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Regular vegetation patterns have been predicted to indicate a system slowing down 
and possibly desertification of drylands. However, these predictions have not yet been 
observed in dryland vegetation due to the inherent logistic difficulty to gather longer-
term in situ data. Here, we evaluate the theoretical prediction that regular vegetation 
patterns are associated with empirically derived temporal indicators (autocorrelation, 
variance, responsiveness) of critical slowing down in a dryland ecosystem in Sudan 
using different remote sensing products.

We use recently developed methods using remote-sensing EVI time-series in com-
bination with classified regular vegetation patterns along a rainfall gradient in Sudan 
to test the predicted slowing down. We tested our empirical findings against theoretical 
predictions from a stochastic version of a spatial explicit model that has been used to 
describe vegetation dynamics in drylands under aridity stress.

Overall, three temporal indicators (responsiveness, temporal autocorrelation, vari-
ance) show slowing down as vegetation patterns change from gaps to labyrinths to 
spots towards more arid conditions, confirming predictions. However, this transition 
exhibits non-linearities, specifically when patterns change configuration. Model simu-
lations reveal that the transition between patterns temporarily slows down the system 
affecting the temporal indicators. These transient states when vegetation patterns reor-
ganize thus affect the systems resilience indicators in a non-linear way.

Our findings suggest that spatial self-organization of dryland vegetation is associ-
ated with critical slowing down, but this transition towards reduced resilience happens 
in a non-linear way. Future work should aim to better understand transient dynamics 
in regular vegetation patterns in dryland ecosystems, because long transients make 
regular vegetation patterns of limited use for management in anticipating critical 
transitions.
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Introduction

Anticipating changes in the resilience (or robustness) of nat-
ural systems is of paramount importance given the increas-
ing climate variability and anthropogenic disturbance (Levin 
and Lubchenco 2008, Scheffer et al. 2012, Lenton et al. 
2019). Various approaches have been developed for defin-
ing and measuring resilience (Hodgson et al. 2015, Angeler 
and Allen 2016, Ingrisch and Bahn 2018), but particular 
attention has been given to measuring resilience in eco-
logical systems that run a risk of abrupt and irreversible 
responses to external stress (Scheffer et al. 2015). Such 
responses mathematically correspond to catastrophic shifts 
where at the crossing of a threshold an ecological system 
abruptly shifts from its current state to an alternative usually 
contrasting state (Beisner et al. 2003, Suding et al. 2004). 
Examples include the shift to eutrophication in shallow lakes 
(Scheffer et al. 1993), the transition to overgrazed kelp for-
ests (Simenstad et al. 1978), the collapse of fish stocks due 
to overfishing in the North Atlantic (Hilborn and Litzinger 
2009), or abrupt desertification in drylands (Garcia and 
Spitz 1961). Detecting these shifts in advance requires a 
deep mechanistic understanding of the ecological system 
in question based either on experiments or sufficiently long 
and detailed monitored data (Scheffer and Carpenter 2003). 
Yet, for most ecological systems we still lack the necessary 
understanding. Measuring changes in the spatial and tem-
poral patterns of ecological dynamics has been qualified as 
an alternative approach for anticipating changes in their 
resilience and for detecting in time their probability to cata-
strophic shifts.

In dryland ecosystems, changes in regular vegetation 
patterns resulting from spatial self-organization represent 
a consistent indicator for a catastrophic shift from a vege-
tated to a non-vegetated desertified state (Klausmeier 1999, 
Rietkerk et al. 2004). Models describing vegetation dynam-
ics accounting for different interactions between plants 
and water availability in drylands (Klausmeier 1999, von 
Hardenberg et al. 2001, Lejeune et al. 2002, Rietkerk et al. 
2002, Meron et al. 2004) predict a robust sequential change 
(Gowda et al. 2016) from gapped to labyrinthine to spotted 
regular vegetation patterns along a spatial or temporal gradi-
ent of decreasing water availability (usually rainfall) before 
vegetation collapses to a desert state. These predictions have 
been matched with empirical observations in semi-arid regions 
where regular pattern formation appears to be ubiquitous 
(Deblauwe et al. 2008). More specifically, changing regular 
patterns have been identified along both spatial and temporal 
aridity gradient in Sudan (Deblauwe et al. 2011), and shifts 
of homogenous vegetation to regular gaps responding to cli-
matic and anthropogenic stress have been found in the sub-
Saharan Sahel (Barbier et al. 2006). Mathematical studies 
quantified changes in the size and regularity (rather than the 
sequence) of vegetation patches driven by environmental dis-
turbances to assess their resilience (Bastiaansen et al. 2018), 
while – more generally – changes in vegetation patch size dis-
tributions have been linked to increasing aridity and grazing 

stress in Mediterranean (Kéfi et al. 2007) and Chinese semi-
arid regions (Lin et al. 2010).

These mathematical predictions have prompted the inter-
pretation of changes in spatial vegetation patterns as a partic-
ular set of early-warning signals for approaching catastrophic 
shifts (Rietkerk et al. 2004, Scheffer et al. 2009). Another 
set of warning signals for the proximity to catastrophic shifts 
are related to the observable level of responsiveness of a sys-
tem to external disturbances. Such signals are based on the 
generic phenomenon of critical slowing down that implies 
that, close to a threshold, the system decreases in responsive-
ness and shows increasingly slower recovery rates following 
a disturbance. Increasing temporal variance and autocorre-
lation of system state variable have been theoretically and 
empirically shown to be indirect measures of critical slow-
ing down in systems approaching catastrophic shifts (Wissel 
1984, van Nes and Scheffer 2007, Dakos et al. 2011, 2015, 
Veraart et al. 2012). The collection of long-term remotely 
sensed data (e.g. satellite or aerial imaging data) have enabled 
the estimation of indicators of ecosystem resilience. Using 
satellite data, rising temporal autocorrelation of vegetation 
greenness (NDVI, normalised difference vegetation index) 
has been used as an indicator of decreasing tropical forest 
resilience along rainfall gradients (De Keersmaecker et al. 
2015, Verbesselt et al. 2016), as well as an indicator of loss 
of resilience of forest mortality to drought in Californian 
forest (Liu et al. 2019). Rising temporal variance in salt-
marsh cover responding to an increasing inundation stress 
was measured from NDVI derived from aerial images (van 
Belzen et al. 2017). At a global scale, remote-sensed data have 
been used to evaluate the responsiveness (or sensitivity) of 
terrestrial vegetation to climate by quantifying the response 
of NDVI to climate anomalies (De Keersmaecker et al. 2015, 
Seddon et al. 2016).

For drylands we thus have two potential sets of early 
warning signals: 1) spatial indicators (changes in regular 
vegetation patterns) and 2) temporal indicators (tempo-
ral autocorrelation, variation and responsiveness of vegeta-
tion). Yet, empirical evidence for the occurrence of critical 
slowing down in the particular case of dryland ecosystems 
indicators is, as far as we know, lacking. Spatial indicators 
could be overlaid with such temporal indicators to test if pre-
dicted changes in spatial vegetation patterns are associated 
with critical slowing down in drylands under stress. If true, it 
will mean that spatial patterns would indicate slow ecosystem 
responsiveness due to critical slowing down and thus allow to 
assess changes in dryland resilience by using highly resolved 
remotely-sensed data, which is otherwise notoriously diffi-
cult to measure.

Here, we evaluate the theoretical prediction that regular 
vegetation patterns are associated with empirically derived 
temporal indicators (autocorrelation, variance, responsive-
ness) of critical slowing down in a dryland ecosystem in 
Sudan using different remote sensing products. We then 
compare these empirical findings with results from model 
simulations to acquire a better fundamental understanding 
of the empirical results.
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Methods

Resilience indicators estimated from remote sensing 
data

We used published classifications of regular vegetation pat-
terns in the Western Sector of southern Kordofan State 
Sudan (27°4′–29°2′E; 10°2′–12°4′N; Supporting informa-
tion) (Deblauwe et al. 2011) that stretch an area of 22 255 
km2 and cover a gradient of mean annual rainfall ranging 
from 370 mm in the northwest to 600 mm in the southeast 
(Deblauwe et al. 2011). Along this gradient, the vegetation 
forms regular patterns that change from gaps to labyrinths 
to spots with increasing aridity. Banded vegetation pat-
terns are found on the more hilly parts of the area but were 
discarded in this study. Vegetation patterns were classified 
using Fourier-based texture analyses of SPOT (Système 
Probatoire d’Observation de la Terre) imagery with a 10-m 
ground resolution. Spatial skewness is a continuous variable 
that describes the pixel gray level distribution characterizing 
the relative dominance of vegetation over bare soil and is 
strongly related to spatial pattern configuration with increas-
ing skewness from spots (< −0.5) to labyrinths (−0.5 to 0) 
to gaps (> 0) (Deblauwe et al. 2011). See Deblauwe et al. 
(2011) for more detailed information about classifying veg-
etation patterns.

We overlaid these classified vegetation patterns (ca 410 m 
resolution) with time series (2001–2020) of enhanced vege-
tation index (EVI) (Didan 2015) and standardized precipita-
tion evapotranspiration index (SPEI) (Vicente-Serrano et al. 
2010) using the ‘raster’ package (Hijmans 2018) in R 
(<www.r-project.org>). All spatial data was downloaded 
using Google Earth Engine (Gorelick et al. 2017) and aggre-
gated to 16-day intervals. SPEI is a commonly used index 
that takes into account both rainfall and evapotranspiration 
as a measure of water availability to plants. The EVI and SPEI 
data were detrended at the pixel level to remove seasonal 
trends to be able to avoid bias in the comparison of temporal 
indicators across sites (Dakos et al. 2012a). EVI time series 
were detrended by subtracting the mean EVI value of each 
16-day period. SPEI time series were constructed using the 
‘SPEI’ package using a log-logistic distribution function and 
a time scale of 1 month. A 1-month lag was chosen because 
of the short response of dryland vegetation to moisture avail-
ability (Vicente-Serrano et al. 2013). Precipitation data was 
extracted from the climate hazards group infraRed precipi-
tation with station data (CHIRPS) at ca 5 × 5 km ground 
resolution (Funk et al. 2015). Potential evapotranspiration 
(PET) was obtained from the MODIS global evapotranspi-
ration product which estimates PET through the Penman–
Monteith equation (Running et al. 2017).

We estimated two established indicators of slowing down: 
1) temporal autocorrelation (TAC) of the EVI anomalies at-
lag-1 (16 days), and 2) temporal variance across the entire 
time-series. An increasing TAC and temporal variance is 
suggested to reflect declining recovery potential from per-
turbations (Scheffer et al. 2009). Previous work found weak 

increasing temporal autocorrelation and no change in tem-
poral variance in a vegetation model with regular patterns 
(Dakos et al. 2011). We also estimated the pixel-wise regres-
sion slope of EVI anomaly as a function of SPEI. The regres-
sion slope is used as a measure of responsiveness of vegetation 
to climate anomalies and has been referred to as sensitiv-
ity (Seddon et al. 2016) or (the inverse of ) resistance (De 
Keersmaecker et al. 2015). Although the regression slope 
is not per se an indicator of slowing down, it does capture 
recovery potential but to a specific stressor (SPEI), and here 
we treat it as an alternative critical slowing related indicator. 
We then compare these three remotely-sensed temporal indi-
cators of ecosystem resilience to the spatial indicators based 
on the changing regular vegetation patterns.

The vegetation responsiveness and TAC were modelled for 
the time-series corresponding to each pixel by considering 
the EVI anomaly as a linear combination of the history of 
both SPEI and EVI (at lag 1) (De Keersmaecker et al. 2015, 
Seddon et al. 2016):

Y Yt t t t= + +-( ) -( ) -( )a b e1 1 1SPEI

where Yt and Y(t−1) are the standardized EVI anomaly at time 
t and t − 1 respectively, SPEI(t−1) is the SPEI index at time  
t − 1. α and β are the model’s coefficients for TAC and respon-
siveness (regression slope). The variance (standard deviation) 
was calculated separately from the same EVI time series as a 
third indicator of critical slowing down (Scheffer et al. 2009, 
Dakos et al. 2011).

Resilience indicators estimated from model 
simulated vegetation dynamics

We tested our empirical findings against theoretical predic-
tions from a stochastic version of a spatial explicit model 
that has been used to describe vegetation dynamics in dry-
lands under aridity stress (HilleRisLambers et al. 2001, 
Rietkerk et al. 2002). The model ignores the existence of 
slopes or characteristics of soil texture and does not con-
sider trees as vegetation types as done elsewhere (Staver et al. 
2019). Instead in the model, vegetation grows depending on 
soil water that becomes available from surface water infil-
trating the soil after rain events. Vegetation, soil water, and 
surface water are all assumed to diffuse in space. Details on 
the model description, equations and parameters values used 
can be found in the Supporting information. The model 
considers that soil water infiltration is higher in areas with 
vegetation than in bare soil, which results in the accumula-
tion of water under patches of vegetation and in its deple-
tion further away. Due to this scale-dependent feedback, 
regular vegetation patterns may emerge for a certain range of 
rainfall (HilleRisLambers et al. 2001, von Hardenberg et al. 
2001, Rietkerk et al. 2002, Meron et al. 2004). These so-
called ‘Turing patterns’ (Turing 1952) resemble the empirical 
patterns of vegetation in drylands (Rietkerk et al. 2004) as, 
among other things, they follow a distinct sequence of shapes 
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from gaps to labyrinths to spots with decreasing rainfall before 
vegetation collapses into desert (Supporting information).

We simulated the model assuming homogeneous condi-
tions across the landscape, i.e. parameter values were the same 
everywhere in space. We performed simulations for different 
levels of rainfall (decreasing the mean annual rainfall from 
1.2 mm day−1 to 0.5 mm day−1 at increments of 0.01 mm 
day−1) to mimic aridity stress gradient in our modelled land-
scapes. When rainfall decreases, vegetation patterns change 
from gaps to labyrinths (roughly at 1.1 mm day−1 of rain-
fall) and from labyrinth to spots (roughly at 0.7 mm day−1 
of rainfall) with our chosen model parameters. To mimic 
variation in rainfall we assumed stochasticity on a daily basis 
both spatially and temporally (we used a multiplicative noise 
term for rainfall with strength σ = 0.5, Supporting informa-
tion). As our model was intended to provide a reference of 
the resilience indicator patterns in qualitative but not quanti-
tative terms, we ignored for the sake of simplicity other forms 
(coloured noise) or noise intensities.

Under these conditions, we simulated vegetation dynam-
ics starting from a fully vegetated landscape (99% cover) for a 
period of 30 years. We recorded daily vegetation density both 
spatially as well as temporally as the total vegetation density 
in the landscape. For each level of rainfall, we repeated 100 
simulation runs, each with an independent realization for 
the stochastic rainfall. For each run and each rainfall level 
(19 600 cases in total), we subsampled vegetation density 
at monthly intervals to mimic the monthly observations 
derived from the empirical satellite data. We estimated tem-
poral autocorrelation at-lag-1, variance and skewness of total 
vegetation density for each level of rainfall as well as spatial 
skewness of vegetation density. We estimated these statistics 
following (Rietkerk et al. 2004, Dakos et al. 2011) where 
trends in these statistics have been suggested to serve as lead-
ing indicators of ecosystems approaching shifts to desertifica-
tion. We reported trends for all indicators from all runs as 5, 
50 and 95 percentiles.

We solved the model using a semi-implicit method in a 
128 × 128 cells lattice representing a 400 × 400 m landscape 
(Janssen et al. 2008). Environmental stochasticity was added 
using an Euler–Murayama integration method with Ito cal-
culus. We assumed periodic boundaries. Model simulations 
and statistical analyses were performed in MATLAB R2017b 
(MathWorks 2017).

Statistical analyses

We constructed linear regression models to investigate gen-
eral relationships between explanatory (mean annual rain-
fall, spatial skewness) and response variables (responsiveness, 
temporal autocorrelation, temporal standard deviation) 
including a Gaussian spatial correlation structure using the 
x and y coordinates of the center of each pixel to account 
for spatial autocorrelation. A second order term was included 
to test for non-linear relationships but removed from the 
final model when not significant (p > 0.05). Subsequently, 
loess regressions (30% smoothing span) were applied to 

investigate potential non-linear patterns between explanatory 
and response variables in more detail. All statistics were per-
formed in R ver. 4.1.0 (<www.r-project.org>).

Results

Regular vegetation patterns

Spatial skewness increased linearly up to about 500 mm mean 
annual rainfall after which the slope decreased sharply result-
ing in a significant first (Linear regression: F1,1105 = 281.0; p 
< 0.0001; Fig. 1) and second order term (F1,1105 = 24.7, p < 
0.0001). Overall, the spatial patterns changed from gaps to 
labyrinths to spots with increasing aridity as expected based 
on the spatial skewness, although there were some patches 
classified as labyrinths at higher rainfall.

Remotely sensed time-series indicators

The responsiveness of the vegetation increased with rainfall 
(linear regression: F1,1106 = 25.6; p < 0.0001; Fig. 2A). This 
increase was not smooth though, with small interruptions 
from the general pattern when vegetation patterns changed 
from spots to labyrinths. Similar trends were found along 
the skewness gradient (linear regression: F1,1106 = 13.2, p < 
0.0001; Fig. 2B).

Temporal autocorrelation first increased and then decreased 
with rainfall (linear regression: 1st order term: F1,1105 = 3.8, 
p = 0.004; 2nd order term: F1,1105 = 7.6, p = 0.006; Fig. 2C), 
but showed some important nonlinearities. Temporal auto-
correlation increased steadily for gapped vegetation but 
then suddenly dropped when labyrinthine patterns were 
formed before increasing again further with increasing arid-
ity. Temporal autocorrelation showed a hump-shaped but 
insignificant relationship with spatial skewness (linear regres-
sion: 1st order term: F1,1105 = 3.2, p < 0.08; 2nd order term: 
F1,1105 = 0.009, p = 0.92; Fig. 2D) with non-linearities peak-
ing at transitions between patterns.

Temporal variance increased linearly with mean annual 
rainfall (linear regression: F1,1106 = 196.5, p < 0.0001; 
Fig. 2E). In contrast, temporal variance did not change with 
spatial skewness until vegetation patterns were labyrinthine 
after which variance increased sharply (linear regression: 
1st order term: F1,1105 = 56.3, p < 0.0001; 2nd order term: 
F1,1105 = 28.3, p < 0.0001; Fig. 2F).

Indicator trends from model simulated vegetation 
dynamics

To better understand the trends in the empirical data, we 
investigated the same relationships for simulated vegetation 
dynamics. In general we found similar trends in the indicators 
of slowing down between the empirical patterns (Fig. 2C–
F) and the patterns from the simulated vegetation model 
(Fig. 3). Temporal autocorrelation of mean vegetation den-
sity increased with aridity (Fig. 3A), while temporal variance 
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(measured as standard deviation) decreased (Fig. 3C). Spatial 
skewness of vegetation was positively correlated to tempo-
ral variance (Fig. 3D) similar to the empirical data (Fig. 2F). 
Note, however, that the range in spatial skewness was much 
smaller for the empirical data than the simulated vegetation 
dynamics. Temporal autocorrelation showed a negative corre-
lation with spatial skewness (Fig. 3B), although the relation-
ship in the empirical record was weakly negative but hump 
shaped (Fig. 2D).

Similar to the empirical observations, the relationships 
were not linear but exhibited changes in trends, especially 
around the levels of rainfall in which vegetation patterns 
started to change from gaps to labyrinths and from labyrinths 
to spots (hatched regions, Fig. 3). The local humps in the 
trends were dependent on the period the indicators were mea-
sured. In the first 16-year periods of the simulated records 
(blue lines, 5–20 years), local humps were stronger due to the 
influence of transient dynamics (Supporting information). In 
contrast, the humps became less pronounced (albeit still pres-
ent) in later periods (green lines, 15–30 years) that were not 
affected by transients (Supporting information).

Discussion

The aim of this study was to confront theoretical predic-
tions of regular vegetation patterns indicating loss of resil-
ience in dryland ecosystems with empirically derived critical 

slowing down indicators using remote-sensing derived EVI 
time series. Previous theoretical work has suggested that self-
organised regular vegetation patterns change in predictable 
ways from gaps to labyrinths to spots prior to abrupt (cata-
strophic) transitions in drylands (Kéfi et al. 2010, Dakos et al. 
2011), and that at the same time the transitions are preceded 
by critical slowing down (Dakos et al. 2011). However, this 
theoretical expectation was never empirically tested. Here, we 
found that changes in vegetation patterns indeed predicted 
the expected resilience of vegetation to changes in water avail-
ability, indicated by a slower responsiveness of EVI to rainfall, 
increased temporal autocorrelation of EVI, and, contrary to 
expectations, decreased variance.

The decreased variance we observed in the empirical 
and simulated data appears to be counterintuitive to the 
expected increasing variance due to critical slowing down 
(Scheffer et al. 2009). Indeed, variance has been shown to 
be less robust indicator of critical slowing down compared 
to autocorrelation (Dakos et al. 2012b). Reduction in the 
magnitude of environmental noise prior to a shift decreases 
variance (Dakos et al. 2012b); slow responding systems could 
cause variance to decrease approaching a shift (Dakos et al. 
2012b); interacting regime shifts can ‘muffle’ variance 
(Brock and Carpenter 2010). In previous work, Dakos et al. 
(2011) found no conclusive variance trend in a similar dry-
land vegetation model with regular vegetation patterns. The 
decreasing variance pattern we find in the simulated data 
follows from the fact that we assumed a decrease in rainfall 

Figure 1. Changing configuration of regular vegetation patterns from gaps (green) to labyrinths (blue) to spots (yellow) with increasing 
aridity in Sudan. Data points represent observed value on a 410 by 410 m window on the ground. Spatial skewness is a measure of the pixel 
(10 × 10 m) distribution between vegetated and bare state across a larger area (410 × 410 m) and used to assign each a regular vegetation 
pattern (Deblauwe et al. 2011). Increasing skewness indicates higher vegetation cover. Line represents a loess regression with 50% smooth-
ing span and 95% confidence interval (grey shading). Insets represent examples of real world patterns with spotted (yellow), labyrinthine 
(blue) and gapped (green) vegetation patterns.
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Figure 2. Critical slowing down with decreasing rainfall and vegetation cover in Sudan. Data points represent observed value on a 410 by 
410 m window on the ground. Change of the responsiveness (A, B), temporal autocorrelation (C, D) and temporal variance (E, F) of veg-
etation greenness in relation to annual rainfall (A, C, E) and spatial skewness (B, D, F). Overall, the responsiveness increases, temporal 
autocorrelation decreases and variance increases with both rainfall and spatial skewness. Responsiveness, temporal autocorrelation and vari-
ance do not change linearly and often show hickups when pattern configuration changes. Lines represent a loess regression with 50% 
smoothing span and 95% confidence interval (grey shading). Insets represent examples of real world patterns with spotted (yellow), laby-
rinthine (blue) and gapped (green) vegetation patterns.
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stochasticity (Supporting information) consistent with the 
empirical observations of a positive relationship between aver-
age annual rainfall and annual rainfall variability (Supporting 
information). Thus, critical slowing down leads to an increase 
in autocorrelation but not in variance which instead reflects 
the decreasing rainfall stochasticity.

More importantly, however, all three temporal indica-
tors showed non-linear relationships with annual rainfall 
and spatial skewness. The model simulations showed simi-
lar non-linearities especially at the transition between pat-
terns suggesting that transient effects, which appear as the 

vegetation reorganizes into a different pattern, are respon-
sible for the increased temporal autocorrelation and variance 
(Dakos et al. 2011). Interestingly, these spikes of variance 
and indicators at the border between changing patterns were 
the strongest when estimated at the early parts of simulated 
timeseries (5–15 years) during which vegetation transient 
dynamics have not yet faded out. The expected equilibrium 
for a given amount of rainfall becomes especially sensitive to 
disturbances at the transitions between vegetation patterns, 
when transients towards the stationary pattern configuration 
get longer. In theory, in the absence of any transient there 

Figure 3. R elationships between temporal indicators (autocorrelation and variance) of average vegetation density with rainfall and with 
spatial skewness of vegetation density based on model simulations. Different colors represent different temporal intervals (all 15 years long) 
that the indicators were estimated. Specifically, these intervals correspond to the 15 first years of the 30 year long simulation (5–20 years 
blue line), to the middle 15 years (10–25 years red line), and to the end 15 years (15–30 years, green line). Lines are the 50th percentiles 
derived from 100 iterations whereas the shaded area covers the 5th and 95th percentiles. Hatched regions mark the transition between 
vegetation patterns (gaps->labyrinths->spots). Insets represent examples of simulated patterns with spotted (yellow), labyrinthine (blue) 
and gapped (green) vegetation patterns. Note the different limits of skewness between patterns to the limits in Fig. 2 are due to differences 
in the criteria to identify patterns in modeled and empirical data (Methods).
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should be only an increasing trend for temporal autocorrela-
tion and decreasing for variance (removing a linear trend of 
vegetation density in the short term simulations (Supporting 
information) confirms this expectation). But in reality varia-
tion in rainfall or other sources of disturbances would cre-
ate such transients and lead to reconfiguration to vegetation 
patches and longer transients (Bastiaansen et al. 2018). 
Rainfall intermittency (or seasonality) has been theoreti-
cally studied in models with patterned vegetation and shown 
that the long term dynamics remain qualitatively the same 
(Kletter et al. 2009). Yet, the transient dynamics of vegeta-
tion in these systems unfold very slowly. The influences of 
stochasticity and more realistic complex dynamics increase 
the likelihood, and possibly the temporal extent, of transient 
dynamics (Hastings et al. 2018). The non-linear relationships 
found in the empirical remote-sensing indicators suggest that 
transient dynamics occur in these ecosystems, but it remains 
unclear how slowly vegetation responds to rainfall and how 
slowly regular patterns reorganize in particular. Previous 
work showed that feedbacks between rainfall and land could 
lead to slow changes in pattern morphology that could take 
up to 5 years (Konings et al. 2011), while estimates in Niger 
suggest it could take decades (Barbier et al. 2014). This pace 
of response is critical information as delayed responses might 
result in unrecognized regime shifts, yet might borrow time 
to reverse them (Hughes et al. 2013, Staver et al. 2019).

Although the overall patterns in empirical data and simula-
tions are qualitatively similar, the humps in the empirical data 
do not fully match those of the model simulations, which could 
have several explanations. First, the model lacks realism in the 
variation of rainfall (lack of extreme events and the alteration 
of wet and dry periods). Rainfall variation might introduce 
strong lags and transient dynamics. We can imagine a long 
period of dry years to inflict very slow dynamics even in the 
presence of intermittent rainfall if vegetation biomass is already 
low. On the other hand, a long dry period in the case of inter-
mediate vegetation biomass may induce fast changes followed 
by fast or slow recovery depending not only on the duration 
but also on the intensity of rainfall. Furthermore, seasonality 
or other sources of disturbances including those of human ori-
gin (Barbier et al. 2006, Gowda et al. 2016), as well as hetero-
geneity in the landscape are not part of the model. This could 
result in additional variation in the empirical data. Second, if 
transient dynamics are indeed responsible for the humps in 
the data, as suggested by the model simulation, the quantified 
spatial skewness and corresponding vegetation patterns would 
represent historical conditions and cause additional noise 
across the rainfall and skewness gradients. Using the same veg-
etation pattern classifications, Deblauwe et al. (2011) observed 
that spotted patterns did not disappear even during prolonged 
drought spells, suggesting serious time-lagged vegetation 
responses to climate variations or transients. Still, deviations 
from theoretically expected patterns in empirically measured 
resilience indicators have been reported elsewhere. Long-term 
pulse-perturbation experiments to test threshold dynamics in a 
Chihuahuan Desert grassland showed that pattern-based early-
warning indicators might be of little added value relative to 

simple cover measurements (Bestelmeyer et al. 2013). More 
recently, prior to the transition from a bare to a grass cover 
state in a Chinese dryland ecosystem, weak signatures of critical 
slowing were found, but a rising variance was reported prob-
ably due the stochastic nature of the transition (Chen et al. 
2018). More strikingly, theoretical work argues that changes 
in spatial patterns might not be consistent with critical slow-
ing down indicators in systems with irregular pattern forma-
tion (Sankaran et al. 2019). These discrepancies imply that the 
measurement and interpretation of pattern-based and critical 
slowing down indicators is context-dependent (Dakos et al. 
2015) and needs to be further explored.

Conclusion

This study suggests that spatial vegetation patterns in Sudan 
indeed indicate the responsiveness of plant biomass to changes 
in climate, as predicted by theoretical models. However, the 
possibility that transient dynamics are important in these dry-
land ecosystems might make regular vegetation patterns of 
limited use for management in anticipating critical transitions 
if the transients are sufficiently long. Future work should aim 
to better understand transient dynamics in regular vegetation 
patterns in dryland ecosystems, because forecasting critical 
transitions without considering transients may give mislead-
ing conclusions that could hamper appropriate interference.
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