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Abstract: Modern prediction methods from machine learning (ML) and artificial intelligence (AI) are becoming increasingly popular, also in the
field of psychological assessment. These methods provide unprecedented flexibility for modeling large numbers of predictor variables and
non-linear associations between predictors and responses. In this paper, we aim to look at what these methods may contribute to the
assessment of criterion validity and their possible drawbacks. We apply a range of modern statistical prediction methods to a dataset for
predicting the university major completed, based on the subscales and items of a scale for vocational preferences. The results indicate that
logistic regression combined with regularization performs strikingly well already in terms of predictive accuracy. More sophisticated
techniques for incorporating non-linearities can further contribute to predictive accuracy and validity, but often marginally.

Keywords: criterion validity, predictive accuracy, cross-validation, machine learning

“When we raise money it’s AI, when we hire it’s
machine learning, and when we do the work it’s logis-
tic regression.”

(Tweet by bio-statistician Daniella Witten;
original author unknown;

https://twitter.com/daniela_witten)

Machine learning (ML) and artificial intelligence (AI) are
familiar buzzwords in many fields of empirical research,
including psychology. In the field of psychological assess-
ment, interest and application of these methods are also
increasing. We believe ML and AI have the potential to con-
tribute to our field, but the buzz around these methods can
be reminiscent of the tale of the emperor’s new clothes. We
believe when it comes to ML and AI, the emperor is, in fact,
wearing clothes, but they are often not so new. Many of the
techniques presented as machine learning (e.g., cross-vali-
dation, regularization, ensembling) have long been known
and fruitfully applied in statistics, psychometrics, and psy-
chological assessment.

In the current paper, we look at how several modern
methods from statistics, ML and AI may contribute to our

field and what their limitations are. Note, we will use the
term statistical learning to refer to both traditional andmore
recent (sometimes referred to as ML or AI) tools for data
analysis. As already suggested by the motto of this paper,
there is no consensus on whether specific methods are
statistical, AI orML, so we avoidmaking the distinction alto-
gether. We focus instead on the aim shared by all these
methods: Learning from data. We focus on methods for
the prediction of a response (dependent, criterion) variable,
often referred to as supervised learning methods. Thus,
unsupervised learningmethods (e.g., factor analysis, cluster-
ing, correlation networks, topic models from natural
language processing) are outside the scope of the current
paper.

Recent Shifts in Statistical Learning

Modern developments in statistical learning methodology
have yielded two main shifts:
(1) Increased focus on prediction.
(2) Increased flexibility: Modern methods allow for cap-

turing non-linear associations and/or modeling large
numbers of predictors.

We believe that the first shift is highly beneficial for our
field because predicting behavior is one of the core tasks of
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psychological assessment. Accurate evaluation of predictive
accuracy is needed to provide evidence for the validity of
test score interpretations and when more complex decision
systems are developed for data-driven decision-making.
Traditionally, the field of psychology at large has been
mostly interested in explanation or developing and testing
theories of human behavior. This has sometimes led
researchers to overlook prediction, perhaps because their
main aim was to explain behavior. A theory, however, can
only explain real-world phenomena to the extent that it
can accurately predict them (Yarkoni & Westfall, 2017).

The traditional focus on explanation may have motivated
researchers to compute effect sizes (e.g., R2, Cohen’s d) on
training data, using observations that were also used to fit
the model. This leads to overly optimistic effect size esti-
mates. More realistic effect sizes can be obtained, for exam-
ple, through cross-validation: By computing effect sizes on a
sample of observations not used for fitting the model (de
Rooij & Weeda, 2020). It is interesting to note that cross-
validation has been discussed in the field of assessment
for almost a century (Larson, 1931; Mosier, 1951), but its
use has become more common only in recent years.

We believe that the second shift toward flexibility brings
both promises and pitfalls for our field. Promises because
few, if any, real-world phenomena behave in a purely linear
and additive fashion. Pitfalls because assumptions of linear-
ity and additivity (i.e., no interactions) are very powerful in
inference and interpretation, even if they are known to be
only partially true. This means that the often one-sided
focus on maximizing predictive accuracy in AI and ML
is of limited value when it comes to understanding and
explaining behavior, and the role of these methods is, at
best, in hypotheses generation.

Of note, unrestricted flexibility leads to overfitting and
poorly generalizable results. In statistical learning, this has
been formalized in the bias-variance trade-off. Informally,
this trade-off states that the more flexible a model is
allowed to approximate any possible shape of association
between predictors and response (i.e., the lower the bias),
the worse the model will generalize to new samples from
the same population (i.e., the higher the variance). To obtain
optimally generalizable results for a given data problem and
sample (size), bias and variance should thus be carefully
balanced by choosing an appropriate model-fitting
procedure.

Bias can be increased, and variance reduced in various
ways, including:
� Limiting the complexity of the functional form (e.g.,

model only linear associations; model only main
effects);

� Limiting the number of potential predictors used (e.g.,
include only few predictors; use sum or factor scores
instead of item scores as predictors);

� Regularized estimation procedures (e.g., lasso, ridge, or
elastic net regression; use of Bayesian priors);

� Ensembling (e.g., in psychometrics, multiple items are
often aggregated into subscale or factor scores; in ML,
predictions of so-called base learners are often aggre-
gated into the predictions of an ensemble).

If the bias is well-chosen and realistic, the generalizability
of the fitted model will be improved. In other words: we can
buy predictive power by making realistic assumptions. If the
bias is not well chosen, predictive accuracy and generaliz-
ability will obviously suffer.

Empirical Example

We aim to illustrate and compare the use of a range of sta-
tistical learning techniques through a data-analytic exam-
ple. We focus on a predictive validity question: To what
extent do the item and subscale scores on a measure of
vocational preferences predict the type of university major
completed? Note, we will not focus on substantive aspects
of this prediction problem, but we will use it to illustrate
more general principles of flexibility, overfitting, and inter-
pretability in predictive modeling in assessment. In test
development, providing evidence for the criterion validity
of the scores is vital as it often is used by practitioners
to choose between existing tests. Thus, establishing test-
criterion-related evidence is a fundamental part of test
construction. Therefore, it seems obvious that the poten-
tial of statistical learning procedures should come to bear
here.

Readers interested in replicating our analyses will find
our annotated code and results in the Electronic Supple-
mentary Material, ESM 4 and 5.

Method

Dataset
We use a dataset from the Open Psychometrics Project
(https://openpsychometrics.org/_rawdata/). Data were col-
lected through their website from 2015 to 2018. Respon-
dents answered items on vocational preferences,
personality, and sociodemographic characteristics. The
sample likely does not represent a random sample from a
well-defined population, which would normally be required
for evaluating a test’s validity.

We investigate the predictive validity of the RIASEC
vocational preferences scales (Liao et al., 2008). The RIA-
SEC uses six occupational categories from Holland’s Occu-
pational Themes (Holland, 1959) theory: Realistic (R),
Investigative (I), Artistic (A), Social (S), Enterprising (E),
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and Conventional (C). There are 8 items for each category,
each describing a task (e.g., R6: “Fix a broken faucet” or I2:
“Study animal behavior”), to which respondents answer on
a 1–5 scale, with 1 = Dislike, 3 =Neutral, 5 = Enjoy. The items
are presented in ESM 1. The research question from an
assessment perspective is whether the RIASEC scores can
be used to predict the university major completed. Such
evidence could support the use of the scale in applied
settings; moreover, the results could inform decision rules.

We selected participants who completed at least a univer-
sity degree from the full dataset, yielding a sample of N =
55,593 observations. As the criterion, we take a binary
variable, indicating whether respondents majored in Psy-
chology (19.42%) or a different topic (80.58%). Further
descriptive statistics of the sample are presented in ESM 2.

Model Fitting and Evaluation
We fitted a range of traditional and more recent (ML/AI)
methods to model the relation between the RIASEC scores
and the criterion. This will show the magnitude of differ-
ences in performance such algorithms typically yield. Also,
it exemplifies the researcher’s degrees of freedom in such
cases, and it is thus important to use separate data to fit
and evaluate the models.

We separated the data into 75% training observations
and 25% test observations. Our training sample thus con-
sists of 41,694 respondents, of which 19.46% majored in
psychology. Our test sample consisted of 13,899 respon-
dents, of which 19.3% majored in psychology. Other train
and test sample sizes may sometimes be preferred, or k-fold
cross validation (CV). However, considering the current
sample size, we do not expect the results to be very sensi-
tive to this choice.

All analyses were performed in R (version 4.1.3; R Core
Team, 2021). We tuned the model-fitting parameters for
all models using resampling and CV on the training obser-
vations. We did not tune the parameters of the generalized
additive models (GAMs) because we expected the defaults
to work well out of the box. The specific packages used, the
code, and the results of tuning and fitting the models are
provided in the ESM 4 and 5.

We evaluated the predictive accuracy of the fitted
models by computing the Brier score on test observations.
The accuracy measures derived from the confusion matrix
of actual and predicted classes, like the misclassification
error, sensitivity (or recall), positive predictive value (or
precision), are pervasive in the machine learning literature.
However, these measures disregard the quality of predicted
probabilities from a fitted model, and we, therefore, recom-
mend against their use for evaluating predictive accuracy.
Methods for predicting a binary outcome should provide
a predicted class and a predicted probability to quantify

the uncertainty of the classification. To evaluate perfor-
mance, the quality of this probability forecast should thus
be evaluated (Gneiting & Raftery, 2007).

The Brier score is the mean squared error of the pre-
dicted probabilities:

1
N

XN

i¼1

ð yi � p̂iÞ2; ð1Þ

where yi is the observed outcome for observation i, taking a
value of 0 or 1; p̂i is the model’s predicted probability.
We computed Brier scores on training as well as on test
observations; thus N can be taken to be the training or
the test sample size. A Brier score equal to the variance
of y indicates performance no better than chance (in the
current dataset, the variance was 0.1568 for training and
0.1557 for test data). To obtain a pseudo-R2 measure, we
take 1 minus the Brier score divided by the variance of y,
which takes values between 0 (indicating performance no
better than chance) and 1 (indicating perfect accuracy).

Results

Considering the two shifts in predictive modeling discussed
in the introduction, we fitted all models twice: Once using
subscale scores and item scores. This allows us to evaluate
whether our conclusions generalize between the two
approaches and gauge the effect of having a larger pool
of predictor variables (likely noisier, but possibly more
informative of the criterion).

(Penalized) Logistic Regression
Our traditional benchmark method is an additive general-
ized linear model (GLM): Logistic regression. If CV results
indicated predictive accuracy could be improved by apply-
ing a lasso or ridge penalty, we applied it. For prediction
with subscale scores, no penalization was found to be opti-
mal. The estimated coefficients for the subscale scores are
presented in Figure 1; as expected with the currently large
sample size, all subscale scores obtained p-values < .001.
The strongest effect was a positive effect from the Social
preferences scale, and the weakest effect was a negative
effect from the Conventional preferences scale.

For prediction with item scores, CV indicated optimal
performance for a small but non-zero value of the lasso
penalty. With an increasing number of predictor variables,
this beneficial effect of penalization (or regularization) is
generally expected. The resulting item-level coefficients
are depicted in ESM 3, Figure C1. The item coefficients
indicate similar relevance of the subscales as the previous
analysis but provide a more fine-grained view of individual
item’s contributions.

�2022 Hogrefe Publishing European Journal of Psychological Assessment (2022), 38(3), 165–175
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Generalized Additive Model
Next, we fitted generalized additive models (GAMs) with
smoothing splines. Smoothing splines allow for flexibly
approximating non-linear shapes of association between
predictor and response. At the same time, overfitting is
prevented by penalizing the wiggliness of the fitted curves.
The splines provide a flexible but smooth approximation to
the observed data points, while the additive structure pro-
vides ease of interpretability because the estimated effects
are conditional (i.e., keeping the values of all remaining
predictors fixed). Bringmann et al. (2017) provide a more
detailed introduction to GAMs aimed at psychologists.

The splines fitted to the subscale scores are presented in
Figure 2. Similar to the GLM, we see positive effects on the
Social and Investigative subscales and negative effects on
the Realistic, Artistic, Enterprising, and Conventional sub-
scales. The Social preferences subscale shows a near-linear
effect, while the other subscales’ effects clearly exhibit
stronger non-linearity. An advantage of GAMs is that they
allow for inference: they provide w2 tests to evaluate the
significance of the effect of each predictor variable. As
expected with the current large sample size, all subscale
scores obtained p-values < .001.

We also applied penalization for the GAM fitted using
item scores, as this was expected to be beneficial for predic-
tion, as similarly observed in the GLM. We do not depict
the fitted curves for space considerations here, but Figure 1
and ESM 3, Figure C1 show the w2 values per subscale and
per item, respectively. The figures indicate very similar
effects of the predictors between the (penalized) GLMs
and GAMs.

We now leave the realm of additive models and set about
fitting models that allow for capturing interaction effects:

Decision Tree
We fit a single decision tree using the conditional inference
tree algorithm (Hothorn et al., 2006). This algorithm elim-
inates the variable selection bias present in many other
decision-tree algorithms. Decision-tree methods and vari-
able selection bias are discussed in more detail by Strobl
et al. (2009), who provide a comprehensive introduction
aimed at psychologists. According to our CV results with
the subscales as predictors, a tree depth of seven was opti-
mal, yielding a tree with 27 = 128 terminal nodes. Thus, for
this data problem, the most accurate tree is surely not the
most interpretable. The predictor variables selected by the
trees are depicted in Figure 1 and ESM 3, Figure C1.

For illustration, Figure 3 shows the decision tree fitted to
the subscale scores, pruned to a depth of three. The Social,
Realistic, and Enterprising preferences subscales were used
in the first splits of the tree. The bars in the terminal nodes
depict the proportion of participants within each node that
majored in psychology. Thus, the Social subscale shows a
positive effect, and the Realistic and Enterprising subscales
show a negative effect. With regards to possible interac-
tions, note that split number 10 suggests that the Enterpris-
ing subscale appears relevant only for higher values of the
Social and lower values of the Realistic subscales. However,
such a split may also reflect additive effects combined with
multicollinearity. Although decision trees can capture inter-
action effects, they cannot be straightforwardly used to
statistically test their significance; a disadvantage shared
by virtually all flexible ML and AI techniques.

Although decision trees are easy to interpret, they suffer
more strongly from instability than GLMs and GAMs. With
instability, we mean that a small change in the training data
can lead to large changes in the resulting model. The cause

Figure 1. Variable contributions for each of the models fitted using RIASEC subscale scores as predictors. Coefficients in the logistic regression
and importance measures of the prediction rule ensemble are on the scale of standard deviations. Importance measures for the other methods
are on the scale of variances; for those methods, the square roots are plotted. Real = Realistic; Inve = Investigative; Arti = Artistic; Soci = Social;
Ente = Enterprising; Conv = Conventional.

European Journal of Psychological Assessment (2022), 38(3), 165–175 �2022 Hogrefe Publishing
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of this instability partly lies in the rather rough cuts made in
the tree. Tree ensembling methods capitalize on this insta-
bility. They derive a large number of learners (e.g., trees),
each fitted on different versions of the training dataset.
The predictions of the final ensemble average over the pre-
dictions of the individual trees, which improves predictive
accuracy. Different versions of the training data can be gen-
erated, for example, by taking bootstrap samples from the
training data, a method is also known as bagging. More
powerful tree ensembling methods are random forests
and boosting. Introductions about tree ensemble methods

aimed at psychologists can be found in Strobl et al.
(2009) and Miller et al. (2016).

Gradient Boosted Tree Ensemble
The first tree ensemble method we apply to the data is a
gradient boosted ensemble. Boosting uses sequential fitting
of so-called weak learners to create a strong learner. Weak
learners are simple models that provide predictive accuracy
(slightly) better than chance. When boosting trees, we use
weak learners in the form of small trees with only a few
splits. Sequential learning means that each consecutive tree

Figure 2. Fitted smoothing spline curves for each of the RIASEC subscales. Values on the y-axis reflect the effect on the log-odds of having
completed a university major in psychology. Real = Realistic; Inve = Investigative; Arti = Artistic; Soci = Social; Ente = Enterprising; Conv =
Conventional.

Figure 3. Conditional inference tree pruned to a depth of three. Soci = Social; Ente = Enterprising; Real = Realistic.

�2022 Hogrefe Publishing European Journal of Psychological Assessment (2022), 38(3), 165–175
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is adjusted for the predictions of previous trees. In effect,
observations that were well (badly) predicted by previous
trees receive less (more) weight when fitting the next tree.

A disadvantage of decision tree ensembles is their black-
box nature: While individual trees are generally easy to
interpret, an ensemble of trees is impossible for humans
to grasp. Therefore, so-called variable importance measures
have been developed for the interpretation of tree ensem-
bles, which aim to quantify the effect of the predictor vari-
able on the predictions of the ensemble. In this paper, we
use permutation importances, proposed by Breiman
(2001). These quantify how much an ensemble’s predictive
accuracy would be reduced if the values of each of the pre-
dictor variables are randomly shuffled. The variable impor-
tances of the fitted gradient boosting ensembles are
depicted in Figure 1 and ESM 3, Figure C1.

Importancemeasures provide a useful ranking of the con-
tributions of each predictor to the ensemble’s predictions
but should be interpreted with care. They should not be used
to judge the significance of the effect of predictors; tree
ensembles can easily include predictors in the model which,
in fact, have no effect on the outcome. Furthermore, there
are many ways to compute variable importance measures,
and each may yield different conclusions, especially when
predictors are correlated (Nicodemus, 2011; Nicodemus
et al., 2010; Strobl et al., 2007, 2008). Especially with corre-
lated predictors, permuting the values of predictor variables
may lead to unrealistic data patterns. These issues illustrate
the interpretability problems that come with complex pre-
diction methods such as tree ensembles, support vector
machines, and (deep) neural networks.

Random Forest
Another popular decision-tree ensembling method is ran-
dom forests (Breiman, 2001). Like boosted tree ensembles,
random forests fit a large number of decision trees. Random
forests do not employ sequential learning: each tree is fitted
without adjusting for predictions of the other trees in the
ensemble. Unlike boosting, random forests employ trees
with many splits: in the original algorithm of Breiman
(2001), trees were grown as large as possible. Later studies,
however, have shown that large trees can lead to unstable
results when there are many correlated predictors that are
at best weakly correlated to the response (Segal, 2004).
It is thus beneficial to grow large but not too large trees.

The most characteristic feature of random forests is how
it selects variables for splitting: A random sample of mtry
candidate predictor variables is considered for every split
in every tree. From this set of predictor variables, the best
splitting variable and value is selected. Without the random
selection of variables, each tree of the ensemble would
likely use the same set of relatively strong predictors and
thus be very similar. Averaging over many very similar trees

is unlikely to improve predictive accuracy. Thus, the
randomization makes the trees more dissimilar, which
likely improves the performance of the ensemble.

The variable importances of the fitted random forests are
depicted in Figure 1 and ESM 3, Figure C1.

Prediction Rule Ensemble
Prediction rule ensembles (PRE) aim to strike a balance
between the high predictive accuracy of decision tree
ensembles and the ease of interpretability of single decision
trees and GLMs (Fokkema, 2020; Fokkema & Strobl,
2020). The method fits a boosted decision tree ensemble
to the training dataset and takes every node from every tree
as a rule. For example, membership of Node 2 in the tree in
Figure 3 can be coded using a single condition: Social � 27.
Membership of Node 14 involves multiple conditions: Social
> 27 & Realistic > 17 & Realistic � 24. Each of these nodes
can be seen as a dummy-coded rule, which takes a value of
1 if the conditions apply, and 0 if not.

PRE applies lasso regression on a dataset consisting of
these rules and the original predictor variables. As such, it
combines the strengths of penalized regression and tree
ensembles. Although the boosted decision tree ensemble
will initially contribute a large number of nodes (rules),
the use of lasso regression will give many of these rules a
weight of zero, which removes them from the final ensem-
ble. As such, PRE provides a sparse and interpretable final
model.

The PRE we fitted using the subscale scores consisted
of 48 rules, providing a great simplification compared to
the > 500 trees of the boosted ensemble and random
forest. Note that the current dataset is exceptionally large,
which tends to result in longer rule lists when only predic-
tive accuracy is optimized because very large samples allow
for capturing highly nuanced effects. In Table 1, the six
most important rules are shown.

Note that each rule has obtained an estimated coefficient,
which is simply logistic regression coefficients: They reflect
the expected increase in log odds if the conditions of the rule
apply. PRE also provides variable importance measures,
which are presented for the fitted ensembles in Figure 1
and ESM 3, Figure C1. An introduction to PRE aimed at
psychologists is provided in Fokkema and Strobl (2020).

k Nearest Neighbors
A prime example of a highly flexible method, perhaps
the most non-parametric method of all, is the method of
k-nearest neighbors (kNN). In fact, kNN does not even fit
a model; it merely remembers the training observations.
To compute predictions for new observations, kNN com-
putes the distance of a new observation to all training obser-
vations in order to find the k nearest ones (the neighbors).
It then takes the mean of the response variable over these

European Journal of Psychological Assessment (2022), 38(3), 165–175 �2022 Hogrefe Publishing
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k neighbors as the predicted value. This provides the great-
est possible flexibility of all prediction methods, as it does
not impose any a priori restriction on the shape of the asso-
ciation between predictors and response. This flexibility is
both the strength and weakness of kNN: with increasing
numbers of predictor variables, the performance of kNN
worsens fast. Only in lower dimensions is the great flexibility
of kNN beneficial.

kNN has only a single tuning parameter: k. With larger
values of k, the predicted value for a new observation aver-
ages over a larger number of observations (neighbors).
Thus, higher values of k yield lower variance but higher
bias. Furthermore, because kNN is a fully distance-based
method, in which all variables obtain the same weight of
1, the method does not provide any measure of the effect
of individual variables, and we thus do not plot variable
contributions for kNN here.

Model Comparisons

Variable contributions
Figure 1 depicts the variable contributions in the models
fitted using RIASEC subscale scores. Note that the coeffi-
cients of the logistic regression reflect both direction and
strength of the effects. For the other models, the variable
contributions only reflect the strength of the variables’
effects. Figure 1 shows similar variable contributions for
all methods: The Social subscale is most important for
predicting university major completed, followed by Realis-
tic, followed by Enterprising, while the Conventional and
Artistic subscales contribute least. The variable contribu-
tions for models fitted using the item scores as predictors
yielded similar conclusions and are provided and discussed
in ESM 3, Figure C1.

In Figure 4, pseudo-R2 values on train and test data are
depicted with confidence intervals. Note that the confi-
dence intervals for test data are systematically wider than
for training data, but this is mostly due to the much larger
number of training observations.

Figure 4A shows that with the subscale scores, the best
test set performance was obtained with the boosted tree

ensemble and closely followed by the random forest,
PRE, GAM, kNN, logistic regression, and finally the deci-
sion tree. This latter result is rather unsurprising: a single
decision tree is generally expected to have somewhat lower
predictive accuracy, but they often “win” in terms of inter-
pretability, which can be observed in Figure C1 in ESM 3,
which shows that the decision tree uses only about half of
the items for prediction. The boosted tree ensemble
performing best is also not very surprising, given its top-
ranking performance in forecasting competitions.

From Figure 4A, we obtain the following takeaways:
(1) On the test data, none of the methods performs signif-

icantly worse or better than any of the other methods.
(2) The difference between training and test performance

increases with increasing flexibility. The methods that
incorporate linear main effects (logistic regression,
GAM, PRE) show the smallest difference in perfor-
mance between training and test data. These methods
thus appear least likely to overfit.

(3) The more flexible methods (single tree, kNN, boosted
ensemble, random forest) show greater susceptibility
to overfitting.

The subscale scores did not provide strong predictive
power, with R2 indicative of a moderate effect. Using item
scores as predictors yielded a substantial (about 50%)
increase in variance explained. Again, the best performance
on the test data was obtained with the boosted tree ensem-
ble. This time, it was followed by PRE, GAM, penalized
logistic regression, random forest, kNN, and finally, the
decision tree.

From Figure 4B, we can add to our earlier takeaways:
(4) With a larger number of predictors, differences in per-

formance between the methods become more pro-
nounced, but none of the more sophisticated
methods significantly (or substantially) outperforms
the GLM with lasso penalty.

(5) With a larger number of predictors, the difference in
performance between training and test data becomes
more pronounced. Higher dimensionality creates
more opportunities for overfitting, even though all
methods feature powerful built-in overfitting control.

Discussion

Our conclusions can be succinctly summarized as: Logistic
regression is hard to beat. Linear main effects models (i.e.,
(penalized) GLMs) tend to capture most of the explainable
variance. This finding corresponds to a range of previous
studies noting a lack of (substantial or significant) benefit

Table 1. Six most important rules in the prediction rule ensemble

Description Coefficient

Soci > 27 & Ente <= 31 & Conv <= 30 0.182

Soci > 23 & Ente <= 29 & Real <= 24 0.181

Real > 10 & Soci <= 35 �0.175

Real <= 22 & Soci > 19 & Inve > 18 0.138

Inve > 10 & Real <= 13 0.120

Conv <= 23 & Arti <= 29 & Soci > 21 0.112

Note. Soci = Social; Ente = Enterprising; Conv = Conventional; Real =
Realistic; Inve = Investigative; Arti = Artistic.
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of sophisticated machine learning methods over (penalized)
regression in prediction problems from psychology and
medicine (e.g., Elleman et al., 2020; Littlefield et al.,
2021; Christodoulou et al., 2019; Gravesteijn et al., 2020;
Nusinovici et al., 2020; Lynam et al., 2020).

Sophisticated methods can only improve upon linear
main-effects models by capturing more nuanced non-line-
arities and interactions. Almost by definition, these effects
are of smaller size. Capturing these smaller, more nuanced
effects comes at the price of an increased tendency to
overfit. To reliably approximate small effects, much larger
sample sizes are needed. Even if sophisticated methods
outperform simpler methods like logistic regression in
terms of predictive accuracy on test data, their tendency
to overfit and their black-box nature may make them less
suited for increasing scientific understanding and/or
making influential decisions about individuals (e.g., clinical
or selection settings).

Perhaps GAMs and PREs may provide the steadiest
improvement on (penalized) GLMs. They are essentially
GLMs with added flexibility for capturing non-linearities
but provide robust overfitting control and also retain inter-
pretability. Especially GAMs may provide the “best of both
worlds”: They provide the flexibility of modern statistical
learning, robust overfitting control, and allow for perform-
ing statistical inference. Most flexible machine-learning
methods especially fall short in terms of the latter, which
limits their use for increasing scientific understanding and
theory development.

Our finding that item scores can provide better predictive
accuracy than subscale scores corresponds to previous
studies (e.g., Seeboth & Mõttus, 2018; Stewart et al.,
2021). As also noted by Yarkoni (2020), a large number
of item scores will outperform any predictive model fitted

on subscale scores, given a large enough sample size. At
the same time, a handful of subscale scores is easier to
interpret and use than hundreds of personality items. Also,
with smaller samples (e.g., N = 300 or 500), including prior
knowledge about the subscale structure through the use of
subscale or factor scores, may likely improve predictive
accuracy (de Rooij et al., 2022).

Big-data applications involving, for example, image-,
video-, and text-based analytics may exhibit stronger pat-
terns of non-linearity and interaction than the analytic
example presented here. More sophisticated methods like
deep neural networks may even be called for in such appli-
cations. However, similar rules of sampling and statistics
apply in such applications: The more nuanced the patterns
that we want to capture, the larger the sample sizes
required. Sample size requirements for artificial neural net-
works exceed the sample sizes common in our field (e.g.,
Alwosheel et al., 2018). There is no doubt that image, text,
audio, video, and sensor-based data (will) provide novel
ways of assessing psychological traits (Gillan & Rutledge,
2021). Their relative unobtrusiveness opens up new
avenues for assessment, but the black-box nature of algo-
rithms that can capture complex non-linear effects also
brings ethical risks (Boyd et al., 2020; Rudin, 2019).

The focus on predictive accuracy brought about by recent
statistical, ML and AI methods is beneficial for the field of
assessment. We should, however, guard against a blind
focus on maximizing predictive accuracy on test observa-
tions, as this disregards two important issues:
� Data points analyzed in, for example, research settings

or forecasting competitions may likely differ from the
data points that the predictive model will be applied
to in practice. These differences may be subtle in
relatively closed, low-stakes systems, like online

(A) (B)

Figure 4. Predictive accuracy on train and test observations for each of the models fitted on subscale scores (A) and items scores (B). (p)GLM =
(penalized) logistic regression; GAM = generalized additive model with smoothing splines; PRE = prediction rule ensemble; GBE = gradient
boosted tree ensemble; RF = random forest; kNN = k nearest neighbors.
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recommender systems. Much psychological assess-
ment is, however, focused on offline, out-of-lab human
behavior, often with high stakes. Generalizing research
findings to the real world remains difficult; external
validity has not become irrelevant suddenly. Gains in
predictive accuracy in controlled research settings
may be swamped by practical aspects of data problems,
like population drift, measurement error, ethics, inter-
pretability, and data-collection costs (Efron, 2020;
Fokkema et al., 2015; Hand, 2006; Luijken et al.,
2019; Rauthmann, 2020).

� From both an ethical and scientific perspective, validity
has become more (not less!) important with newer and
bigger data sources. A blind focus on predictive validity
leads to black-box assessment procedures with limited
content, internal and construct validity. For opening
the black box, there is an important role for the field
of psychological assessment and psychometrics. Not
only by applying our existing theory, evidence, and
methods but also by continually improving, adopting,
and developing them (Alexander et al., 2020; Bleidorn
& Hopwood, 2019; Iliescu & Greiff, 2019; Tay et al.,
2020).

Finally, although modern statistical prediction methods
have improved our ability to predict, attribution and inter-
pretation have not become easier. Attribution (assigning sig-
nificance to individual predictors) requires strong individual
predictors and large sample sizes (Efron, 2020). This task
only becomes more difficult when datasets contain increas-
ing numbers of predictors withmodest effects. The task also
becomes more difficult with methods that can capture
increasingly nuanced non-linear and interaction effects. A
range of interpretation tools for black box-models have been
proposed (e.g., variable importance, LIME, Shapley values,
SHAP). However, the accuracy of their explanations cannot
be quantified (Carvalho et al., 2019; Ross et al., 2017), and
their inner workings pose another black box to most users,
resulting in misinterpretation and misuse (Kaur et al.,
2020; Kumar et al., 2020; Rudin, 2019; van der Waa
et al., 2021). With large numbers of predictors, fitted models
become inherently difficult to interpret, and black-box inter-
pretation tools are unlikely to help with this. Thus, while
flexible models might help inform theory building, their
use for making decisions in assessment procedures aimed
at individuals is currently limited.
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