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Abstract
Objective.Machine Learningmethods can learn how to reconstructmagnetic resonance images (MRI)
and thereby accelerate acquisition, which is of paramount importance to the clinical workflow.
Physics-informed networks incorporate the forwardmodel of acceleratedMRI reconstruction in the
learning process.With increasing network complexity, robustness is not ensuredwhen reconstructing
data unseen during training.We aim to embed data consistency (DC) in deep networks while
balancing the degree of network complexity.While doing so, wewill assess whether either explicit or
implicit enforcement ofDC in varying network architectures is preferred to optimize performance.
Approach.Wepropose a scheme calledCascades of Independently Recurrent InferenceMachines
(CIRIM) to assessDC through unrolled optimization.Hereinwe assessDCboth implicitly by gradient
descent and explicitly by a designed term. Extensive comparison of theCIRIM to compressed sensing
aswell as otherMachine Learningmethods is performed: the End-to-EndVariational Network
(E2EVN), CascadeNet, KIKINet, LPDNet, RIM, IRIM, andUNet.Models were trained and evaluated
onT1-weighted and FLAIR contrast brain data, andT2-weighted knee data. Both 1D and 2D
undersampling patterns were evaluated. Robustness was tested by reconstructing 7.5× prospectively
undersampled 3DFLAIRMRI data ofmultiple sclerosis (MS) patients withwhitematter lesions.Main
results.TheCIRIMperformed best when implicitly enforcingDC,while the E2EVN required an
explicit DC formulation. Through its cascades, theCIRIMwas able to score higher on structural
similarity and PSNR compared to othermethods, in particular under heterogeneous imaging
conditions. In reconstructingMS patient data, prospectively acquiredwith a sampling pattern unseen
duringmodel training, theCIRIMmaintained lesion contrast while efficiently denoising the images.
Significance.TheCIRIM showed highly promising generalization capabilitiesmaintaining a very fair
trade-off between reconstructed image quality and fast reconstruction times, which is crucial in the
clinical workflow.

1. Introduction

Magnetic resonance imaging (MRI)non-invasively images the anatomy of the human body. It is important to
note that data are acquired in the frequency domain, known as k-space. Conventionally, themeasured signals
need to adhere to theNyquist-criterion to allow for inverse Fourier transforming them to the image domain
without aliasing. Due to hardware limitations and physical constraints, however, sampling the full k-space leads
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to long scanning times. Almost 25 years ago, parallel-imaging (PI) (Sodickson andManning 1997)was
introduced to reduce acquisition times, overcoming hardware and software limitations by applyingmultiple
receiver coil arrays. Each coil has a distinct sensitivity profile which can be exploited in reconstructing
undersampled data.With sensitivity encoding (SENSE) themulticoil data are transformed to the image domain
through the inverse Fourier Transform, after which a reconstruction algorithmdealiases the images based on the
coil sensitivitymaps (Pruessmann et al 1999). The combination of PIwith compressed sensing (CS) (Lustig et al
2007, 2008) is now standardly applied in clinical settings, allowing for high acceleration factors by utilizing the
constrained reconstruction through a sparsifying transform.

Machine Learning (ML)methods can learn how to reconstruct images by training themon acquired data for
which a reference reconstruction is available. As such the reconstruction times can be reduced, which is of
paramount importance to the clinical workflow. TheUNet (Ronneberger et al 2015)may be themost popular
network in the field and the base for numerous othermethods, as elaborated upon below. Its unique
architecture, with the down- and up-sampling operators and the large number of features on the output, has
made it a cornerstone approach in image reconstruction today. Although such a network architecture can
performwell, its performance is still limited due to operating only in image spacewithout anyMRphysics
knowledge incorporated.

Physics-informed networkswere therefore introduced, incorporating the forwardmodel of acceleratedMRI
reconstruction in the learning process. The variational network (VN) (Hammernik et al 2018) and the recurrent
inferencemachines (RIM) (Putzky andWelling 2017, Lønning et al 2019, Putzky et al 2019) proposed to solve
the inverse problemof acceleratedMRI reconstruction through a Bayesian estimation. Alternatively, scan-
specific techniques were used to restoremissing k-space from fully-sampled autocalibration data (Akçakaya et al
2019, Kim et al 2019, Arefeen et al 2022). Furthermore, dual-domain networkswere proposed to leverage the
k-space information and perform corrections both in the frequency domain and the image domain. The
Learned Primal-Dual reconstruction technique (LPDNet) (Adler andÖktem2018) replaced the proximal
operators in the Primal-DualHybridGradient algorithm (Chambolle and Pock 2011)with learned operators,
yielding a learning scheme combinedwithmodel-based reconstruction. TheKIKI-net (Eo et al 2018) introduced
a sequence of convolutional neural networks (CNN)performed in k-space (K) and image space (I). Later,
concatenations ofUNets were applied to replace the sequence of CNNs in theKIKI-net (Souza et al 2020).
Finally, theModel-BasedDeep Learning technique (Aggarwal et al 2019) proposed a learnedmodel-based
reconstruction scheme involving a data consistency term.

With increasing network complexity, however, robustness is not ensuredwhen reconstructing data unseen
during training. This especially concerns clinical datawith pathology forwhich fully sampled reference data
cannot be obtained. This was understood in recentMRI reconstruction challenges (Beauferris et al 2020, Knoll
et al 2020,Muckley et al 2021), inwhich deep end-to-end schemes, such as the End-to-EndVariational Network
(E2EVN) (Sriram et al 2020a), the XPDNet (Ramzi et al 2020a), and the Joint-ICNet (Jun et al 2021) allowed for
higher image quality at increased acceleration factors but not necessarily for generalization to out-of-
distribution data containing pathologies. Recurrent neural networks (RNNs), i.e. the RIM and the pyramid
convolutional RNN (Chen et al 2019), appeared to generalize well on out-of-distribution data due to their nature
ofmaintaining a notion ofmemory (Pascanu et al 2013). However, they scored lower on the trained data
compared to the previouslymentioned networks, possibly due to a limited number of iterations required to
avoid gradient instabilities. Suchmethodswould potentially benefit of increased network complexity as can be
achieved using a number of cascades of networks (Schlemper et al 2018, Qin et al 2019, Souza et al 2019). The
cascades can be considered as stacked networks targeting to resolve aliasing artifacts and to enhance denoising by
iteratively evaluating the reconstruction, butwithout sharing parameters through backpropagation.
Unfortunately, a solutionmay no longer be consistent with the acquired datawith increasing network
complexity. This raises a need for embedding data consistency in deep networks while balancing the degree of
network complexity.

Data consistency (DC) can be embedded into the learning scheme in several ways, such as through gradient
descent (Hammernik et al 2018, Lønning et al 2019, Schlemper et al 2019, Sriram et al 2020a), an iterative energy
minimization process, namely variable-splitting (Duan et al 2019), generative adversarial networks (Yang et al
2018, Cole et al 2020,Dar et al 2020a, Sim et al 2020), adversarial transformers (Korkmaz et al), complex-valued
networks (Wang et al 2020, Cole et al 2021, Xiao et al 2022), transfer learning (Dar et al 2020b), manifold
approximation (Zhu et al 2018), or through sparsity (Yang et al 2017,Quan et al 2018, Sriram et al 2020b, Zhang
et al 2020, Pezzotti et al 2020). Recent work evaluated enforcingDC in three ways, by gradient descent, by
proximalmapping, and by variable-splitting (Hammernik et al 2021). It was shown that the training set could be
reduced in size by doing so. The best results were obtainedwhen train and test domainswere aligned.However,
it remains unknownwhether either explicit or implicit enforcement ofDC in varying network architectures is
the best approach to optimize performance.
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This work proposes a scheme calledCascades of Independently Recurrent InferenceMachines (CIRIM). The
CIRIMcomprise RIMblocks sequentially connected through cascades and the efficient Independently
RecurrentNeural Network (IndRNN) (Li et al 2018) as recurrent unit. The cascades allow us to train a deep but
balanced RNN for improved de-aliasing and denoising, whilemaintaining stable gradient calculations. The
enforcement ofDC in an implicit or explicitmannerwill be assessed by comparison to the E2EVN. The
networks are further compared to theCascadeNet (Schlemper et al 2018), the KIKINet (Eo et al 2018), the
LPDNet (Adler andÖktem2018), the RIM (Lønning et al 2019), the RIMbuilt with the IndRNN, theUNet
(Ronneberger et al 2015), and conventional Compressed Sensing reconstruction (Lustig et al 2008). The
performance is evaluated onmulti-modalMRI datasets applying different undersampling strategies. As a clinical
application, we focused on reconstructing (out-of-training distribution) FLAIR data ofmultiple sclerosis
patients. Finally, reconstruction times are also assessed as a critical aspect of improving clinical workflow.

2.Methods

In this section, first in 2.1, theMRI acquisition process is introduced. In 2.2, the background on solving the
inverse problemof acceleratedMRI reconstruction through a Bayesian approach is set. In 2.2.1 and 2.2.2,
unrolled optimization by gradient descent is reviewed via the Recurrent InferenceMachines (RIM) and the End-
to-EndVariational Network (E2EVN). TheCascades of Independently Recurrent InferenceMachines (CIRIM)
is then proposed in 2.2.3, to expand further de-aliasing capabilities of a deep trainable RNN. Furthermore,
assessment of data consistency (DC) is performed in 2.2.2 and 2.2.3 to evaluate towhat extent the performance
of networks depends on the cascades or theDC formulation, or both. In 2.2.4, the loss function is explainedwith
respect to the network’s architecture. In 2.2.3, the experiments are described, i.e. the used datasets, the
computed evaluationmetrics, and the hyperparameters to be optimized.

2.1. AcceleratedMRI acquisition
The process of accelerating theMRI acquisition can be described through a forwardmodel. Let the true image be
denoted by x ,nÎ with n n n ,x y= ´ and let y ,mÎ with m n, be the set of the sparsely sampled data in
k-space. The forwardmodel describes how themeasured data are obtained from anunderlying reference image.
For the ith coil of c receiver coils, the forwardmodel is formulated as:

y A x i c, 1, , , 1i i( ) ( )s= + = ¼

inwhich A: n n nc  ´ denotes the linear forward operatormodeling the sub-sampling process ofmulticoil
data and  ns Î denotes themeasured noise for the ith coil. A is given by

A P . 2( ) e= F

Here, P is a sub-samplingmask selecting a fraction of samples to reduce scan time. denotes the Fourier
transform, projecting the image onto k-space. : n n n n nc c  e ´ ´ ´ denotes the expand operator,
transforming x into xc multicoil images and is given by

x S x S x x x, , , , , 3c c0 0( ) ( ) ( ) ( ) e = ¼ = ¼

where Si are the coil sensitivitymaps, a diagonalmatrix representing the spatial sensitivities that scale every pixel
of the reference image by a complex number

The adjoint backward operator of A in (2), projecting y onto image space, is given by

A P , 4T1 ( )*  r= -

where 1- denotes the inverse Fourier transform, and : n n n n nc c  r ´´ ´ denotes the reduce operator
that serves for combining themulticoil images xc into x. r is given by

x x S x, , , 5c
i

c

i
H

i0
1

( ) ( )år ¼ =
=

with H representingHermitian complex conjugation.

2.2. The inverse problemof acceleratedMRI reconstruction
The objectivewhen solving the inverse problemof acceleratedMRI reconstruction (figure 1) is tomap the
sparsely sampled k-spacemeasurements to an unaliased, highly accurate image. The inverse transformation of
restoring the true image from the set of the sparsely sampledmeasurements can be found through theMaximum
APosteriori (MAP) estimator, given by

x argmax log p y x log p x , 6xMAP { ( ∣ ) ( )} ( )= +
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which is themaximization of the sumof the log-likelihood and the log-prior distribution of y and x,
respectively. The log-likelihood expresses the log probability that k-space data y are obtained given an image x,
yielding a datafidelity termderived from the posterior p y x .( ∣ ) The log-prior distribution regularizes the
solution by representing anMR-image’smost likely appearance.

Conventionally, equation (6) is reformulated as the following optimization problem

x argmin d y A x R x, , 7MAP x
i

c

i
1

( ( )) ( ) ( )⎧
⎨⎩

⎫
⎬⎭

å l= +
=

where d ensures data consistency between the reconstruction and themeasurements, reflecting the error
distribution given by the log-likelihood distribution in equation (6). R is a regularizer weighted by ,l which
constrains the solution space by incorporating prior knowledge over x.

AssumingGaussian distributed data and ignoring the regularization term in equation (7), the negative log-
likelihood is:

log p y x A x y
1

. 8
i

c

i2
1

2
2( ∣ ) ( ) ( ) ås

= -
=

2.2.1. Recurrent inferencemachines (RIM)
TheRIM (Lønning et al 2019)were originally proposed as a general inverse problem solver. The RIM targets
iterative optimization of amodel with a complex-valued parametrization, requiring taking derivatives with
respect to a complex variable. This can be achieved using theWirtinger- or -calculus (Amin et al 2011,
Sarroff et al 2015, Zhang andMandic 2016). Gradient descent is performed by us using theWirtinger derivative,
to yield a real-valued cost function of complex values. The unrolled scheme for generating updates is presented
infigure 2.

Non-convex optimization can be performed based on the approach byAndrychowicz et al (2016). The
update rules are learned by the optimizer h,which has its own set of parameters .f Formulating equation (6)
accordingly, resulting updates are of the form

x x h x, , 9y x1 ( ) ( )∣= + t t f t+ t

at iteration t and for a (a priori set) total number of iterations .T

Figure 1.The objective in acceleratedMRI reconstruction is to solve the inverse problemof recovering an unaliased image (x) from a
set of sparsely sampledmeasurements (y). A forwardmodel starts from the true image representation (x) (top-first), measured over
multiple receiver coils (S) (bottom-first image). It is Fourier transformed to k-space (top-second) and sub-sampled using amask (P)
(top-third) to obtain sparsely sampledmeasurements (y) (top-fourth). Through the inverse Fourier transform (bottom-second) and
after combiningwith coil sensitivitymaps (bottom-first), an aliased image is obtained (bottom-third).
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The gradient of the log-likelihood function is given by

A A x y:
1

. 10y x 2
( ( ) ) ( )∣ *

s
 = -

The advantage of the RIM is the explicitmodeling of the update rule hf using a recurrent neural network
(RNN). In addition to the gradient information, themodel is aware of the position of the estimation in variable
space equation (9).

By inserting equation (10) into (9), the update equations are obtained, given by

s x A y0, ,0 0 ( )*= =

s h x s x x h x s, , , , , . 11y x y x1 1 1( ) ( ) ( )∣ ∣
*=  = + t f t t t t f t t+ + +t t

where h*f is the updatedmodel for state variable s.Equation (11) reflects that not the prior is explicitly evaluated,
but instead its gradient when performing updates. The step size is learned implicitly in combinationwith the
prior. Therefore, hf also acts as regularizer R in equation (7). Observe that the RIM contains latent (hidden)
states, representing the recurrent aspects of the network.

2.2.2. End-to-end variational network (E2EVN)
The variational network (VN) (Hammernik et al 2018) introduces amapping to real-valued numbers, going
frommapping n m  tomapping .n m2 2  x can be computed by least-squaresminimization in
equation (8). As originally proposed inChen et al (2015) and adapted by theVN, the idea is to perform gradient
descent through the iterative Landweber algorithm. By defining a regularizer R, equation (7) can be formulated
as a trainable gradient schemewith time-varying parameters.

The End-to-EndVariational Network (E2EVN) (Sriram et al 2020a) uses aUNet as regularizer (RUNet ),
whose parameters are learned from the data. Unrolled optimization of the regularized problem in equation (7) is
performed through cascades, given by

x R A y , 12k UNet k k1ˆ ( ( )) ( )*l=+

for cascade k,with k K1   for a total number of K cascades.Next, an explicitly formulated data consistency
step applies k-space corrections. This step is given by

y y d y y A x , 13k k k k1 1( ) ( ˆ ) ( )= - - -+ +

where d y yk( )- is a soft DC term,with aweighting factor d.The optimization is initializedwith the (sparsely
sampled)measurement data, y y.k 1 == The eventual image is obtained via the adjoint operator x A y .K K( )*=

Figure 2.The recurrent inferencemachines unrolled over two iterations. The inputs to themodel are the set of sparsely sampled
measurements y( ) (top, second image), the coil sensitivitiesmaps (Sc) (top, first image), and the initial estimation x0( ) (top, third
image) for the estimation of the log-likelihood gradient (llg) ( y x0∣ ). The llg is passed through a network to produce updates; the
networkmaintains hidden states initialized by 0s ,0 = 0s .1 = At each iteration (t ) the network updates itself and after total (T )
iterations produces thefinal estimation (xT ) (rightmost).
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In this paper, we test omitting theDC step, in equation (13), and evaluate if the network’s performance is
more dependent on the cascades or the gradient step. In that case, updates are given by equation (12). Note that
the cascades effectively yield sequentially connectedVNblocks, targeting de-aliasing (figure 3).

The complex-valued image to complex-valued imagemapping is performed in image space by
concatenating the real and imaginary parts along the coil dimension. After the regularizer’s update in
equation (12), the image is reshaped to have the real and imaginary parts stacked to a complex (last) dimension.

2.2.3. Cascades of independently recurrent inferencemachines (CIRIM)
Wenowpropose CIRIM, consisting of sequentially connected RIMblocks (figure 3). The cascades allow
building a deep RNNwithout vanishing or exploding gradients issues and further evaluate equation (9) through
K cascades. As such the RIMacts as regularizer (RRIM ), while the updates to theCIRIM are given by

x x R x , 14k k RIM k k1ˆ ( ) ( )l= ++

for cascade k,with k K1 . 
In previous work (Putzky andWelling 2017, Lønning et al 2019), the gated recurrent unit (GRU) (Cho et al

2014)was used as recurrent unit for the RIM.A key novelty of our approach is to include the Independently
RecurrentNeural Networks (IndRNN) (Li et al 2018) as amore efficient unit for balancing the network’s
complexity while increasing the number of trainable parameters through the cascades.

Figure 3.Overview scheme for performing unrolled optimization through cascades. The first row represents theCascades of
Independently Recurrent InferenceMachines (CIRIM), in which aRIM is used as a regularizer (RRIM ). The prediction (x k1ˆ ) of the
first cascade (k1) is given as input to the subsequent cascade (k2), while an (optional) additional data consistency step can be performed
through an explicitly formulated term (d .) After (K ) cascades the network returns thefinal prediction (xK ). The second rowdepicts
the End-to-endVariationalNetwork (E2EVN), where aUNet is used as a regularizer (RUNET ). Similarly, as for theCIRIM, the updates
are passed through the cascades and the data consistency step. In the third row,first, the backward operator (A*) is shown,
transformingmulticoil k-spacemeasurements onto a coil-combined image; second, the forward operator (A) is depicted,
transforming a coil-combined image intomulticoil k-spacemeasurements; third, the log-likelihood gradient ( y xk∣ ) reflects the
implicit gradient step of the RIMand fourth, the (optional) interleaved between the cascadesDC term (d ) is presented, enforcing an
explicit gradient step to theCIRIM and the E2EVN.
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Through the cascades the network’s size has increased, but it is unclear whether either implicitly evaluating
data consistency through the log-likelihood gradient in equation (10) is adequate, or an additional learned
gradient step is needed to constrain the solution space further. In a similarmanner as in equation (13), we assess
enforcingDC explicitly and interleaved between the cascades. By doing so, we aim to understand towhat extent
the network’s performance and de-aliasing capabilities depend on the cascades or the formulation of theDC.

Then, the updated prediction of themodel is given by

x A y d y y A x , 15k k k k1 1ˆ ( ( ) ( ˆ )) ( )*= - - -+ +

with x A y .K K( )*= If this DC step is omitted, updates to theCIRIMare given by equation (14). Implementation
notation for the recurrent units can be found in the appendix.

2.2.4. Loss function
For calculating the loss, we comparemagnitude images derived from the complex-valued estimations x̂ against
the fully sampled reference x.As a loss function, we choose the ℓ1-norm. The ℓ1-norm represents the sumof
the absolute difference, given by

L x x x . 161( ) ∣ ˆ ∣ ( )ℓ = -

For the E2EVNand other trainedmodels, the loss is given by equation (16). For theCIRIM, the loss is
weighted depending on the number of iterations and averaged over the K cascades, to emphasize the predictions
of the later iterations. The loss is then formulated as

L x

w x x

K
, 17i

c

qT
T

1

1
1

1

( )
( ˆ)

∣ ˆ ∣
( )ℓ

å
=

å -t t t
=

=

where q is the total number of pixels of the image and wt is a weighting vector of lengthT prioritizing the loss at
later time-steps. Theweights are calculated by setting w 10 .

T
T 1=t

- t-
-

2.3. Experiments
For our experiments, we usedmultiple datasets as described in 2.3.1. Scanning parameters of these datasets are
given in table 1.

Our experiments focused on assessment of the following aspects:

A. Training and validation in fully sampled and retrospectively undersampled data. The undersampling
strategy is described in 2.3.2.

B. Independent evaluation in prospectively undersampled data ofMultiple Sclerosis patients containing white
matter lesions.

We trained and compared theCIRIMand the E2VN to the LPDNet, the KIKINet, and theCascadeNet
(Adler andÖktem2018, Eo et al 2018, Schlemper et al 2018), the hyperparameters of which are described in
2.3.3. For comparing the performance of themethods regarding assessment (A)we chose the structural
similarity indexmeasure (SSIM) (Wang et al 2004) and the peak signal-to-noise ratio (PSNR). For assessment
(B), we calculated the contrast resolution (CR), the noise in thewhitematter (WMN), the noise in the
background (BGN), and a resultedweighted average (WA). Themetrics are described in 2.3.4.

2.3.1. Datasets
For assessment (A), three fully sampled raw complex-valuedmulti-coil datasets were obtained. Thefirst dataset
was acquired in-house. To this end, eleven healthy subjects were included, fromwhomwritten informed
consent (under an institutionally approved protocol)was obtained beforehand. The ethics board of Amsterdam
UMCdeclared that this studywas exempt from IRB approval. All eleven subjects were scanned by performing
3D T1-weighted brain imaging on a 3.0 TPhilips Ingenia scanner (PhilipsHealthcare, Best, TheNetherlands) in
AmsterdamUMC.The datawere visually checked to ascertain that theywere not affected bymotion artifacts.
After scanning, raw datawere exported and stored for offline reconstruction experiments. The training set was
composed of ten subjects (approximately 3000 slices) and the validation set of one subject (approximately 300
slices).

The second dataset consisted of 451 2Dmultislice FLAIR scans, publicly available through the fastMRI
brains dataset (Muckley et al 2020). The training set consisted of 344 scans (approximately 5000 slices) and the
validation set of 107 scans (approximately 500 slices). The number of coils varied from2 to 24. The datawere
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Table 1. Scan parameters of each dataset used for different experiments. Target anatomy, contrast, scan, and field strength are given, with resolution (res),field-of-view (FOV), time inminutes (with acceleration factor), number of coils
(ncoils) and other scan parameters.

Scan/sequence Field strength Res (mm) FOV (mm) Time (acc) Ncoils Parameters

Training, Validation

T1-Brain/T1 3DMPRAGE 3 T 1.0×1.0×1.0 256×256×240 10.8 (1x) 32 FA 9 ,o TFE-factor 150, TI=900 ms

T2-Knee/T2 TSE 3 T 0.5×0.5×0.6 160×160×154 15.3 (1x) 8 FA 90 ,o TR=1550 ms, TE=25 ms

FLAIR-Brain/2DFLAIR 1.5 T/3 T 0.7×0.7×5 220×220 - (1x) 2–24 FA 150 ,o TR=9000 ms, TE=78–126 ms

Pathology study

MS FLAIR-Brain/3DFLAIR 3 T 1.0×1.0×1.1 224×224×190 4.5 (7.5x) 32 TR=4800 ms, TE=350 ms, TI=16500 ms
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cropped in the image domain to 320 for the readout direction by the size of the phase encoding direction (varied
from213 to 320). The cropped images were visually evaluated to not crop any tissue (only air).

The third dataset was composed of 3Dknee scans of 20 subjects, available on a public repository (Epperson
et al 2013). From these data, two subjects were discarded due to observedmotion artifacts. The training set
consisted of 17 subjects (approximately 12 000 slices) and the validation set of one subject (approximately 700
slices).

For all datasets, coil sensitivities were estimated using an autocalibration procedure called ecalib from the
BART toolbox (Uecker et al 2015), which leverages the ESPIRiT algorithm (Uecker et al 2014). For training and
validation, slices were randomly selected by setting a random seed to enable deterministic behavior for all
methods and ensure reproducibility. Note that the validation set was only used to calculate the loss at the end of
each epoch and not included into the training set. Finally, all volumeswere normalized to themaximum
magnitude.

For assessment (B), testing themethods’ ability to reconstruct unseen pathology, a dataset of 3DFLAIR data
ofmultiple sclerosis patients with knownwhitematter lesionswas obtained. Datawere prospectively
undersampledwith a factor of 7.5x based on aVariable-Density Poisson disk distribution.Originally these data
were acquired on a 3.0 TPhilips Ingenia scanner (PhilipsHealthcare, Best, TheNetherlands) in Amsterdam
UMC,within the scope of a larger, ongoing study. The local ethics review board approved this study and patients
provided informed consent prior to imaging. A fully-sampled reference scanwas also acquired and used to
estimate coil sensitivitymaps using the caldirmethod of the BART toolbox (Uecker et al 2015). The data were
visually checked after which all subjects withmotion artifacts were discarded, ending up including 18 patients
(approximately 4000 slices).

2.3.2. Undersampling
Themasks for retrospective undersampling in assessment (A)were initially defined in 2D.As such themodels
trained on allmodalities could also be used later for reconstructing high-resolution isotropic FLAIR data for
assessment (B). The 3Ddatasets were first Fourier transformed along the frequency encoding axis and used as
separate slices along the two-phase encoding axes. The 2Dmultislice FLAIR dataset was initially Fourier
transformed along the frequency encoding axis and undersampled per slice in 2D, to train amodel on an
identical contrast as in assessment (B), while also having pathology present in the data.

All data were retrospectively undersampled in 2Dby sampling k-space points from aGaussian distribution
with a full width at halfmaximum (FWHM) of 0.7, relative to the k-space dimensions. Hereby the sampling of
low frequencies is prioritizedwhereas incoherent noise is created due to the random sampling. Note that in this
way, we abide by the compressed sensing (CS) requirement of processing incoherently sampled data (Lustig et al
2007). For autocalibration purposes, data points near the k-space center were fully sampledwithin an ellipse of
which the half-axes were set to 2%of the fully sampled region. Acceleration factors of 4×, 6×, 8×, and 10×were
used by randomly generating a samplingmask (P)with according sampling density (both during training and
validation).

To abide to the underlying sampling protocol, and to test themodel’s ability to reconstruct undersampled
data in 1D,we performed an additional experiment with retrospective undersampling in just one dimension.
Equidistant k-space points were sampled in the phase encoding direction (Uecker et al 2014). The acceleration
factorwas set to four, while the central regionwas densely sampled retaining eight percent of the fully-sampled
k-space.

2.3.3. Hyperparameters
For theCIRIMmodels, hyperparameters were selected as follows. The number of cascades K was set to 5, the
number of channels to 64 for the recurrent and convolutional layers, and the number of iterationsT to 8. The
hyperparameter search forfinding the optimal number of cascades is shown in the SupplementaryMaterial
(available online at stacks.iop.org/PMB/67/124001/mmedia). The kernel size of the first convolutional layer
was set to 5´5 and to 3´3 for the second and third layers. The optimization of these hyperparameters is
described elsewhere (Lønning et al 2019). Next, we trainedmodels on the T1-Brain dataset, the T2-Knee dataset,
and the FLAIR-Brain dataset to realize theDC step from equation (15).

For the E2EVNmodels, we chose 8 cascades, 4 pooling layers, 18 channels for the convolutional layers, and
included theDC step from equation (13). The hyperparameter search forfinding the optimal number of
cascades, pooling layers, and number of channels, is again shown in the supplementarymaterial. Then, for
further optimization, we experimented with trainingmodels on the T1-Brain dataset, the T2-Knee dataset, and
the FLAIR-Brain dataset while omitting theDC step. The inputs to theUNet regularizer were padded for
making the inputs square, setting the padding size to 11, and the outputs were unpadded for restoring the
original input size.
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For the baselineUNet, the number of input and output channels was set to 2. The number of channels for the
convolutional layers was set to 64, andwe chose 2 pooling layers. Similar to the E2EVN, the padding size was set
to 11, while no dropout was applied. The selected hyperparameters for theUNetweremotivated by the
configuration in Zbontar et al (2018).

For the LPDNet, the KIKINet, and theCascadeNet, the choice of the hyperparameters wasmotivated from
the baseline proposedmodels. For the LPDNet we used the same network architecture for both the primal and
the dual part, being aUNetwith 16 channels, 2 pooling layers, and padding size of 11, while no dropout was
applied. The number of the primals, the duals, and the number of unrolled iterationswas set to 5. Similarly, for
theKIKINet, we used theUNet architecture for the k-space and the image space networks. The number of
channels was set to 64, the number of pooling layers to 2, and the padding size to 11, without applying any
dropout. Finally, for theCascadeNet the number of cascades set to 10, using a sequence of CNNswith 64
channels and depth size of 5, without applying batch normalization.

For allmodels, we applied the ADAMoptimizer (Kingma andBa 2015), setting the learning rate to 1e-3,
except for theCascadeNet where the learning rate was set to 1e-5. The batch size was set to 1, allowing training
on various input sizes. The data typewas set to complex64 for complex-valued data and tofloat16 for real-valued
data. For trainingmodels with 2Dundersampling, the loss function for theCIRIM is given by equation (17) and
for allmodels by equation (16). For trainingmodels with 1Dundersampling, we used the SSIM as loss function,
motivated by (Muckley et al 2021), as a better option for resolving artifacts introduced by equidistant
undersampling.

CS reconstructions were performed using the BART toolbox (Uecker et al 2015). Herewe used parallel-
imaging compressed sensing (PICS)with a ℓ1-wavelet sparsity transform. The regularization parameter was set
to 0.005,a = whichwas heuristically determined as a trade-off between aliasing noise and blurring. The
maximumnumber of iterationswas set to 60.We tested the reconstruction times of CS on theGPU (turning the
-gflag on).

All experiments were performed on anNvidia Tesla V100with 32GBofmemory. The codewas
implemented in PyTorch 1.9 (Paszke et al 2019) and PyTorch-Lighting 1.5.5 (Falcon andTeam2019), on top of
novel frameworks (Kuchaiev et al 2019, Yiasemis et al 2022), and can be found at https://github.com/wdika/
mridc.

2.3.4. Evaluationmetrics
For quantitative evaluation of the fully-sampledmeasurements, we compared normalizedmagnitude images
derived from the complex-valued estimations xt against the reference x and calculated SSIM and PSNRmetrics.

For evaluating robustness on the 3DFLAIRMSdata, we computed the contrast resolution (CR), the noise in
thewhitematter (WMN), the noise in the background (BGN), and a resultedweighted average (WA) of those
threemetrics.

Since the data are not fully-sampled, the CR is an efficientmetric to evaluate the signal level between the
whitematter and the lesions. To computeCR, lesion segmentations were performed using a pretrainedmulti-
view convolutional neural network (MV-CNN). TheMV-CNNwas previously trained on combined Fast
Imaging Employing Steady-state Acquisition (FIESTA), T2-weighted and contrast-enhanced T1-weighted data,
for eye and tumor segmentation of retinoblastoma patients (Strijbis et al 2021). For the segmentation of the
whitematter, the statistical parametricmapping (SPM) toolboxwas used (Penny et al 2007). Themean lesion
intensity was compared to that of presumed homogeneous surroundingwhitematter. To that end, the lesion
maskswere dilated by four voxels and intersectedwith thewhole brainwhitemattermask. TheCR is then
defined as the difference between the lesion signal and the signal in the surroundingwhitematter, divided by the
summation of them, given by

s s

s s
CR . 18

lesion WMSurroundingLesion

lesion WMSurroundingLesion

( )=
-

+

TheWMN is defined as themode of the gradientmagnitude image x, given by

x xWMN mode , 19WM( ∣ ∣) ( )/= 

where xWM is themeanWM intensity. The background noise (BGN) is computed as the 99-percentile value in
the background region, being the complement of a tissuemask.

Aweighted average (WA)was eventually defined as the combination of theCR, theWMN, and the BGNafter
scaling them tomaximumvalue.
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Finally, for every scan, the signal-to-noise ratio (SNR)was calculated as follows,

t x

y
SNR , 20

∣ ∣
∣ ∣

( )= ~

where t x∣ ∣ is themean value after thresholding themagnitude image x to discard the background, and y∣ ∣~ the
medianmagnitude valuewithin a square region in the periphery of k-space, whichwas assumed to be dominated
by imaging noise. The threshold t was set usingOtsu’smethod (Otsu 1979).

3. Results

Figure 4 shows SSIM and PSNR scores upon assessingDC explicitly and implicitly for theCIRIM (figure 4(a))
and the E2EVN (figure 4(b)). Themodels were trained on the T1-Brain dataset, the T2-Knee dataset, and the
FLAIR-Brain dataset.

A qualitative evaluation of theCIRIM’s and the E2EVN’s performance on the trained datasets, accelerated
with ten-timesGaussian 2Dundersampling, is presented infigure 5. TheCIRIMperformed significantly better
than the E2EVNon the T1-Brain and the FLAIR-Brain dataset. On the FLAIR-Brain dataset, the E2EVN failed to
accurately reconstruct the center of brain, as well as to resolve noise in theWhiteMatter lesion.On theT2-Knee
dataset, the twomodels performed comparably in terms of SSIM,while the CIRIM showed a slight
improvement in PSNR.

Infigure 6, the CIRIM is compared to the RIMand the IRIM. SSIM and PSNR scores are reported for each
model trained on the T1-Brain dataset, the T2-Knee dataset, and the FLAIR-Brain dataset. The IRIMperformed
slightly worse compared to the RIM,while theCIRIMperformed best.

Figure 4.Data consistency (DC) assessment for (a)Cascades of Independently Recurrent InferenceMachines and (b)End-to-End
Variational Network. DC is enforced both explicitly (red) and implicitly (blue). The first row represents SSIM scores and the second
rowPSNR scores. Performance is reported formodels trained on the T1-Brain dataset (first column), the T2-Knee dataset (second
column), and the FLAIR-Brain dataset (third column).
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Table 2 collates overall performance of themethods on all training datasets (T1-Brain, T2-Knee, FLAIR-
Brain). Themethodswere evaluatedwith ten-times accelerated data usingGaussian 2Dmasking, and four times
accelerated equidistant 1Dmasking. For the FLAIR-Brain dataset we dropped the slices outside the head,
containing no signal. TheCIRIMperformed best in all settings in terms of SSIM and PSNR,while only the
E2EVNhad comparable performance for the evaluation on the T2-Knee dataset. Representative reconstructions

Figure 5.Comparison of theCIRIM (third column) to the E2EVN (fourth column) for reconstructing ten-times accelerated slices
from the T1-Brain dataset (first row,first and second image), the T2-Knee dataset (second row,first and second image), and the FLAIR-
Brain dataset (third row, first and second images). For the FLAIR-Brain dataset, the inset focuses on a reconstructedWhiteMatter
lesion; obtained through the fastMRI+annotations (Zhao et al 2022). The arrowpoints out to a region of interested.

Figure 6.Comparison of theCascades of Independently Recurrent InferenceMachines (CIRIM) (blue color), to the recurrent
inferencemachines (RIM) (red color), and the independently recurrent inferencemachines (IRIM) (green color). Performance is
reported for SSIM (first row) and PSNR (second row), on the T1-Brain dataset (first column), the T2-Knee dataset (second column),
and the FLAIR-Brain dataset (third column).
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Table 2. SSIM and PSNR scores of allmethods evaluated on the T1-Brain dataset (third and fourth column), the T2-Knee dataset (fifth and sixth column), and the FLAIR-Brain dataset (seventh to tenth column). For all datasets performance
is reported for ten times acceleration usingGaussian 2Dundersampling. For the FLAIR-Brain dataset performance is also reported for four times acceleration using equidistant 1Dundersampling (ninth and tenth column). The first
column reports themethod’s name. The second column reports the total number of trainable parameters for eachmodel. Best performingmodels are highlighted in bold.Methods are sorted in alphabetical order.

T1-Brain Gaussian2D10x T2-Knee Gaussian2D10x FLAIR-Brain Gaussian2D10x FLAIR-Brain Equidistant1D4x

Method Params SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

CascadeNet 1.1 M 0.922±0.042 30.2±1.5 0.859±0.045 32.2±2.6 0.872±0.106 29.9±5.0 0.913±0.038 30.3±4.6
CIRIM 264k 0.966±0.015 35.8±0.5 0.877±0.039 33.7±2.3 0.906±0.101 32.8±6.2 0.942±0.065 34.3±3.2
E2EVN 19.6 M 0.940±0.023 31.8±1.4 0.877±0.039 33.5±2.5 0.855±0.108 29.1±4.8 0.930±0.062 31.3±5.1
IRIM 53k 0.963±0.017 35.3±0.6 0.870±0.041 33.3±2.3 0.892±0.107 32.0±6.0 0.908±0.093 32.0±5.4
KIKINet 1.9 M 0.925±0.040 31.1±1.3 0.842±0.045 32.1±2.0 0.829±0.113 28.4±4.8 0.919±0.065 30.5±4.6
LPDNet 118k 0.960±0.016 35.0±0.4 0.873±0.038 33.5±2.0 0.858±0.011 29.7±4.7 0.938±0.061 32.3±5.3
PICS 0.866±0.032 30.9±0.7 0.729±0.041 29.7±4.3 0.816±0.174 29.2±7.6 0.876±0.068 30.0±4.2
RIM 94k 0.963±0.017 35.3±0.4 0.872±0.040 33.5±2.3 0.898±0.103 32.3±6.1 0.934±0.069 33.4±3.2
UNet 1.9 M 0.874±0.049 26.6±3.1 0.846±0.048 31.4±3.4 0.795±0.116 26.9±4.1 0.909±0.064 29.4±4.3
Zero-Filled 0.766±0.084 17.3±2.0 0.674±0.031 17.3±1.1 0.703±0.120 16.8±4.2 0.806±0.062 21.5±3.8
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can be found in the supplementarymaterial, as well as further evaluation for four-, six-, and eight-times
acceleration forGaussian 2Dundersampling.

The trainedmodels on each dataset and undersampling schemewere used to evaluate performance on out-
of-training distribution data, containingMS lesions. As summarized in table 3, the performance is evaluated
quantitatively bymeasuring theCR of the reconstructed lesions, theWMN, the background noise (BGN) and a
WA.A combination of highCR, lowWMNand lowBGNyields a lowWAand reflects highly accurate
reconstruction (figures 6, S7, S8), such as in theCIRIMFLAIR-Brainmodel and PICS. Themodels trained on
the FLAIR-Brain, the FLAIR-Brain 1D, and the T1-Brain datasets scored high onCR and low onWMN
compared to the T2-Knee trainedmodels. TheCIRIMand the RIMachieved the lowest BGN. TheCascadeNet,
the E2EVN, theKIKINet, and theUNetmodels reported high BGN, in general corresponding tomore aliased
reconstruction. The LPDNet achieved highCR and relatively lowWMNandBGN, but the observed
reconstruction quality was poor. This also highlighted the need for combinedmetrics and qualitative evaluation
to evaluate performance.

Figure 7 shows reconstructions of a coronal slice from theMSFLAIR-Brain dataset. Visually, the CIRIM,
PICS, RIM, and IRIM reconstructions appear similar. The E2EVNand theCascadeNet showed inhomogeneous
intensities and high contrast deviations. The LPDNet showedmore aliased reconstructions, with lower contrast
levels. TheKIKINet and theUNet seemed in our experiments not able to resolve background noise and in
general resulted inmore distorted images. Example reconstructions of twomore subjects including axial and
sagittal plane reconstructions can be found in the supplementarymaterial.

Table 3. Independent evaluation ofmodel performance (first column) on the 3DFLAIRMSBrains dataset for
different training datasets (second column). The reported figures collate: contrast resolution (CR, higher is
better) ofMS lesions, gradientmagnitudewhitematter noise (WMN, lower is better), background noise (BGN,
lower is better) andweighted average (WA,with negative CR and relative tomaximum scores such that lower is
better), respectively. For eachmodel and dataset, themean and standard deviation on eachmetric is given. The
best scores are underlined and other high scores highlighted in bold.Methods are sorted in alphabetical order.

FLAIRMSBrains—Variable Density Poisson 7.5x

Method TrainedDataset CR WMN  BGN  WA 

CascadeNet T1-Brain 0.128±0.028 0.135±0.022 0.292±0.078 1.08

T2-Knee 0.087±0.040 0.290±0.059 0.302±0.083 1.43

FLAIR-Brain 0.145±0.030 0.126±0.016 0.265±0.071 0.96

FLAIR-Brain 1D 0.139±0.025 0.121±0.016 0.309±0.068 1.05

CIRIM T1-Brain 0.179±0.025 0.145±0.030 0.172±0.092 0.69

T2-Knee 0.097±0.020 0.285±0.044 0.322±0.053 1.42

FLAIR-Brain 0.183±0.025 0.131±0.029 0.104±0.085 0.55

FLAIR-Brain 1D 0.173±0.030 0.110±0.017 0.137±0.074 0.62

E2EVN T1-Brain 0.145±0.034 0.144±0.010 0.359±0.095 1.13

T2-Knee 0.109±0.028 0.301±0.042 0.576±0.352 1.79

FLAIR-Brain 0.159±0.041 0.116±0.014 0.358±0.064 1.03

FLAIR-Brain 1D 0.134±0.035 0.141±0.020 0.360±0.058 1.17

IRIM T1-Brain 0.159±0.025 0.128±0.027 0.200±0.089 0.80

T2-Knee 0.078±0.021 0.260±0.122 0.348±0.061 1.51

FLAIR-Brain 0.169±0.027 0.145±0.020 0.181±0.126 0.74

FLAIR-Brain 1D 0.176±0.025 0.151±0.020 0.213±0.081 0.77

KIKINet T1-Brain 0.117±0.032 0.184±0.042 0.432±0.075 1.40

T2-Knee 0.149±0.026 0.235±0.032 0.294±0.087 1.10

FLAIR-Brain 0.105±0.077 0.175±0.040 0.626±0.141 1.75

FLAIR-Brain 1D 0.103±0.026 0.144±0.035 0.352±0.060 1.29

LPDNet T1-Brain 0.240±0.046 0.206±0.029 0.210±0.056 0.56

T2-Knee 0.030±0.151 0.126±0.031 0.204±0.065 1.34

FLAIR-Brain 0.117±0.024 0.099±0.012 0.332±0.083 1.15

FLAIR-Brain 1D 0.066±0.029 0.129±0.024 0.338±0.070 1.40

RIM T1-Brain 0.178±0.025 0.168±0.026 0.170±0.093 0.71

T2-Knee 0.091±0.036 0.149±0.030 0.251±0.091 1.18

FLAIR-Brain 0.197±0.029 0.175±0.025 0.134±0.078 0.58

FLAIR-Brain 1D 0.183±0.027 0.158±0.026 0.165±0.074 0.67

UNet T1-Brain 0.182±0.034 0.174±0.022 0.276±0.069 0.87

T2-Knee 0.125±0.040 0.924±0.084 0.285±0.089 1.93

FLAIR-Brain 0.087±0.027 0.079±0.010 0.625±0.137 1.72

FLAIR-Brain 1D 0.065±0.021 0.105±0.023 0.348±0.070 1.40

PICS 0.178±0.025 0.140±0.018 0.147±0.092 0.64

Zero-Filled 0.072±0.023 0.092±0.017 0.372±0.064 1.39
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Figure 7.Reconstructions of a representative coronal slice of a 7.5x accelerated 3DFLAIR scan of aMS patient. SegmentedMS lesions
are depictedwith red colored contours. Shown is the aliased linear reconstruction (first row-first image), PICS (first row-second
image), andmodels’ reconstructions on each trained scheme: the FLAIR-Brain dataset withGaussian 2Dundersampling (second-last
row, first column), the T1-Brain dataset withGaussian 2Dundersampling (second-last row, second column), the FLAIR-Brain dataset
with equidistant 1Dundersampling (second-last row, third column), and the T2-Knee dataset withGaussian 2Dundersampling
(second-last row, fourth column). The inset on the right bottomof each reconstruction focuses on a lesion regionwith high spatial
detail.
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Finally, infigure 8, the reconstruction times of allmethods are reported. As input, one volume from the
trained fastMRI FLAIR brains dataset was taken, consisting offifteen slices cropped to amatrix size of
320×320. TheKIKINet, PICS, and the LPDNet were the slowestmethods, requiring 247 ms, 245 ms, and
237 ms respectively to reconstruct the volume. TheCIRIMneeded 139 ms, the RIM48ms, the E2EVN44 ms,
theCascadeNet 42 ms, the IRIM28ms, and theUNet 8 ms.

4.Discussion

In this paper, we proposed theCIRIM, for a balanced increase inmodel complexity whilemaintaining
generalization capabilities.We assessedDCboth implicitly through unrolled optimization by gradient descent
and explicitly by a formulated term. Robustness was evaluated by reconstructing sparsely sampledMRI data
containing unseen pathology. TheCIRIMwas extensively compared to another unrolled network, the E2EVN,
and a range of othermethods.

In experiments reconstructing brain and knee data containing different contrasts, the proposedCIRIM
performed best, with promising generalization capabilities. On the T2-knee dataset, the E2EVNperformed
equivalently to theCIRIM,while on the T1-brain and the FLAIR-brain datasets for eight- and ten-times
acceleration, themeasured PSNRdropped by approximately 5%ofwhat compared towhat. Visually, this
reflected inmissing anatomical details such as vessels. The LPDNet, the RIM, and the IRIMperformed
comparable but slightly worse than theCIRIM. TheCascadeNet and theKIKINet, dropped further in SSIM and
PSNRon all trained datasets, resulting inmore noisy reconstructions. PICS and theUNet showedmost of the
time overly smoothed results. Interestingly, for 1Dundersampling theCascadeNet showed comparable
performance to theCIRIM, but it wasmore sensitive to banding artifacts.

The RIM-basedmodels (RIM, IRIM,CIRIM), trained on FLAIR and T1-weighted brain data, and PICS,
could accurately reconstructMultiple Sclerosis lesions unseen during training. Spatial detail when
reconstructingMS lesionswas preservedwith better denoised images, compared to, e.g. the CascadeNet. The
E2EVNand the LPDNet did not show any significant improvement in this respect. The reason for such behavior
might be that these scans, in contrast to the training data, camewithout a fully sampled center since a separate
reference scanwas acquired. This deviation from the training data could explain the lower performance of some
of themodels. Conditional deep priors tend to learn dealiasing of undersampled acquisitions on images that they
have trained on. In such a situation, learning k-space correctionsmight be disadvantageous. TheKIKINet and
theUNet performed significantly worse than the othermethods, thereby appearing to be sensitive to noisy
inputs. Furthermore, themodels trained on knees were inadequate in reconstructingMS lesions, indicating
training anatomy preference rather than generalization. Remarkably, this was also realized by the performance
of the networks trained on the FLAIR-Brain datasets with equidistant 1Dundersampling. Allmodels generalized
well on reconstructing theMSdata, despite the deviating undersampling scheme (variable density poisson
sampling in 2D).

Figure 8. Inference times for reconstructing one volume from the FLAIR brains dataset using differentmethods. The x-axis represents
methods’number of trainable parameters. The y-axis shows the run time in seconds.
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The SNR, the number of coils, and the size of the training dataset appeared to be important parameters that
influenced performance. This is to be seen in the reported SSIM and PSNR scores. Here, the E2EVNmodels
performed highest on the largest dataset, i.e. the T2-weighted knee dataset, which contained approximately
12 000 slices. However, allmodels experienced lower performance due to lower SNR (17.1±4.5) and number
of coils (8), compared to the T1-weighted brain dataset (3000 slices, SNRof 25.7±5.4, and 32 coils). The FLAIR
brain dataset, despite its relatively high SNR (5000 slices and SNRof 23.6±4.8), did not necessarily yield high
quality in reconstructed images. The deviating number of coils (from2 to 24),field strength (1.5 T an 3 T), and
matrix sizes, resulted in a challenging dataset to convergewithwhen training amodel. In this situation, the
advantage of implementing cascades wasmost apparent,making theCIRIMbeing robust with all tested
acceleration factors (4x, 6x, 8x—supplementarymaterial and 10x—table 2). PICS and theUNet scored overall
lower, illustrating that learning a prior with an efficientmodel is advantageous.

Importantly, our results show that the RIM-basedmodels can reconstruct image details unseen during
training. The RIMexplicitly contains a formulation of the prior information of anMR image and acts as
optimizer itself. Unrolled optimization is performed by gradient descent (Putzky andWelling 2017), such that
DC is enforced implicitly. TheCIRIMallows to further denoise the reconstructed images through the cascades
without sharing parameters, similar to previously proposed deep cascading networks (Schlemper et al 2018,
Huang et al 2019, Chen et al 2021). The cascades thereby allowed us to train an overall deep network ofmultiple
connected RNNs that captures long-range dependencies while avoiding vanishing or exploding gradients. The
E2EVNalso performs unrolled optimization through cascades, but explicitly enforcesDCwith a
formulated term.

Recent work has pointed out the importance of benchmarking and quantifying the performance of deep
networks regarding theGPUmemory required for training, the inference times, the applications, and the
optimization (Wang et al, Ramzi et al 2020b,Hammernik et al 2021).With regard to inference times,methods
such as the LPDNet and theKIKINet did not seem to improve in speed over the conventional CS algorithm,
implemented on theGPU. The reason for thesemethods being slower is that they consist of deep feed-forward
large convolutional layers. The RIM, the E2EVN, and theCascadeNet reduce reconstruction times by a factor of
six compared toCS.Here, inference is performed over an iterative scheme, inwhich sharing of parameters is
optimized either through time-steps or cascades. The IRIM and theUNet even further reduce the time by a
factor of two and six, respectively. TheCIRIM serves as a balanced deep network, being two times faster than the
slowestmethods and two times slower than the other cascading networks. The performance gain in further
denoising and generalization capabilitiesmay counterbalance the need for longer inference times.

5. Conclusion

TheCIRIM implicitly enforces DCwhen targeting unrolled optimization through gradient descent. The
comparable E2EVNperformed best whenDCwas explicitly enforced, performingwell on the training
distributions.However, it appeared to be inadequate on reconstructing out-of-training distribution data
without a fully sampled center. TheCIRIMperformed best on all training datasets, tested undersampling
schemes and acceleration factors. Also, it showed robust performance on reconstructing accelerated FLAIR data
containingMS lesions, achieving good lesion contrast and efficient denoising compared to PICS, the baseline
RIMand the IRIM. In contrast,methods such as theCascadeNet and the LPDNet were sensitive to highly noisy
untrained data, showing limited generalization capabilities. TheKIKINet and theUNet tended to oversimplify
the reconstructed images, performingmarkedlyworse than restmethods. To that extent, the impression is that
evaluating the forward process of acceleratedMRI reconstruction, frequently through time, is of great
importance for generalization in other settings. The implemented cascades and the application of the RIM to a
deeper network allowed backpropagation on a smaller number of time-steps but on higher frequency for each
iteration. Thus, a key advantage of the CIRIM is that itmaintains a very fair trade-off between reconstructed
image quality and fast reconstruction times, which is crucial in the clinical workflow.
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Appendix.

Gated recurrent unit (GRU)
TheGRUhas two gating units, the reset gate and the update gate. These gates control how the information flows
in the network. The update gate regulates the update to a newhidden state, whereas the reset gate controls the
information to forget. Both gates act in a probabilisticmanner.

The activation of the reset gate r at iteration ,t for updating equation (9), is computed by

r W s x b, .r r1( [ ] )s= +t t t-

s is the logistic sigmoid function, xt and s 1t- are the input and the previous hidden state, respectively. Wr and
br are theweightsmatrix and the learned bias vector.

Similarly, the update gate z is computed by

z W s x b, .z z1( [ ] )s= +t t- t

The actual activation of the next hidden state st is then computed by

s z s z s1 ,1( )   = - +t t t- t t

where represents theHadamard product and st is given by

s r s x btanh W , .s s1( [ ] )= +~
t t t- t

Independently RecurrentNeuralNetwork (IndRNN)
The IndRNNaddresses gradient decay over iterations, following an independent neuron connectivity within a
recurrent layer. The update on equation (9) and at iteration t is given by

s W u s b ,x 1( )s= + +t t-t

whereW is theweight for the current input, u is theweight for the recurrent input, and b is the bias vector.
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