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Simple Summary: We studied survivors of childhood cancer who received cancer treatment that
might affect the kidneys and compared them to controls from the general population. We investigated
if there was a difference in the occurrence of tubular dysfunction. The tubules are the part of the
kidney responsible for reabsorption of needed substances to the blood and the removal of wastes.
After around 25 years since their cancer diagnosis, we found that in general there were no differences
between survivors and controls, but survivors more often had losses of small proteins in the urine.
Yet, some survivors of childhood cancer were found to have an increased risk of tubular dysfunction.
Namely, survivors treated with the chemotherapeutic agents ifosfamide, cisplatin or carboplatin.
Therefore, these patients should be monitored during their follow-up.

Abstract: The aim of this nationwide cross-sectional cohort study was to determine the prevalence of
and risk factors for tubular dysfunction in childhood cancer survivors (CCS). In the DCCSS-LATER
2 Renal study, 1024 CCS (≥5 years after diagnosis), aged ≥ 18 years at study, treated between 1963
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and 2001 with potentially nephrotoxic therapy (i.e., nephrectomy, abdominal radiotherapy, total body
irradiation, cisplatin, carboplatin, ifosfamide, high-dose cyclophosphamide, or hematopoietic stem
cell transplantation) participated, and 500 age- and sex-matched participants from Lifelines acted
as controls. Tubular electrolyte loss was defined as low serum levels (magnesium < 0.7 mmol/L,
phosphate < 0.7 mmol/L and potassium < 3.6 mmol/L) with increased renal excretion or supplemen-
tation. A α1-microglobulin:creatinine ratio > 1.7 mg/mmol was considered as low-molecular weight
proteinuria (LMWP). Multivariable risk analyses were performed. After median 25.5 years follow-up,
overall prevalence of electrolyte losses in CCS (magnesium 5.6%, potassium 4.5%, phosphate 5.5%)
was not higher compared to controls. LMWP was more prevalent (CCS 20.1% versus controls 0.4%).
LMWP and magnesium loss were associated with glomerular dysfunction. Ifosfamide was associated
with potassium loss, phosphate loss (with cumulative dose > 42 g/m2) and LMWP. Cisplatin was
associated with magnesium loss and a cumulative dose > 500 mg/m2 with potassium and phosphate
loss. Carboplatin cumulative dose > 2800 mg/m2 was associated with potassium loss. In conclusion,
long-term tubular dysfunction is infrequent. Yet, ifosfamide, cisplatin and carboplatin are risk factors.

Keywords: childhood cancer survivor; nephrotoxicity; tubular dysfunction

1. Introduction

As a result of improved survival rates, currently eight out of ten children diagnosed
with cancer will survive five or more years after diagnosis [1]. An effect of this increased
survival is the manifestation of late effects [2].

A well-known late effect is nephrotoxicity, manifesting as glomerular and/or tubular
damage. This can be caused by chemotherapy, including cisplatin, carboplatin, ifosfamide,
cyclophosphamide, radiation to the kidney area or nephrectomy [3,4].

Tubular damage is characterized by electrolyte derangements and urinary wasting
of low molecular weight (LMW) proteins. Prolonged hypophosphatemia may lead to
hypophosphatemic rickets in children [5] with the consequence of growth impairment [6]
or osteomalacia in adults [7]. The clinical impact of other persistent electrolyte alterations
is less apparent.

Research among childhood cancer survivors (CCS) has shown an association of plat-
inum compounds and ifosfamide exposure with tubular injury [4,8–12]. Although screening
guidelines for CCS often also advise tubular dysfunction screening for other potentially
nephrotoxic therapies, including nephrectomy and radiotherapy to the renal area [13,14],
no clear associations of these modalities have been described in the literature.

Studies assessing tubular toxicity in CCS are limited and are often hampered by small
patient numbers, limiting good risk factor analyses [3]. In addition, recent longitudinal
studies up to 10 years follow-up suggest that tubular function may improve over the
years [10]. Still, very long-term (>20 years) follow-up studies have not yet been performed.
As ifosfamide and platinum compounds are still widely used in the treatment of several
childhood malignancies [15–17], it is important to gain more knowledge of the effects on
the very long term.

The aim of this nationwide multicenter cross-sectional cohort study was to evaluate the
prevalence of and risk factors for tubular dysfunction in very long-term CCS in comparison
with matched controls.

2. Materials and Methods
2.1. Study Population

For the Dutch Childhood Cancer Survivor Study (DCCSS) LATER cohort part 2 study,
CCS diagnosed at the age of 0 to 17 years, treated between 1963–2001 in one of the childhood
cancer centers in the Netherlands and with a survival of at least 5 years from diagnosis
were eligible.
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Additional inclusion criteria for this sub-study on nephrotoxicity were: (1) age ≥ 18 years
at the time of the study, (2) sufficient understanding of the Dutch language to provide
informed consent, and (3) treatment with potentially nephrotoxic treatment, i.e., (a) nephrec-
tomy (unilateral, partial bilateral), (b) radiotherapy involving one or both kidneys in the
field (abdominal, total body irradiation (TBI), in nephrectomized patients radiotherapy in
the field of the remnant kidney), (c) chemotherapy: cisplatin, carboplatin, ifosfamide or
high-dose (HD)-cyclophosphamide ≥ 1 g/m2 per course or ≥10 g/m2 in total [18,19], or
(d) allogeneic hematopoietic stem cell transplantation (HSCT). For HD-cyclophosphamide,
information regarding dose per course was incomplete. If the cyclophosphamide cumu-
lative dose was <10 g/m2, CCS were only selected if they had been treated according to
the ALL7 or ALL8 protocol [20,21]. Exclusion criteria were pregnancy at time of study or a
history of kidney transplantation. Three subsets have been described previously [18,19,22].

2.2. Controls

Lifelines is a multi-disciplinary prospective population-based cohort study examining
the health and health-related behavior of 167,729 persons living in the north of the Nether-
lands in a unique three-generation design [23]. First, via participating general practitioners,
an index population aged 25–49 years was recruited. Second, older and younger family
members were invited to participate. Last, adults could self-register on the Lifelines website
to take part. The inclusion period was between 2006 and 2013, but most participants (57%)
were included in the last two years. Lifelines employs a broad range of investigative pro-
cedures to assess biomedical, socio-demographic, behavioral, physical and psychological
factors which contribute to the health and disease of the general population, with a special
focus on multi-morbidity and complex genetics [23,24].

A total of 500 controls of Lifelines were included. The same exclusion applied as for
CCS, with the additional exclusion criterion of a history of cancer. Controls were randomly
selected and matched to CCS by age and sex using frequency matching.

2.3. Data Collection

Details on the diagnosis and treatment of primary malignancy and any recurrences
are stored in a central database for all CCS, with the exception of survivors refusing storage
of their data. Treatment details include cumulative doses of chemotherapy, radiation field
and fractionation schedule and types of surgery. At the time of the study, blood and urine
laboratory tests were performed, and a physical examination was conducted. Patients
received questionnaires about their medical history and lifestyle. Study visits took place
between October 2016 and February 2020. This study was approved by the Institutional
Review Board of Emma Children’s hospital of the Amsterdam University Medical Centers
(NL35046.018.11). Written informed consent was obtained from all participants.

From the controls, we collected demographic data, and results of questionnaires, a
physical examination and laboratory testing. For both CCS and controls (fasting) blood
and urine samples were collected in the morning on the same day. Urine was stored
at −80 ◦C. For CCS, laboratory tests were performed locally in the participating centers,
except for alpha-1-microglobulin which was determined in one central laboratory. For
controls, all tests were performed in one clinical laboratory. In both CCS and controls, all
electrolytes were measured on a routine chemistry platform; phosphate was measured
using a molybdate UV assay (Cobas8000, Roche, Mannheim, Germany in controls and
Cobas6000, Rokreuz, Switzerland in CCS), magnesium was measured by the xylidyl blue
method using a colorimetric assay (Cobas8000, Roche, Mannheim, Germany in controls
and Cobas6000, Rokreuz, Switzerland in CCS) and potassium was measured via an indirect
ISE module (Cobas8000, Roche, Mannheim, Germany in controls and CCS).

2.4. Definition of Tubular Dysfunction

Tubular function was evaluated based on tubular electrolyte loss, low-molecular
weight proteinuria (LMWP) and metabolic acidosis.
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Tubular electrolyte loss was defined as low serum levels in combination with in-
creased renal excretion or use of electrolyte supplementation in the absence of under-
feeding. Moreover, serum magnesium < 0.70 mmol/L was defined as hypomagnesemia,
serum potassium < 3.6 mmol/L as hypokalemia and serum phosphate < 0.70 mmol/L as
hypophosphatemia [25]. In case of low serum levels, the fractional excretion was calculated
to distinguish renal from non-renal causes. Fractional magnesium excretion > 2% was
considered of renal origin and calculated as follows [26]:

((urine magnesium × serum creatinine)/(serum magnesium × urine creatinine × 0.7))× 100 (1)

The formula used for fractional potassium excretion was

((urine potassium × serum creatinine)/(serum potassium × urine creatinine)) × 100, (2)

and it was considered indicative of tubular losses if >6.5% [27]. For hypophosphatemia, the
tubular phosphate threshold (TmP/GFR) was determined based on tubular reabsorption
of phosphate (TRP). TRP was calculated by

1 − ((urine phosphate/serum phosphate) × (serum phosphate/urine phosphate)). (3)

If TRP was ≤0.86, TmP/GFR was calculated as

TRP × serum phosphate. (4)

If TRP was >0.86, TmP/GFR was calculated as [28]

serum phosphate × 0.3 × TRP/(1 − 0.8 × TRP). (5)

Reference values for TmP/GFR are shown in Table 1.

Table 1. Reference values for TmP/GFR in adults.

Age Male Range (mmol/L) Female Range (mmol/L)

25–35 years 1.00–1.35 0.96–1.44
45–55 years 0.90–1.35 0.88–1.42
65–75 years 0.80–1.35 0.80–1.35

Reprinted with permission from [28]. Copyright © 1998, © SAGE Publications.

Alpha-1-microglobulin (α1MG) is an LMW-protein that freely passes the glomerular
membrane and is fully reabsorbed in the tubules. A value of >1.7 mg/mmol α1MG in the
urine after indexing with urine creatinine was defined as LMWP [29].

A bicarbonate level < 22 mmol/L or bicarbonate or citrate supplementation was
considered as metabolic acidosis and assumed to be of renal origin. For controls, no
bicarbonate levels were available.

Lastly, blood samples were taken in a fasting state in 911 CCS (91%) and 494 controls
(99%), p < 0.001.

2.5. Definition of Glomerular Dysfunction

The relation of tubular outcomes with glomerular function was evaluated. Glomerular
filtration rate (GFR) was estimated with the creatinine and cystatin C-based Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) 2012 equation [30]. The GFR categories ac-
cording to the Kidney Disease: Improving Global Outcomes (KDIGO) 2012 guidelines were
assessed [31]: G1, eGFR ≥ 90 mL/min/1.73 m2; G2, eGFR 60–89 mL/min/1.73 m2; G3a, eGFR
45–59 mL/min/1.73 m2; G3b, eGFR 30–44 mL/min/1.73 m2; G4, eGFR 15–29 mL/min/1.73 m2;
and G5, eGFR < 15 mL/min/1.73 m2. In addition, albuminuria was assessed using a urinary
albumin-to-creatinine ratio (ACR) [31]: A1, albumin-to-creatinine ratio (ACR) < 3 mg/mmol
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normal; A2, ACR 3–30 mg/mmol moderately increased (i.e., microalbuminuria); and A3,
ACR > 30 mg/mmol severely increased (i.e., macroalbuminuria).

2.6. Statistical Analyses

Descriptive statistics were used to summarize demographic and treatment variables,
to compare tubular outcomes between CCS and controls and to evaluate tubular outcomes
with glomerular function among CCS and controls. For comparison of continuous variables,
a t-test, or the Mann–Whitney U test in case of non-normal distribution, was used. Nominal
variables were compared using a chi-squared test or the Fisher exact test (if the number of
cases in one cell was less than 5).

Risk factors for tubular dysfunction were assessed using multivariable logistic regres-
sion analyses in two ways. First, analyses with controls as reference were performed for
mutually exclusive treatment groups as well as for different malignancy types. Age at
study, sex, GFR and ACR were evaluated as possible confounders.

Second, the impact of individual agents was also assessed using multivariable risk
models. Risk factors included exposure (yes/no) to cisplatin, carboplatin, ifosfamide,
HD-cyclophosphamide, abdominal radiotherapy, TBI, (partial) nephrectomy and HSCT.
Possible confounders included age at diagnosis, follow-up duration, sex, GFR and ACR. For
renal potassium loss, the use of angiotensin-converting-enzyme inhibitors or angiotensin
receptor blockers (yes/no) and diuretics (yes/no) were also assessed as confounders.
Correlation between variables was assessed using Spearman’s rank correlation. In case the
correlation coefficient between two variables was >0.6, one of the variables was excluded for
the final model based on lowest prevalence or clinical consideration. Because TBI and HSCT
were strongly correlated (correlation coefficient 0.77), HSCT was not included in the models.
Confounders that were not significantly associated with the outcome were removed unless
they caused a ≥10% change in the odds ratio (OR) of a variable included in the model.
Likewise, an extra model was created in which treatment agents with at least 10 exposed
cases were categorized according to cumulative dose tertiles, and p-values < 0.05 were
considered statistically significant. Analyses were performed using IBM SPSS Statistics 25.0
(IBM Corp., Foster City, CA, USA).

3. Results
3.1. Study Population

The final study cohort included 1024 participants (Figure 1). The most frequent malig-
nancies in the study population were leukemia (31.0%) and Wilms tumors (24.8%) (Table 2).
The potentially nephrotoxic treatments most frequently prescribed were ifosfamide (29.3%)
and HD-cyclophosphamide (27.2%), and nephrectomy was performed in 25.8%. The
median age at diagnosis was 4.7 years (interquartile range (IQR) 2.4–9.2) and at study
32.5 years (IQR 27.7–38.0) with a median follow-up time of 25.5 years (IQR 21.4–30.3).
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Primary childhood cancer (ICCC), n (%)      

Leukemias, myeloproliferative diseases and 
myelodysplastic diseases 

2094 (34.0) 569 (30.2) 225 (28.6) 317 (31.0) − 

Lymphomas and reticuloendothelial 
neoplasms 

1062 (17.2) 150 (8.0) 68 (8.6) 79 (7.7) − 

CNS and miscellaneous intracranial and 
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844 (13.7) 121 (6.4) 55 (7.0) 62 (6.1) − 

Neuroblastoma and other peripheral 
nervous cell tumors 

324 (5.3) 94 (5.0) 28 (3.6) 65 (6.3) − 

Retinoblastoma 33 (0.5) 2 (0.1) 1 (0.1) 1 (0.1) − 
Renal tumors 596 (9.7) 476 (25.3) 200 (25.4) 254 (24.8) − 

Hepatic tumors 52 (0.8) 34 (1.8) 22 (2.8) 12 (1.2) − 
Bone tumors 370 (6.0) 148 (7.9) 67 (8.5) 78 (7.6) − 

Soft tissue and other extraosseous sarcomas 450 (7.3) 168 (8.9) 72 (9.1) 92 (9.0) − 
Germ cell tumors, trophoblastic tumors, and 

neoplasms of gonads 
232 (3.8) 99 (5.3) 41 (5.2) 52 (5.1) − 

Other malignant epithelial neoplasms and 
malignant melanomas 

102 (1.7) 18 (1.0) 8 (1.0) 10 (1.0) − 

Other and unspecified malignant neoplasms 6 (0.1) 2 (0.1) 0 (0) 2 (0.2) − 
Age at diagnosis (yr), n (%) *      

0–4 2727 (45.3) 994 (52.9) 417 (53.1) 537 (52.4) − 
5–9 1628 (27.1) 476 (25.3) 198 (25.2) 265 (25.9) − 

10–14 1285 (21.4) 312 (16.6) 128 (16.3) 171 (16.7) − 
15–17 376 (6.3) 98 (5.2) 43 (5.5) 51 (5.0) − 

Treatment period, n (%)      
1963–1969 119 (1.9) 20 (1.1) 6 (0.8) 14 (1.4) − 

Figure 1. Flowchart study cohort. Abbreviations: DCCSS, Dutch Childhood Cancer Survivor Study;
IC, informed consent.
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Table 2. Baseline characteristics study cohort.

Characteristics Underlying Cohort Invited Study
Population Non-Participants b Participants Controls

n = 6165 n = 1881 n = 787 n = 1024 n = 500

Sex, n (%)
Male 3433 (55.7) 1009 (53.6) 484 (61.5) 505 (49.3) 241 (48.2)

Female 2731 (44.3) 872 (46.4) 303 (38.5) 519 (50.7) 259 (51.8)
Transgender 1 (0.01) 0 (0) 0 (0) 0 (0) 0 (0)

Primary childhood cancer (ICCC), n (%)
Leukemias, myeloproliferative diseases and

myelodysplastic diseases 2094 (34.0) 569 (30.2) 225 (28.6) 317 (31.0) −
Lymphomas and reticuloendothelial neoplasms 1062 (17.2) 150 (8.0) 68 (8.6) 79 (7.7) −

CNS and miscellaneous intracranial and intraspinal neoplasms 844 (13.7) 121 (6.4) 55 (7.0) 62 (6.1) −
Neuroblastoma and other peripheral nervous cell tumors 324 (5.3) 94 (5.0) 28 (3.6) 65 (6.3) −

Retinoblastoma 33 (0.5) 2 (0.1) 1 (0.1) 1 (0.1) −
Renal tumors 596 (9.7) 476 (25.3) 200 (25.4) 254 (24.8) −

Hepatic tumors 52 (0.8) 34 (1.8) 22 (2.8) 12 (1.2) −
Bone tumors 370 (6.0) 148 (7.9) 67 (8.5) 78 (7.6) −

Soft tissue and other extraosseous sarcomas 450 (7.3) 168 (8.9) 72 (9.1) 92 (9.0) −
Germ cell tumors, trophoblastic tumors, and neoplasms of gonads 232 (3.8) 99 (5.3) 41 (5.2) 52 (5.1) −
Other malignant epithelial neoplasms and malignant melanomas 102 (1.7) 18 (1.0) 8 (1.0) 10 (1.0) −

Other and unspecified malignant neoplasms 6 (0.1) 2 (0.1) 0 (0) 2 (0.2) −

Age at diagnosis (yr), n (%) *
0–4 2727 (45.3) 994 (52.9) 417 (53.1) 537 (52.4) −
5–9 1628 (27.1) 476 (25.3) 198 (25.2) 265 (25.9) −

10–14 1285 (21.4) 312 (16.6) 128 (16.3) 171 (16.7) −
15–17 376 (6.3) 98 (5.2) 43 (5.5) 51 (5.0) −

Treatment period, n (%)
1963–1969 119 (1.9) 20 (1.1) 6 (0.8) 14 (1.4) −
1970–1979 978 (15.9) 130 (6.9) 54 (6.9) 72 (7.0) −
1980–1989 1931 (31.3) 477 (25.4) 184 (23.4) 272 (26.6) −
1990–1999 2541 (41.2) 1093 (58.1) 479 (60.9) 576 (56.3) −
2000–2001 596 (9.7) 161 (8.6) 64 (8.1) 90 (8.8) −

Age at participation/invitation (yr), n (%) #

<18 49 (1.2) 0 (0) 0 (0) 0 (0) 0 (0)
18–30 1313 (32.9) 640 (39.1) 205 (37.8) 381 (37.2) 182 (36.4)
30–40 1511 (37.9) 709 (43.3) 244 (45.1) 446 (43.6) 216 (43.2)
>40 1118 (28.0) 286 (17.5) 92 (17.0) 197 (19.2) 102 (20.4)

Follow-up time since childhood cancer diagnosis (yr), n (%)
10–20 981 (15.9) 328 (17.4) 133 (16.9) 186 (18.2) −
20–30 1931 (31.3) 1078 (57.3) 469 (59.6) 569 (55.6) −
30–40 1393 (22.6) 351 (18.7) 136 (17.3) 197 (19.2) −
40–50 460 (7.5) 112 (6.0) 48 (6.1) 61 (6.0) −
50–60 46 (0.7) 12 (0.6) 1 (0.1) 11 (1.1) −

Surgery, n (%) a

No 2912 (47.2) 694 (36.9) 281 (35.7) 385 (37.6) −
Yes 3185 (51.7) 1182 (62.8) 503 (63.9) 637 (62.2) −

Missing 68 (1.1) 5 (0.3) 3 (0.4) 2 (0.2) −

Radiotherapy, n (%) a

No 3608 (58.5) 1177 (62.6) 533 (67.7) 596 (58.2) −
Yes 2527 (41.0) 703 (37.4) 254 (32.3) 427 (41.7) −

Missing 30 (0.5) 1 (0.05) 0 (0) 1 (0.1) −

Chemotherapy, n (%) a

No 1123 (18.2) 35 (1.9) 15 (1.9) 20 (2.0) −
Yes 5005 (81.2) 1845 (98.1) 771 (98.0) 1004 (98.0) −

Missing 37 (0.6) 1 (0.05) 1 (0.1) 0 (0) −

Stem cell transplantation/reinfusion, n (%) a,*
No 5532 (89.7) 1624 (86.4) 698 (88.8) 863 (84.3) −

Autologous transplant 155 (2.5) 90 (4.8) 34 (4.3) 56 (5.5) −
Allogeneic HSCT 231 (3.7) 153 (8.1) 51 (6.5) 95 (9.3) −

Missing 98 (1.6) 13 (0.7) 3 (0.4) 10 (1.0) −

Therapy, n (%)
No treatment 61 (1.0) 0 (0) 0 (0) 0 (0) −
Surgery only 575 (9.3) 17 (0.9) 8 (1.0) 9 (0.9) −

Chemotherapy only (±surgery) 2967 (48.1) 1160 (61.7) 525 (66.7) 587 (57.3) −
Radiotherapy only (±surgery) 484 (7.9) 18 (1.0) 7 (0.9) 11 (1.1) −

Chemotherapy and radiotherapy (±surgery) 2030 (32.9) 684 (36.4) 246 (31.3) 416 (40.6) −
Missing 48 (0.8) 2 (0.1) 1 (0.1) 1 (0.1) −

Potentially nephrotoxic cancer treatment, n (%) a

Nephrectomy 622 (10.1) 492 (26.2) 207 (26.3) 264 (25.8) −
Unilateral 605 (97.3) 478 (97.2) 204 (98.6) 255 (96.6) −

Bilateral partial 17 (2.7) 14 (2.9) 3 (1.5) 9 (3.4) −
Radiotherapy renal area 467 (7.6) 273 (14.5) 90 (11.4) 175 (17.1) −
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Table 2. Cont.

Characteristics Underlying Cohort Invited Study
Population Non-Participants b Participants Controls

n = 6165 n = 1881 n = 787 n = 1024 n = 500

Total body irradiation 221 (3.6) 143 (7.6) 52 (6.6) 85 (8.4) −
Ifosfamide 714 (11.6) 524 (27.9) 206 (26.2) 300 (29.3) −

HD-cyclophosphamide 833 (13.5) 504 (26.8) 208 (26.4) 278 (27.2) −
Cisplatin 457 (7.4) 328 (17.4) 142 (18.0) 175 (17.1) −

Carboplatin 422 (6.9) 284 (15.1) 125 (15.9) 151 (14.7) −
Allogeneic HSCT 231 (3.8) 153 (8.1) 51 (6.5) 95 (9.3) −

a For primary cancer and recurrences. b Non-participants includes refusers and non-responders. CCS with in-
formed consent without participation (n = 53), being pregnant (n = 8) or having a history of kidney transplantation
(n = 9) were not included in this table because they were willing to participate. * Missing for survivors refusing
registration, n = 149. # Missing for survivors refusing participation, n = 2174. Bold = p-value < 0.05. Abbreviations:
HD, high dose; HSCT, hematopoietic stem cell transplantation; n, number; yr, year.

3.2. Prevalence of Tubular Dysfunction

The overall prevalence of tubular outcomes is shown in Table 3.

Table 3. Prevalence of tubular dysfunction in childhood cancer survivors compared to matched controls.

Tubular Function Parameter CCS (n) Prevalence a Controls (n) Prevalence a p-Value

Tubular magnesium loss 999 56/999 (5.6) 500 25/500 (5.0) 0.63
Magnesium supplementation 1024 20/1024 (2.0) 500 0/500 (0) <0.001

Tubular potassium loss 1003 45/1003 (4.5) 500 20/500 (4.0) 0.66
Potassium supplementation 1024 9/1024 (0.9%) 500 0/500 (0) 0.04

Tubular phosphate loss 997 55/997 (5.5) 500 54/500 (10.8) <0.001
Phosphate supplementation 1024 3/1024 (0.3%) 500 0/500 (0) 0.55

Low molecular weight proteinuria 931 187/931 (20.1) 498 2/498 (0.4) <0.001
Metabolic acidosis 1002 26/1002 (2.5) - - -

a Values are the number of participants with a positive test result/total number of participants tested (percentage).
Abbreviations: CCS, childhood cancer survivors; n, number.

The overall prevalence of magnesium loss was not significantly different between
CCS (5.6%) and controls (5.0%). Out of 5.6% of CCS with magnesium loss, 2.0% needed
supplementation, while none of the controls did. In addition, CCS more often had severe
hypomagnesemia < 0.6 mmol/L compared to controls (respectively, 25/1003 (2.5%) in 10
out of 25 despite supplementation, and 1/500 (0.2%), p < 0.001).

Tubular potassium loss was comparable in CCS (4.5%) and controls (4.0%). Out of
4.5% of CCS, nine (0.9%) were taking potassium supplementation, and no controls did.

Tubular phosphate loss was less prevalent in CCS (5.5%) compared to controls (10.8%).
Still, three CCS (0.3%) were receiving phosphate supplementation, while none of the
controls did. Post hoc analysis in patients with hypophosphatemia (<0.7 mmol/L) showed
that this was frequently accompanied by other types of tubular dysfunction in CCS but not
in controls (Table S1).

LMWP was more often seen in CCS (20.1%) than controls (0.4%). Low serum bicar-
bonate levels were found in 26 CCS (2.5%). None of them received supplementation.

CCS more often had a combination of tubular dysfunctions compared to controls,
p <0.001 (Table 4). Moreover, LMWP and renal magnesium loss were associated with
decreased GFR stages and albuminuria among CCS (Table 5). This association was not seen
in controls.
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Table 4. Total number of tubular outcomes in childhood cancer survivors and matched controls.

Total Number of Tubular Outcomes CCS (n) Controls (n)

0 658 (71.1) 401 (80.5)
1 213 (23.0) 93 (18.7)
2 45 (4.9) 4 (0.8)
3 9 (1.0) 0 (0)
4 1 (0.1) 0 (0)

Abbreviations: CCS, childhood cancer survivors; n, number.

Table 5. Relation between glomerular function and tubular outcomes in childhood cancer survivors
and controls.

LMWP Renal Magnesium Loss Renal Potassium Loss Renal Phosphate Loss

CCS Controls CCS Controls CCS Controls CCS Controls

G1 (eGFR ≥ 90) 111/692 (16.0) 2/427 (0.5) 34/715 (4.8) 25/429 (5.8) 26/717 (3.6) 19/429 (4.6) 36/713 (5.0) 48/429 (11.2)
G2 (eGFR 60–89) 51/185 (27.6) 0/71 (0.0) 18/189 (9.5) 0/71 (0.0) 15/191 (7.9) 1/71 (1.4) 17/190 (8.9) 6/71 (8.5)
G3 (eGFR 45–59) 14/21 (66.7) 0/0 (0.0) 2/21 (9.5) 0/0 (0.0) 2/21 (9.5) 0/0 (0.0) 1/21 (4.8) 0/0 (0.0)
G4 (eGFR 15–44) 3/3 (100) 0/0 (0.0) 2/4 (50.0) 0/0 (0.0) 0/4 (0.0) 0/0 (0.0) 1/4 (25.0) 0/0 (0.0)
G5 (eGFR < 15) 1/1 (100) 0.0 (0.0) 0/1 (0.0) 0.0 (0.0) 0/1 (0.0) 0.0 (0.0) 0/1 (0.0) 0.0 (0.0)
No albuminuria 112/756 (14.8) 2/492 (0.4) 37/775 (4.8) 25/494 (5.1) 32/776 (4.1) 20/494 (4.0) 41/775 (5.3) 53/494 (10.7)

Microalbuminuria 60/138 (43.5) 0/5 (0.0) 13/140 (9.3) 0/5 (0.0) 12/142 (8.5) 0/5 (0.0) 13/142 (9.2) 1/5 (20.0)
Macroalbuminuria 6/10 (60.0) 0/1 (0.0) 4/10 (40.0) 0/1 (0.0) 1/10 (10.0) 0/1 (0.0) 0/10 (0.0) 0/1 (0.0)

Values are the number of participants with a positive test result/total number of participants tested (percentage).
Bold = p-value < 0.05. Abbreviations: CCS, childhood cancer survivors; eGFR, estimated glomerular filtration rate
in mL/min/1.73 m2; LMWP, low molecular weight proteinuria.

3.3. Risk Factors for Tubular Dysfunction
3.3.1. Risk Factors in CCS Compared to Controls

In Figure 2 and Table S2, the prevalence and odds ratios of mutually exclusive treat-
ment groups compared to controls are presented.
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Figure 2. Multivariable logistic regression analyses including mutually exclusive treatment groups
for tubular outcomes including: (A) tubular magnesium loss; (B) tubular potassium loss; (C) tubular
phosphate loss. This figure displays the odds ratios in CCS compared to controls. Exact values of
the odds ratios are listed in Table S1. The square represents the odds ratio, and the horizontal lines
represent the 95% confidence interval. The vertical line represents the value 1 (no difference between
CCS and controls). The model for tubular magnesium loss is corrected for age at study, estimated
glomerular filtration rate and albumin-to-creatinine ratio. The models for tubular potassium loss
are corrected for age at study. The model for tubular phosphate loss is corrected for age at study
and sex. * = p-value < 0.05. Abbreviations: CCS, childhood cancer survivors; HD-cyclo, high-dose
cyclophosphamide; RT, radiotherapy; TBI, total body irradiation.

The prevalence and odds ratio for magnesium loss were significantly increased for
CCS treated with cisplatin only (25.8%, OR 7.1, 95% CI 3.7–13.7) or in combination with
carboplatin (23.1%, OR 8.7, 95% CI 2.1–36.3). CCS exposed to cisplatin only were also at risk
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for potassium loss in comparison with controls (prevalence 12%, OR 3.2, 95% CI 1.5–7.0).
For tubular phosphate loss, CCS showed no increased risk compared to controls. Last, all
assessed treatment groups had a higher prevalence of LMWP than controls. Multivariable
risk analyses could not be performed for LMWP due to the low prevalence in controls.

3.3.2. Tumor Type

As a consequence of the chemotherapeutic agents used in the respective treatment
protocols, survivors of bone tumors had increased odds for tubular magnesium loss (OR
6.1, 95% CI 3.1–12.1) and tubular potassium loss (OR 6.2, 95% CI 3.0–12.7) (Figure 3, Table
S3). Higher odds ratios for tubular magnesium loss were also observed for survivors of
neuroblastoma (OR 2.6, 95% CI 1.1–6.2).
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The model for tubular magnesium loss is corrected for age at study, estimated glomerular filtration
rate and albumin-to-creatinine ratio. The model for tubular potassium loss is corrected for age at
study. The model for tubular phosphate loss is corrected for age at study and sex. * = p-value < 0.05.
Abbreviations: CCS, childhood cancer survivors; CNS, central nervous system.

3.3.3. Risk Factors among CCS

The results of the multivariable logistic regression analyses for the tubular outcomes
among CCS are presented in Table 6.

Cisplatin was associated with tubular magnesium loss (OR 10.5, 95% CI 4.1–27.2). This
association was significant for all doses but highest for a cumulative dose >500 mg/m2 (OR
22.0, 95% CI 7.2–67.3).

Treatment risk factors significantly associated with tubular potassium loss were ifos-
famide (OR 2.4, 95% CI 1.2–4.7) and cisplatin (OR 3.5, 95% CI 1.6–7.5). For ifosfamide,
this association was independent of dose. Cisplatin increased the odds for potassium loss
only for a cumulative dose >500 mg/m2 (OR 17.7, 95% CI 6.2–50.4). Carboplatin was
not associated with tubular potassium loss when analyzed as a dichotomous variable but
showed an increased OR for a cumulative dose > 2800 mg/m2 (OR 5.1, 95% CI 1.7–15.8).

Ifosfamide treatment was associated with tubular phosphate loss (OR 2.3, 95% CI
1.2–4.3), in particular for CCS exposed to >42 g/m2 (OR 4.1, 95% CI 1.6–10.4). CCS treated
with a cumulative cisplatin dose > 500 mg/m2 had increased odds as well (OR 3.6, 95% CI
1.2–10.9).

The odds for LMWP were increased by ifosfamide (OR 2.2, 95% CI 1.5–3.3), especially
after cumulative doses of 12–42 g/m2 (OR 2.0, 95% CI 1.1–3.6) and >42 g/m2 (OR 6.2, 95%
CI 3.4–11.5).
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Table 6. Multivariable logistic regression analyses for tubular outcomes in childhood cancer survivors including independent treatment variables.

Tubular Magnesium Loss
n= 56/999

Tubular Potassium Loss
n= 43/1003

Tubular Phosphate Loss
n= 55/997

Low Molecular Weight Proteinuria
n= 187/931

Model 1 Prevalence a OR (95% CI)
Multivariable Prevalence a OR (95% CI)

Multivariable Prevalence a OR (95% CI)
Multivariable Prevalence a OR (95% CI)

Multivariable

Nephrectomy
No 46/738 (6.2) 1.0 (ref) 40/741 (5.4) 1.0 (ref) 42/736 (5.7) 1.0 (ref) 149/687 (21.7) 1.0 (ref)
Yes 10/261 (3.8) 0.9 (0.3–2.7) 5/262 (1.9) 0.6 (0.2–2.1) 13/261 (5.0) 1.2 (0.5–2.9) 38/244 (15.6) 0.5 (0.3–0.8)

Abdominal RT
No 45/811 (5.5) 1.0 (ref) 35/814 (4.3) 1.0 (ref) 42/808 (5.2) 1.0 (ref) 152/754 (20.2) 1.0 (ref)
Yes 9/173 (5.2) 1.1 (0.4–2.8) 7/174 (4.0) 1.9 (0.7–5.2) 10/174 (5.7) 1.3 (0.5–3.0) 32/162 (19.8) 1.1 (0.6–2.0)

TBI
No 52/902 (5.8) 1.0 (ref) 40/904 (4.4) 1.0 (ref) 48/898 (5.3) 1.0 (ref) 166/837 (19.8) 1.0 (ref)
Yes 2/82 (2.4) 0.8 (01.1–4.2) 2/84 (2.4) 0.8 (0.2–3.8) 4/84 (4.8) 1.0 (0.3–3.0) 18/79 (22.8) 1.1 (0.6–2.1)

Ifosfamide
No 49/703 (7.0) 1.0 (ref) 21/706 (3.0) 1.0 (ref) 28/702 (4.0) 1.0 (ref) 92/652 (14.1) 1.0 (ref)
Yes 7/296 (2.4) 0.2 (0.1–0.6) 24/297 (8.1) 2.4 (1.2–4.7) 27/295 (9.2) 2.3 (1.2–4.3) 95/279 (34.1) 2.2 (1.5–3.3)

HD-cyclo
No 52/731 (7.1) 1.0 (ref) 41/734 (5.6) 1.0 (ref) 44/731 (6.0) 1.0 (ref) 148/685 (21.6) 1.0 (ref)
Yes 4/266 (1.5) 0.5 (0.1–1.7) 4/267 (1.5) 0.5 (0.1–1.5) 11/264 (4.2) 0.8 (0.4–1.9) 39/244 (16.0) 0.7 (0.4–1.2)

Cisplatin
No 20/829 (2.4) 1.0 (ref) 26/832 (3.1) 1.0 (ref) 45/826 (5.4) 1.0 (ref) 156/771 (20.2) 1.0 (ref)
Yes 36/170 (21.2) 10.5 (4.1–27.2) 19/171 (11.1) 3.5 (1.6–7.5) 10/171 (5.8) 1.2 (0.5–2.8) 31/160 (19.4) 0.8 (0.5–1.3)

Carboplatin
No 49/852 (5.8) 1.0 (ref) 33/855 (3.9) 1.0 (ref) 42/849 (4.9) 1.0 (ref) 149/790 (18.9) 1.0 (ref)
Yes 7/147 (4.8) 1.1 (0.4–3.3) 12/148 (8.1) 1.6 (0.7–3.8) 13/148 (8.8) 1.5 (0.7–3.3) 38/141 (27.0) 1.3 (0.8–2.1)

HSCT
No 51/899 (5.7) NA 42/903 (4.7) NA 50/897 (5.6) NA 164/838 (19.6) NA
Yes 2/91 (2.2) 2/91 (2.2) 4/91 (4.4) 19/84 (22.6)

Gender
Male 21/492 (4.3) NA 19/496 (3.8) NA 29/492 (5.9) NA 91/461 (19.7) NA

Female 35/507 (6.9) 26/507 (5.1) 26/505 (5.1) 96/470 (20.4)

Age at diagnosis - 1.0 (0.96–1.1) - 1.1 (0.99–1.1) NA - NA
FU duration (yr)

10–19 11/181 (6.1) 1.0 (ref) 12/181 (6.6) 1.0 (ref) 4/180 (2.2) 1.0 (ref) 37/162 (22.8) 1.0 (ref)
20–29 20/554 (3.6) 0.9 (0.4–2.2) 23/555 (4.1) 0.9 (0.4–1.9) 38/550 (6.9) 4.7 (1.4–15.5) 96/513 (18.7) 0.9 (0.6–1.6)
≥30 25/264 (9.5) 1.3 (0.5–3.4) 10/267 (3.7) 0.8 (0.3–2.0) 13/267 (4.9) 3.3 (0.9–12.5) 54/256 (21.1) 0.9 (0.5–1.5)

eGFR (per
1 mL/min/1.73 m2) 0.98 (0.96–0.99) 0.98 (0.96–0.99)

ACR (per
1 mg/mmol) 1.0 (0.9–1.02) 1.06 (1.02–1.09)
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Table 6. Cont.

Tubular Magnesium Loss
n= 56/999

Tubular Potassium Loss
n= 43/1003

Tubular Phosphate Loss
n= 55/997

Low Molecular Weight Proteinuria
n= 187/931

Model 2 Prevalence a OR (95% CI)
Multivariable Ptrend * Prevalencea OR (95% CI)

Multivariable Ptrend * Prevalence a OR (95% CI)
Multivariable Ptrend * Prevalence a OR (95% CI)

Multivariable Ptrend *

Abdominal RT
dose, Gy

None 42/808 (5.2) 1.0 (ref) 152/754 (20.2) 1.0 (ref)
<20 3/47 (6.4) 1.6 (0.4–6.4) 8/43 (18.6) 1.6 (0.6–3.9)

20–30 2/54 (3.7) 0.9 (0.2–4.5) 9/50 (18.0) 1.3 (0.5–3.2)
>30 5/71 (7.0) 1.4 (0.5–3.9) 0.66 15/67 (22.4) 1.0 (0.5–2.1) 0.95

Ifosfamide dose,
mg/m2

None 21/706 (3.0) 1.0 (ref) 28/702 (4.0) 1.0 (ref) 92/652 (14.1) 1.0 (ref)
≤12,000 5/99 (5.1) 3.7 (1.2–11.7) 6/99 (6.1) 1.6 (0.6–4.5) 17/91 (18.7) 1.1 (0.6–2.2)

12,001–42,000 9/97 (9.3) 2.4 (0.9–6.4) 9/97 (9.3) 2.4 (1.0–5.9) 27/92 (29.3) 2.0 (1.1–3.6)
>42,000 9/99 (9.1) 3.7 (1.3–10.7) 0.56 12/97 (12.4) 4.1 (1.6–10.4) 0.39 50/94 (53.2) 6.2 (3.4–11.5) 0.16

Cisplatin dose
mg/m2

None 20/829 (2.4) 1.0 (ref) 26/832 (3.1) 1.0 (ref) 45/826 (5.4) 1.0 (ref) 156/771 (20.2) 1.0 (ref)
≤300 6/57 (10.5) 5.8 (1.7–19.9) 2/58 (3.4) 1.0 (0.2–5.3) 2/58 (3.4) 0.8 (0.2–3.9) 12/55 (21.8) 1.1 (0.5–2.5)

301–500 10/57 (17.5) 9.2 (2.9–29.2) 3/57 (5.3) 1.8 (0.4–7.5) 2/57 (3.5) 0.5 (0.1–3.6) 9/54 (16.7) 1.0 (0.4–2.3)

>500 20/55 (36.4) 22.0 (7.2–67.3) 0.72 14/55 (25.5) 17.7
(6.2–50.4) 0.84 6/55 (10.9) 3.6 (1.2–10.9) 0.85 10/50 (20.0) 1.1 (0.5–2.6) 0.36

Carboplatin dose,
mg/m2

None 33/855 (3.9) 1.0 (ref) 42/849 (4.9) 1.0 (ref) 149/790 (18.9) 1.0 (ref)
≤1500 5/51 (9.8) 1.1 (0.2–5.7) 5/51 (9.8) 1.6 (0.5–5.4) 17/49 (34.7) 1.2 (0.5–2.6)

1501–2800 1/49 (2.0) 0.6 (0.1–5.2) 6/49 (12.2) 2.8 (1.0–7.9) 12/47 (25.5) 2.5 (1.1–5.5)
>2800 6/46 (13.0) 5.1 (1.7–15.8) 0.04 2/46 (4.3) 0.7 (0.2–3.5) 0.74 9/43 (20.9) 0.9 (0.3–2.1) 0.02

Cisplatin dose
mg/m2

None 20/829 (2.4) 1.0 (ref) 26/832 (3.1) 1.0 (ref) 45/826 (5.4) 1.0 (ref) 156/771 (20.2) 1.0 (ref)
≤300 6/57 (10.5) 5.8 (1.7–19.9) 2/58 (3.4) 1.0 (0.2–5.3) 2/58 (3.4) 0.8 (0.2–3.9) 12/55 (21.8) 1.1 (0.5–2.5)

301–500 10/57 (17.5) 9.2 (2.9–29.2) 3/57 (5.3) 1.8 (0.4–7.5) 2/57 (3.5) 0.5 (0.1–3.6) 9/54 (16.7) 1.0 (0.4–2.3)

>500 20/55 (36.4) 22.0 (7.2–67.3) 0.72 14/55 (25.5) 17.7
(6.2–50.4) 0.84 6/55 (10.9) 3.6 (1.2–10.9) 0.85 10/50 (20.0) 1.1 (0.5–2.6) 0.36

Carboplatin dose,
mg/m2

None 33/855 (3.9) 1.0 (ref) 42/849 (4.9) 1.0 (ref) 149/790 (18.9) 1.0 (ref)
≤1500 5/51 (9.8) 1.1 (0.2–5.7) 5/51 (9.8) 1.6 (0.5–5.4) 17/49 (34.7) 1.2 (0.5–2.6)

1501–2800 1/49 (2.0) 0.6 (0.1–5.2) 6/49 (12.2) 2.8 (1.0–7.9) 12/47 (25.5) 2.5 (1.1–5.5)
>2800 6/46 (13.0) 5.1 (1.7–15.8) 0.04 2/46 (4.3) 0.7 (0.2–3.5) 0.74 9/43 (20.9) 0.9 (0.3–2.1) 0.02

All factors in Model 1 have been adjusted for simultaneously. Model 2 was similar to Model 1, except that the dichotomous treatment modalities have been substituted by cumulative
doses if applicable. The other variables are not shown for Model 2 for clarity. Numbers do not always add up to the total because of missing values. a Values are the number of
participants with a positive test result/total number of participants tested (percentage). * Test for trend in continuous dose variable among exposed CCS. Bold = p-value < 0.05.
Abbreviations: 95% CI, 95% confidence interval; FU, follow-up; Gy, gray; HD, high dose; HSCT, hematopoietic stem cell transplantation; NA, not applicable; OR, odds ratio; ref, reference;
RT, radiotherapy; TBI, total body irradiation; yr, years.
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No treatment-related risk factors were identified for decreased serum bicarbonate
levels. A longer follow-up period was associated with phosphate loss but not with other
tubular outcomes.

4. Discussion

This study assessed the prevalence of and risk factors for tubular dysfunction in a
nationwide cohort of very long-term CCS treated with potentially nephrotoxic therapy
in comparison with matched controls. We found a high prevalence of LMWP in CCS.
The prevalence of decreased serum levels of electrolytes was not more common in CCS
compared to controls, yet several CCS used electrolyte supplementation which was not the
case in controls.

The high prevalence (20%) of LMWP in CCS is a strong indicator for chronic tubu-
lar damage. α1MG has proven to be the most valuable in the early detection of acute
and chronic tubular injury because of its lower pre-renal variability and high stability
in urine [32]. Decreased reabsorption of α1MG has only been evaluated in childhood
survivors of HSCT. A prevalence of 39% was described 2 years after transplant, and no
risk factors were identified [33]. We showed that this risk was particularly increased after
ifosfamide exposure. Recently, increased α1MG in the urine has been reported to be a
predictor of chronic kidney disease (CKD) progression and higher mortality [34], probably
reflecting tubulointerstitial damage [35]. Although we could not investigate the prognostic
value of α1MG because of the cross-sectional design, a strong association of α1MG with
decreased GFR and albuminuria was observed. More research regarding α1MG as an
early marker of renal dysfunction in CCS is needed. For now, closer surveillance might be
considered in CCS with an abnormal α1MG/creatinine index. It should be borne in mind
that LMWP and microalbuminuria are missed by urinary dipstick analysis [35].

Consistent with two previous studies using multivariable regression analyses, we
identified cisplatin as a risk factor for tubular magnesium loss [8,18]. Contrary to our
study, Stohr et al. also found an association between carboplatin and lower magnesium
levels in sarcoma survivors [8]. However, they also reported a rise in magnesium levels
in the first 3 years of follow-up. This suggests reversible toxicity and might explain why
we did not find carboplatin as a risk factor after prolonged follow-up. Knijnenburg et al.
reported higher odds for hypomagnesemia in two mutually exclusive treatment groups
of CCS: nephrectomy only and combined treatment of platinum agents and ifosfamide.
However, these associations had very wide confidence intervals and were not confirmed in
our study. Among CCS, we observed an association of magnesium loss with higher CKD
stages and albuminuria. Hypomagnesemia has been described as a predictor for mortality
and GFR decline in CKD patients [36]. Moreover, during cisplatin courses, magnesium
supplementation may have a kidney-protective effect [37,38]. However, its potential as a
modifiable risk factor for CKD remains to be established.

Tubular potassium loss was associated with ifosfamide, cisplatin > 500 mg/m2 and
carboplatin > 2800 mg/m2. Although severe hypokalemia can cause serious adverse events
such as arrhythmias, the clinical impact of chronic hypokalemia is not well understood [39].

A notable finding of our study was the higher prevalence of tubular phosphate loss in
controls (10.8%) compared to CCS (5.5%). Post hoc analysis showed a comparable preva-
lence of 10% in the total Lifelines cohort (data not shown), excluding potential selection
bias of our control group. The observed difference might be explained in part by the fact
that phosphate was measured in a different clinical laboratory. However, all participating
clinical laboratories used the same laboratory methods and take part in external qual-
ity assessment programs. Since the implementation of these programs, inter-laboratory
variation has been significantly reduced in the Netherlands [25]. The prevalence of hy-
pophosphatemia might be overestimated in controls since 2.5–3% of the population is
expected to have values below the defined lower reference limit in case of equal distri-
bution [25]. Secondly, more controls than CCS had fasting blood tests. In the literature,
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lower serum phosphate levels have been observed in individuals fasting ≥ 12 h [40]. The
observed difference is difficult to elucidate and might have been influenced by a confounder
we are not aware of. However, the finding that hypophosphatemia was associated with
additional tubular dysfunctions in CCS but not in controls supports the hypothesis that the
prevalence of hypophosphatemia in controls was overestimated.

Tubular phosphate loss was associated with exposure to ifosfamide congruent with pre-
vious studies [11,12], especially for cumulative doses > 42 g/m2 and cisplatin doses > 500 mg/m2.
In CCS solely treated with ifosfamide, prevalence was 9% which is comparable with the
study of Skinner et al. who reported decreased serum phosphate levels of 8% after a 10-year
follow-up [10]. The association of cisplatin doses >500 mg/m2 with long-term phosphate
loss has not been described by others. This finding may prompt that CCS exposed to
HD-cisplatin should be considered for phosphate screening as well, which is not currently
recommended by all screening guidelines [41].

Renal tubular acidosis is most often seen as part of renal Fanconi syndrome during and
early after ifosfamide and cisplatin treatment [8,42,43]. Renal acid base handling seems to
recover in CCS since decreased bicarbonate levels were rarely seen and were not associated
with treatment factors in our study and others [10,12].

Tubular dysfunction was mainly observed in bone tumor survivors. This is most likely
because treatment regimens of Ewing sarcoma and osteosarcoma involve high dosages of
nephrotoxic agents. Children with Ewing sarcoma receive high doses of ifosfamide [15].
Cyclophosphamide has been evaluated as an alternative for ifosfamide in the consolidation
of standard risk Ewing sarcoma. This resulted in less tubular dysfunction, but its non-
inferiority as compared to ifosfamide is uncertain [44]. For osteosarcoma, treatment consists
of methotrexate, doxorubicin and cisplatin [16]. Nephrotoxicity caused by methotrexate is
reversible [18,19,45,46]. Hence, long-term toxicity is most likely caused by cisplatin. These
findings may guide the development of treatment protocols and emphasize the importance
of nephroprotective strategies. Please note that some ascertained tumor groups are quite
heterogeneous such as hematological malignancies including different type of leukemias
and lymphomas with differences in treatment protocols. The effect of single treatment
modalities therefore remains most important.

Current long-term follow-up guidelines for CCS differ in their recommendations
regarding tubular dysfunction screening. The Children’s Oncology Group (COG) rec-
ommends screening of all electrolytes at entry of long-term follow-up for all potential
nephrotoxic therapies [13]. The United Kingdom Children’s Cancer Study group recom-
mends phosphate and bicarbonate screening for CCS exposed to ifosfamide only and
magnesium screening for CCS exposed to cisplatin or carboplatin only [47]. The Dutch
Childhood Oncology group recommends electrolyte screening for all CCS treated with
ifosfamide, cisplatin, bilateral renal radiation, partial bilateral nephrectomy or HSCT [14].

Recently, the International Late Effects of Childhood Cancer Guideline Harmoniza-
tion Group (IGHG) was established [48]. This collaborative endeavor aims to develop
evidence-based harmonized guidelines for the surveillance of chronic health problems
in CCS, including nephrotoxicity. The results of our multivariable analyses can inform
future guidelines. The following subgroups are identified that could benefit from tubular
dysfunction screening: after ifosfamide exposure screening on hypophosphatemia and
hypokalemia, after cisplatin exposure screening on hypophosphatemia, hypomagnesemia
and hypokalemia and after high dose carboplatin exposure screening on hypokalemia.

The strengths of this study are the large sample size, detailed treatment information,
long follow-up period, comprehensive assessment of tubular function and comparison
with a matched control group. However, some limitations need to be addressed. First,
some outcomes were present in relatively few survivors, thereby limiting the power of
some analyses. Second, as only 54% of eligible CCS participated, selection bias cannot be
completely ruled out. Third, measurements were performed in different laboratories for
CCS and controls resulting in potential inter-laboratory variation. However, all laboratories
participate in the Dutch External Quality Assessment program, which has been very
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effective in reducing inter-laboratory variation in electrolyte measurements [49]. Lastly,
supportive care drugs associated with acute tubular injury [50–52] were not taken into
account. Their effect on long-term tubular function in CCS remains unknown.

5. Conclusions

In conclusion, 20% of long-term CCS treated with potentially nephrotoxic therapy have
LMWP, but tubular electrolyte loss is infrequent. Still, some CCS have tubular dysfunction
after a median follow-up of 25 years. Ifosfamide exposure is a risk factor for potassium
loss, phosphate loss (when cumulative dose > 42 g/m2) and LMWP. Cisplatin treatment
increases the odds for magnesium loss and at cumulative doses > 500 mg/m2 also for
potassium and phosphate loss. A carboplatin cumulative dose > 2800 mg/m2 is associated
with potassium loss. Magnesium loss and LMWP are associated with higher stages of CKD
and albuminuria. Our results emphasize the importance of monitoring tubular function
in CCS exposed to ifosfamide, cisplatin and carboplatin. Future studies should further
elaborate on the clinical impact of chronic tubular dysfunction in CCS and the potential of
hypomagnesemia as a modifiable risk factor for glomerular function.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14112754/s1, Table S1: Subgroup analysis for childhood
cancer survivors and controls with hypophosphatemia (phosphate < 0.70 mmol/L); Table S2: Multi-
variable logistic regression analyses for tubular outcomes including mutually exclusive treatment
groups; Table S3: Multivariable logistic regression analyses for tubular dysfunction among different
tumor types.
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