
The vision of self-evolving computing systems
Weyns, D.; Bäck, T.H.W.; Vidal, R.; Yao, X.; Belbachir, A.N.

Citation
Weyns, D., Bäck, T. H. W., Vidal, R., Yao, X., & Belbachir, A. N. (2022). The vision of self-
evolving computing systems. Journal Of Integrated Design And Process Science, 1-17.
doi:10.3233/JID-220003

Version: Submitted Manusript (under Review)
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3562972

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3562972

Transactions of the SDPS:
Journal of Integrated Design and Process Science
XX (XXXX) XX-XX
DOI 10.3233/jid-201x-xxxx
http://www.sdpsnet.org

The Vision of Self-Evolving Computing Systems

Danny Weyns, Katholieke Universiteit Leuven, Belgium and Linnaeus University, Sweden *

Thomas Bäck, Leiden University, The Netherlands and NORCE Norwegian Research Centre, Norway
Renè Vidal, Johns Hopkins University, USA and NORCE Norwegian Research Centre, Norway
Xin Yao, University of Birmingham, UK and Southern University of Science and Technology, China
Ahmed Nabil Belbachir, NORCE Norwegian Research Centre, Norway

Abstract Computing systems are omnipresent; their sustainability has become crucial for our society. A
key aspect of this sustainability is the ability of computing systems to cope with the continuous change they
face, ranging from dynamic operating conditions, to changing goals, and technological progress. While we
are able to engineer smart computing systems that autonomously deal with various types of changes, han-
dling unanticipated changes requires system evolution, which remains in essence a human-centered process.
This will eventually become unmanageable. To break through the status quo, we put forward an arguable
opinion for the vision of self-evolving computing systems that are equipped with an evolutionary engine
enabling them to evolve autonomously. Specifically, when a self-evolving computing system detects condi-
tions outside its operational domain, such as an anomaly or a new goal, it activates an evolutionary engine
that runs online experiments to determine how the system needs to evolve to deal with the changes, thereby
evolving its architecture. During this process the engine can integrate new computing elements that are pro-
vided by computing warehouses. These computing elements provide specifications and procedures enabling
their automatic integration. We motivate the need for self-evolving computing systems in light of the state
of the art, outline a conceptual architecture of self-evolving computing systems, and illustrate the architec-
ture for a future smart city mobility system that needs to evolve continuously with changing conditions. To
conclude, we highlight key research challenges to realize the vision of self-evolving computing systems.

Keywords: Unanticipated change, sustainability, computing warehouses, self-adaptation, self-evolution.

1. Introduction

Our society is going through a digitization process that penetrates virtually every aspect of our life,
from health and industries, to transportation, public services, and entertainment. Consequently, we in-
creasingly depend on the sustainability of computing systems. Yet, achieving this sustainability is chal-
lenging (Bernardo and Hillston, 2007; European-Commission, 2021; Lehman and Ramil, 2003) and spans
manifold areas, from quality of service and software evolution to energy-awareness and software engineer-
ing processes. One key aspect to achieve sustainability of computing systems is managing the complexity
that arises from the ever changing conditions these systems face. Such changes may or may not be antic-

*Corresponding author. Email: danny.weyns@kuleuven.be. Tel: (+32)474-208251.

1092-0617/$27.50©201X - Society for Design and Process Science. All rights reserved. Published by IOS Press

ar
X

iv
:2

20
4.

06
82

5v
1

 [
cs

.S
E

]
 1

4
A

pr
 2

02
2

http://www.sdpsnet.org
mailto: danny.weyns@kuleuven.be

2 Weyns et al. / The Vision of Self-Evolving Computing Systems

ipated when the system was built and include dynamics in the environment, new emerging goals,1 and the
introduction of new technologies. We take this angle of change to sustainability of computing systems.

Currently we can build smart computing systems that can deal with many tasks autonomously, adapt
themselves or learn over time to deal with changes. Other tasks can be managed by system operators, for
instance, perform predictive maintenance. However, current computing systems can only handle changes
that were anticipated, that is, changes that occur within the operational domain for which the system has been
built. Current smart computing systems cannot handle unanticipated changes, such as anomalies outside
their operational domain, and the emerge of new goals or new technologies. Such changes require evolution
of the computing system. Although significant progress has been made on automating the deployment and
integration of new elements, software evolution remains in essence a human-driven activity.

With the ever increasing complexity of computing systems and the continuous changes these systems
are subjected to, human-driven approaches will eventually become unmanageable (Andersson, Baresi, Ben-
como, de Lemos, Gorla, Inverardi, and Vogel, 2013; Baresi and Ghezzi, 2010; Bennett and Rajlich, 2000;
Dearle, 2007; Reussner, Goedicke, Hasselbring, Vogel-Heuser, Keim, and Martin, 2019). The capacity to
handle large amounts of data and the availability of efficient decision algorithms opens perspectives to major
breakthroughs towards fully autonomous systems that operate in continuous changing environments (Det-
Norske-Veritas, 2020; Weyns, Andersson, Caporuscio, Flammini, Kerren, and Löwe, 2022; Weyns, Bures,
Calinescu, Craggs, Fitzgerald, Garlan, Nuseibeh, Pasquale, Rashid, Ruchkin, and Schmerl, 2021b). How-
ever, we currently lack fundamental knowledge to turn these long-standing challenges into reality.

When comparing the capabilities of present-day computing systems with those of biological systems
a few striking conclusions can be drawn. In contrast to computing systems, biological systems have a
remarkable ability to deal with changes. For instance, insects have exceptionally fast reactions and can avoid
dangerous situations or locate hidden food sources by swiftly adapting to their environment (Camazine,
Deneubourg, Franks, Sneyd, Theraulas, and Bonabeau, 2003). They have also evolved dramatically, from
one generation to the next, to accommodate changes over time in their habitat and the climate conditions.

Inspired by the principles of biological systems, this paper puts forward an arguable opinion for the
vision of self-evolving computing systems, i.e., computing systems that evolve themselves autonomously.
Figure 1 illustrates how self-evolving computing systems differ from traditional computing systems. A
traditional computing system takes inputs from the environment and produces outputs in the environment,
realizing the users’ goals (Jackson, 1997). To deal with changing conditions, such a system can be equipped
with smart techniques, either internally (e.g., a learning algorithm) or externally via a feedback loop, en-
abling the system to self-adapt its configuration autonomously to deal with changes (Garlan, Cheng, Huang,
Schmerl, and Steenkiste, 2004; Weyns, 2021). A traditional computing system is designed to work in an
operational domain, i.e., well-defined conditions of the environment in which the system should achieve its
goals. Humans may be involved to operate the system, for instance to start/stop the execution of batches
of tasks or to perform predictive maintenance. Extending the operational domain, for instance to deal with
new goals or new constraints, or to mitigate anomalies, requires the system to undergo an evolution step
that typically relies on humans that produce new computing elements that are then deployed and integrated
into the system, a process that is increasingly automated (Rodrı́guez et al., 2017).

In contrast, a self-evolving computing system maintains a self-representation that includes runtime mod-
els of the computing system and its goals (self-awareness), and the environment in which the system operates
(context-awareness). An evolutionary learning engine uses the self-representation to autonomously evolve
the architecture of the computing system, in response to unanticipated changes that occur throughout the
system’s lifetime, i.e., new goals or new constraints that appear, or anomalies identified during operation.
To that end, the evolution engine runs experiments in a sandbox evolving the system model until it satisfies
the new conditions. During this process, the engine can integrate new computing elements from computing

1We use goals and requirements interchangeably in this paper.

Weyns et al. / The Vision of Self-Evolving Computing Systems 3

Computing System

In Out

evolve

observe new
goals &

constraints

observe
anomalies

produce

Computing System

In Out

evolve

produce

guide

TRADITIONAL COMPUTING SYSTEM

SELF-EVOLVING COMPUTING SYSTEM

adapt
KEY

traditonal
computing element

system

repository

input/output
environment

activity

auto-evolution-
enabled

computing element

adapt

Self-Representationuse

Computing Warehouse

operate

observe new
goals &

constraints

observe
anomalies

Evolutionary
Learning Engine

use

Fig. 1. From traditional computing systems to self-evolving computing systems.

warehouses as needed. These auto-evolution-enabled computing elements provide specifications and proce-
dures that enable an evolutionary engine to incorporate these elements autonomously. As shown in Figure 1,
a self-evolving computing system takes the human out of the loop of the evolution process. Humans only
produce new auto-evolution-enabled computing elements that are readily available for self-evolving com-
puting systems via computing warehouses. Yet, humans may be involved to provide guidance to the system,

4 Weyns et al. / The Vision of Self-Evolving Computing Systems

for instance to set constraints on the behavior of the system or express preference of one configuration over
another during evolution. Self-evolving computing systems focus on the evolution aspects of computing
systems within the newly proposed paradigm of “lifelong computing” (Weyns, Bäck, Vidal, Yao, and Bel-
bachir, 2021a). Self-evolving computing systems also resemble similarities with the idea of “self-growing
software” proposed by Tamai (2019) as the next paradigm shift in software engineering.

The remainder of this paper starts with a discussion of a selection of key approaches to deal with change
and points out why a novel foundation is required (Section 2). Then we introduce an illustrative example
(Section 3). We outline a conceptual architecture for self-evolving computing systems (Section 4) and
illustrate the architecture for the example. To conclude, we highlight key research challenges for realizing
the vision of self-evolving computing systems and we suggest starting points to tackle them (Section 5).

2. State of the Art

Already in the early 2000s, IBM pointed to the manageability problems caused by the growing complex-
ity of computing systems (IBM, 2003). In response, they launched the autonomic computing initiative that
was centered on enabling computing systems to manage themselves based on high-level goals, similar to
the autonomic nervous system of the human body. Autonomic computing primarily focuses on automating
tasks of running computing systems that are traditionally done by operators. Hence, the target of autonomic
computing is the operational domain of computing systems. Self-evolution on the other hand targets the
autonomous evolution of computing systems, hence the target is a change of the operational domain. Self-
evolution aims to enable computing systems dealing with unanticipated change by evolving autonomously.

In this section, we summarize the state of the art in two key fields that tackle the problem of manag-
ing change of computing systems from two complementary points of view: smart systems and software
evolution. Based on this analysis, we motivate the need for self-evolving systems.

2.1. Smart Systems

Tavcar and Horváth (2019) surveyed smart computing systems, with an emphasis on cyber-physical sys-
tems. The authors distinguish four levels of smartness mapping to increasingly challenging types of changes
to be tackled by the systems, ranging from no changes to unknown changes. Smartness then refers to the ca-
pability level of computing systems to handle these types of changes through reasoning, learning, adapting,
and evolving. Weyns et al. (2022) extended the notion of smart to “smarter” referring to both computing
systems and their engineering processes that continuously adapt and evolve through a perpetual process that
continuously improves their capabilities and utility to deal with the uncertainties and new data they face
throughout their lifetime. Bures, Weyns, Schmerl, Tovar, Boden, Gabor, Gerostathopoulos, Gupta, Kang,
Knauss, Patel, Rashid, Ruchkin, Sukkerd, and Tsigkanos (2017) emphasized that smartness of computing
systems enable them to deal with dynamics and uncertainty in the environment, and external threats. The
authors highlight that smartness of computing systems is primarily implemented through the software lever-
aging principles from self-adaptation. Musil, Musil, Weyns, Bures, Muccini, and Sharaf (2017) presented a
set of architectural patterns to realize self-adaptation across the software stack of cyber-physical systems.

A classic field of study on smartness is autonomous systems (or intelligent autonomous systems)
(Paulovich, Oliveira, and Oliveira, 2018; Tzafestas, 2012). Autonomous systems mimic human (or ani-
mal) intelligence, in order to operate independently of direct human supervision. An important sub-field
of autonomous systems is multi-agent systems (Wooldrige, 2009) that studies the operation and coordina-
tion of autonomous agents that aim at solving problems that go beyond the capabilities of single agents.
Different authors have presented patterns that document problem-solution pairs for engineering multi-agent
systems (Dastani and Testerink, 2016; Marks, Muller, Vogeli, Jung, Jazdi, and Weyrich, 2018; Schelfthout,
Coninx, Helleboogh, Holvoet, Steegmans, and Weyns, 2002). Juziuk, Weyns, and Holvoet (2014) presented

Weyns et al. / The Vision of Self-Evolving Computing Systems 5

a systematic literature overview classifying patterns based on focus, granularity, level of abstraction, and
source of inspiration. The field of human-robot teams (Musić and Hirche, 2016) studies collaboration of
humans and robots exploiting their complementary skill sets. Another promising key field enabling the re-
alization of smartness is digital twins (Tao, Zhang, Liu, and Nee, 2019). Digital twins are characterized by
the seamless integration between the cyber and physical spaces. Digital twins have been successfully ap-
plied in product design, production, prognostics and health management, among other fields. Gentelligent
systems (Denkena and Morke, 2017) integrate sensing components throughout the production supply chain
to improve efficiency, flexibility, and product quality. Recently, the interest in autonomous systems has been
expanding significantly with high-profile applications, such as smart robotics (Industry 4.0 driven by the In-
ternet of Things) and smart transportation. For instance, Jazdi (2014) stressed the need to equip Industry 4.0
systems with smart actuators, sensors, and telecommunication technologies, providing these systems access
to the higher-level processes and services. Weyns, Iftikhar, Hughes, and Matthys (2018) presented MARTAS
that automates the management of Internet-of-Things leveraging statistical model checking at runtime to en-
sure the system goals under uncertainty. Yu and Xue (2016) referred to smartness of the electricity grid as
the integration of information and communication technology with other advanced technologies that enable
electric energy generation, transmission, distribution, and usage to be more efficient, effective, economical,
and environmentally sustainable. Koutsoukos, Karsai, Laszka, Neema, Potteiger, Volgyesi, Vorobeychik,
and Sztipanovits (2018) investigated smart transportation systems using a modeling and simulation environ-
ment. Smartness in this context relates to the ability of a system to deal with attacker-defender behavior,
including vulnerability analysis to traffic signal tampering, resilient sensor selection for forecasting traffic
flow, and resilient traffic signal control in the presence of denial-of-service attacks.

Another classic field of smart systems is self-adaptation. Simultaneous with industrial initiatives, such as
autonomic computing (Kephart and Chess, 2003) mentioned above, researchers studied the abilities of com-
puting systems to handle change autonomously (Garlan et al., 2004; Oreizy, Gorlick, Taylor, Heimhigner,
Johnson, Medvidovic, Quilici, Rosenblum, and Wolf, 1999). Self-adaptation is based on the principles of
feedback computing (Kramer and Magee, 2007; Oreizy et al., 1999; Salehie and Tahvildari, 2009; Weyns,
2021). Over the past two decades, extensive efforts have been put in devising fundamental principles of self-
adaptation as well as techniques and methods to engineer self-adaptive systems (Weyns, 2019). Whereas
the initial focus was on automating operator tasks based on high-level goals (Garlan et al., 2004; Kephart
and Chess, 2003), later research shifted towards taming uncertainties that computing systems face during
operation and that are difficult to anticipate before deployment (Calinescu, Weyns, Gerasimou, Iftikhar,
Habli, and Kelly, 2018; Cheng et al., 2009a; Moreno, Cámara, Garlan, and Schmerl, 2015). This view intro-
duces a perspective that blends system engineering and system operation (Baresi and Ghezzi, 2010; Chen,
Bahsoon, and Yao, 2018a; Chen, Li, Bahsoon, and Yao, 2018c; Weyns, Bencomo, Calinescu, Camara,
Ghezzi, Grassi, Grunske, Inverardi, Jezequel, Malek, Mirandola, Mori, and Tamburrelli, 2017). Central to
any self-adaptive systems are runtime models (Blair, Bencomo, and France, 2009) that provide the system
with self-awareness (self-representation and representation of goals) and context-awareness (representation
of the environment) (Chen, Bahsoon, and Yao, 2020; Elhabbash, Salama, Bahsoon, and Tino, 2019; Weyns,
Malek, and Andersson, 2010). These models are updated at runtime tracking uncertainties (Calinescu, Mi-
randola, Perez-Palacin, and Weyns, 2020; Esfahani and Malek, 2013; Mahdavi-Hezavehi, Avgeriou, and
Weyns, 2017; Weyns, Caporuscio, Vogel, and Kurti, 2015) and then used to analyze the situation and decide
when and how to adapt the system to maintain its goals, or gracefully degrade if needed.

2.2. Software Evolution

Evolution is a natural part of the life cycle of software systems that traditionally occurs in incremental
development in response to changes in the environment, purpose, or use of the software system (Reussner
et al., 2019). Buckley, Mens, Zenger, Rashid, and Kniesel (2005) presented a taxonomy for software evo-

6 Weyns et al. / The Vision of Self-Evolving Computing Systems

lution with four dimensions of system change: temporal properties (i.e., when do changes happen), objects
of change (i.e., where in the system do we make changes), system properties (i.e., what is changed), and
change support (i.e., how is the system changed). Earlier, Chapin, Hale, Kham, Ramil, and Tan (2001)
identified two other core dimensions: motivations (i.e., why are the changes done) and roles (i.e., who is
doing system changes). The ISO/IEC standard for software maintenance2 distinguish four types of soft-
ware changes: corrective (bug fixing dealing with errors), adaptive (environment and requirement changes),
perfective (optimizing or refactoring the system), and preventive modifications (preventing problems).

During the past decades, the traditional view of software that evolves through periodic releases has
been replaced by continuous evolution of software (Rodrı́guez et al., 2017). Software organizations today
develop, release, and learn from software in rapid parallel cycles (typically from hours to a few weeks).
This approach is commonly referred as continuous deployment (CD) (Järvinen, Huomo, Mikkonen, and
Tyrväinen, 2014). CD is based on the principles of agile development (Dingsøyr, Nerur, Balijepally, and
Moe, 2012) and DevOps (Mishra and Otaiwi, 2020) that aim at increasing the deployment speed and qual-
ity of systems. CD leverages on continuous integration (CI) (Meyer, 2014) that automates tasks such as
compiling code, running tests, and building deployment packages. Among the benefits of CI/CD are rapid
innovation, shorter time-to-market, increased customer satisfaction, continuous feedback, and improved de-
veloper productivity. Yet, an important concern of current practice in software maintenance is (intentional
or unintentional) technical debt, i.e., longer-term negative effects on systems that result from sub-optimal
decisions (Li, Avgeriou, and Liang, 2015), in particular in the context of agile development. Furthermore,
researchers have argued that the current level of automation needs to be enhanced (Rodrı́guez et al., 2017),
and last but not least, to develop sustainable computing systems, we need sustainable software develop-
ment processes (Andersson et al., 2013; Dick and Naumann, 2010; Georgiou, Rizou, and Spinellis, 2019;
Naumann, Dick, Kern, and Johann, 2011; Weyns et al., 2022; Weyns and Iftikhar, 2022).

With the increasing exposure of computing systems to change, the volumes of data they need to process,
and the seamless integration of humans in the loop (Musil, Musil, Weyns, and Biffl, 2015; Selic, 2020;
Sztipanovits, Koutsoukos, Karsai, Kottenstette, Antsaklis, Gupta, Goodwine, Baras, and Wang, 2012; Zeng,
Yang, Lin, Ning, and Ma, 2020), computing systems face uncertainties that are difficult or even impossible
to predict before deployment. Hence, engineers may not be able to obtain sufficient knowledge to make
all design decisions before the system is deployed. This calls for postponing design decisions until after
deployment when the required knowledge becomes available. The design decisions are then enacted through
continuous adaptation and evolution (Baresi and Ghezzi, 2010; Weyns, 2021). To that end, a number of
important building blocks have been studied. We highlight two: anomaly detection and lifelong learning.

Anomaly detection (or outlier or novelty detection) aims at identifying data instances that significantly
deviate from the majority of data instances in a data set (Grubbs, 1969). Anomaly detection has been
used in a variety of domains, e.g., intrusion detection, fault prevention, defect detection, and unexpected
flow detection. A plethora of methods have been developed (Boukerche, Zheng, and Alfandi, 2020; Chen,
Tino, Rodan, and Yao, 2014), including proximity-based approaches that rely on relations between nearby
data points, projection techniques that convert data into a space with reduced dimensionality to improve
outlier detection, outlier detection for multi-dimensional data such as recursive binning and re-projection,
windowing for online time series that incrementally builds and updates models with new data, learning
model spaces for fault diagnosis, and deep learning anomaly detection, such as deep neural network auto-
encoders. Yet, dealing with highly complex data remains an open problem. Anomaly detection mechanisms
enable a computing system to autonomously identify behavior at the boundaries or outside its operational
domain, providing a basis building block for the realization of self-evolving systems.

Lifelong learning (or continual learning) refers to the ability of a system to continually accommodate
new knowledge to learn new tasks that were not predefined (Thrun and Mitchell, 1995). Different approaches

2International Organization for Standardization. ISO/IEC 14764. 2014. URL: www.iso.org/standard/39064.html

www.iso.org/standard/39064.html

Weyns et al. / The Vision of Self-Evolving Computing Systems 7

for lifelong learning have been developed relying on supervised, unsupervised, and reinforcement learn-
ing (Chen and Liu, 2018), and recently lifelong learning based on neural networks has gaining increasing
interest (Parisi, Kemker, Part, Kanan, and Wermter, 2019). A key challenge for lifelong learning is deal-
ing with catastrophic forgetting that refers to the loss of previous learning while learning new information;
this may lead to failures for systems operating in real-world environments (Hasselmo, 2017). Different ap-
proaches have been proposed to deal with this problem, such as dynamic allocating new neurons or network
layers to accommodate novel knowledge, and using complementary learning networks with experience re-
play, yet more research is needed apply these techniques to real-world systems (Parisi et al., 2019). Lifelong
learning techniques provide another basic block for the realization of self-evolving computing systems.

2.3. Why Self-Evolving Computing Systems?

When we look at the current landscape of research, we can observe two principle lines of work. The first
line studies the application of smart techniques enabling systems to deal with changes autonomously dur-
ing operation. The second line studies the evolution of computing systems with an emphasizes on tools for
automating the deployment and integration of computing elements. We advocate that a key underlying prob-
lem with these existing approaches is the lack of an integrated perspective on handling change—anticipated
and unanticipated—in an autonomous manner. Compared to traditional (or conventional) systems, smart
systems are equipped with capabilities to handle a variety of changes autonomously. Yet, the target do-
main of smart systems is in essence their operational domain, that is, their capabilities are confined to what
they have been built for. The aim of software evolution lays essentially in revising or extending the oper-
ational domain. While several steps in the process of software evolution have been automated in the past
decades, the actual evolution of the software remains in essence a human-driven activity. Autonomous and
self-adaptive systems have expanded the operational domain of computing systems substantially, enabling
them to deal with changes during operation to enhance their efficiency and being most robust, yet the scope
remains bounded to anticipated changes. Anomaly detection mechanisms allow identifying deviations from
expected behaviors, and lifelong learning enables learning-based systems dealing with new tasks during
operation. Yet, besides their current limitations for real-world problems, these techniques offer only basic
blocks to realize a true integration of continuous adaptation and evolution aiming at mitigating the effects
of uncertainty that spans both anticipated and unanticipated change. To tackle the challenges of continuous
change, anticipated and unanticipated, a new integrated perspective for the engineering and operation of
future computing systems is needed. Self-evolving computing systems aim to offer such a perspective.

3. Future Smart City Mobility Scenario

We illustrate the need for self-evolving computing systems with an example of a future smart city mo-
bility scenario. A research study called “New autoMobility” (Grötker, 2015) highlighted how automated
and networked vehicles and trains can be usefully integrated into a user-friendly, efficient and sustainable
mobility system in the future. Such a system would consist of mobility hubs, car sharing and self-parking
vehicles, and autonomous trains. Flexible, time-and-space-dependent mobility pricing will ensure more
evenly distributed usage of mobility resources and prevent traffic gridlock. Vehicles will be able to warn
each other (directly or indirectly) in dangerous situations creating a cooperative mixed traffic. Such intelli-
gent, networked transport protects the environment and the climate and improves quality of life.

Establishing automated mobility requires a phased introduction and continuous evolution of a mobility
platform to align with a variety of changes. This poses difficult often conflicting challenges, spanning busi-
ness, technical, social, and legal aspects. For example, the introduction of automated traffic will happen
only gradually, so initially automated and conventionally controlled vehicles will co-exist. Depending on
local conditions, there may be a need to manage the level of pollution in areas with more intensive traffic of

8 Weyns et al. / The Vision of Self-Evolving Computing Systems

conventionally controlled vehicles. This may require the need for tracking the levels of pollution in these
areas and take measures when needed. Such measures may range from temporally redirecting conventional
vehicles in certain areas using smart traffic boards, up to increasing prices for polluting vehicles for instance
to part in sensitive areas. However, with changing usage profiles, transitions to automated mobility, and
novel technological advances, these provisions will need to evolve.

Central to the functionality and safety of mobility will be the collection and processing of data and
information from various sources. Managing this data requires a suitable framework that creates connectivity
between vehicles, the infrastructure, and traffic management systems, ensuring safety while respecting the
personal interests and privacy concerns of the users at any time. Tackling these challenges and balancing
the trade-offs between the various needs will require an integrated computing system that is capable to
operate, adapt, and evolve autonomously throughout its lifetime in a continuously changing environment.
We illustrate how a self-evolving computing system could offer such a unique solution.

4. Conceptual Architecture for Self-Evolving Computing Systems

In this section, we present a conceptual architecture for self-evolving computing systems. To deal with
the continuous changes a self-evolving computing system faces throughout its lifetime, we outline five
complementary requirements for a self-evolving computing system. These requirements naturally target the
ability of self-evolving systems to deal with anticipated change (1), to discover unanticipated changes and
evolve autonomously (2-4), and to integrate humans in the loop when needed (5).

(1). A self-evolving computing system should be able to handle vast amounts of data and realize its goals
under changing but anticipated conditions;

(2). A self-evolving computing system should be able to discover and integrate new computing elements
autonomously;

(3). A self-evolving computing system should be able to autonomously detect unanticipated conditions,
i.e., learn conditions outside its operational domain, including anomalies, new goals and constraints;

(4). A self-evolving computing system should be self-aware and context-aware enabling it to au-
tonomously evolving its architecture to realise its goals;

(5). Depending on the domain at hand, some activities of a self-evolving computing system may be sup-
ported by humans.

Requirement (1) is a basic requirement for systems that need to achieve their goals while dealing with
huge amounts of data and operating under uncertainty. Requirements (2) to (4) are key for enabling systems
to evolve autonomously when encountering unanticipated changes. As for requirement (5), support for
human guidance is particularly important: (i) in domains with critical goals where humans will have the
ultimate control over the system by setting boundaries on the system behavior, ensuring the trustworthiness
of the system, (ii) for systems that require human interaction to set high level goals or express preferences
among possible options generated by the system (in contrast to performing standard operating activities).

To achieve these requirements, we propose a conceptual architecture for self-evolving computing sys-
tems as shown in Figure 2. We explain the different building blocks and illustrate each of them with exam-
ples of the future mobility scenario. Starting points to realize the building blocks are explained in Section 5.

Self-Adaptive Computing System. As a basis, a self-evolving computing system comprises an self-
adaptive computing system that integrates regular computing elements and learning algorithms, enabling it
to handle a vast amount of data and realize the goals of its users. Furthermore, the self-adaptive computing

Weyns et al. / The Vision of Self-Evolving Computing Systems 9

Evolution Guidance

Computing
Warehouses

Evolutionary Learning
Engine

Self-Adaptive Computing System

Unanticipated
Change Detection

Fig. 2. Conceptual architecture for self-evolving computing systems with the different building blocks.

system is equipped with smart techniques enabling it to deal with changes within its operational domain, i.e.,
changing operation conditions and uncertainties that can be managed by adapting the running architectural
configuration of the self-adaptive computing system, without the need for updates or the integration of new
computing elements or learning algorithms. As such, a self-adaptive computing system realizes requirement
(1). To account for unanticipated changes that requires evolution (see evolutionary learning engine below),
the self-adaptive computing system should support automatic updates of its running architecture.

Figure 3 illustrates a self-evolving computing system for the smart city mobility scenario. We focus here
on the self-adaptive computing system (lower box left) that comprises the smart city area with a mobility
hub that connects different modes of public transport, conventional cars and smart vehicles, pedestrians,
and a variety of sensors (cameras, smart boards, parking sensors, etc.) that measure the density of traffic,
occupation of automated trains, usage of parking lots, movements of pedestrians, etc. The data is collected
by a mobility tracking platform and stored and updated in a mobility data repository. The data is contin-
uously processed by a learning service center that learns and predicts relevant system parameters, such as
mobility distribution, traffic safety, etc. These parameters together with other data obtained from the Cloud
(e.g., weather forecasts) are then used by the adaptation manager that continuously optimizes the different
objectives of the mobility system and their trade-offs, using the mobility control platform. For instance,
when a camera detects an increase of passengers of smart vehicles for a particular trajectory, the frequency
of these transports may be increased dynamically and the ticket price may be adjusted temporally.

Computing Warehouses. Self-evolving computing systems are supported by computing warehouses that
offer new computing elements, realizing requirement (2). Computing warehouses leverage the principles of
off-the-shelf components and services, open source software, and open data. Computing warehouses can
be operated directly by producers of new auto-evolution-enabled computing elements or indirectly via a
broker. We refer to the elements provided by computing warehouses as auto-evolution-enabled computing
elements; examples are a module that offers improved or new functionality, a connector to connect with and
use a new external service, a template of new learning algorithm, a repository of data, etc. It is important that
self-evolving computing systems can incorporate auto-evolution-enabled computing elements autonomously
during operation. To that end, each auto-evolution-enabled computing element is equipped with a data
sheet that specifies its functions, properties, usage requirements, etc., and a usage guide that specifies the
procedures that need to be followed for using the element. These specifications require both a well-defined
syntax and an ontology that defines the semantics of the properties and usage of the elements. Depending on

10 Weyns et al. / The Vision of Self-Evolving Computing Systems

Dashboard

Warehouse
Manager

Computing Warehouse

Catalog

Adaptive Computing
System Model

Evolutionary Learning Pipeline

Smart city areaMobility hub

Mobiity Data

Cloud

Learning
Service Center

Adaptation
Manager

Self-Adaptive Computing System

Mobility Tracking
Platform

Pollution Sensor
Module

Usage
Guide

Data
Sheet

Anomaly
Detection

New Goal
Detection

Unanticipated Change
Detection

Change Enactment

Sandbox

Evolutionary Learning Engine

Usage Profile
Learning
Module

Usage
Guide

Data
Sheet

Camera Zoom
Module

Usage
Guide

Data
Sheet

Noise Removal
Module

Data
Sheet

Usage
Guide

Polution Reduction Goal

Evolution Guidance

Mobility Control
Platform

Pollution
sensor

Historical Data

Fig. 3. Illustration of the conceptual architecture for a smart city mobility scenario

the requirements, new auto-evolution-enabled computing elements may require certification before making
them available in a warehouse. All interactions with the computing warehouse happen via a warehouse
manager. Clients can search the available elements via a catalog that lists the elements with their data
sheets and usage guides; using a computing element may be subject to a contract.

Figure 3 shows a few examples of new auto-evolution-enabled computing elements for the smart mobile
city scenario (box right). The camera zoom module provides the software that is required to activate and use
zoom lenses on cameras. The usage profile learning module offers new learning models of users of a smart
city mobility system, possibly derived from studies. The pollution sensor module offers the software to start
using sensors that measure particular pollution parameters of the environment in the city.

Unanticipated Change Detection. A key feature of self-evolving computing systems is their ability to
detect unanticipated changes, i.e., changes that cannot be handled by the build-in learning and adaptation
mechanisms of the self-adaptive computing system, realising requirement (3). Such unanticipated changes
can be triggered either by an anomaly the self-adaptive computing system encounters, or by new goals that
are added to the system. When encountering such an event, unanticipated change detection will trigger the

Weyns et al. / The Vision of Self-Evolving Computing Systems 11

evolutionary self-learning engine to start an evolution of the self-adaptive computing systems (see below).
As an example, assume that anomaly detection (middle box left in Figure 3) discovers that the lenses

of cameras are dirty resulting in poor quality images. To deal with this problem, a noise removal learning
module is added to the computing warehouse that offers a new learning algorithm, for instance a convolu-
tional neural network to handle noisy images. This module will then be used by the evolutionary learning
engine for evolving the architecture configuration of the self-adaptive computing system (further explained
below). As another example, consider the introduction of a new goal to reduce pollution in the smart city
area caused by mobility. To deal with this new goal, an operator adds a new pollution reduction goal to the
evolutionary learning engine via the dashboard. This will trigger the evolutionary learning engine to start an
evolution of the self-adaptive computing system taking into account this new goal (further explained below).

Evolutionary Self-learning Engine. At the heart of a self-evolving computing system is an evolutionary
learning engine that autonomously evolves the self-adaptive computing system to handle any unanticipated
changes that cannot be handled by the build-in learning and adaptation mechanisms, realizing requirement
(4). When anticipated change detection discovers an anomaly or when a new goal is added to the system,
the evolutionary learning engine starts to evolve its internal model of the self-adaptive computing system.
This runtime model contains an up-to-date representation of the architecture of the self-adaptive comput-
ing system along with its goals (self-awareness), and relevant parts of the environment (context-awareness).
The evolution of the model is conducted by an evolutionary learning pipeline that evolves the architectural
configuration of the self-adaptive computing system to obtain its goals. During this process, the engine may
integrate new auto-evolution-enabled computing elements provided by computing warehouses as needed.
To evolve the system architecture, the engine runs experiments, executing different subsequent variants of
the evolved model in a sandbox. Using suitable metrics for assessing the performance of the evolving archi-
tectural models of the self-adaptive computing system in each evolutionary step, the engine will optimize
the self-adaptive computing system model, resulting in a novel architecture that mitigates the unanticipated
change that triggered the evolution. During the experiments, the engine may exploit historical data, for in-
stance to train a learning module, and experimental results may be stored for reuse later. Change enactment
will then replace the running architecture of the self-adaptive computing system with the novel architecture.

As an example, when discovering that the lenses of cameras are dirty (continuing the example above),
the evolutionary learning engine (middle box in Figure 3) searches the computing warehouse for a solution.
Based on the shared ontology, the engine identifies the new noise removal learning module. The evolutionary
learning engine then runs online experiments in the sandbox, evolving the model of the current architecture
of the self-adaptive computing system and integrating the new noise removal learning module. The engine
will use the resolution and quality improvements of images as performance metrics. During this process,
the engine may exploit historical data to accelerate the evolution process, and particular experimental results
may be stored for later usage. Once the novel architecture is identified that satisfies the system goals, the
current configuration will be evolved through change enactment.

As another example, when the new pollution reduction goal is added to the system (continuing the other
example above), the evolutionary learning engine will search in the catalog of the computing warehouse and
find the (newly added) pollution sensor module. Based on the usage guidance provided by this module a
set of new pollution sensors will be activated in the smart city area (possibly involving a field worker). The
evolutionary self-learning pipeline will then evolve the architecture of the self-adaptive computing system by
extending the mobility tracking platform with functionality to track air pollution and set the configurations of
the sensors via the mobility control platform (both derived from the pollution sensor module). Furthermore,
the new goal will be added to the adaptation manager. Finally, the learning module will be enhanced to
take into account the data of the mobility data module produced by the pollution sensors. To configure the
learning model, the engine may use historical data collected by the system. Once the new architecture is
configured, it can be deployed via change enactment enabling the smart city mobility system to reduce the

12 Weyns et al. / The Vision of Self-Evolving Computing Systems

pollution by adjusting its settings, e.g. adapting conventional traffic via smart traffic boards.

Evolution Guidance. Depending on the domain at hand, human experts may be involved to
guide the evolution of a self-evolving computing system, realizing requirement (5). Evolution guid-
ance can range from a basic dashboard that shows key performance indicators of a self-evolving
computing system and offers “knobs” allowing operators to upload new computing elements, add
new goals or define constraints on the behavior of the system to ensure its trustworthiness, up
to full-fledged embodied AI that exploits intelligent user interfaces enabling operators to guide the
evolution process of self-evolving computing systems interactively (Kephart, Dibia, Ellis, Srivas-
tava, Talamadupula, and Dholakia, 2019). New goals or constraints may refer to various concerns
of users, such as performance, safety, privacy, energy consumption, environmental protection, or
ethics. Evolution guidance may include the option for operators to provide feedback about discovered
anomalies or give advice on architecture evolution at the evolutionary learning engine, among others.

For instance, in the smart city mobility scenario, see Figure 3 (box at the top), evolution guidance en-
ables software developers to add new auto-evolution-enabled modules to the computing warehouse, such
as a new learning module for noise removal. Evolution guidance also offers an interactive dashboard en-
abling an operator to support the evolutionary learning engine with identifying new software architectures
of the computing-learning system. For instance, the operator may suggest (possibly new) quantitative and
qualitative criteria (goals) to guide a evolutionary pipeline in identifying new architectural configurations.
The feedback of the operator may be incorporated into the fitness function allowing the learning pipeline
to distinguish between promising and poor architectural configurations when evolving the model of the
self-adaptive computing system, enhancing its performance.

5. Research Challenges Ahead

To conclude, we summarize the novelty of self-evolving computing, highlight key challenges to realize
the vision of self-evolving computing systems, and provide starting points to tackle them.

Smart approaches have demonstrated their value for dealing with changes within the operational domain
of computing system that are composed of regular computing elements. Self-evolving computing extends
this to the operational domain of computing systems that integrate regular computing elements with learning
algorithms, enabling these systems to deal with a vast amount of highly complex data. Currently, we rely on
software evolution to deal with outside the operational domain, i.e., changes that were not anticipated when
the system was built and deployed. The evolution of software systems is currently still a human-driven pro-
cess that is supported by tools that automate the continuous integration and deployment of new computing
elements. Lifelong learning provides the means to deal with new tasks during operation, yet, this evolution
targets learning algorithms. Self-evolving computing on the other hand exploits computing warehouses,
enabling self-evolving computing systems to evolve autonomously, thereby selecting and integrating new
computing elements autonomously during operation based on the needs at hand. Optionally, humans can
offer support to self-evolving computing systems, for instance, for setting goals on performance, safety,
privacy, etc., and providing guidance to support the evolutionary learning process if needed.

We motivated and described how self-evolving computing enables dealing with the lasting problem of
how to engineer long running computing systems that can autonomously adapt and evolve to deal with ever
changing conditions, anticipated and unanticipated. Yet, realizing the vision of self-evolving computing,
raises fundamental challenges. We list six key achievements that are required to tackle these challenges:

(1). A novel overarching modeling approach for the design of self-evolving computing systems. Con-
trary to traditional software architecture design languages (Muccini and Vaidhyanathan, 2021), a new
modeling approach is required that should provide first-class support for specifying heterogenous
computing systems that integrate computing and learning elements, as well as the different types of

Weyns et al. / The Vision of Self-Evolving Computing Systems 13

building blocks of self-evolving computing systems. This modeling approach will enable a designer
to analyse the compliance of the model of a self-evolving computing system with its high-level goals.

(2). The definition of standardized representations and interfaces of auto-evolution-enabled computing el-
ements (regular and learning elements) that can be seamlessly integrated by self-evolving computing
systems. Contrary to existing component-based modeling approaches, see e.g., (Bruneton, Coupaye,
Leclercq, Quema, and Stefani, 2004), auto-evolution-enabled computing elements require two types
of meta data: (i) meta data that enables self-evolving computing systems to characterize elements and
select an element as needed, and (ii) meta data to incorporate a selected element autonomously. The
first type of meta data is similar to a “data sheet,” while the second type is similar to a “usage guide.”
Enabling self-evolving computing systems to reason about and integrate auto-evolution-enabled com-
puting elements require both a well-defined (standardized) syntax and a shared ontology.

(3). Novel methods and algorithms for realizing self-adaptation of heterogeneous computing systems that
need to deal with conflicting goals and operate under uncertainty and resource constraints. An in-
teresting approach to tackle this challenge is the use of dynamic, preference-based, multi-objective,
on-line optimization, leveraging state-of-the-art knee-point identification (Yu, Jin, and Olhofer, 2020),
and preference-based (Palar, Yang, Shimoyama, Emmerich, and Bäck, 2018), and on-line optimiza-
tion (Chen, Li, and Yao, 2018b). Here the Pareto-frontier becomes a moving target, while the objec-
tives can change when an architecture evolution is applied by the self-evolving computing system.

(4). A novel family of anomaly and novelty discovering methods for complex high-dimensional data re-
lying on unsupervised learning. One approach to tackle this challenge is to model the data as a union
of low-dimensional manifolds (You, Robinson, and Vidal, 2017). Anomalies are then data points that
do not lie in any manifold, i.e., outliers, while novelties are data points that belong to a new mani-
fold, e.g., a new class. The challenge here will be to identify nonlinear manifolds that change over
time. Additionally, the solution should be able to deal with multi-modal on-line data streams, e.g.,
leveraging temporal convolutional autoencoders (Thill, Konen, Wang, and Bäck, 2021).

(5). A novel evolutionary self-learning pipeline for evolving heterogeneous computing systems to deal
with unanticipated changes (anomalies, novelties, new goals). Core to such a solution will be: up-
to-date architectural models of the underlying heterogenous system with its goals and constraints,
and the context in which the system operates. These models should account for the evolution of the
system. Evolving the current software architecture requires suitable architectural variation operators
that comply with the syntactical and semantical constraints of the evolving architecture. One approach
to tackle this is using a (1,λ) algorithm (Bäck, Foussette, and Krause, 2013) that selects the best
“offspring” and iterates the evolution through simulation in a sandbox. New evaluation functions with
guarantees will be required, e.g., leveraging statistical model checking of the candidate architectures,
and (ii) preference-based, multi-objective optimization providing approximations of Pareto optimality.

(6). Novel notations and mechanisms that enable system operators to add new goals and interact with the
evolutionary self-learning pipeline. Changing goals is an important trigger for evolving computing
systems. This requires a dashboard for humans to interact with the system and modify its goals.
Unlike existing goal models (e.g., Cheng, Sawyer, Bencomo, and Whittle (2009b)), self-evolving
computing systems require models that evolve dynamically. Goals may be provided with meta data
that refers to elements of computing warehouses (e.g., a goal for a new modality of traffic may have
meta data about sensors and software to track that traffic). The models should provide mechanisms
that automatically translate the changes of the goals to a format that can act as a trigger to evolution.
A self-evolving system may be equipped with mechanisms that enable the system to communicate
the options for evolution and ask the human to advise on the selection if needed. The dashboard may

14 Weyns et al. / The Vision of Self-Evolving Computing Systems

supports this type of interaction. For instance, the system may show a subset of candidate architectural
configurations along with a qualification of the options. The human may then select one of the options
to continue the evolution process, leveraging for example de Winter, van Stein, and Bäck (2021).

An additional open challenge is how to handle the need for dynamic resource management. While the
warehouse may to some degree deal with resource provision and management, the acquisition of hardware
and other resources that are needed to support self-evolution may require dedicated support.

Addressing these challenges requires the combined expertise in a variety of areas: dynamic software
architectures and scalable and trustworthy approaches for self-adaptation (to deal with the challenges of
adaptation of heterogeneous computing systems), unsupervised learning and runtime goal models (to deal
with the challenges of unanticipated change detection), self-awareness, dynamic learning architectures, and
evolutionary learning mechanisms (to deal with the challenges of evolutionary learning), and software en-
gineering (to deal with the challenges of computing warehouses and evolution guidance). Only the synergy
between these specializations can adequately yield solutions to realize the vision of self-evolving computing.

References

J. Andersson, L. Baresi, N. Bencomo, R. de Lemos, A. Gorla, P. Inverardi, and T. Vogel. 2013. Software En-
gineering Processes for Self-Adaptive Systems. Springer, 51–75. https://doi.org/10.1007/
978-3-642-35813-5 3

T. Bäck, C. Foussette, and P. Krause. 2013. Contemporary Evolution Strategies. Natural Computing Series,
Springer.

L. Baresi and C. Ghezzi. 2010. The Disappearing Boundary between Development-Time and Run-Time.
In Future of Software Engineering Research. ACM, 17–22. https://doi.org/10.1145/
1882362.1882367

K. Bennett and V. Rajlich. 2000. Software Maintenance and Evolution: A Roadmap. In Conference on The
Future of Software Engineering (Limerick, Ireland) (ICSE ’00). Association for Computing Machin-
ery, New York, NY, USA, 73–87. https://doi.org/10.1145/336512.336534

M. Bernardo and J. Hillston (Eds.). 2007. Formal Methods for Performance Evaluation, 7th International
School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM
2007, Bertinoro, Italy, May 28-June 2, 2007, Advanced Lectures. Lecture Notes in Computer Science,
Vol. 4486. Springer.

G. Blair, N. Bencomo, and R. B. France. 2009. Models@ run.time. Computer 42, 10 (2009), 22–27.
https://doi.org/10.1109/MC.2009.326

A. Boukerche, L. Zheng, and O. Alfandi. 2020. Outlier Detection: Methods, Models, and Classification.
ACM Comput. Surv. 53, 3, Article 55 (June 2020), 37 pages. https://doi.org/10.1145/
3381028

E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J-B. Stefani. 2004. An Open Component Model and
Its Support in Java. In Component-Based Software Engineering. Springer, 7–22.

J. Buckley, T. Mens, M. Zenger, A. Rashid, and G.r Kniesel. 2005. Towards a Taxonomy of Software
Change: Research Articles. Journal on Software Maintenance and Evolution 17, 5 (Sept. 2005),
309–332.

T. Bures, D. Weyns, B. Schmerl, E. Tovar, E. Boden, T. Gabor, I. Gerostathopoulos, P. Gupta, E. Kang,
A. Knauss, P. Patel, A. Rashid, I. Ruchkin, R. Sukkerd, and C. Tsigkanos. 2017. Software Engi-
neering for Smart Cyber-Physical Systems: Challenges and Promising Solutions. SIGSOFT Software
Engineering Notes 42, 2 (2017), 19–24. https://doi.org/10.1145/3089649.3089656

R. Calinescu, R. Mirandola, D. Perez-Palacin, and D. Weyns. 2020. Understanding Uncertainty in Self-

https://doi.org/10.1007/978-3-642-35813-5_3
https://doi.org/10.1007/978-3-642-35813-5_3
https://doi.org/10.1145/1882362.1882367
https://doi.org/10.1145/1882362.1882367
https://doi.org/10.1145/336512.336534
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1145/3381028
https://doi.org/10.1145/3381028
https://doi.org/10.1145/3089649.3089656

Weyns et al. / The Vision of Self-Evolving Computing Systems 15

adaptive Systems. In IEEE International Conference on Autonomic Computing and Self-Organizing
Systems. 242–251. https://doi.org/10.1109/ACSOS49614.2020.00047

R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, and T. Kelly. 2018. Engineering Trustworthy
Self-Adaptive Software with Dynamic Assurance Cases. IEEE Transactions on Software Engineering
44, 11 (2018), 1039–1069. https://doi.org/10.1109/TSE.2017.2738640

S. Camazine, J-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulas, and E. Bonabeau. 2003. Organization in
Biological Systems. Princeton Studies in Complexity, USA.

N. Chapin, J. Hale, K. Kham, J. Ramil, and W. Tan. 2001. Types of Software Evolution and Software
Maintenance. Journal of Software Maintenance 13, 1 (2001), 3–30.

H. Chen, P. Tino, A. Rodan, and X. Yao. 2014. Learning in the Model Space for Cognitive Fault Diagnosis.
IEEE Transactions on Neural Networks and Learning Systems 25, 1 (2014), 124–136. https://
doi.org/10.1109/TNNLS.2013.2256797

R. Chen, K. Li, and X. Yao. 2018b. Dynamic Multiobjectives Optimization With a Changing Number of
Objectives. IEEE Transactions on Evolutionary Computation 22, 1 (2018), 157–171. https://
doi.org/10.1109/TEVC.2017.2669638

T. Chen, R. Bahsoon, and X. Yao. 2018a. A Survey and Taxonomy of Self-Aware and Self-Adaptive Cloud
Autoscaling Systems. ACM Comput. Surv. 51, 3, Article 61 (June 2018), 40 pages. https://
doi.org/10.1145/3190507

T. Chen, R. Bahsoon, and X. Yao. 2020. Synergizing Domain Expertise With Self-Awareness in Software
Systems: A Patternized Architecture Guideline. Proc. IEEE 108, 7 (2020), 1094–1126. https://
doi.org/10.1109/JPROC.2020.2985293

T. Chen, K. Li, R. Bahsoon, and X. Yao. 2018c. FEMOSAA: Feature-Guided and Knee-Driven Multi-
Objective Optimization for Self-Adaptive Software. ACM Transactions on Software Engineering and
Methodology 27, 2, Article 5 (2018), 50 pages. https://doi.org/10.1145/3204459

Z. Chen and B. Liu. 2018. Lifelong Machine Learning. Morgan & Claypool.
B. Cheng et al. 2009a. Software Engineering for Self-Adaptive Systems: A Research Roadmap. Springer,

1–26. https://doi.org/10.1007/978-3-642-02161-9 1
B. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. 2009b. A Goal-Based Modeling Approach to Develop

Requirements of an Adaptive System with Environmental Uncertainty. In Model Driven Engineering
Languages and Systems. Springer.

M. Dastani and B. Testerink. 2016. Design patterns for multi-agent programming. International Journal of
Agent-Oriented Software Engineering 5, 2-3 (2016), 167–202.

R. de Winter, B. van Stein, and T. Bäck. 2021. SAMO-COBRA: A Fast Surrogate Assisted Constrained
Multi-objective Optimization Algorithm. In Evolutionary Multi-Criterion Optimization. Springer.

A. Dearle. 2007. Software Deployment, Past, Present and Future. In 2007 Future of Software Engineering.
IEEE Computer Society, USA, 269–284. https://doi.org/10.1109/FOSE.2007.20

B. Denkena and T. Morke. 2017. Cyber-Physical and Gentelligent Systems in Manufacturing and Life Cycle.
Academic Press.

Det-Norske-Veritas. 2020. Technology Outlook 2030 - Safer, Smarter, Greener. (2020), 1–110. www
.dnvgl.com

M. Dick and S. Naumann. 2010. Enhancing Software Engineering Processes towards Sustainable Software
Product Design. In Integration of Environmental Information in Europe, Klaus Greve and Armin B.
Cremers (Eds.). Shaker Verlag, Aachen.

T. Dingsøyr, S. Nerur, V. Balijepally, and N. Moe. 2012. A decade of agile methodologies: Towards ex-
plaining agile software development. Journal of Systems and Software 85, 6 (2012), 1213–1221.
https://doi.org/10.1016/j.jss.2012.02.033 Special Issue: Agile Development.

A. Elhabbash, M. Salama, R. Bahsoon, and P. Tino. 2019. Self-Awareness in Software Engineering: A
Systematic Literature Review. ACM Transactions on Autonomous and Adaptive Systems 14, 2, Article

https://doi.org/10.1109/ACSOS49614.2020.00047
https://doi.org/10.1109/TSE.2017.2738640
https://doi.org/10.1109/TNNLS.2013.2256797
https://doi.org/10.1109/TNNLS.2013.2256797
https://doi.org/10.1109/TEVC.2017.2669638
https://doi.org/10.1109/TEVC.2017.2669638
https://doi.org/10.1145/3190507
https://doi.org/10.1145/3190507
https://doi.org/10.1109/JPROC.2020.2985293
https://doi.org/10.1109/JPROC.2020.2985293
https://doi.org/10.1145/3204459
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1109/FOSE.2007.20
www.dnvgl.com
www.dnvgl.com
https://doi.org/10.1016/j.jss.2012.02.033

16 Weyns et al. / The Vision of Self-Evolving Computing Systems

5 (Oct. 2019), 42 pages. https://doi.org/10.1145/3347269
N. Esfahani and S. Malek. 2013. Uncertainty in Self-Adaptive Software Systems. Springer, 214–238.

https://doi.org/10.1007/978-3-642-35813-5 9
European-Commission. 8/2021. Advanced Computing. (8/2021). https://www.nsf.gov/

funding/pgm summ.jsp?pims id=503306
D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste. 2004. Rainbow: Architecture-Based Self-

Adaptation with Reusable Infrastructure. Computer 37, 10 (Oct. 2004), 46–54. https://doi
.org/10.1109/MC.2004.175

S. Georgiou, S. Rizou, and D. Spinellis. 2019. Software Development Lifecycle for Energy Efficiency:
Techniques and Tools. ACM Comput. Surv. 52, 4, Article 81 (Aug. 2019), 33 pages. https://
doi.org/10.1145/3337773

R. Grötker. 2015. New autoMobility: The Future World of Automated Road Traffic. National Academy
of Science and Engineering, acatech Germany (2015). https://elib.dlr.de/101368/2/
acatech POSITION PAPER New autoMobility web.pdf

F. E. Grubbs. 1969. Procedures for detecting outlying observations in samples. Technometrics 11, 1 (1969).
M. E. Hasselmo. 2017. Avoiding Catastrophic Forgetting. Trends in Cognitive Sciences 21, 6 (2017),

407–408. https://doi.org/10.1016/j.tics.2017.04.001
IBM. 2003. An Architectural Blueprint for Autonomic Computing. (2003). citeseerx.ist.psu

.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
M. Jackson. 1997. The Meaning of Requirements. Annals of Software Engineering. Springer 10480. 3, 1

(1997), 5–21. https://doi.org/10.1023/A:1018990005598
J. Järvinen, T. Huomo, T. Mikkonen, and P. Tyrväinen. 2014. From Agile Software Development to Mercury

Business. In Software Business. Towards Continuous Value Delivery. Springer.
N. Jazdi. 2014. Cyber physical systems in the context of Industry 4.0. In IEEE International Conference on

Automation, Quality and Testing, Robotics. 1–4. https://doi.org/10.1109/AQTR.2014
.6857843

J. Juziuk, D. Weyns, and T. Holvoet. 2014. Design Patterns for Multi-agent Systems: A Systematic Litera-
ture Review. In Agent-Oriented Software Engineering. Vol. 9783642544323. Springer, 77–97.

J. Kephart and D. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41–50.
J. Kephart, V. Dibia, J. Ellis, B. Srivastava, K. Talamadupula, and M. Dholakia. 2019. An Embodied

Cognitive Assistant for Visualizing and Analyzing Exoplanet Data. IEEE Internet Computing 23, 2
(2019), 31–39. https://doi.org/10.1109/MIC.2019.2906528

X. Koutsoukos, G. Karsai, A. Laszka, H. Neema, B. Potteiger, P. Volgyesi, Y. Vorobeychik, and J. Szti-
panovits. 2018. SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure
and Resilient Cyber–Physical Systems. Proc. IEEE 106, 1 (2018), 93–112. https://doi.org/
10.1109/JPROC.2017.2731741

J. Kramer and J. Magee. 2007. Self-Managed Systems: An Architectural Challenge. In Future of Software
Engineering. IEEE, 259–268. https://doi.org/10.1109/FOSE.2007.19

M. Lehman and J. Ramil. 2003. Software evolution—Background, theory, practice. Inform. Process. Lett.
88, 1 (2003), 33–44. https://doi.org/10.1016/S0020-0190(03)00382-X To honour
Professor W.M. Turski’s Contribution to Computing Science on the Occasion of his 65th Birthday.

Z. Li, P. Avgeriou, and P. Liang. 2015. A systematic mapping study on technical debt and its management.
Journal of Systems and Software 101 (2015), 193–220. https://doi.org/10.1016/j.jss
.2014.12.027

S. Mahdavi-Hezavehi, P. Avgeriou, and D. Weyns. 2017. A Classification Framework of Uncertainty in
Architecture-Based Self-Adaptive Systems With Multiple Quality Requirements. In Managing Trade-
Offs in Adaptable Software Architectures, I. Mistrik, N. Ali, R. Kazman, J. Grundy, and B. Schmerl
(Eds.). Morgan Kaufmann, 45–77. https://doi.org/10.1016/B978-0-12-802855-1

https://doi.org/10.1145/3347269
https://doi.org/10.1007/978-3-642-35813-5_9
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503306
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503306
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1145/3337773
https://doi.org/10.1145/3337773
https://elib.dlr.de/101368/2/acatech_POSITION_PAPER_New_autoMobility_web.pdf
https://elib.dlr.de/101368/2/acatech_POSITION_PAPER_New_autoMobility_web.pdf
https://doi.org/10.1016/j.tics.2017.04.001
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
https://doi.org/10.1023/A:1018990005598
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1109/MIC.2019.2906528
https://doi.org/10.1109/JPROC.2017.2731741
https://doi.org/10.1109/JPROC.2017.2731741
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1016/S0020-0190(03)00382-X
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://doi.org/10.1016/B978-0-12-802855-1.00003-4

Weyns et al. / The Vision of Self-Evolving Computing Systems 17

.00003-4
P. Marks, T. Muller, D. Vogeli, T. Jung, N. Jazdi, and M. Weyrich. 2018. Agent Design Patterns for

Assistance Systems in Various Domains - a Survey. In IEEE International Conference on Automa-
tion Science and Engineering (CASE). 168–173. https://doi.org/10.1109/COASE.2018
.8560391

M. Meyer. 2014. Continuous Integration and Its Tools. IEEE Software 31, 03 (may 2014), 14–16.
https://doi.org/10.1109/MS.2014.58

A. Mishra and Z. Otaiwi. 2020. DevOps and software quality: A systematic mapping. Computer Science
Review 38 (2020), 100308. https://doi.org/10.1016/j.cosrev.2020.100308

G. Moreno, J. Cámara, D. Garlan, and B. Schmerl. 2015. Proactive Self-Adaptation under Uncertainty: A
Probabilistic Model Checking Approach. In 10th Joint Meeting on Foundations of Software Engineer-
ing. ACM, 1–12. https://doi.org/10.1145/2786805.2786853

H. Muccini and K. Vaidhyanathan. 2021. Software Architecture for ML-based Systems: What Exists and
What Lies Ahead. arXiv:2103.07950 [cs.SE]

A. Musil, J. Musil, D. Weyns, T. Bures, H. Muccini, and M. Sharaf. 2017. Patterns for Self-Adaptation
in Cyber-Physical Systems. Springer, 331–368. https://doi.org/10.1007/978-3-319
-56345-9 13

J. Musil, A. Musil, D. Weyns, and S. Biffl. 2015. An Architecture Framework for Collective Intelligence
Systems. In 12th Working IEEE/IFIP Conference on Software Architecture. 21–30. https://
doi.org/10.1109/WICSA.2015.30

S. Musić and S. Hirche. 2016. Classification of human-robot team interaction paradigms. IFAC-
PapersOnLine 49, 32 (2016), 42–47. https://doi.org/10.1016/j.ifacol.2016.12
.187 Cyber-Physical & Human-Systems.

S. Naumann, M. Dick, E. Kern, and T. Johann. 2011. The GREENSOFT Model: A reference model for
green and sustainable software and its engineering. Sustainable Computing: Informatics and Systems
1, 4 (2011), 294–304. https://doi.org/10.1016/j.suscom.2011.06.004

P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic, A. Quilici, D. S.
Rosenblum, and A. L. Wolf. 1999. An architecture-based approach to self-adaptive software. IEEE
Intelligent Systems and their Applications 14, 3 (1999), 54–62.

P.S. Palar, K. Yang, K. Shimoyama, M. Emmerich, and T. Bäck. 2018. Multi-Objective Aerodynamic
Design with User Preference Using Truncated Expected Hypervolume Improvement. In Genetic and
Evolutionary Computation Conference (Kyoto, Japan). Association for Computing Machinery, New
York, NY, USA, 1333–1340. https://doi.org/10.1145/3205455.3205497

G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. 2019. Continual lifelong learning with
neural networks: A review. Neural Networks 113 (2019), 54–71. https://doi.org/10.1016/
j.neunet.2019.01.012

F. Paulovich, M. De Oliveira, and O. Oliveira. 2018. A Future with Ubiquitous Sensing and Intelligent
Systems. ACS Sensors 3, 8 (2018), 1433–1438. https://doi.org/10.1021/acssensors
.8b00276

R. Reussner, M. Goedicke, W. Hasselbring, B. Vogel-Heuser, J. Keim, and L. Martin. 2019. Managed
Software Evolution. Springer Nature.

P. Rodrı́guez et al. 2017. Continuous deployment of software intensive products and services: A systematic
mapping study. Journal of Systems and Software 123 (2017), 263–291. https://doi.org/
10.1016/j.jss.2015.12.015

M. Salehie and L. Tahvildari. 2009. Self-Adaptive Software: Landscape and Research Challenges. ACM
Trans. Auton. Adapt. Syst. 4, 2, Article 14 (May 2009), 42 pages. https://doi.org/10.1145/
1516533.1516538

K. Schelfthout, T. Coninx, A. Helleboogh, T. Holvoet, E. Steegmans, and D. Weyns. 2002. Agent imple-

https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://doi.org/10.1109/COASE.2018.8560391
https://doi.org/10.1109/COASE.2018.8560391
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1016/j.cosrev.2020.100308
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1007/978-3-319-56345-9_13
https://doi.org/10.1007/978-3-319-56345-9_13
https://doi.org/10.1109/WICSA.2015.30
https://doi.org/10.1109/WICSA.2015.30
https://doi.org/10.1016/j.ifacol.2016.12.187
https://doi.org/10.1016/j.ifacol.2016.12.187
https://doi.org/10.1016/j.suscom.2011.06.004
https://doi.org/10.1145/3205455.3205497
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1021/acssensors.8b00276
https://doi.org/10.1021/acssensors.8b00276
https://doi.org/10.1016/j.jss.2015.12.015
https://doi.org/10.1016/j.jss.2015.12.015
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538

18 Weyns et al. / The Vision of Self-Evolving Computing Systems

mentation patterns. Workshop on Agent-Oriented Methodologies, 119–130.
B. Selic. 2020. Controlling the Controllers: What Software People Can Learn From Control Theory. IEEE

Softw. 37, 6 (2020), 99–103. https://doi.org/10.1109/MS.2020.3006970
J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V. Gupta, B. Goodwine, J. Baras,

and S. Wang. 2012. Toward a Science of Cyber–Physical System Integration. Proc. IEEE 100, 1
(2012), 29–44. https://doi.org/10.1109/JPROC.2011.2161529

T. Tamai. 2019. Key Software Engineering Paradigms and Modeling Methods. Springer International Pub-
lishing, Cham, 349–374. https://doi.org/10.1007/978-3-030-00262-6 9

F. Tao, H. Zhang, A. Liu, and A. Nee. 2019. Digital Twin in Industry: State-of-the-Art. IEEE Transactions
on Industrial Informatics 15, 4 (2019), 2405–2415. https://doi.org/10.1109/TII.2018
.2873186

J. Tavcar and I. Horváth. 2019. A Review of the Principles of Designing Smart Cyber-Physical Systems
for Run-Time Adaptation: Learned Lessons and Open Issues. IEEE Transactions on Systems, Man,
and Cybernetics: Systems 49, 1 (2019), 145–158. https://doi.org/10.1109/TSMC.2018
.2814539

M. Thill, W. Konen, H. Wang, and T. Bäck. 2021. Temporal convolutional autoencoder for unsupervised
anomaly detection in time series. Applied Soft Computing 112 (2021), 107751. https://doi
.org/10.1016/j.asoc.2021.107751

S. Thrun and T. M. Mitchell. 1995. Lifelong Robot Learning. In The Biology and Technology of Intelligent
Autonomous Agents. Springer, 165–196.

S.G. Tzafestas. 2012. Advances in intelligent autonomous systems. Springer.
D. Weyns. 2019. Software Engineering of Self-adaptive Systems. In Handbook of Software Engineering.,

Sungdeok Cha, Richard N. Taylor, and Kyo C. Kang (Eds.). 399–443. https://doi.org/10
.1007/978-3-030-00262-6

D. Weyns. 2021. Introduction to Self-Adaptive Systems: A Contemporary Software Engineering Perspec-
tive. Wiley. ISBN 978-1-119-57494-1.

D. Weyns, J. Andersson, M. Caporuscio, F. Flammini, A. Kerren, and W. Löwe. 2022. A Research Agenda
for Smarter Cyber-Physical Systems. Journal of Integrated Design and Process Science (2022).
https://doi.org/10.3233/JID-210010

D. Weyns, T. Bäck, R. Vidal, X. Yao, and A.N. Belbachir. 2021a. Lifelong Computing. arXiv
abs/2108.08802 (2021).

D. Weyns, N. Bencomo, R. Calinescu, J. Camara, C. Ghezzi, V. Grassi, L. Grunske, P. Inverardi, J-M.
Jezequel, S. Malek, R. Mirandola, M. Mori, and G. Tamburrelli. 2017. Perpetual Assurances for Self-
Adaptive Systems. In Software Engineering for Self-Adaptive Systems III. Assurances, R. de Lemos,
D. Garlan, C. Ghezzi, and H. Giese (Eds.). Springer International Publishing, Cham, 31–63.

D. Weyns, T. Bures, R. Calinescu, B. Craggs, J. Fitzgerald, D. Garlan, B. Nuseibeh, L. Pasquale, A. Rashid,
I. Ruchkin, and B. Schmerl. 2021b. Six Software Engineering Principles for Smarter Cyber-Physical
Systems. In IEEE International Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS 2021, Companion Volume, Washington, DC, USA, September 27 - Oct. 1, 2021. IEEE, 198–
203. https://doi.org/10.1109/ACSOS-C52956.2021.00058

D. Weyns, M. Caporuscio, B. Vogel, and A. Kurti. 2015. Design for Sustainability = Runtime Adap-
tation U Evolution. In 1st International Workshop on Sustainable Architecture: Global collabo-
ration, Requirements, Analysis (Dubrovnik, Cavtat, Croatia). https://doi.org/10.1145/
2797433.2797497

D. Weyns and M. U. Iftikhar. 2022. ActivFORMS: A Formally-Founded Model-Based Approach to En-
gineer Self-Adaptive Systems. ACM Transactions on Software Engineering and Methodology 31, 3
(2022).

D. Weyns, U. Iftikhar, D. Hughes, and N. Matthys. 2018. Applying Architecture-Based Adaptation to

https://doi.org/10.1109/MS.2020.3006970
https://doi.org/10.1109/JPROC.2011.2161529
https://doi.org/10.1007/978-3-030-00262-6_9
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TSMC.2018.2814539
https://doi.org/10.1109/TSMC.2018.2814539
https://doi.org/10.1016/j.asoc.2021.107751
https://doi.org/10.1016/j.asoc.2021.107751
https://doi.org/10.1007/978-3-030-00262-6
https://doi.org/10.1007/978-3-030-00262-6
https://doi.org/10.3233/JID-210010
https://doi.org/10.1109/ACSOS-C52956.2021.00058
https://doi.org/10.1145/2797433.2797497
https://doi.org/10.1145/2797433.2797497

Weyns et al. / The Vision of Self-Evolving Computing Systems 19

Automate the Management of Internet-of-Things. In Software Architecture. Springer, 49–67.
D. Weyns, S. Malek, and J. Andersson. 2010. FORMS: A Formal Reference Model for Self-Adaptation. In

Proceedings of the 7th International Conference on Autonomic Computing (Washington, DC, USA)
(ICAC ’10). Association for Computing Machinery, New York, NY, USA, 205–214. https://
doi.org/10.1145/1809049.1809078

M. Wooldrige. 2009. An Introduction to MultiAgent Systems. Wiley. ISBN 978-0-470-51946-2.
C. You, D. Robinson, and R. Vidal. 2017. Provable Self-Representation Based Outlier Detection in a Union

of Subspaces. arXiv:1704.03925 [cs.CV]
G. Yu, Y. Jin, and M. Olhofer. 2020. Benchmark Problems and Performance Indicators for Search of Knee

Points in Multiobjective Optimization. IEEE Transactions on Cybernetics 50, 8 (2020), 3531–3544.
https://doi.org/10.1109/TCYB.2019.2894664

X. Yu and Y. Xue. 2016. Smart Grids: A Cyber–Physical Systems Perspective. Proc. IEEE 104, 5 (2016),
1058–1070. https://doi.org/10.1109/JPROC.2015.2503119

J. Zeng, L. Yang, M. Lin, H. Ning, and J. Ma. 2020. A survey: Cyber-physical-social systems and their
system-level design methodology. Future Generation Computer Systems 105 (2020), 1028–1042.
https://doi.org/10.1016/j.future.2016.06.034

https://doi.org/10.1145/1809049.1809078
https://doi.org/10.1145/1809049.1809078
https://doi.org/10.1109/TCYB.2019.2894664
https://doi.org/10.1109/JPROC.2015.2503119
https://doi.org/10.1016/j.future.2016.06.034

	1 Introduction
	2 State of the Art
	2.1 Smart Systems
	2.2 Software Evolution
	2.3 Why Self-Evolving Computing Systems?

	3 Future Smart City Mobility Scenario
	4 Conceptual Architecture for Self-Evolving Computing Systems
	5 Research Challenges Ahead

