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Against the backdrop of increasing agricultural production, population, and

freshwater/coastal eutrophication, studies are aiming to understand the behavior

of nitrogen (N) and phosphorus (P) in the global freshwater system. Global nutrient

models are typically used to quantify the nutrient amount and content in freshwater

systems across different river orders and catchments. Such models typically use

empirically derived nutrient retention equations for predicting nutrient fate, and these

equations may be derived using data from a specific region or environment or for a

specific context. Here we used IMAGE-GNM, a spatially explicit nutrient model at a

half-degree resolution, to examine the performance of several well-known empirical

equations by comparing the respective model outcomes with observed data on a global

scale. The results show that (1) globally, the empirical retention equations work better for

predicting N fate than P fate; (2) hydraulic drivers are the most important factor affecting

the residual of total N and P concentrations, compared with the functional forms and

the coefficients in the empirical equations. This study can aid in assessing the variability

and accuracy of various retention equations from regional to global scales, and thus

further strengthen our understanding of global eutrophication.

Keywords: retention, global nutrient model, nitrogen, phosphorus, ANOVA

INTRODUCTION

During the twentieth century, the global cycles of nitrogen (N) and phosphorus (P) have shown a
rapid acceleration due to increasing nitrogen fixation and phosphate mining (Jenny et al., 2016).
Over the twentieth century, humans have almost doubled the global N and P delivery to freshwater
systems from 34 to 64 Tg N yr−1, and 5 to 9 Tg P yr−1, respectively (Beusen et al., 2016). Due
to a combination of N and P excessive nutrient loading, the global freshwater and coastal system
has seen a major increase in eutrophication. Eutrophication can lead to the proliferation of algae
blooms and hypoxia (Müller et al., 2012; Chislock et al., 2013), which consequently threatens the
balance of environmental and ecological systems (Schindler and Vallentyne, 2008; Vonlanthen
et al., 2012; Jenny et al., 2016). Toward the future, the rising trend of nutrient accumulation
in freshwater systems is set to continue due to the increase of fertilizer application and global
population growth (Mogollón et al., 2018). Moreover, warmer climates can lead to an acceleration
of the hydrological cycle, which signifies both increasing evaporation and freshwater advection,
and thus likely to exacerbate change in global nutrient cycles (Bouraoui et al., 2004; Statham,
2012). Thus, while global in-stream nutrient retention tends to vary slightly and stay stable under
various future scenarios, N export to oceans is set to increase by up to 20% under future scenarios,
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unless human strictly takes sustainable practices in nutrient
application and water use (i.e., Shared Socio-economic Pathway
SSP1) (Beusen et al., 2022).

To better curb the increasing trend of eutrophication over the
global aquatic system, the first step is to assess the fate of N and P,
which requires regional to global nutrient models.

Despite the various modeling efforts, global estimates of
nutrient exports are still highly variable. For instance, the
estimated total phosphorus (TP) export of NEWS-2 (9 Tg
yr−1) is almost double the export of IMAGE-GNM (4 Tg yr−1,
Harrison et al., 2019), and total nitrogen (TN) of NEWS-2
(45 Tg yr−1) is also higher than that of IMAGE-GNM (37
Tg yr−1, van Vliet et al., 2019). van Vliet et al. (2019) and
Grizzetti et al. (2015) reckoned that this issue results from the
discrepancy in hydrological input data, spatial resolution, and
the method used to calculate retention. Retention indicates the
difference between nutrient input and output within a river
segment or a lake. N retention includes the removal processes of
denitrification, sedimentation, and uptake by aquatic vegetation
(Saunders and Kalff, 2001), while P retention is affected by
entrainment, sedimentation, sorption, as well as by uptake by
plants and organisms (Reddy et al., 1999). Historically, retention
is modeled through empirical equations based on regression
analyses of localized nutrient input-output data (Kelly et al.,
1987; Behrendt and Opitz, 1999). These regression analyses are
based on localized studies (Kirchner and Dillon, 1975; Seitzinger
et al., 2002). So far, current studies have never compared the
performance of the various retentionmodels globally. Identifying
the best-performing retention models for global nutrient models
can contribute to the future knowledge of eutrophic impacts
(e.g., nutrient loading/export to aquatic systems) (Jeppesen et al.,
2009).

Kelly et al. (1987) proposed a mass balance model for N
denitrification loss, and Howarth et al. (1997) employed this
model to estimate N retention. Later on, Behrendt and Opitz
(1999) found that this model can also be applied to P. They
investigated 100 European rivers and developed a regression
between retention and different hydraulic drivers, including
hydraulic load and specific runoff. De Klein (2008) discovered
large monthly variability in retention and the necessity to
distinguish among drivers for N and P (e.g., P is highly related
to temperature while N is not) after studying 13 catchments
in the Netherlands and Germany. Furthermore, in contrast to
N, P is susceptible to water body types due to its susceptibility
to sedimentation and sorption (Reddy et al., 1999). Thus, the
estimation of P retention should be based on different drivers for
lakes vs. rivers. By analyzing 15 lakes in Canada, Kirchner and
Dillon (1975) posited that the major driver of P retention was the
areal water load (as opposed to the hydraulic load, the areal water
load is related to specific runoff, Equation 4), whereas Chapra
(1975) argued that P retention could be better represented by
apparent settling velocity in these lakes. Brett and Benjamin
(2008) examined 305 input/output data of lakes and reservoirs
in the USA and Canada and concluded that the main driver
of lake P retention is residence time. In these studies, retention
is dominated by hydrological drivers, i.e., hydraulic load and
specific runoff. These drivers can only be converted from one
into the other if the information of additional variables (i.e.,

water volume and depth) is provided. Such information is highly
uncertain, which could potentially lead to biased estimates and
increased uncertainties. Investigating this key feature was at the
core of our study.

The aim of this study is to identify the best-performing
retention model or set of regional retention models to assess
the fate of global nutrients in freshwater systems. We adapted
IMAGE-GNM to include a comprehensive set of retention
equations. The retention models were examined by comparing
the respective model outcomes with observed data. The model
performance was also analyzed for different geographical zones
(Geographical Zone, 2009), including the North Frigid Zone,
the North Temperate Zone, the Torrid Zone, and the South
Temperate Zone to discover the response of nutrient retention
to hydrological conditions. The set of best-performing retention
models can be applied to improve the accuracy of global nutrient
models, which helps to better understand the global states of
water quality.

METHODS

Global Nutrient Model
In this study, we choose to use IMAGE-GNM (Beusen et al.,
2015) as it is the best-fit nutrient model for our study among the
most widely recognized nutrient models reviewed in MIPs (van
Vliet et al., 2019). Of these, MARINA is a downscaled application
of NEWS-2 to China and has not been employed for worldwide
modeling (Strokal et al., 2016). HYPE has been used to estimate
global hydrology (Arheimer et al., 2020), while for nutrients, this
model was only developed at the regional scale, such as Europe
(Strömbäck et al., 2019). Similarly, SPARROW was localized to
the USA (McCrackin et al., 2013) and New Zealand (Alexander
et al., 2002). Globally, NEWS-2 is differentiated at the watershed
scale, while the resolution of IMAGE-GNM is gridded (0.5
× 0.5◦). Thus, compared to NEWS-2, IMAGE-GNM captures
the inner-basin information, which is unneglectable since the
geographical variation of nutrients within large watersheds
is highly uneven. This spatial delineation allows validating
nutrient data since the measurement stations are scattered
over the watersheds and cannot reflect the estimation of the
whole watershed.

IMAGE-GNM is a dynamic distributed model that depicts
nutrient flow and delivery processes in soils, freshwater systems,
and export to coasts. A detailed description and the code
(written in Python 2.7) of IMAGE-GNM can be found in
Beusen et al. (2015). In this study, different retention equations
were implemented into IMAGE-GNM (section Global Nutrient
Model). The simulated concentration of TN/TP in rivers and TP
in lakes were compared with respective observed data (described
in section Retention Models). We distinguished between lakes
and rivers when validating P estimates to account for the strong
links between P fate and lake ecology (Brett and Benjamin, 2008).
For N, we deemed this distinction unnecessary since N retention
can be entirely represented by the water discharge difference
between these water bodies (Saunders and Kalff, 2001). Due to
a lack of TN observations in global lakes, the performance of
simulated TN in lakes was not assessed in this study.

Frontiers in Water | www.frontiersin.org 2 June 2022 | Volume 4 | Article 894604

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Zhou et al. A Comparison Between Retention Models

Retention Models
Load-weighted nutrient water body retention (RL,
dimensionless) indicates the proportion of retention load
(RN,P, kg yr−1) to the load of nutrients transported to the
freshwater system (LN,P, kg yr

−1).

RLN,P =
RN,P

LN,P
=

LN,P − ON,P

LN,P
(1)

whereON,P (kg yr
−1) denotes the export of nutrients at the outlet

of the water body.
In our study, we only included strictly empirical models of

mostly pure hydrological nature. Some empirical models also
account for ecological nature, namely hydro-ecological retention
models, whereas in this study the only two models that may be
considered hydro-ecological models are the model of Wollheim
et al. (2006) [section Hydraulic-Load-Driven Models (1)] and De
Klein (2008) [for P, section Specific-Runoff-Driven Models (2)].
In this study, however, we only focused on the hydrological part
and represented ecological impacts by temperature factors. The
hydrological drivers in retention models are represented by the
empirical function of hydraulic drivers, including hydraulic load
(Equation 2) and specific runoff (Equation 3). We elaborate on
these functions raised in literature in sections 3.1.1–3.1.2 and
summarize all models in Table 1.

HL =
D

tr
(2)

q =
Q

A
(3)

where HL (m yr−1) is the hydraulic load represented by quotient
between the depth (D, m) and residence time (tr , yr) of the
water body; q (L km−2 s−1) is the catchment area-specific runoff,
which equals the discharge (Q, L s−1) divided by catchment area
(A, km2).

The specific runoff can also be expressed as areal water load
WL(m yr−1, Equation 4), which denotes the annual value of
the water column height per water surface area in the unit of
specific flow:

WL =
q× 8.64× 0.365

W
(4)

where q (L km−2 s−1) is the specific runoff introduced in
Equation (3), W (%) is a ratio of the surface water area to the
watershed area, and 8.64 × 0.365 is a coefficient to convert the
unit from L km−2 s−1 to m yr−1.

Riverine Retention Models for TN/TP

Hydraulic-Load-Driven Models
(1) Wollheim et al. (2006, 2008)

Current IMAGE-GNM employs Wollheim et al.’s (2006, 2008)
equation as the retention model. Here, the retention RLN,P is
defined as a first-order degradation process (Equation 5).

RLN,P = 1− exp

(

−
vf

HL

)

(5)

where vf (m yr−1) indicates the net uptake velocity expressing
the biochemical features of a nutrient. vf for P (Equation 6) takes

a basic value of 44.5m yr−1 (Behrendt and Opitz, 1999) and is
modified by the temperature factor f (T) (Equation 8):

vf P = 44.5 · f (T) (6)

For N, vf (Equation 7) is initialized to 35m yr−1 (Wollheim
et al., 2006, 2008) and modified by the temperature factor and
concentration factor f (CN), which is proposed by Beusen et al.
(2015):

vf N = 35 · f (T) · f (CN) (7)

where f (CN) represents the effect of concentration on
denitrification resulting from electron donor limitation if
excessive N is transported into the water (Mulholland et al.,
2008). f (CN) was calculated as an approximation of a hyperbolic
function which contains the following points: 7.2 at CN =

0.0001mg L−1 and 1 at a turning point CN = 1mg L−1, and
continues to decline mildly to 0.37 at CN = 100mg L−1 and
keep constant for a higher concentration (Marcé and Armengol,
2009).

f (T) = αT−20 (8)

where α is 1.06 for P (Marcé and Armengol, 2009) and
1.0717 for N (Mulholland et al., 2008); T is average annual
temperature (◦C).

(2) Kelly et al. (1987)

Kelly et al. (1987) proposed a simple mass balance model for the
N denitrification losses in lakes and Howarth et al. (1997) used
this mass transfer model to estimate the N retention of rivers.
Behrendt and Opitz (1999) found this equation can be used to
estimate phosphorus retention. Their studies have shown that
this function form can be applied to both river systems and lakes.

RLN,P =
SN,P

SN,P +HL

(9)

where SN,P is an averagemass transfer coefficient given inm yr−1.
Behrendt andOpitz (1999) estimated themass transfer coefficient
SN for nitrogen (N) as 11.9 and SP for phosphorus (P) as 16.1.

(3) Seitzinger et al. (2002)

Seitzinger et al. (2002) combined N observations from 10 rivers
and 23 lakes in the USA. This study provided the equation of N
retention as Equation (10) and proved it applies to rivers, lakes,
and reservoirs:

RLN,P = 88.45 · HL
−0.3677 (10)
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TABLE 1 | Summary of retention models proposed by previous studies.

Approach Driving force Applicability Nutrient Original scale Function form

Wollheim et al. (2006) HL, vf (Ci , Ti ) River and lake N, P Global RLN,P=1− exp
(

−
vf
HL

)

Kelly et al. (1987) HL River and lake N, P North America and Norway RLN,P=
SN,P

SN,P+HL

Seitzinger et al. (2002) HL River and lake N Northeastern U.S.A. RLN = 88.45(HL)
−0.3677

Behrendt and Opitz (1999) (WL) WL River and lake N, P Europe RLN,P =
a×WL

b

1+a×WL
b

Behrendt and Opitz (1999) (q) q River and lake N, P Europe RLN,P=
c×qd

1+c×qd

De Klein (2008) q River and lake N The Netherlands RLN = 0.0246
(

e·q
W

)−0.57

q, Ti River and lake P The Netherlands RLP = 0.253
(

e·q
W

)−0.20
× 1.01(Ti−22)

Venohr et al. (2005) WL River and lake N Europe RLP =
f×WL

g

1+f×WL
g

Kirchner and Dillon (1975) WL Lake P Canada RLP = 0.426 exp (−0.271WL) + 0.574 exp (−0.00949WL)

Chapra (1975) WL Lake P Canada RLP=
υ

WL+υ

Brett and Benjamin (2008) tr Lake P North America RLP=1−
1

1+1.12tr
0.53

Driving forces are site-related variables to be determined by the observed or simulated data, whereas the non-driving-force parameters in the retention equation are constant coefficients

provided by literature. Definitions of the variables as the driving force of retention: HL (m yr−1) is hydraulic load; WL (m yr−1) is areal water load; q (L km−2 s−1) is specific runoff; Ci

(mg L−1 ) is the nutrient concentration; Ti (
◦C) is average annual temperature; tr denotes the water residence time for lakes and reservoirs; υ (m yr−1) is the apparent settling velocity of

total phosphorus.

Specific-Runoff-Driven Models
(1) Behrendt and Opitz (1999)

Behrendt and Opitz (1999) investigated Dissolved Inorganic N
(DIN) measurements and provided two correlation equations for
nutrients. While IMAGE-GNM calculates TN, DIN is the major
component of TN. We, therefore, included these two equations
in our research. Note that they defined “emission” as the inflow
flux of nutrients to the aquatic system, which is equivalent to
“load (LN,P)” in IMAGE-GNM, while the term “load” used in
their study indicated the nutrient exported at the outlet of the
river, which equals the “output (ON,P)” defined in IMAGE-GNM.
Therefore, it necessitates a conversion from the output-weighted
retention RON,P to load-weighted RLN,P (Equation 11).

RLN,P =
RON,P

1+ RON,P

(11)

The first statistical equation is expressed by a power function of
areal water loadWL:

RON,P = a×WL
b (12)

where a and b are statistical coefficients. For N, a equals 5.9 and b
equals−0.75; for P, a and b are 13.3 and and−0.93, respectively.

The second retention equation, in which the driving force is
the catchment area-specific runoff q, can be expressed as:

RON,P = c× qd (13)

where c and d are statistical coefficients. For N, c is 6.9 and d is
−1.10; for P, c and d are 26.6 and−1.71, respectively.

Behrendt and Opitz (1999) (WL) and Behrendt and Opitz
(1999) (q) were used to identify the retention equations driven

by areal water loadWL and the catchment area-specific runoff q,
respectively, in the following sections.

(2) De Klein (2008)

De Klein (2008) studied monthly TN retention for catchments
whose areas ranged from 20.8 to 486 km2. The results of
this study showed that load-weighted nitrogen retention RL is
inversely related to surface water area-specific runoff (SR, m3

ha−1 s−1). The SR can be expressed as a ratio of specific runoff
to the surface water area.

De Klein (2008) gave a retention equation based on the
monthly time step. It was then aggregated to an annual scale
by summing the monthly inputs and the estimation of monthly
exports. De Klein (2008) argued that the difference between
monthly retention and annual retention of N was negligible,
whereas, for P, the status remains uncertain. However, we assume
that the equation still works for P at an annual time step.

Herein, the retention equation of N can be expressed as:

RLN,P = 0.0246 (SR)−0.57
= 0.0246

( e · q

W

)−0.57
(14)

where e is a unit conversion coefficient of 107, W (%) is the
percentage of surface water area to watershed area (including
land area and water area).

Besides SR, P retention is also determined by temperature:

RLP = 0.253 (SR)−0.20
× 1.01(Ti−22) (15)

where Ti is the average water temperature (◦C).

(3) Venohr et al. (2005)

Venohr et al. (2005) provided another group of statistical
coefficients for TN retention based on the same dataset as
Behrendt and Opitz (1999). Venohr et al. (2005) distinguished
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FIGURE 1 | Sampling stations of (A) TN and (B) TP concentration over the globe. For N, all the stations are river stations. Note that (1) due to a lack of TN

observations in global lakes, lake TN was not assessed in this study; (2) for TP, GEMStats has included USGS data. (3) in total, there are 1,157 TN river stations

including 63, 823, 261, and 10 stations distributed in North Frigid Zone, North Temperate Zone, South Temperate Zone, and Torrid Zone, respectively; for TP, the

respective geographical zone contains 68, 1,535, 493, and 89 river stations (2,185 TP river stations globally).

water bodies by assigning different coefficients for lakes, rivers,
and reservoirs (Equation 16):

RLP =
f ×WL

g

1+ f ×WL
g (16)

where f and g are statistical coefficients. F is 1.9 and g is −0.49
for rivers; f is 7.279 and g is−1 for lakes and reservoirs.

Lake Retention Models for P

(1) Kirchner and Dillon (1975)

By analyzing nutrient budget information from 15 Canadian
lakes, Kirchner and Dillon (1975) developed an empirical
equation for the retention of phosphorus in lakes:

RLP = 0.426 exp (−0.271WL) + 0.574 exp (−0.00949WL) (17)

(2) Chapra (1975)
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FIGURE 2 | Validation of predicted values against observations of annual average concentration for riverine N (each dot represents the predicted values against

average observed N concentration of the measurement stations within the same cell). The sample size is 449, the number of grid cells covered by

measurement stations. (A–G) indicate the plots of different retention models.

FIGURE 3 | Validation of predicted values against observations of annual average concentration for riverine P (each dot represents the predicted values against

average observed P concentration of the measurement stations within the same cell). The sample size is 849, the number of grid cells covered by measurement

stations. (A–H) indicate the plots of different retention models.
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TABLE 2 | Assessment of the performance of N retention models for rivers.

Region and

observation type

Criteria Wollheim et al.

(2006)

Kelly et al. (1987) Behrendt and Opitz

(1999)

(WL)

Behrendt and

Opitz (1999)

(q)

De Klein (2008) Seitzinger et al.

(2002)

Venohr et al.

(2005)

Global NRMSE 2.29 2.31 2.12 1.62 2.02 1.93 2.04

r 0.58 0.71 0.55 0.62 0.45 0.68 0.59

North Frigid Zone NRMSE 0.57 0.51 0.42 0.35 0.49 0.48 0.43

r 0.14 0.18 0.32 0.25 0.24 0.09 0.18

North Temperate

Zone

NRMSE 2.35 2.33 2.10 1.62 1.99 1.85 1.97

r 0.59 0.73 0.65 0.68 0.57 0.71 0.66

Torrid Zone NRMSE 1.71 2.15 1.13 2.18 0.96 0.92 0.91

r 0.05 −0.22 0.20 −0.31 0.16 −0.12 0.15

South Temperate

Zone

NRMSE 1.91 2.06 2.02 1.45 1.97 2.03 2.10

r 0.46 0.55 0.09 0.40 −0.02 0.49 0.19

The values of the best-performing models are shown in bold on a global or regional (geographical zone) scale. Note that only river samples were included due to a lack of lake sample data.

TABLE 3 | Assessment of the performance of P retention models for rivers and lakes.

Region and

observation type

Criteria Wollheim

et al. (2006)

Kelly et al.

(1987)

Behrendt and Opitz

(1999)

(WL)

Behrendt and Opitz

(1999)

(q)

De Klein

(2008)

Kirchner and

Dillon (1975)

Chapra

(1975)

Brett and

Benjamin

(2008)

Lakes NRMSE 1.81 0.89 1.59 8.18 1.09 2.70 2.73 1.47

Global r −0.47 0.59 0.83 0.92 0.77 0.87 0.87 0.84

Rivers NRMSE 10.29 13.84 10.96 4.97 6.40 10.60 10.91 10.61

Global r 0.42 0.54 0.42 0.52 0.26 0.54 0.54 0.54

North Frigid Zone NRMSE 2.36 2.37 2.49 2.51 2.75 2.33 2.33 2.37

r 0.32 0.28 0.05 −0.03 −0.67 0.35 0.35 0.23

North Temperate

Zone

NRMSE 10.94 12.41 8.27 4.72 5.40 11.24 11.60 11.25

r 0.39 0.56 0.48 0.55 0.33 0.56 0.55 0.55

Torrid Zone NRMSE 11.40 27.35 26.48 4.64 14.22 11.52 11.54 11.50

r 0.22 0.24 0.15 0.27 0.09 0.22 0.23 0.22

South Temperate

Zone

NRMSE 4.90 7.99 6.96 5.67 3.03 5.56 5.81 5.57

r 0.32 0.24 −0.05 0.31 −0.08 0.32 0.32 0.33

The values of the best-performing models are shown in bold on a global or regional (geographical zone) scale.

In contrast to Chapra (1975), Kirchner and Dillon (1975)
argued that the retention of P can be more precisely related
to both the areal water load WL and the settling velocity
of P-contained particles (υ), assuming the lake is at a
steady state:

RLP =
υ

WL + υ
(18)

where υ (m yr−1) is the apparent settling velocity of TP, which
was estimated as 16 m yr−1.

(3) Brett and Benjamin (2008)

Brett and Benjamin (2008) conducted a statistical reassessment
of total phosphorus (TP) input/output data to determine which

hydraulic driver is most strongly associated with lake phosphorus
concentration and retention. They provided the best-fit equation
as Equation (19):

RLP = 1−
1

1+ 1.12tr0.53
(19)

where tr (yr) denotes the water residence time of lakes
and reservoirs.

Sample Data for Validation
Water quality sample data, including TN and TP concentrations,
were obtained from the Global Freshwater Quality Database
(GEMStats, UNEP GEMS/Water Programme, 2007), Global
River Chemistry Database (GLORICH, Hartmann et al., 2019),
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FIGURE 4 | Simulated TP concentration of lakes compared with observed values. The boxplot shows the range of observed TP concentrations of each lake: the dark

solid lines in the boxes are the median value of observations; the dark dash lines are the average of observations; the upper and lower borders of the boxes indicate

75th percentile and 25th percentile of observations; the whiskers denote upper and lower extremes of observations. IMAGE-GNM simulates lake concentration at the

outlet cell of the lake, providing one value (average concentration) for each lake. Note that Wollheim et al.’s (2008) simulation of Lake Huron, Lake Superior, and Lake

Victoria is not shown in the log-scaled figure, as it predicted an extremely low concentration (<0.0001 mg/L) for these lakes.

and United States Geological Survey (USGS, Aulenbach et al.,
2007). We downloaded the datasets on September 17, 2021. The
sample data from literature covers the main rivers of Africa
and Asia, including the Nile River (El-Sadek, 2011; Sinada and
Yousif, 2013), the Pearl River (Liu et al., 2009), the Yangtze
River (Sun C. C. et al., 2013; Sun C. et al., 2013; Maotian
et al., 2014; Liu et al., 2018), and the Yellow River (Chen et al.,
2004; Tao et al., 2010). We used a DIN/TN ratio of 50% to

transform dissolved inorganic nitrogen (DIN) into TN for the
Yangtze River (Yan et al., 2001; Liu et al., 2018) and took a
DIN/TN (the same as NO3/TN, since nitrite NO2 occupies less
than 1% of DIN and the ammonium concentration is low in
rivers) ratio of 77% for the Nile River, the Yellow River, and
the Pearl River (Turner et al., 2003). For computing TP, we
used a ratio of 62% to transfer PO4 into TP data (Turner et al.,
2003).

Frontiers in Water | www.frontiersin.org 8 June 2022 | Volume 4 | Article 894604

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Zhou et al. A Comparison Between Retention Models

FIGURE 5 | N retention for different models at a half-degree resolution (Retention is dimensionless, and the unit was labeled as “-”). (A–G) indicate the plots of

different retention models.
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FIGURE 6 | P retention maps for different models at a half-degree resolution (Retention is dimensionless, and the unit was labeled as “-”). (A–H) indicate the plots of

different retention models.
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TABLE 4 | Descriptive statistics of N retention of different retention models.

Retention models Wollheim

et al. (2006)

Kelly et al.

(1987)

Behrendt and Opitz

(1999)

(WL)
*

Behrendt and Opitz

(1999)

(q)*

De Klein

(2008)

Seitzinger

et al. (2002)

Venohr et al.

(2005)

Average 0.273 0.203 0.328 0.430 0.386 0.228 0.285

Quartiles 5% 0 0 0 0 0 0 0

25% 0.024 0.011 0.081 0.081 0.099 0.068 0.102

50% 0.061 0.031 0.222 0.335 0.243 0.101 0.203

75% 0.413 0.201 0.505 0.804 0.639 0.214 0.378

95% 1.0 0.998 0.991 1.0 1.0 1.0 0.936

Dispersion (IQR) 0.389 0.190 0.424 0.723 0.540 0.146 0.276

Skewness (Yule’s

coefficient)

s 0.814 0.790 0.332 0.297 0.466 0.560 0.265

*WL and q were used to identify different retention equations of Behrendt and Opitz (1999) as driven by areal water load WL and the catchment area-specific runoff q, respectively.

TABLE 5 | Descriptive statistics of P retention of different retention models.

Retention models Wollheim

et al. (2006)

Kelly et al.

(1987)

Behrendt and Opitz

(1999)

(WL)

Behrendt and Opitz

(1999)

(q)

De Klein

(2008)

Kirchner

and Dillon

(1975)*

Chapra

(1975)*

Brett and

Benjamin

(2008)*

Average 0.278 0.219 0.354 0.437 0.553 0.263 0.263 0.257

Quartiles 5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25% 0.028 0.015 0.067 0.029 0.358 0.027 0.027 0.029

50% 0.068 0.042 0.237 0.311 0.517 0.065 0.065 0.069

75% 0.426 0.249 0.600 0.922 0.740 0.384 0.358 0.327

95% 1.0 0.999 0.998 1.0 1.0 1.0 1.0 1.0

Dispersion (IQR) 0.398 0.234 0.533 0.893 0.382 0.357 0.331 0.298

Skewness (Yule’s

coefficient)

0.802 0.774 0.363 0.370 0.166 0.787 0.774 0.730

*Chapra (1975), Kirchner and Dillon (1975), and Brett and Benjamin (2008) are lake retention models; for those cells without lake cells, Wollheim et al.’s (2008) equation is used to

calculate river retention.

We selected the data reported in the year 2000 since it is the
last representative (most recent) year of IMAGE-GNM (Beusen
et al., 2015). The samples include 9,770 items of TN data from
1,199 river stations, 19,701 items of TP data from 2,261 river
stations, and 141 items of TP data from 23 stations of 7 lakes. The
depth and residence time of lakes were derived from the World
Lake Database (Herschy, 2012) except for Ashkui at narrows in
Seal Lake and Wuchusk Lake, which lack measured data. For
these two lakes, we applied the prediction of PCR-GLOBWB, the
global hydrological model running on a grid cell level that has
been integrated into IMAGE-GNM. Note that in the validation
of lake retention equations, including Chapra (1975), Kirchner
and Dillon (1975), and Brett and Benjamin (2008), we apply
Wollheim et al.’s (2006) equation to calculate river retention in
the cells that contain no lakes or reservoirs.

For validation, the cells with an invalid hydrological
parameter (i.e., zero discharge and zero volume) were removed.
To avoid errors raised by inadequate spatial data representation,
basins with fewer than 10 grid cells were also excluded (Beusen
et al., 2015). Consequently, 82% of the river sample items from
1,157 river stations for TN and 91% of the river sample items
from 2,185 river stations for TP were included in the analysis
(Figure 1). The validation was conducted based on a 0.5 × 0.5◦

grid-cell scale based on the resolution of predicted results of
IMAGE-GNM. When stations were located within the same cell,
the average of the samples was taken as observed data.

Assessment of the Model Performance
We used the interquartile range (IQR = Q3–Q1) to describe
the dispersion and employed Yule’s coefficient (Yule’s coefficient

=
(Q3+Q1−2Q2)

Q3−Q1
) to depict the skewness of simulated retention

through non-parametric coefficient (Yule and Kendall, 1968);
where Q1, Q2, Q3 denote the 25th percentile, 50th percentile, and
75th percentile respectively.

We employed the mean-Normalized Root Mean Square Error
(NRMSE) to evaluate the error between predicted and observed
nutrient concentrations of each retention model.

NRMSE =
1

Ō

√

∑n
i=1 (Oi − Pi)

2

n
(20)

where Ō is the average of observations; n is the number of pairs
of predicted-observed data; Oi and Pi are the observed value and
predicted value of the ith cell, respectively.
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FIGURE 7 | Difference score between simulated and observed concentration for (A) TN and (B) TP among different retention models. Black points are the average

difference. The length of the “wings” (shown as black lines around the average) equals SE · qα,k,ν with critical value qα,k,ν and standard error SE determined by Tukey’s

HSD or Games-Howell post-hoc test. The solid lines show the minimal SE i,j · qα,k,ν and the dashed lines of the wings indicate the range of pairwise SE i,j · qα,k,ν from

the minimum to the maximum. Different letters a, b, c on top of the wings identify significant differences (p < 0.05) in concentration among the retention models.

The retention model that has a minimal NRMSE generates
the lowest discrepancy between predicted values and
observed values. NRMSE is a widely used criterion for the
validation of nutrient concentrations (e.g., Beusen et al.,
2015; Liu et al., 2018). However, NRMSE is quite sensitive
to extremes, in particular to extremely high values. The

Pearson correlation coefficient (r) is complementary to it
and assesses the dynamic behavior of the model rather than
the bias.

We used a logarithmic transformation to linearize the pairwise
data and use r to evaluate the correlation between predictions
and observations. Meanwhile, taking r of logarithmic data
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into account also lessens the likelihood risk of misjudging the
performance of right-skewed residuals.

r =

∑n
i=1

(

logOi − logOi

) (

log Pi − log Pi

)

√

∑n
i=1

(

logOi − logOi

)2
√

∑n
i=1

(

log Pi − log Pi

)2
(21)

Ideally, NRMSE is close to zero (on a range from 0 to unlimited)
and r close to 1 (on a range from−1 to 1).

Significance of Difference
We applied one-way Analysis of variance (ANOVA) to
evaluate the significance of differences in performance among
retention models. Here, as a measure of performance, the
difference in simulated and observed concentration in a sampled
grid cell was taken. The mean difference (i.e., whether a
model consistently over- or underestimated retention and
corresponding concentration) was evaluated.

To verify normality, the distribution of residuals of each
model was judged based on probability plots. Then, we examined
the homoscedasticity with the Brown–Forsythe test (Brown
and Forsythe, 1974) due to its robustness and its maintenance
of good statistical power (Derrick et al., 2018). TP showed
heteroscedasticity and was analyzed with Welch’s ANOVA
instead. To evaluate the differences in retention between specific
pairs, we conducted a pairwise comparison using Tukey’s
honestly significant difference (HSD) for homoscedastic data and
a Games-Howell post-hoc test for heteroscedastic data between
pairs of samples.

The analysis was accomplished using Python 3.7.
Details of packages/versions/functions are listed in
Supplementary Table S1.

RESULTS

Validation
The plots of riverine simulation against observations show that
the empirical equations perform better for TN than for TP
(Figures 2, 3). Furthermore, the NRMSE of TN outcomes ranges
from 1.62 to 2.31, which is much smaller than the NRMSE of TP
whose interval is between 4.97 and 13.84. The Pearson’s r of TN
is higher than that of TP (Tables 2, 3).

The retention models of Behrendt and Opitz (1999) (q)
generated the lowest NRMSE and a satisfactory Pearson’s r (>0.5)
for both N and P, being the best option for estimating riverine
retention of TN/TP.

Among TN retention models, with the exception of Behrendt
and Opitz (1999) (q) and Seitzinger et al. (2002), the models’
NRMSEs are higher than 2. The largest NRMSE (2.31) was
generated by the retention model of Kelly et al. (1987) despite
having the largest r value of 0.71. Behrendt and Opitz’s (1999)
(q) r is 0.62, which shows an acceptable correlation between
the simulated and observed concentrations. Hence, the retention
model of Behrendt and Opitz (1999) (q) performs best for TN
according to our analyses and validation dataset. Compared
with Wollheim et al. (2006), which is the currently used

retention equation in IMAGE-GNM [see section Hydraulic-
Load-Driven Models (1)], Behrendt and Opitz (1999) (q)
can reduce the NRMSE by 41% for estimating riverine TN
concentration globally.

The retention model of Behrendt and Opitz (1999) (q) also
simulated the lowest NRMSE (4.97) for P retention, followed
by that of De Klein (2008) (6.40), whose Pearson’s r is the
lowest (0.26). Excepting the retention model of De Klein (2008),
the difference in Pearson’s r among the models is quite minor,
ranging from 0.42 to 0.54. However, aside from Behrendt and
Opitz (q) and De Klein (2008), the NRMSEs of the models exceed
10. The best-performing model, Behrendt and Opitz (1999) (q),
can reduce the NRMSE of Wollheim et al. (2006) by 107%.

The comparison between simulated and observed TP
concentrations in lakes is shown in Figure 4. Since the
measurements vary considerably across the locations of stations
within a lake, we plotted measurements as boxplots to show the
variation. In Mjøsa and Wuchusk Lake, the simulations of all the
models are higher than the observed TP concentration, while
in other lakes, simulated TP is closer to the observations. De
Klein’s (2008) residuals (i.e., the difference between simulated
and average observed concentration in a lake) in Mjøsa and
Wuchusk Lake are the smallest among empirical equations.
Besides, De Klein’s (2008) simulations of other lakes do not
deviate from the observed measurement intervals, yielding the
best performing empirical equation.

The NRMSE and Pearson’s r of De Klein (2008) are 1.09 and
0.77 (Table 3). De Klein (2008) has the second-lowest NRMSE
following Kelly et al. (1987) (0.89), but Kelly et al.’s (1987)
r shows the second-worst performance (0.59). Behrendt and
Opitz (1999) (q) has the highest Pearson’s of 0.92 as well as
the highest NRMSE (8.18). NRMSE and r of Wollheim et al.
(2006) are 1.81 and −0.47, respectively, both of which perform
worse than Kelly et al. (1987), Behrendt and Opitz (1999) (WL),
De Klein (2008), and Brett and Benjamin (2008). Replacing
the retention equation of De Klein (2008) with Wollheim
et al. (2006) in IMAGE-GNM can reduce the NRMSE in lakes
by 66%.

The performance of empirical equations differs by
geographical zone (Tables 2, 3). For the N retention models,
Behrendt and Opitz (1999) (q) obtained the lowest NRMSE
in the North Frigid Zone, North Temperate Zone, and South
Temperate Zone, which can lower the NRMSE by Wollheim
et al. (2006) by 63, 45, and 32% in the respective regions. In
the Torrid Zone, Venohr et al. (2005) performed the best, as
it reduces the NRMSE by 88% compared with the currently
used retention equation. For P, Behrendt and Opitz (1999) (q)
is the best-performing retention model in North Temperate
Zone and Torrid zone, reducing the NRMSE of Wollheim et al.
(2006) by 132 and 146%, whereas the riverine retention model
Wollheim et al. (2006) combined with the lake retention models
of Kirchner and Dillon (1975) or Chapra (1975) provides the best
fit of retention in the North Frigid Zone. Wollheim et al. (2006)
is also recommended in the South Temperate Zone, as it has both
the second-lowest NRMSE and the second-highest r. The best
retention models of different geographical zones are presented in
bold in Tables 2, 3 and listed in Supplementary Table S2.
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Retention Model Comparison
Figure 5 (TN) and Figure 6 (TP) show that different retention
models generate similar hotspot distributions. The hydraulic-
load-driven models [i.e., retention models of Kelly et al. (1987),
Seitzinger et al. (2002), and Wollheim et al. (2006)] predicted
relatively lower retention than specific-runoff-drivenmodels [i.e.,
retention models of Behrendt and Opitz (1999), Venohr et al.
(2005), and De Klein (2008)].

Despite different hydraulic driving forces among retention
models, the hotspots of all the models are located in arid zones,
South Africa, West Argentina, Mississippi River Basin, and
Colorado River Basin. However, low retention values are quite
distinct. For N, retention values under or equal to 0.1 cover over
50% of the global area in hydraulic-load-driven models [i.e., the
retention models of Kelly et al. (1987), Seitzinger et al. (2002),
andWollheim et al. (2006)]. In contrast, in specific-runoff driven
models [i.e., the retention models of Behrendt and Opitz (1999),
Venohr et al. (2005), and De Klein (2008)], low retention (≤0.1)
occurs in only 24–30% of the global area. For P, regions with
retention under or equal to 0.1 calculated by hydraulic-load-
driven models [i.e., retention models of Kelly et al. (1987) and
Wollheim et al. (2006)] occupy 58 and 66% of the global area,
respectively. In contrast, low retention values (≤0.1) in specific-
runoff driven models [i.e., the retention models of Behrendt and
Opitz (1999) (WL), Behrendt and Opitz (1999) (q), and De Klein
(2008)], occur in <36%. In particular De Klein’s (2008) model
only generated 5% low-value retention globally.

The dispersion (represented by IQR) and skewness
(represented by Yule’s coefficient) between N and P retention
showed only minor differences except for De Klein (2008)
(Tables 4, 5), which predicted a much smaller dispersion and
skewness for P when compared with N.

For both N and P, the retention from hydraulic-load-driven
models displayed larger skewness than specific-runoff-driven
models. Yule’s coefficient of retention predicted by hydraulic-
load-driven models is larger than 0.5, while Yule’s coefficients
of specific-runoff-driven models range from 0 to 0.5. Thus, the
retention simulated by models with a driving force of hydraulic
load is more asymmetrically distributed than that of runoff-
driven models. Nevertheless, the retention from all the models
is positively skewed.

For N, the retention model of Behrendt and Opitz (1999)
(q) predicted the largest average retention globally, followed
by the simulation of De Klein (2008) and Behrendt and Opitz
(1999) (WL), while those models with a driving force of hydraulic
load predicted relatively smaller average retention. The IQR
of the simulation following Behrendt and Opitz (1999) (q) is
the highest, revealing that the model simulates more dispersed
retention than other models.

For P, the retention model of De Klein (2008) predicted
the largest average retention globally, with the second and
third largest average retention modeled by Behrendt and Opitz
(1999) (q) and Behrendt and Opitz (1999) (WL), respectively.
In contrast, the retention models of Wollheim et al. (2006) and
Kelly et al. (1987) with a hydraulic load driver simulated smaller
average retention. Lake retention models including Chapra
(1975), Kirchner and Dillon (1975), and Brett and Benjamin

(2008) cause little impact on global riverine retention. Thus,
the prediction of these models is close to that of Wollheim
et al. (2006) on a global scale. Larger difference in IQR was
found between different specific-runoff-driven models, as IQRs
of modeled retention following Behrendt and Opitz (1999) (q)
and De Klein (2008) are 0.893 and 0.382 respectively, while IQRs
of hydraulic-load-driven models range from 0.234 to 0.398.

Difference Score Performance of Retention
Models
Both TN and TP showed significant differences in their mean
subtraction between simulated and observed concentration
among the retention models. For TN, Tukey’s HSD showed a
clear distinction between hydraulic load-driven models on the
one hand and specific-runoff-driven models on the other hand
(Figure 7A, Supplementary Table S3). The Games-Howell post-
hoc tests showed similar differences in model groups for TP
(Figure 7B, Supplementary Table S4). Particularly, the retention
models of De Klein (2008) deviated strongly in performance,
which may relate to the difference of their coefficients and the
consideration of temperature in De Klein (2008).

Generally, the average difference between observed and
simulated concentration is lower for specific-runoff-driven
models than for hydraulic-load-driven models. Note that
concentration is inversely proportional to the estimation of
retention. A positive average difference between simulated
and observed concentrations signifies an overestimation of
concentration and thus an underestimation of retention. For both
TN and TP, retention models, except for the TN equations of De
Klein (2008), tended to underestimate retention, particularly in
low-retention regions (retention ≤ 0.1).

DISCUSSION

As far as we are aware, this is the first study to assess the
performance of empirical retention equations for global nutrient
models and to investigate the role of driving forces, function
form, and equation coefficients. The strengths of this study
include its analyses on the global and regional performance of
retention equations using multiple criteria (NRMSE, Pearson’s r,
and relative bias, i.e., average difference score shown in Figure 7)
and the comparison of model residuals for different water bodies
based on abundant samples from diverse sources.

We applied NRMSE and Pearson’s r as the performance
criteria and used an ANOVA and a post-hoc test to investigate the
performance of (and differences between) retention models. The
results revealed that the impact of function form and coefficients
are inferior to the hydraulic driver. Since most of these models
were developed based on a local dataset (Table 1), the coefficients
and function forms were expected to represent the corresponding
local systems better than the globe. However, our results show
that some of these local studies perform better globally than
those developed at global scales (i.e., Wollheim et al., 2008).
Particularly, empirical retention equations whose driving force is
hydraulic load predicted relatively lower retention than specific-
runoff driven models. Hydraulic-load-driven models tended
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to underestimate retention and overestimate concentration,
particularly for TN. The specific-runoff driven equations of
Behrendt and Opitz (1999) (q) and De Klein (2008) provided
the best fit for the simulation of riverine nutrient retention and
P retention in lakes, respectively.

Our study reinforced the importance of temperature as
a secondary driving force of P retention (D’angelo et al.,
1991; Jensen and Andersen, 1992; Kim et al., 2003), since the
retention models of De Klein (2008) lowered the difference
between simulations and observations and is the only model that
considered temperature. Our results were also in line with the
discovery that riverine N and P retention depends on the specific
runoff rather than hydraulic load (Behrendt and Opitz, 1999) and
predicted P values disperse more than predicted N values using
empirical equations to estimate retention (Hejzlar et al., 2009).

Using the best combination of retention models for
geographical zones (Supplementary Table S2), we simulated
the global export to coastal waters of N and P are 30.5 and 5.8
Tg P yr−1. For the global N export, our estimation is lower
than those of NEWS-2 (45 Tg N yr−1, Mayorga et al., 2010)
and IMAGE-GNM (37 Tg N yr−1, Beusen et al., 2016). The
combination of retention models for various zones can better
represent the realistic retention and results in a lower global
export that is closer to observations. For P, our estimation falls
between the global export of NEWS-2 (9 Tg P yr−1, Mayorga
et al., 2010) and IMAGE-GNM (4 Tg P yr−1, Beusen et al., 2016).
Moreover, the best combination of P retention models avoids the
bias caused by Wollheim et al. (2006) to predict zero P loads in
the high-retention regions.

Our assessment of lake P retention differs from the multiple
comparison results of Brett and Benjamin (2008), who compared
and optimized the retention equation for lake TP in the USA
and Canada and regarded Brett and Benjamin’s (2008) equation,
a residence-time-driven equation, as the best fit. We identify
the reason as the difference of performance criteria and spatial
coverage of sample data. Brett and Benjamin (2008) used the
logarithm coefficient of determination r2 as the performance
criterion, which is equivalent to the square of Pearson’s r of
linearized log-transformed data. Indeed, the model of Brett and
Benjamin (2008) got high r scores among all the models in our
research, but their model performs worse than De Klein (2008)
and Kelly et al. (1987) if we consider NRMSE. In conclusion, our
use of multiple criteria shows the advantage of providing more
information of both correlation and errors between simulations
and observations.

Uncertainties of Retention Modeling
Uncertainty may arise from a lack of data availability and
data representativeness. For instance, when assessing model
performance in different geographical zones, retention models
perform worse in the Torrid Zone than at the global level,
which might be due to a misrepresentation of the nutrient
states throughout the Torrid Zone (it covers only 1.5% of
all TN samples and 3.4% of TP samples). In the South
Temperate Zone, despite a sufficient amount of data, the data
lack representativeness, as most of the samples were collected in
the Murray Darling Basin in Australia. We included NO3/DIN

and PO4 data and used nutrient ratios to deal with a lack of data
availability. However, the imposed nutrient ratio may introduce
uncertainty into observation data as well. For instance, Meybeck
(1982), Goolsby et al. (1999), and Turner et al. (2003) estimated
global NO3/TN ratios to vary from 59 to 86% and PO4/TP ratios
from 46 to 70% by investigating world’s rivers. However, other
literature (e.g., Yan et al., 2001; Liu et al., 2018) provided specific
ratios for different rivers. To lower the uncertainty raised by these
ratios, we used specific ratios firstly, and if no specific ratios were
found, we employed the recommended global ratio from Turner
et al. (2003). As more data become available, these retention
models can be further evaluated and improved.

The ability of the model to reproduce the hydrological
conditions is also crucial for the performance of modeled
retention. For instance, although the Torrid Zone and the
North Frigid Zone had almost the same amount of data, the
performance of these two regions was quite different. Better
retention predictions in the North Frigid Zone are related
to more accurate PCR-GLOBWB discharge simulations in
Europe, North America, and monsoon-dominated regions due
to more precise meteorological forcing. In contrast, the least
accurate results in the Torrid Zone are probably linked to the
unsatisfactory simulation of discharge in African rivers since
PCR-GLOBWB likely overestimates the groundwater recession
rates and underestimates African inland delta evaporation
(Sutanudjaja et al., 2018). In addition, due to faster rates of
hydrological change in humid tropics, the hydrological condition
is harder to describe precisely by a yearly-step model (Wohl et al.,
2012).

On the other hand, the processing of water storage in PCR-
GLOBWB introduced more uncertainties into the estimation of
the hydraulic load than of specific runoff that was only affected by
the discharge. Assuming reservoirs serve hydropower generation,
PCR-GLOBWB overestimates the real reservoir volume by
maximizing storage capacity under full power generation due to a
lack of data from power plants on a global scale (Haddeland et al.,
2006; Adam and Lettenmaier, 2008). However, PCR-GLOBWB
sometimes underestimates the total water volume by ignoring
small reservoirs when combining multiple water bodies located
within the same cell (Beusen et al., 2015). These uncertainties
may explain why retention estimates from hydraulic-load-driven
retention equations deviate more from observations than when
based on specific-runoff-driven equations.

The Effect of Driving Forces on P and N
Retention
The reason that specific-runoff-driven models perform better
than hydraulic-load-driven models lies mainly in accuracy of
the predictions on their driving force. IMAGE-GNM can better
predict specific runoff that is composed of discharge and
area since discharge was validated with observation in PCR-
GLOBWB and area was obtained from geo-information (Van
Beek et al., 2011). In contrast, hydraulic load works worse due
to the uncertainties of reproducing water volume and water
body depth.
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Temperature has been shown to be an important driving
force of P retention (D’angelo et al., 1991) to compensate for
the difference between predicted and observed concentration but
works secondary to hydraulic drivers, as Figure 7 shows those
retention models considering temperature factor (i.e., Wollheim
et al., 2006; De Klein, 2008) lower the difference between
predictions and observations within the models with the same
hydraulic drivers. The effect of temperature works via influencing
PO4 release from sediments in streams and lakes (Fillos and
Swanson, 1975; Holdren and Armstrong, 1980; Jensen and
Andersen, 1992; Kim et al., 2003) and the physical properties of
the water (Jeppesen et al., 2009). In contrast, N retentionmay also
be affected by temperature, given NH4 release from sediments
(Shinohara et al., 2021), but the temperature effect on N is less
substantial than P, since the N content ratio between sediments
and othermediums (e.g., water) was found to bemuch lower than
P (Downing and McCauley, 1992).

Future scenarios point to a global temperature increase due to
greenhouse gas emissions (Intergovernmental Panel on Climate
Change (IPCC), 2018). Under a warmer climate, higher water
temperature increases the time windows of biological activities
and intensifies the interaction of the physical environment and
the biogeochemical properties in the hydrosphere (Withers and
Jarvie, 2008; Jeppesen et al., 2009). This would likely lead to
more nutrient release from aerobic sediments and an increase in
nutrient concentrations in freshwaters.

Limitations and Future Improvement
River damming causes a decrease in the specific runoff and
the hydraulic load, which leads to sediment trapping and an
increase in nutrient retention (Maavara et al., 2015). While
empirical equations capture the effects of changing hydrological
parameters, they do not include biogeochemical mechanisms.
These limitations act on both N and P. With respect to
biogeochemical mechanisms, limitations relate to the lack of
accounting for interactions among nutrient species, interactions
with other elements, and for instance remobilization of P
into water bodies due to the long-term accumulation of
anthropogenic P retention in sediments. The errors between
modeled and observed riverine P are larger than for N in our
study. The larger error of P may result from the complexity
of P transformations between unneglectable particle forms and
dissolvable species, and the complex exchange between the water
column and the sediment, which statistical regression equations
of TP cannot reproduce or predict.

As such, model developers should search for ways to
incorporate mechanistic geochemical dynamics into modeling
nutrient retention in aquatic systems, so that models can better
estimate N/P fate by distinguishing the specific forms and by
including the transformations among different nutrient species.
For instance, Vilmin et al. (2020) proposed a framework to
describe the interactive processes between nutrient species and
examined the model performance of N fate by splitting TN into
ammonium (NH+

4 ), nitrate (NO−
3 ), nitrite (NO−

2 ), and organic
nitrogen. Future research into process-based biogeochemical
dynamics is needed to better assess P retention.

Implications for the Global Assessment of
Nutrient Retention
The global assessment of retention equations that was conducted
in our study can improve the accuracy of global nutrient
models: compared to the currently used retention equation,
applying the best-fit retention equation can reduce the NRMSE
of riverine N, lake P, and riverine P in IMAGE-GNM by 41,
66, and 107%, respectively. By comparing the performance of
empirical equations in different geographical regions, our study
provided a possible way for model developers to further consider
integrating regional retention modeling into global nutrient
simulations. Further, the analyses of errors in performance,
having distinguished the role of driving forces, function form,
and equation coefficients, can constitute a step forward to the
future development of empirical retention equations.

CONCLUSION

In this study, we used NRMSE to evaluate the error of
model outcomes and Pearson’s r of log-transformed data. We
employed ANOVA and post-hoc analyses to evaluate the under-
or overestimates of different retention models.

Our results showed that global retention derived from
different retention equations generates different patterns:
the hydraulic-load-driven equations differ considerably from
specific-runoff driven models and predicted relatively lower
retention. The hydraulic driver is thus the most important
factor that affects predicted TN/TP concentrations. Globally,
empirical equations perform better for N than P. The retention
models of Behrendt and Opitz (1999) (q) generate the
lowest NRMSE for both N and P, being the best option for
estimating riverine retention of TN/TP, while De Klein’s (2008)
model is recommended for simulating P retention in lakes
and reservoirs.

This global assessment allows model developers to
choose empirical retention equations that best fit their
region, thus improving the accuracy of modeling global
nutrient fate and the N or P exports to coastal waters. Such
improvements provide a better insight into the eutrophication
in aquatic systems and support decision-makers to formulate
environmental policies. The analysis on the driving force
of retention constitutes a basis for the development of
retention models for future nutrient fate and waterborne
eutrophication-related studies.
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