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The Milky Way’s plane of satellites is 
consistent with ΛCDM

Till Sawala    1,2 , Marius Cautun3, Carlos Frenk2, John Helly2, Jens Jasche    4, 
Adrian Jenkins    2, Peter H. Johansson    1, Guilhem Lavaux5, 
Stuart McAlpine    1,4 & Matthieu Schaller3,6

The Milky Way is surrounded by 11 ‘classical’ satellite galaxies in a remarkable 
configuration: a thin plane that is possibly rotationally supported. Such a 
structure is thought to be highly unlikely to arise in the standard (ΛCDM) 
cosmological model (Λ cold dark matter model, where Λ is the cosmological 
constant). While other apparent discrepancies between predictions and 
observations of Milky Way satellite galaxies may be explained either through 
baryonic effects or by invoking alternative forms of dark matter particles, 
there is no known mechanism for making rotating satellite planes within the 
dispersion-supported dark matter haloes predicted to surround galaxies 
such as the Milky Way. This is the so-called ‘plane of satellites problem’, 
which challenges not only the ΛCDM model but the entire concept of dark 
matter. Here we show that the reportedly exceptional anisotropy of the 
Milky Way satellites is explained, in large part, by their lopsided radial 
distribution combined with the temporary conjunction of the two most 
distant satellites, Leo I and Leo II. Using Gaia proper motions, we show that 
the orbital pole alignment is much more common than previously reported, 
and reveal the plane of satellites to be transient rather than rotationally 
supported. Comparing with new simulations, where such short-lived planes 
are common, we find the Milky Way satellites to be compatible with standard 
model expectations.

The original discovery of the Milky Way’s ‘plane of satellites’ (then just 
five galaxies)1 preceded the advent of the Λ cold dark matter (ΛCDM) 
model, where Λ is the cosmological constant, as the paradigm for gal-
axy and structure formation2. A key ΛCDM prediction is that galaxies 
such as the Milky Way (MW) are surrounded by a dispersion-supported 
dark matter halo and by satellite galaxies formed within its substruc-
tures. However, while several ΛCDM predictions, including the discov-
ery of dozens of additional MW satellites, have since been borne out3, 
the ‘plane of satellites problem’4,5 has emerged as its most persistent 
challenge6–11.

That the ‘plane of satellites’ problem has so far eluded resolution 
is not for lack of trying. Planes of satellites form with the same (low) 
frequency in collisionless and hydrodynamic cosmological simula-
tions12–14 and in MW analogues in isolation or in pairs15,16, with no sig-
nificant correlation with other properties of the host halo16. There is 
evidence that filamentary accretion17,18, a compact satellite system19 
or the presence of massive satellites20 can generate some anisotropy, 
but systems as thin as the Milky Way’s are still very rare12. Moreover, any 
planes that do form in ΛCDM are transient, chance alignments of sub-
structures14,20–22 rather than long-lived, rotationally supported disks. 
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angular component, independently of the radial distribution. For both 
c/a and (c/a)red, smaller values imply greater anisotropy; for example, 
a sphere has c/a = 1 while a perfectly thin disk has c/a = 0. Note that for 
small N, the expectation values of c/a and (c/a)red decrease, regardless 
of the underlying anisotropy25.

Figure 1 shows the present positions and estimated orbits of the 11 
brightest MW satellites projected along the principal axes. We measure 
c/a = 0.183 ± 0.004 and (c/a)red = 0.3676 ± 0.0004, mean ± s.d.

The effect of the radial distribution
Earlier work26 has found that only 0.7% of ΛCDM simulations produce 
systems as anisotropic as the MW. However, we find this likely to be a 
severe underestimate caused by the artificial disruption of satellites 
in numerical simulations, which can cause artificially extended radial 
profiles27–30. To identify analogues of the classical MW satellites in 
simulations, it is common to select at z = 0 the 11 satellites with the 
highest value of vpeak, the peak value of the maximum circular velocity, 
vmax, across a halo’s history17. In our own analysis of 202 MW analogues 
resimulated in the SIBELIUS constrained simulations intended to repro-
duce the structures observed in the Local Universe31, including only 
surviving subhaloes, we find only 2 (1%) systems with c/a as low as the 
MW, and none that reproduce the radial distribution. However, this is 
an ‘incomplete’ sample. Accounting for artificial disruption32 and select-
ing the 11 satellites among a ‘complete’ sample containing both the 

We examine here the contention that the MW contains an exceptional 
plane of satellites, explain the origin of the observed anisotropy and 
study its time evolution in light of proper motion measurements by 
the Gaia space telescope23.

The present MW plane of satellites
The Milky Way’s ‘plane of satellites’ canonically consists of the 11 ‘classi-
cal’ satellites, the brightest within a radius of r = 300 kpc of the Galactic 
Centre, believed to constitute a complete sample. To characterize the 
spatial anisotropy of a system of N satellites, it is customary to consider 
the inertia tensor, defined as

Iij =
N
∑
n=1

xn,ixn,j, (1)

where xn are the coordinates of the nth satellite relative to the centre of 
positions, and i and j index the three spatial dimensions. We label the 
square roots of its eigenvalues as a, b and c, corresponding to the dis-
persions in position along the unit eigenvectors xa, xb and xc. A related 
metric is the ‘reduced’ inertia tensor24, defined after projection of the 
positions onto a unit sphere. We label the square roots of its eigenval-
ues as ared, bred and cred. Both c/a and (c/a)red ≡ cred/ared parametrize the 
spatial anisotropy but differ in the weight attached to each galaxy. c/a 
measures the full spatial anisotropy, whereas (c/a)red considers only its 
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Fig. 1 | Observed positions and orbits of the Milky Way’s classical satellites. 
Arrowheads show maximum likelihood positions, projected face-on (top panels) 
and edge-on (bottom panels) according to the eigenvectors of the full inertia 
tensor. Lines show orbits integrated for 1 Gyr into the past and future in a fixed 
halo potential of mass 1012 M⊙. Faint lines show 200 Monte Carlo samples of the 
observations and bold lines show the maximum likelihood orbit. The left panels 
show the orbits of the 4 satellites with Galactocentric distances beyond 100 kpc 

and the right panels show the remaining 7 orbits in an inset of ±100 kpc around 
the Galactic Centre. With the Gaia EDR3 measurements, the proper motions are 
very well constrained, with the exception of the LMC and SMC. It can also be seen 
that the MW satellites are highly concentrated, with 7 out of 11 within 100 kpc 
and only 2, Leo I and Leo II, at r > 200 kpc. Several galaxies, including Leo I and II, 
are presently crossing the ‘plane’ (indicated by the grey horizontal lines in the 
bottom panels), which soon disperses as a result.
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Fig. 2 | Comparison of the radial distribution and anisotropy of the classical 
MW satellites with those of simulated ΛCDM counterparts. On the first  
two panels, the thick black lines show data for the MW satellites and the thin 
lines show data from the simulations. Sag: Sagittarius; Umi: Ursa Minor;  
Dra: Draco; Sxt: Sextans; Scl: Sculptor; Car: Carina; For: Fornax. On all panels, 
lines and symbols for the simulations are coloured by c/a as shown on the right 
to identify highly anisotropic (red) and more isotropic (blue) systems. The left 
panel shows the radius, ri, of the ith closest satellite. The centre panel shows 
the sum of the squares of the radii of the closest i satellites, normalized by 
the sum of all 11 satellites. The square of the radius determines each satellite’s 
contribution to the inertia tensor; the Gini coefficient of inertia, G, quantifies 
the inequality of these contributions and corresponds to the distance of each 

line from the dotted line. The right panel shows the correlation between the 
Gini coefficient and anisotropy, c/a, for ‘complete’ sets of satellites (circles), 
corrected for artificial disruption, coloured by c/a. The solid line shows the 
estimated median and the dashed lines the 10th and 90th percentiles. The 
black circle denotes the Milky Way’s present values of G and c/a and the lines 
around it show its most likely (bold) and Monte Carlo sampled (thin) evolution 
over the past 0.5 Gyr. The anisotropy correlates with the Gini coefficient. 
Without accounting for artificial disruption of satellites in ΛCDM simulations 
(‘incomplete’, faint crosses), the Milky Way’s satellites are much more centrally 
concentrated and much more anisotropic. However, when this is taken into 
account, the MW lies within the scatter.
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Fig. 3 | Sensitivity of the anisotropy to the positions of single satellites. 
Probability density functions (PDFs) of c/a (left) and (c/a)red (right) for the 11 
brightest satellites when the angular coordinates of each galaxy are randomized 
in turn, with the distance set to the observed value and the coordinates of all 
other galaxies kept fixed. Numbers show the median values of c/a and (c/a)red; 
those in parentheses show the 10th and 90th percentiles. Galaxies are sorted 
from top to bottom in decreasing order of radius. Black horizontal lines indicate 

the vertical offset and the black vertical lines show the values with all 11 galaxies at 
their observed positions. Each galaxy impacts the distribution of c/a differently, 
and the range of possible c/a values correlates with the radius of the satellite. Just 
placing either Leo I or Leo II at different angular coordinates at their respective 
radius could result in a completely different anisotropy, including cases that are 
more isotropic than the majority of ΛCDM systems.

http://www.nature.com/natureastronomy


Nature Astronomy

Article https://doi.org/10.1038/s41550-022-01856-z

surviving and the recovered, artificially disrupted satellites, we find 
radial distributions resembling the MW’s, as shown in the left panel of 
Fig. 2. This reproduces the results of very-high-resolution simula-
tions30,33. As each satellite contributes to the inertia (equation (1)) in 
proportion to r2i , c/a is sensitive to the radial profile. To quantify this 
relationship, we introduce the Gini coefficient formalism. The central 
panel of Fig. 2 shows the summed weights of the closest i satellites from 

the centre, 
i
∑
j=1

r2j , normalized by the total weight of all 11 satellites, 
11
∑
j=1

r2j . 

The area between each curve and the diagonal measures the inequality 
of the satellites’ contributions to the inertia, or the sample Gini coef-
ficient of inertia,

G = 1
N − 1

N
∑
i=1
(2i − N − 1)r2i /

N
∑
i=1

r2i . (2)

Compared to a more equal distribution, the Milky Way’s centrally 
concentrated radial profile is equivalent to sampling a system with 
fewer points, lowering the expectation value of c/a.

The right panel of Fig. 2 shows the relationship between G and c/a. 
Systems with higher central concentration (higher G) tend to be more 
anisotropic (lower c/a). Accounting for artificial disruption (filled 
circles), 58% of ΛCDM systems have G above the MW and 11 (~5%) have 
c/a < 0.183. Neglecting this effect (faint crosses) produces no systems 
with G as high the MW and only two (1%) with as low c/a.

The Milky Way’s anisotropy additionally results from the fact 
that its two outermost satellites, Leo I and Leo II, which contrib-
ute two thirds of the total inertia, are currently in close proximity. 
However, as is already apparent from Fig. 1, this constellation is  
short-lived.

The clustering of orbital poles
Supporting the notion that the satellite plane constitutes a spinning 
disk34, the orbital poles of 7 of the 11 classical satellites (the Large Magel-
lanic Cloud (LMC), the Small Magellanic Cloud (SMC), Fornax, Leo II, 
Carina, Draco and Ursa Minor) are reported to cluster with a standard 
deviation in direction of only 16.0° (ref. 26), found in only 0.04% of ΛCDM 
systems. Using the more precise proper motions from Gaia Early Data 
Release 3 (EDR3) for the same satellites, we find that this angle increases 
to 23.2∘ +3.5−2.8. We also repeated the analysis, and find that a different 
subset (that includes Leo I instead of Leo II) yields a smaller dispersion 
of 18.9∘ +1.9−1.4. Among our sample of 202 simulated systems, adopting 
either 18.9° or 23.2° and accounting for a minimum look-elsewhere 
effect, we find three or five systems with subsets of satellites with a 
smaller probability to arise from isotropic distributions. That is, we 
find that ~2% of ΛCDM systems contain satellites whose orbital poles 
are even more anisotropic than the most clustered subset of the Milky 
Way, an ~50-fold increase over previous results. The orbital clustering 
of a subset of the Milky Way satellites is unusual in ΛCDM, but not astro-
nomically improbable.
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Fig. 4 | Time-averaged distributions of the anisotropy of the Milky Way 
satellite system. The top panel (coloured plots) shows time-averaged PDFs for 
the anisotropy, c/a (left) and (c/a)red (right), when the position of each satellite 
is moved along its most likely orbit for one orbital period, τ, while the other 10 
satellites remain fixed at their present positions. The bottom panels (greyscale 
plots) show PDFs over lookback times of 0.5, 1 and 2 Gyr, evolving all orbits 
simultaneously. Triangles below each graph indicate the time-averaged medians 
and filled areas extend from the 10th to 90th percentiles. Black vertical lines show 
the anisotropy of the Milky Way’s satellites with all 11 galaxies at their present 

positions, c/a = 0.183 and (c/a)red = 0.364. Downward triangles at the top indicate 
percentiles in the ΛCDM simulations. Given the orbits of the satellites, over the 
past 1 Gyr c/a could have been as low as 0.17 or as high as 0.31 and (c/a)red could 
have been as low as 0.22 or as high as 0.52. The present value of c/a, contingent on 
the close but fleeting proximity of Leo I and Leo II, is significantly below the time-
averaged median, even for a short period of 0.5 Gyr. Note that the sharp limits 
and features are not numerical artefacts but reflect the orbital velocity gradients 
and the locations of satellites relative to each other.

http://www.nature.com/natureastronomy


Nature Astronomy

Article https://doi.org/10.1038/s41550-022-01856-z

Notably, one of our systems has both a c/a value below the MW 
value (0.166 compared to 0.183 for MW) and an orbital pole cluster-
ing more unlikely to arise out of isotropy than the MW’s (probability 
of 0.005 compared to 0.009 for the MW). With no strong correlation 
between orbital pole clustering and anisotropy, and estimated prob-
abilities below 10−3 and 10−2, respectively26, the combination of the two 
had previously been considered extremely unlikely.

Importantly, while the ‘plane of satellites’ includes all 11 classical 
satellites, the orbital anisotropy only concerns a subset, which is in fact 
more spatially isotropic than the system as a whole. The orbital pole 
clustering does not drive the spatial anisotropy.

The plane of satellites is transient
Another defining feature of a rotationally supported disk would be a 
significantly higher velocity dispersion parallel to the plane (σv∥) than 
perpendicular to it (σv⊥). However, for the MW’s classical satellites, we 
measure σv∥ = 165.1 ± 1.2 km s−1 and σv⊥ = 121.6 ± 0.4 km s−1. The ratio, 
σv∥/σv⊥ = 1.36, is indistinguishable from the purely geometrical factor 
of √2. By this basic measure, the plane is not rotation supported.

The longevity of the plane can also be tested directly via orbital 
integration. This method was first, but inconclusively, applied using 
pre-Gaia data35. In this work, we benefit from significantly more precise 
observations, including Gaia EDR3 proper motions and more accurate 
distances.

In Fig. 1, we saw that several satellites are presently crossing the 
plane, while Leo I and II, which dominate the inertia, are moving apart. 

To elucidate the impact of such ‘fortuitous alignments’ on the anisot-
ropy, we show in Fig. 3 the effect on c/a and (c/a)red of randomizing the 
position of each galaxy on the sky at the observed radius, keeping all 
other galaxies at their observed positions. For Sagittarius, the satellite 
with the smallest distance, the c/a distribution is extremely narrow: 
Sagittarius contributes less than 1% to the inertia tensor. However, ran-
domizing the angular position of either of the two outer satellites, Leo 
I or Leo II, raises the median value of c/a to 0.28 and 0.31, respectively, 
with maxima of 0.53 and 0.63, far above the ΛCDM median.

While placing satellites at random sky coordinates highlights the 
sensitivity of c/a to individual galaxies, it is not a physical process. 
However, we also show at the top of Fig. 4 the anisotropy distributions 
when each satellite simply moves along its orbit. The time-averaged 
anisotropy of the system is then calculated over one full orbital period 
centred on the present time. Depending on the orbital phase of Leo II 
alone, c/a could be as high as 0.39, more isotropic than most ΛCDM 
systems. In other words, almost the entire anisotropy of the classical 
MW satellites is due to the orbital phases of Leo I and Leo II. Simply 
omitting both Leo I and Leo II from the analysis would yield c/a = 0.279, 
also more isotropic than 37% of ΛCDM systems of 9 satellites.

The bottom panels of Fig. 4 show time-averaged probability den-
sities of c/a and (c/a)red when all satellites evolve simultaneously. The 
current value of c/a is significantly lower than in the recent past: over 
the past 0.5 and 1 Gyr, the time-averaged medians of c/a are 0.23 and 
0.27 respectively, greater than 13% and 23% of ΛCDM systems. (c/a)red 
has varied widely. Neither metric is an invariant of the satellite system, 
both are sensitive to the orbital phases.

The four panels of Fig. 5 show the evolution of c/a, (c/a)red and of 
the orientations of the planes defined by the full and reduced inertia 
tensors, which we parametrize by the angles between the vectors 
normal to the planes, xc and xc,red, and their present day equivalents, 
xc,0 and xc,0,red. The value of c/a approaches the ΛCDM median within a 
lookback time of 0.5 Gyr. (c/a)red evolves more rapidly, twice exceed-
ing the ΛCDM median. That c/a and (c/a)red vary on such different 
timescales is a further consequence of the radial distribution and of 
the fact that c/a and (c/a)red are determined by satellites at different 
radii and on orbits with different periods: while Leo I and Leo II, which 
largely determine c/a, have orbital periods of 3.4 ± 0.2 and 7.2 ± 0.3 Gyr, 
respectively, the eight inner satellites, which largely determine (c/a)red, 
all have orbital periods under 2 Gyr.

We further see that the orientation of the Milky Way’s plane of 
satellites is not stable, but has tilted by ~17° over the past 0.5 Gyr (and 
~40° for the reduced definition). This is readily understood considering 
that the plane is largely defined by only two outlying satellites. This is 
demonstrated clearly in Fig. 6, where we show the orbits and positions 
of the 11 classical satellites projected edge-on, in the frame defined 
by the minor and major axes of the inertia tensor at z = 0. The central 
panel, which shows the positions of the satellites at z = 0, shows the 
plane aligned with the major axis, analogous to the bottom left panel of  
Fig. 1. The other four panels show the evolution up to 1 Gyr in the past 
and the future. The orientation of the plane of satellites is changing, so 
that at each moment, it points toward the current position of the out-
ermost satellites. Rather than satellites orbiting inside a stable plane, 
the plane tilts as it tracks the positions of its most distant members.

Discussion
The high reported anisotropy of the MW satellite system can largely be 
attributed to its high central concentration, not previously reproduced 
in simulations, combined with the close but fleeting contiguity of its 
two most distant members. Accounting for the radial distribution 
reveals the MW satellites to be consistent with ΛCDM expectations. 
Compared with previous work, we also find a much higher likelihood 
of subsets whose orbital poles are as clustered as the MW. Although 
the Milky Way contains such a subset, the plane of satellites does 
not constitute a rotationally supported disk. Instead, it evolves on 
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direction of xc and the direction of xc,red; that is, the normals to the plane defined 
by c/a and (c/a)red, relative to the directions at the present day (δ(xc, xc,0) and 
δ(xc,red, xc,red,0), respectively). Dashed dark blue lines show results based on the 
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samples. Lines end when one satellite lies beyond 300 kpc from the Galactic 
Centre. The small inset shows t = 0 ± 1 Myr. Grey vertical bars at t = 0 show the 
10th and 90th percentiles for the simulated MW analogues at z = 0 and dotted 
horizontal lines show the medians of these distributions. c/a evolves towards 
the median of the ΛCDM systems, while (c/a)red varies substantially, exceeding 
the median both in the near past and near future. The evolution of xc and xc,red 
reveal the plane to be tilting by either definition. Observational uncertainties 
result in greater uncertainties in the distant past and future, but the plane evolves 
substantially before these become an important factor.
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timescales similar to the ‘transient’ alignments previously found in 
ΛCDM simulations.

Our orbital integration assumes a static MW potential with satel-
lites as massless test particles. We Monte Carlo sample all sources of 
observational error and also vary the components of the potential 
within the uncertainties (Methods). We find our results to be robust, 
and while the real potential is more complex (for example, due to the 
presence of the LMC), these simplifications are valid within a dynamical 
time (~2 Gyr) of the halo, particularly for the important outer satel-
lites36,37. Furthermore, a more complex potential would only accelerate 
the dissolution of a planar configuration38. Our simulations do not 
include the potential disruption of satellites by the disk of the MW. 
This might slightly extend the radial distributions, but not enough 
to change our conclusions. Importantly, among systems that have 
radial distributions similar to the MW, flattened ‘planes of satellites’ 
are quite common.

This work only directly addresses the archetypal ‘plane of satel-
lites’ around the MW. Anisotropic satellite distributions have also been 
reported around several other galaxies14,39 with different criteria, which 
can exacerbate the look-elsewhere effect. Assessing their significance 
requires a careful statistical analysis12,40. While not all criteria are equally 
sensitive to the radial distribution, we also expect that the much higher 
anisotropy we report here for simulated MW analogues will apply to 
ΛCDM analogues of other, similarly defined systems.

After centuries of observations, the Milky Way and its satellites are 
the best studied system of galaxies in the Universe. Viewed in sufficient 
detail, every system inevitably reveals some remarkable features. How-
ever, based on the best currently available data, there is no evidence 
for a plane of satellites incompatible with, or even particularly remark-
able in, ΛCDM. On the contrary, as judged by the spatial anisotropy 
of the brightest satellite galaxies, we appear to live in a fairly regular  
ΛCDM system.

Methods
Observations
We adopt the sky positions and radial velocities from the McCon-
nachie41 catalogue, and combine these, where available, with McCon-
nachie and Venn23 proper motion measurements based on Gaia EDR3 
(ref. 42). The systemic proper motions were measured within a Bayesian 
framework that combines information from stars with full astrometric 
data with information from stars with only photometric and proper 
motion data. The method is a mixture model that associates a probabil-
ity for each candidate star to be associated with the target galaxy taking 
into account foreground and background contaminants. It constitutes 
the best technique currently available in the literature to determine 
proper motions and provides the most precise measurements so far37. 

For the three innermost satellites (Sagittarius dSph, the LMC and the 
SMC), where the McConnachie & Venn catalogue does not include 
proper motions, we use the Gaia Data Release 2 (DR2) proper motions 
of ref. 43. We further compiled the most recent estimates of the distance 
moduli of each satellite. The sky coordinates41, proper motions42,44 and 
distance moduli45–50 used in this study, including their sources, are 
listed in Supplementary Table 2.

We also repeated our analysis using the Gaia EDR3 proper motions 
of Battaglia et al.37 and the Gaia DR2 proper motions described in Riley 
et al.43. A comparison of the evolution of c/a and (c/a)red, analogous 
to Fig. 5, is shown in Extended Data Fig. 1. Unsurprisingly, the evolu-
tion based on the two EDR3 datasets are in excellent agreement. The 
main difference when using the DR2 data is the larger uncertainty (the 
astrometry errors of EDR3 are reduced by approximately a factor of 
two compared with DR2), but the evolution of both c/a and (c/a)red is 
essentially the same in all three datasets, and the results are consistent 
within the respective errors.

Monte Carlo samples. We account for measurement errors by gen-
erating Monte Carlo samples of the satellites in the space of observed 
quantities: distance modulus, radial velocity and proper motions, 
as well as the position of the Sun relative to the Galactic Centre. We 
model each observable as a Gaussian distribution with the mean value 
and standard deviation given by the measurements and their quoted 
errors. For the Sun’s distance from the Galactic Centre we assume 
R⊙ = (8.178 ± 0.022) kpc (ref. 51), for the circular velocity at the Sun’s 
position Vcirc = (234.7 ± 1.7) km s−1 (ref. 52) and for Sun’s motion with 
respect to the local standard of rest (U, V, W) = (11.10 ± 0.72, 12.24 ± 0.47,  
7.25 ± 0.37) km s−1 (ref. 53), where U is defined positive toward the Galac-
tic center, V is positive in the direction of Galactic rotation and W is 
positive toward the North Galactic Pole.

The clustering of orbital poles. To characterize the clustering of 
orbital poles, we adopt the orbital pole dispersion for a subset of Ns 
satellites, Δstd, defined by Pawlowski and Kroupa26 as:

∆std(Ns) =
√√√
√

1
Ns

Ns

∑
i=1

θ2
i , (3)

where θi is the angle between the orbital pole of the ith satellite and the 
mean orbital pole of the satellites in the subset. To compute the cluster-
ing of an observed system relative to expectation, the same analysis is 
performed on the observations and simulations.

Based on earlier Gaia DR2 and Hubble Space Telescope proper 
motions, Pawlowski and Kroupa26 calculated orbital pole dispersions 
for all possible satellite subsets in the MW and in simulations with 
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Fig. 6 | Tilt of the plane of satellites over time. Shown on all panels are the most 
likely orbits of the MW satellites for ±1 Gyr from the present time, analogous to 
Fig. 1. From left to right, panels show the position of satellites at 1 Gyr and 0.5 Gyr 
in the past, today (denoted with t0) and 0.5 and 1 Gyr into the future. All panels are 
plotted in the frame of the major and minor eigenvectors of the inertia tensor at 

time t0, xa,0 and xc,0. Thick black lines show the plane at each time edge-on. In the 
centre panel, by construction the plane axes align with the coordinate axes. In the 
other panels, the tilt of the plane can be observed. The orientation of the plane 
closely follows the locations of the most distant satellites.

http://www.nature.com/natureastronomy


Nature Astronomy

Article https://doi.org/10.1038/s41550-022-01856-z

Ns = 3...11, and discovered that Ns = 7 yielded the most unusual con-
figuration. However, there is no a priori reason to specifically con-
sider Ns = 7. When considering only a proper subset of satellites, the 
interpretation of Δstd(Ns) as evidence for unusual clustering is subject 
to the ‘look-elsewhere effect’. To account for this, we follow here the 
method of ref. 12, which involves performing the same analysis for the 
simulated systems. As in the observations, we consider all subsets of 
size Ns = 3...11 in each simulated system, and identify the most unlikely 
to arise by chance from an isotropic distribution, which we calculate 
based on 105 isotropic distributions of N = 11 points, and the probability 
distributions of Δstd(Ns) for all Ns = 3...11 possible subsets.

In Extended Data Fig. 2, we show a Hammer equal area projection 
of the most likely orbital poles and their Monte Carlo sampled uncer-
tainty. The 3 black circles identify the clustering of 7 of the 11 satellites. 
The dotted line corresponds to Δstd(7) = 16.0°, the dispersion calculated 
by Pawlowski and Kroupa using pre-Gaia EDR3 data. The solid line 
shows our results, Δstd(7) = 23.2°, for the same satellites using Gaia EDR3 
data. The dashed line shows our result for the most clustered subset 
Δstd(7) = 18.9°, exchanging Leo II for Leo I.

Time evolution and time integration
To infer the time evolution of the Milky Way satellite system, the orbits 
of the satellites are integrated numerically as massless test particles in a 
static potential using the Gala package54. The potential consists of a disk, 
stellar nucleus and bulge, and a dark matter halo. The disk is modelled as 
an axisymmetric Miyamoto–Nagai disk55, which, for our default model, 
has disk mass 5.17 × 1010 M⊙, a = 3 kpc and b = 0.028 kpc (ref. 56). The 
nucleus and stellar bulge are both modelled as spherically symmetric 
Hernquist profiles57. For the nucleus we assume a mass of 1.71 × 109 M⊙ 
and a scale radius a = 0.07 kpc, and for the bulge we assume a mass 
of 5.0 × 109 M⊙ and a = 1.0 kpc. For the dark matter halo, we assume a 
spherically symmetric Navarro, Frenk and White (NFW)58 potential.

Until recently, the Milky Way halo mass may have been a prohibi-
tive source of uncertainty for calculating the orbital evolution of the 
satellites, as its value was known only to within a factor of two59. How-
ever, the Galactic halo mass has now been estimated with an uncertainty 
of only about 20% using Gaia data. Multiple dynamical probes, such 
as the stellar rotation curve, the escape velocity, the motions of halo 
stars, globular clusters and satellite galaxies60–64, consistently imply 
a dark matter halo mass for the MW of M200 = (1.0 ± 0.2) × 1012 M⊙ and 
NFW concentration, c200 = 11 ± 2.

Based on these results, we adopt a reference MW halo of mass 
1.0 × 1012 M⊙ and a concentration parameter c200 = 11, corresponding 
to an NFW scale radius of rs = 19.2 kpc. The positions and velocities 
relative to the plane of satellites, and the orbital periods and apocentre 
distances for the default potential, are listed in Supplementary Table 1,  
where the quoted uncertainties reflect 68% confidence intervals for all 
quantities based on Monte Carlo sampling. Varying the MW potential 
within the observational uncertainties does not significantly affect the 
conclusions of our study, as we show in Extended Data Fig. 3 where we 
vary the halo mass between 0.8 and 1.2 × 1012 M⊙. The inferred anisotro-
pies, as measured by c/a and (c/a)red, begin to diverge for lookback times 
beyond ~500 Myr, but the behaviour is qualitatively similar across the 
halo mass range. As shown in Extended Data Fig. 4, we also tested the 
impact of varying the other three mass components and the concen-
tration parameter within the observational uncertainties, and found 
no significant effects. The true Milky Way potential evolves with time, 
but the dynamical time of the halo (~2 Gyr at z = 0) is much longer than 
the timescale for the reported dissolution of the plane of satellites 
(several hundred Myr). A further possible source of uncertainty may 
be the mass of the LMC and its perturbation of the potential. However, 
at a distance of 49 kpc from the centre, even a massive LMC does not 
significantly perturb the acceleration field at distances above 150 kpc 
(ref. 36) and would not significantly affect the orbits of the two most 
distant satellites, Leo I and Leo II.

Numerical simulations
Initial conditions. The simulations used in this work are cosmological 
zoom-in-constrained simulations, based on initial conditions created 
for the SIBELIUS project31 and designed to reproduce Local Group (LG) 
analogues within the observed large-scale structure. The simulations 
assume a ΛCDM cosmology with density parameters Ω0 = 0.307 and 
ΩΛ = 0.693 for matter and dark energy, respectively, an r.m.s. density 
variation on a scale of 8h−1 Mpc of σ8 = 0.8288 and a Hubble parameter 
of h = 0.6777. We use physical units throughout this work. Building on 
an octree representation of the phase information65, we used the meth-
ods described in ref. 66 to supplement the observationally constrained 
scales in the initial density field67,68 with independent random informa-
tion below 3.2 comoving Mpc (cMpc). In total, we generated 60,000 
simulations, resulting in several thousand loosely defined Local Group 
analogues. From these, we selected 112 for the high-resolution resimula-
tions used in this work. All initial conditions refine a Lagrangian region 
extending to at least r = 3 Mpc around the centre of the LG at z = 0, with 
the remainder of a 1,0003 cMpc3 volume populated with progressively 
more massive particles. The simulations start at z = 127. More details 
about the initial conditions may be found in ref. 31.

Simulations. All simulations used in this work were performed with the 
public version of the Gadget-4 code69, on the Cosmology Machine at the 
University of Durham and at the Finnish IT Center for Science. Extended 
Data Fig. 5 shows a comparison of one LG analogue at two different 
resolutions. The left panel corresponds to the resolution of the set of 
60,000 simulations of the SIBELIUS project (particle mass 2.0 × 109 M⊙). 
At this resolution, a MW analogue halo contains approximately 500 
particles, and only the largest substructures are identifiable. The right 
panel shows a simulation with a particle mass of 1.0 × 106 M⊙. At this 
resolution, a MW analogue halo contains approximately 106 particles, 
and an average of ~200 subhaloes down to 2 × 107 M⊙ can be identified 
within 300 kpc from the centre. All results presented in this paper are 
based on simulations at this resolution.

Structure finding. Structures and self-bound substructures were 
identified using the Friends-of-Friends and Subfind algorithms imple-
mented in Gadget-4 at 60 snapshots equally spaced in time, from 
z = 4 until a lookback time of 1 Gyr, and a further 40 snapshots equally 
spaced over the final 1 Gyr up to z = 0. Given their mass and separation, 
the two most massive self-bound substructures of the LG analogues 
can either belong to the same or to separate Friends-of-Friends struc-
tures. Throughout this work, we refer to the two principal self-bound 
substructures of each LG analogue at z = 0 simply as ‘haloes’ and to the 
lower mass substructures within 300 kpc of the centre of potential 
of each halo as ‘satellites’. We select Local Group analogues as pairs 
of haloes with individual masses in the range 0.6–2.2 × 1012 M⊙, sepa-
rated by 500–1,000 kpc, with radial velocity −150 < vr <−50 km s−1 and 
transverse velocity vt < 70 km s−1. In total, our set of high-resolution 
simulations contains 101 LG analogues, and, for the purposes of this 
work, we consider both haloes as a MW analogue.

We use Gadget’s on-the-fly merger tree construction to find the 
progenitors of these subhaloes at previous snapshots. We cut the chain 
of links when a subhalo’s progenitor is no longer found, or when a clear 
discontinuity in mass and position indicates that a satellite’s progenitor 
has been erroneously identified as the main halo. At each snapshot, we 
record the maximum circular velocity of each subhalo, xc,red and define 
vpeak as the highest value of vmax of a subhalo and its progenitors over 
time. Following ref. 17, we use the standard procedure to rank satellites 
by vpeak, and identify the top 11 within 300 kpc of each MW analogue at 
z = 0 as analogues to the classical MW satellites.

Obtaining a complete satellite sample. As noted above, the radial 
distribution of satellites is important for the anisotropy. Numerical 
simulations suffer from the artificial disruption of substructures, that 
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can affect subhaloes far beyond the particle number limit at which they 
can theoretically be identified28,70. According to van den Bosch and 
Ogiya71, the main cause of this artificial tidal disruption is inaccurate 
force softening, which can cause force errors that, for particles within 
substructures, do not cancel out: once a particle is lost to the main 
halo, it cannot be recovered. Additionally, the amplification of discrete 
noise in the presence of a strong tidal field near the centre of a halo can 
lead to a runaway instability that can lead to the complete, but purely 
numerical, disruption of a subhalo.

These effects can, however, be mitigated using semi-analytical 
models (which populate merger trees constructed from simulated 
dark matter subhaloes with galaxies). These models include so-called 
‘orphan’ galaxies, that is, galaxies whose dark matter subhalo has been 
numerically disrupted. After the subhalo is disrupted numerically, 
its subsequent evolution is followed by tracing the positions of its 
most bound particle32. Our ‘complete’ sample includes these ‘orphan’ 
subhaloes.

One important result of this work is that the ‘incomplete’ and ‘com-
plete’ samples of satellite haloes have different radial distributions. 
Even though our high-resolution simulations resolve, on average, 200 
surviving satellite haloes inside 300 kpc of each MW analogue at z = 0 
and we rank the satellites by vpeak (vmax being more strongly affected by 
tidal stripping), we find that the radial distribution of the top 11 surviv-
ing satellites in the ‘incomplete’ samples are systematically and signifi-
cantly less centrally concentrated than the MW’s brightest satellites.

Figure 2 in the main text showed consistency between the radial 
distributions of the complete sample and the Milky Way satellites. It is 
reproduced in the top row of Extended Data Fig. 6. By contrast, the bot-
tom row of Extended Data Fig. 6 shows how our comparison between 
simulations and observations would have looked had we considered 
only subhaloes from the incomplete samples. In the bottom left, it 
can be seen that their radial distribution is systematically offset from 
the MW data (shown as thick black line). For example, the innermost 
nine MW satellites are found within a distance of 140 kpc from the 
Galactic Centre, but none of the 202 incomplete samples has 9 satel-
lites within this radius. The bottom-centre panel shows that the more 
uniform radial distributions of the incomplete samples lead to more 
equal contributions to the moment of inertia than in the case of the 
MW satellites. In fact, as shown on the bottom-right panel, none of the 
incomplete satellite systems have Gini coefficients as high as the MW’s 
and only two have c/a as low or lower. This is in line with previous studies 
(for example, refs. 22,26), which, presumably using incomplete subhalo 
populations, have found c/a values as low as the MW’s to be very rare.

To demonstrate the dependence of the anisotropy on the Gini coef-
ficient and the radial concentration independently of our simulations, 
we also repeat the analysis on synthetic random data. The distributions 
shown in the top row of Extended Data Fig. 7 use a parent radial distribu-
tion that is uniform in r1/2, while those in the bottom row use one that is 
uniform in r; both parent angular distributions are isotropic. The rela-
tion between c/a and G is independent of the radial distribution, but 
the more centrally concentrated r1/2 distribution attains larger values 
of G and higher anisotropies than the more extended one.

Baryonic effects. In hydrodynamic simulations, Milky Way mass haloes 
tend to be slightly more spherical than their counterparts in collision-
less simulations72, which might reduce the anisotropy of subhaloes. 
Additionally, the adiabatic contraction induced by baryons can increase 
the concentration of the dark matter halo73, which can lead to a more 
central concentration of subhaloes but, conversely, could also enhance 
the disruption of subhaloes near the centre.

The presence of a stellar disk could also lead to additional disrup-
tion of subhaloes close to the centre of the galaxy74–77. To estimate its 
possible impact, we have calculated the fraction of subhaloes and 
orphans that pass through a cylinder whose radius, r = 4.3 kpc, is twice 
the scale-length and whose height, h = 0.5 kpc, is twice the scale-height 

of the MW disk during the past 1.3 Gyr. We find that in approximately 
half of the systems, none of the 11 satellites that we consider analogues 
of the classical satellites have passed through this disk, and at most one 
satellite has in ~83% of systems. Since satellites that passed through 
the disk are more likely to be found near the centre, this disruption 
could make the radial profiles slightly more extended. We find that 
this does not have a significant effect on our results: removing all 
satellites identified as having passed through the disk and replacing 
them with the next highest by vpeak only reduces the median Gini coef-
ficient from 0.63 to 0.61, while it increases the median value of c/a  
from 0.35 to 0.36.

Some authors have argued that, in aggregate, the various baryonic 
effects that could individually lead to higher or lower anisotropy can 
increase the anisotropy of satellite systems in ΛCDM13,35,78. On the other 
hand, refs. 26 and 20 concluded that baryons only have a negligible effect. 
A fully realistic simulation of the Milky Way satellite system would 
clearly include baryons, but we believe that the inclusion of baryons 
would, at the very least, not decrease the anisotropy significantly. In 
other words, including baryons is unlikely to make the ‘plane of satel-
lite problem’ worse.

Data availability
The observational data that we use are listed with references in Supple-
mentary Table 2. Both the observational data and the simulation data 
necessary to recreate all the figures and tables in the paper are available 
at https://github.com/TillSawala/plane-of-satellites. The entirety of 
the raw simulation data, comprising 23 TB, are archived at the DiRAC 
Data Centric system at Durham University. Access may be provided by 
reasonable and specific request to the corresponding author.

Code availability
The analysis in this paper was performed in Python 3 and makes exten-
sive use of open-source libraries, including Matplotlib 3.4.2, NumPy 
1.21.1 (ref. 79), SciPy 1.7.0 (ref. 80), GalPy 1.7.0 (ref. 81), Py-SPHViewer82, 
TensorFlow83 and Gala 1.4.1 (ref. 54). The complete analysis code is avail-
able at https://github.com/TillSawala/plane-of-satellites.
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Extended Data Fig. 1 | Sensitivity of the results to the source of proper motion 
information. Evolution of c/a (left column) and (c/a)red (right column), from 
integrated satellite orbits, analogous to Fig. 4, showing the effect of using Gaia 
EDR3 proper motions by McConnachie and Venn23 (top, blue lines), Gaia EDR3 
proper motions by Battaglia et al. (2022)27 (middle, black lines), or Gaia DR2 
proper motions as described in Riley et al.43 (bottom, red lines). For all data sets, 

thick dashed lines are the for the most likely observations, thin lines show 50 
Monte Carlo samples. Lines extend to 0.5 Gyr into the past, and as long as all 11 
satellites remain within 300 kpc of the centre into the future. The two EDR3 data 
sets are in excellent agreement. The main difference in the DR2 data is the larger 
errors, but the evolution of both c/a and (c/a)red is essentially the same in all three 
data sets.
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Extended Data Fig. 2 | Orbital pole clustering. Hammer projection of Milky 
Way satellite orbital poles, using Gaia EDR3 proper motions. Large circles 
show the most likely values, small circles show 200 Monte Carlo samples of the 
observational errors, within ± 1σ of the most likely values. The dotted black curve 
indicates the dispersion reported26 for seven MW satellites. The solid black curve 

indicates the dispersion that we find for the same set based on Gaia EDR3, the 
dashed black curve indicates the minimum dispersion that we find for seven 
satellites exchanging Leo I and Leo II. The orbital poles of the MW satellites are 
significantly clustered, but several of our simulated ΛCDM systems contain 
equally or more strongly clustered satellite systems.
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Extended Data Fig. 3 | Sensitivity of the results to the assumed halo mass. 
Evolution of c/a, (c/a)red and the direction of the vectors normal to the planes of 
the full and reduced inertia tensors, from integrated satellite orbits, analogous 
to Fig. 5 of the main part. Here, all lines are for the most likely observations, and 
we show the results of varying the mass of the dark matter halo. Black lines are 
for the default mass of 1012M⊙, shades of blue show the result of varying the mass 

between 0.8 − 1.2 × 1012M⊙. Lines extend to 0.5 Gyr into the past, and as long as 
all 11 satellites remain within 300 kpc of the centre into the future. The ratio c/a 
reverts towards the median of the ΛCDM values and (c/a)red evolves rapidly for 
any mass. The tilt of the plane defined by either the full or reduced inertia tensor 
is essentially independent of the halo mass.
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Extended Data Fig. 4 | Sensitivity of the results to the remaining parameters 
of the assumed Milky Way potential. Evolution of c/a and (c/a)red from 
integrated satellite orbits, analogous to Fig. 5 and Extended Data Fig. 3. All lines 
are for the most likely observations, and we show the results of varying the 
concentration of the dark matter halo (top left), disk mass (top right), bulge mass 
(bottom left) and nucleus mass (bottom right). Black lines are for the default 

parameters, shades of blue show the result of varying the parameters within the 
observational uncertainties. Lines extend to 0.5 Gyr into the past, and as long as 
all 11 satellites remain within 300 kpc of the centre into the future. Our results are 
not significantly affected by varying the components of the halo model within 
the observational uncertainties.
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Extended Data Fig. 5 | Dark matter density in our simulations at two different 
resolutions. Dark matter density in one of the Local Group analogues from 
the Sibelius project of ΛCDM constrained simulations. Both panels show the 
projection of a box of side length 2 Mpc centred around the same system at z = 0. 

The left panel shows results from a simulation with particle mass of 1.25 × 108M⊙, 
used in ref. 31 to identify LG analogues. The right panel shows the same system 
resimulated with a particle mass of 106M⊙ used in this work to identify and trace 
the satellite substructures.
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Extended Data Fig. 6 | Radial distributions, Gini coefficients, and anisotropy 
of complete and incomplete samples of subhaloes. Relation between Gini 
coefficient of inertia, G, and anisotropy, c/a, for the complete set of satellites 
(top, same as Fig. 2), and using only the subhaloes from the incomplete sample 
(bottom). While the radial distributions of the complete samples bracket the 

Milky Way data (left panel), those of the incomplete subhalo samples are much 
less centrally concentrated, resulting in much lower Gini coefficients. The 
complete sample contains multiple systems with G as high or higher, and c/a as 
low or lower than the MW, while in the incomplete sample, only two systems are 
as anisotropic, and none is as centrally concentrated as the MW.
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Extended Data Fig. 7 | Radial distributions, Gini coefficients, and anisotropy 
of uniformly distributed random samples. Relation between Gini coefficient 
of inertia, G, and anisotropy, c/a, for 105 random samples of 11 points, drawn from 
isotropic angular distributions and radial distributions uniformly distributed in 

r1/2 (top) or r (bottom), analogous to Fig. 2 and Extended Data Fig. 6. On the right 
panel, black lines denote the 90th, 50th and 10th percentile of each dataset, grey 
lines repeat the corresponding percentiles for the other dataset. For clarity, the 
left and middle panels only show the first 200 samples.
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