. Diagonal covariance from random mocks, one-dimensional case.
Top: sample covariance, LC, M = ∞ limit, and theoretical prediction.
Bottom: the relative errors, and theoretical 1σ error estimates.

where Nr is the number of random points and Nd the number of
data points, and Gp(r) is the geometrical pair volume fraction
defined as

Gp(r) =

["
V

d3x1d3x2

]−1"
V

W(x1 − x2 ∈ r)d3x1d3x2 (53)

where the integrals cover the survey volume and W(x1 − x2 ∈

r) = 1 if the pair distance falls in the distance bin of r, and is
zero otherwise. This allows us to directly compare the estimated
covariance to the theoretical one.

Figure 4 shows the diagonal of the estimated covariance of
the one-dimensional correlation function for M = 50, compared
with the theoretical value of Eq. (52). We show also the M → ∞
limit from the LC method. This represents the optimal covari-
ance which we would have if we had an infinite random catalog.
As expected, the M = ∞ curve lies slightly below the M = 50
curve. The difference is the additional uncertainty from the finite
random catalog. Both the sample covariance and LC covariance
agree very well with the expected covariance. It is also evident
that the LC method results in larger scatter. The lower panel
shows the relative difference with respect to the theoretical value,
together with 1σ error bars derived from Eqs. (31) and (38).
The error for the LC covariance, measured as the standard devi-
ation, is 2.7 times that of the sample covariance, implying that
more than 7 times more realizations are needed to reach the same
level of accuracy. Fortunately, from the point of view of the LC
method, this is an unrealistically pessimistic situation. This can
be traced to the fact that correlations, which in a more realistic
situation contribute significantly to the covariance, are nonexis-
tent here. Thus the scatter of the random catalog, which in our
method is large due to the small number of objects, contributes a
large fraction of the total error. The situation looks very different
when we move to realistic cosmological simulations with large
correlations.

5.2. Cosmological mocks

As explained in Sect. 4.1, since we do not know the true covari-
ance, we divided the available 10 000 realizations into two sets
of 5000 realizations and used the sample covariance of the first
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half as a reference. We constructed the covariance for ` = 0, 2, 4
multipoles both through the sample covariance and with the LC
method, with M = 50.

First we examine the convergence with respect to the number
of realizations. This is shown in Fig. 5. We show the squared-
sum difference with respect to the reference matrix, for the sam-
ple covariance and for LC. Because the bins at the smallest scales
have only a few halos, we include the scales in the range 20–
200 h−1 Mpc in the sum. We vary the number of realizations used
for the covariance estimate under study, but the reference matrix
in all cases is the same, based on the full set of 5000 realizations.
All matrices have been normalized to the reference diagonal, in
order to assign equal weights to all distance scales,

Ĉi j(normalized) =
Ĉi j√

Ĉref
ii Ĉref

j j

. (54)

We show the difference as a function of number of realizations,
and as a function of CPU time. To further reduce the noise in the
measurement we compute the convergence ten times and show
the mean over these ten cases. Each case is obtained by ran-
domly splitting the 10 000 PINOCCHIO realizations into two
sets of 5000 realizations, one of which used to compute the
reference covariance and the other one to compute the sample
and LC covariances. The different splits overlap with each other,
but even so the procedure significantly reduces the noise in the
measured convergence. For the same number of realizations,
the sample covariance gives a smaller uncertainty. One needs
roughly 1.5 times the number of realizations with LC, to reach
the same level of accuracy. In terms of CPU time spent, the sit-
uation is inverted. The LC covariance requires only 10% of the
CPU cost of the sample covariance to reach the same accuracy.

Of the total wall-time of constructing the sample covari-
ance, 90% is spent on counting the pairs. In the case of LC, this
fraction is somewhat lower, 76%. Loading in the catalogs takes
roughly the same fraction of time in both cases so the difference
in efficiency seems to be in overheads such as code initializa-
tion. A possible optimization to reduce these overheads would
be to compute all the thousands of 2PCF estimates during a sin-
gle code execution instead of calling the code executable over
and over again.

In Fig. 6 we show the diagonal of the covariance matrix
monopole block, for the sample covariance and the LC estimate,
along with the reference. We show also the M = ∞ limit of the
LC covariance. In the lower panel we show the relative differ-
ence with respect to the reference covariance, and the theoretical
prediction for the error, as given by Eqs. (31) and (38). Since we
are looking at the difference with respect to the reference, the
error level shown is the square root of the sum of the variances
of the reference and the estimate in question.

Again, the LC estimate has more internal scatter than the
sample covariance, but the difference between the methods is
significantly smaller than in the case of random mocks. A more
striking phenomenon is that the deviation from the reference is
strongly correlated in distance, and the general trend of the devi-
ation is very similar for the two estimation methods. In other
words, the estimation error is dominated by a correlated error
component that is independent of the chosen estimation method,
when both estimates are constructed from the same data set. The
common component dominates over the additional noise added
by the LC method. The amplitude of the component is consis-
tent with the predicted error level, indicating that it represents a
random fluctuation.
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Fig. 5. Convergence of the covariance of the correlation function mul-
tipoles, with respect to the number of realizations (left) and CPU
time (right). We use PINOCCHIO mocks and include scales of r >
20 h−1 Mpc. Dashed lines show the theoretical prediction.
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Fig. 6. Diagonal of the covariance for the correlation function
monopole, PINOCCHIO mocks. On the top we show the LC and sam-
ple covariance estimates, and the M = ∞ limit. On the bottom we show
the relative errors, and predicted 1σ error level.

Figure 7 shows the monopole block of the full LC covari-
ance matrix as a two-dimensional plot. For plotting purposes we
normalize the matrix by the diagonal of the reference covari-
ance. There is significant off-diagonal component, showing that
the error in the estimated Landy–Szalay correlation function is
correlated from one distance bin to another, in line with Fig. 6.
The middle panel shows the difference between the LC covari-
ance and the reference. There is no obvious overall bias (which
would show up as the over-representation of either the blue or
the red color), but the region of correlated error is clearly visi-
ble around 100 h−1 Mpc. The bottom panel shows the difference
between the LC and sample covariances from the same 5000
realizations. Here the structure is weaker, indicating that the cor-
related structure in the middle panel is for a large part common
for the sample covariance and the LC estimate, as we already
saw in Fig. 6.
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We proceed to examine the structure of the LC covariance
further. We show the Â and B̂ components for the full multipole
covariance in Fig. 8, again normalized with the reference diago-
nal. The full covariance will be the combination Â + B̂/M. We
observe that the B̂ component is strongly diagonal-dominated,
in contrast to the Â component, indicating that the finite random
catalog mainly contributes uncorrelated noise to the 2PCF esti-
mate, on top of the correlated error that arises from the data cat-
alog. The unnormalized diagonals of all three multipole blocks,
and their cross-components, are shown in Fig. 9.

The expectation value of the LC covariance in terms of pair-
count covariances is given in Eq. (21). However, if we expand
Eq. (26) (which defines the LC covariance) in terms of pair-count
covariances, we find that the expansion includes more terms than
Eq. (21). The expectation value of these additional terms van-
ishes, but when the covariance is estimated from a finite num-
ber of correlation function realizations, these terms differ from
zero randomly. This raises the question whether leaving some
or all of these zero-expectation-value terms out and constructing
the covariance using the pair-count covariances directly would
reduce noise in the covariance matrix estimate. We reconstructed
the covariance matrix by including all the possible combinations
of the zero-expectation-value terms, but it turned out that the
most accurate combination is the one defined by Eq. (26). Even
though the pair-count covariances do not affect the expectation
value of the covariance matrix estimate, they do reduce its vari-
ance. This can be understood as follows: the zero-expectation
terms are negatively correlated with some of the nonzero terms,
and thus they help to cancel out part of the estimation noise.

5.3. Predictions from covariance of covariance

We now proceed to examine the accuracy of the LC covariance
estimate in a more quantitative way. Here we make use of pre-
dictions of the theoretical covariance of covariance from Sect. 3.

We measure the accuracy of the covariance estimate, as
the normalized sum-of-squares difference from the ensemble-
average, over all covariance elements,

χ2
N :=

1
N2

bin

∑
i j

1
Ĉref

ii Ĉref
j j

(Ĉi j − 〈Ci j〉)2. (55)

Here Ĉ represents the covariance estimate, either LC or sample
covariance, measured from N realizations (5000), and Nbin is the
number of correlation function elements. In our baseline simu-
lation Nbin = 540 (3 multipoles and 180 distance bins). We nor-
malized the sum by the diagonal of the reference covariance, to
assign equal weights to all distance bins. Equation (55) expresses
the accuracy of the covariance as a single number.

In terms of the covariance of covariance we have

〈χ2
N〉 =

1
N2

bin

∑
i j

cov(Ĉi j, Ĉi j)

Ĉref
ii Ĉref

j j

. (56)

Since the covariance of covariance scales as 1/(N − 1), we can
write this in terms of the N = 2 value as

〈χ2
N〉 =

〈χ2
2〉

N − 1
. (57)

For the sample covariance we now have

〈χ2
2〉

Smp =
1

N2
bin

∑
i j

(
C̃iiC̃ j j + C̃2

i j

)
, (58)
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where we have absorbed the normalization into the covariance,
and denoted the normalized covariance by C̃. For LC we find

〈χ2
2〉

LC =
1

N2
bin

∑
i j

[
D̃iiD̃ j j + D̃2

i j

+
(

1
2−M−1

)2 (
B̃iiB̃ j j + B̃2

i j

) ]
. (59)
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Fig. 8. Component matrices Â (top) and B̂ (bottom), for correlation function multipoles, measured from the PINOCCHIO mocks. The blocks from
left to right and from the bottom to the top row correspond to ` = 0, 2, 4 multipoles, respectively. Both are normalized by the diagonal elements of
the reference matrix.

A129, page 12 of 17



E. Keihänen et al.: Euclid: Fast two-point correlation function covariance through linear construction

0.035

0.040

0.045

0.050

0.055

0.060

r2 (
0

×
0)

= 0 × = 0

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

r2 (
2

×
2)

= 2 × = 2

0.1

0.2

0.3

0.4

0.5

0.6

r2 (
4

×
4)

= 4 × = 4

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

r2 (
0

×
2)

= 0 × = 2

0.004

0.002

0.000

0.002

0.004

0.006

0.008

r2 (
0

×
4)

= 0 × = 4

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

r2 (
2

×
4)

= 2 × = 4

0.003

0.002

0.001

0.000

0.001

0.002

0.003

r2
(

0
×

0)

= 0 × = 0

0.015

0.010

0.005

0.000

0.005

0.010

0.015

r2
(

2
×

2)

= 2 × = 2

0.02

0.01

0.00

0.01

0.02

r2
(

4
×

4)
= 4 × = 4

0 100 200
r [h 1Mpc]

0.004

0.002

0.000

0.002

0.004

r2
(

0
×

2)

= 0 × = 2

0 100 200
r [h 1Mpc]

0.004

0.002

0.000

0.002

0.004

r2
(

0
×

4)

= 0 × = 4

Reference LC (M = ) LC (M = 50) Sample covariance

0 100 200
r [h 1Mpc]

0.015

0.010

0.005

0.000

0.005

0.010

0.015

r2
(

2
×

4)

= 2 × = 4

Fig. 9. Covariance diagonals for multipoles ` = 0, 2, 4, and their cross-correlation, for PINOCCHIO. Sample covariance and LC. Two bottom rows
show the difference between the reference and the estimate scaled by r2. To reduce scatter in the curves all the quantities have been rebinned to
bins of width of 10 h−1 Mpc.

Here we have a practical way of predicting the estimation
error for the LC and sample covariance, for different values of
M. We can also easily predict the effect of rebinning the data into
wider distance bins, simply by rebinning the covariance matrices
and constructing the covariance of covariance from these.

In Table 3 we have collected statistics on the estimation
methods, for a selected random catalog size (different values of

M) and for different rebinning schemes. We have used Â and B̂
in the place of A and B, and Ĉ ≈ Â + M−1B̂ in the place of C.
We show the computational cost of pair counting in each of the
cases, in the units of counting the pairs in one Nd data catalog.
The cost of the LC method is the same in all cases, while the
cost of the sample covariance scales as 1 + 3M. The cost esti-
mate ignores parts of the computation other than pair counting,
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Table 3. Predictions for the variance of the covariance estimate, based
on the covariance of covariance for PINOCCHIO mocks.

Cost χ2
2 iFoM

M ∆r Smp LC Smp LC Smp LC Ratio

10 1 31 7 1.151 1.852 35.7 13.0 2.8
2 1.124 1.582 34.8 11.1 3.1
5 1.106 1.400 34.3 9.8 3.5

10 1.102 1.328 34.2 9.3 3.7
20 1.102 1.283 34.1 9.0 3.8

20 1 61 7 1.082 1.871 66.0 13.1 5.0
2 1.076 1.591 65.6 11.1 5.9
5 1.073 1.404 65.5 9.8 6.7

10 1.076 1.331 65.7 9.3 7.0
20 1.081 1.284 65.9 9.0 7.3

50 1 151 7 1.041 1.883 157 13.1 11.9
2 1.048 1.597 158 11.1 14.1
5 1.054 1.407 159 9.8 16.2

10 1.061 1.332 160 9.3 17.2
20 1.068 1.285 161 9.0 17.9

100 1 301 7 1.028 1.887 309 13.2 23.4
2 1.038 1.599 313 11.2 27.9
5 1.048 1.408 315 9.9 32.0

10 1.056 1.333 318 9.3 34.1
20 1.064 1.286 320 9.0 35.6

Notes. Sample covariance (Smp) and LC covariance with Ma=1 are
compared. The columns are: size of random catalog, parametrized as
M = Nr/Nd; bin size ∆r in units of h−1 Mpc; computational cost of pair
counting per realization, in units of the pair count cost of the data cat-
alog; χ2

2, variance of the covariance estimate per bin for N = 2 realiza-
tions and for distance scales 20–200 h−1 Mpc; inverse figure-of-merit,
product of χ2

2 and computational cost; ratio of sample-covariance iFoM
to that of the LC.

for instance disk I/O and various overheads, thus exaggerating
the difference between the methods. The estimator variance is
expressed as χ2

2. The standard deviation of a covariance esti-

mate is obtained from this as
√
χ2

2/(N − 1). We show also an
inverse figure-of-merit (iFoM) constructed as the product of the
pair-count cost and the χ2

2 value. Since the estimator variance
decreases proportionally to the inverse of the number of real-
izations N, while the computation time grows proportional to
it, this is an N-independent measure of the estimator efficiency.
A smaller value indicates a more efficient estimation. The value
of iFoM can be interpreted as the computational cost of reaching
χ2

2 = 1. The last column shows the ratio of the sample-covariance
iFoM to that of the LC covariance, and is measure of the gain
from the LC method.

The relative efficiency of the LC method increases with
increasing M, as the computational cost of the sample covari-
ance becomes larger. We observe also that for given M, the
LC covariance becomes more efficient in comparison to sample
covariance, if we combine the distance bins into wider bins. With
M = 50 and with 20 h−1 Mpc bins in distance, the efficiency ratio
is 17.9, while with narrow 1 h−1 Mpc bins the ratio is 11.9.

The full covariance of covariance is a four-dimensional data
object, and is difficult to visualize in its entirety. In the following
we examine a two-dimensional subset. We focus on the diag-
onal of the monopole block of the covariance estimate (plot-
ted in Fig. 6). This is a 1-dimensional data object, thus its
covariance is a 2-dimensional matrix. In the following we refer
to the covariance of the diagonal of the monopole block of a
2PCF covariance estimate as COVCOV for short. We plot the
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covariance. Middle: COVCOV for LC. Bottom: difference of the two.
From normalized covariances.

predicted COVCOV for the sample covariance and for LC in
Fig. 10. In both cases, there is a significant off-diagonal struc-
ture, which is visually very similar between the two methods.
This verifies our earlier observation that the estimation error is
correlated between distance bins, and this correlation does not
depend on the chosen method. Taking the difference between the
COVCOV matrices, we see that the LC estimate has additional
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Fig. 11. Diagonal monopole difference treated with the inverse square
root of COVCOV. For reference a Gaussian random vector of same
length.

scatter compared to the sample covariance, but this additional
error component is only weakly correlated from one distance bin
to another.

As a final validation test we applied the inverse square root
of the COVCOV to the difference between the LC covariance
matrix diagonal and the corresponding reference (quantities plot-
ted in Fig. 6). If the COVCOV correctly describes the errors in
the estimated covariance, we expect to see an array of white
noise with σ = 1. To account for the fact that the reference
covariance has a covariance of its own, we took the COVCOV
to be the sum of the reference and the LC COVCOV matrices.
We computed the square root using the Schur method imple-
mented in the scipy Python library. The resulting whitened
data vector is shown in Fig. 11, along with a random realiza-
tion of white noise. The data is visually indistinguishable from
white noise, which is a valuable validation check. The sim-
ilarity can also be confirmed by computing a normalized χ2

value

χ2 =
1
N

vTv. (60)

Here v is the data vector, N is the number of bins, and for a
vector of Gaussian white noise we expect a value close to 1.
We computed this value for scales r > 20 h−1 Mpc and obtained
χ2 = 0.95 for the whitened data vector and χ2 = 0.93 for the
Gaussian random vector.

6. Conclusions

We have presented a method for speeding up the computation
of the galaxy 2PCF covariance. We have named the method as
the Linear Construction, or LC method. We assume that the cor-
relation function is estimated through Landy–Szalay estimator,
with a split random catalog. The proposed method applies both
to the raw (1- or 2-dimensional) correlation function and to its
multipoles.

The proposed method provides an unbiased estimate of the
covariance for a split random catalog, that is, for a case where the
random-random pair count is constructed as the coadded sum of
many small subcatalogs. Since we know that the splitting only
weakly affects the 2PCF estimation error, we expect that the LC
covariance provides a good approximation also when the RR

pairs are counted from the full catalog. This can be traced to the
fact that, for large random catalogs, the 2PCF estimation error
is dominated by the variance of the galaxy sample, and the sec-
ondary error term is related to the data-random pair count, both
of which are unaffected by splitting. The scatter of the random-
random count plays a minor role.

The computational cost of the LC method per realization,
for a random catalog M times the size of the data catalog, is
a factor of (1 + 3M)/7 lower than that of the sample covari-
ance. For M = 50 this yields a factor of 21.6 speedup. How-
ever, a larger number of realizations is needed, to compensate
for the increased scatter in the estimate. In our simulations, 1.2–
1.8 times higher a number of realizations was needed to reach a
given level of accuracy, depending on bin size. This taken into
account, the net cost reduction for M = 50 is a factor of 11.9–
17.9. The efficiency increases with increasing bin width. In prac-
tice, we observe a halved speedup due to the heavy overhead
associated with the handling of many small catalogs. A code
specially optimized for covariance computation could improve
on this.

The computational cost of the LC covariance is independent
of M. Thus the relative gain with respect to the sample covari-
ance increases with increasing size of the random catalog. Since
the cost of the covariance computation exceeds that of the actual
2PCF estimation by orders of magnitude, one might want to
spend a bit more resources on obtaining a more accurate 2PCF
estimate with a higher M, as the cost of the covariance is unaf-
fected.

The LC covariance estimate is readily extrapolated to an
arbitrary value of M, including the limit M → ∞. We thus have
an estimate of the error budget for any number of random points.
which is valuable information when planning for an experiment.

At very small distances our method becomes less reliable due
to the small number of objects in a bin. At those small distances
we recommend resorting to sample covariance, which at small
distances is cheap anyway.

Unlike the sample covariance, the LC covariance is not by
construction positive-definite. For applications that require the
covariance inverse, we recommend verifying the eigenspectrum
of the constructed matrix, and for instance rebinning the data to
wider bins, should the matrix turn out to be nonpositive definite.

We further derived a covariance for the estimation error of
the LC covariance, and showed that it can be constructed from
the components of the covariance itself. Thus, along with the
covariance one can readily obtain an estimate of its errors and
their correlation. We also discussed the impact on maximum-
likelihood parameter estimation.

In the LC method, the covariance is estimated for small ran-
dom catalogs of size M = Ma and M = 2Ma, and the covari-
ance for arbitrary M is constructed as a linear combination of
these. We obtain the maximal reduction in the computational
cost with Ma = 1, and we adopted this value in our valida-
tion tests. The increased uncertainty in the covariance estimate
is compensated for with a larger number of catalog realizations.
We have assumed that the mock catalogs are cheap to generate,
so that they do not significantly contribute to the total CPU bud-
get. Should this not be the case, the gain from the LC covariance
is reduced in comparison with the sample covariance. In this
case it may become beneficial to select Ma > 1, to reduce the
variance of the covariance estimate. The selection of the optimal
method is a trade-off between the cost of the 2PCF computation,
the required level of accuracy, and the cost of constructing the
mock catalogs.
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Future large galaxy surveys, such as the one provided by
Euclid, face the challenge of constructing the covariance for
huge galaxy samples. We believe the methodology presented
here provides a useful tool for meeting that challenge.
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