
Modeling the competition between multiple Automated Mobility on-
Demand operators: an agent-based approach
Wang, S.; Homem de Almeida Correia, G.; Lin, H.X.

Citation
Wang, S., Homem de Almeida Correia, G., & Lin, H. X. (2022). Modeling the competition
between multiple Automated Mobility on-Demand operators: an agent-based approach.
Physica A: Statistical Mechanics And Its Applications, 605.
doi:10.1016/j.physa.2022.128033
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3515691
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3515691


Physica A 605 (2022) 128033

r
M
t
i

r
o

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Modeling the competition betweenmultiple Automated
Mobility on-Demand operators: An agent-based approach
Senlei Wang a,∗, Gonçalo Homem de Almeida Correia b, Hai Xiang Lin a,c

a Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
b Department of Transport and Planning, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
c Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands

a r t i c l e i n f o

Article history:
Received 23 February 2022
Received in revised form 31 July 2022
Available online 12 August 2022

Keywords:
Emerging urban mobility
Automated vehicles
Operating strategies
Future scenarios
Multinomial logit
Agent-based modeling

a b s t r a c t

Automated Mobility-on-Demand (AMoD) systems, in which fleets of automated vehi-
cles provide on-demand services, are expected to transform urban mobility systems.
Motivated by the rapid development of AMoD services delivered by self-driving car
companies, an agent-based model (ABM) has been developed to study the coexistence
phenomena of multiple AMoD operators competing for customers. The ABM is used
to investigate how changes in pricing strategies, assignment methods, and fleet sizes
affect travelers’ choice of different AMoD services and the operating performance of
competing operators in the case-study city of The Hague, in the Netherlands. Findings
suggest that an optimal assignment algorithm can reduce the average waiting time by up
to 24% compared to a simple heuristic algorithm. We also find that a larger fleet could
increase demand but lead to higher waiting times for its users and higher travel times for
competing operators’ users due to the added congestion. Notably, pricing strategies can
significantly affect travelers’ choice of AMoD services, but the effect depends strongly
on the time of the day. Low-priced AMoD services can provide high service levels and
effectively attract more demand, with up to 64.7% of customers choosing the very early
morning service [5:30 AM,7:20 AM]. In the subsequent morning hours, high-priced
AMoD services are more competitive in attracting customers as more idle vehicles
are available. Based on the quantitative analysis, policies are recommended for the
government and service operators.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Automated Vehicles (AVs) offer a unique opportunity for changing urban mobility in the future. Combining AVs with
ide-hailing technology creates the chance for a paradigm shift in urban mobility systems. A transition to Automated
obility-on-Demand (AMoD) systems for both people and goods is actually already underway. Given the strong possibility

hat there will be widely available AMoD services in the future, various studies have investigated the impacts of
ntroducing AMoD systems into cities [1,2].

The emerging AV industry can be described as a marketplace where no single organization has enough influence and
esources to dominate the entire market. In a future urban mobility system, it will be natural that fleets of SAVs will be
perated by different AMoD companies to meet mobility needs in urban areas. Current research focuses on exploring the
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mpact of AMoD services performed by a single operator and ignores the study of AMoD systems with multiple operators
ompeting for customers in urban areas. This paper aims to develop a new agent-based model (ABM) for future AMoD
ystems that are characterized by multiple competing operators in the same urban area. Notably, we explore the potential
f operating strategies (e.g., fleet sizes, assignment strategies, pricing strategies) on travelers’ choices through scenarios
nd a case study.
The remainder of the paper is structured as follows. Section 2 provides the current state of research on modeling

rban AMoD systems, emphasizing supply and demand interactions. Section 3 describes the modeling rationale. A detailed
escription of the model implementation and its application is presented in Section 4. Section 5 provides an analysis of
he results of applying the model to the case study city of The Hague in The Netherlands. In Section 6, we discuss the main
indings and provide recommendations for different stakeholders. The main conclusions are drawn in the final section,
nd future research directions are discussed.

. Background

.1. Modeling single-operator AMoD systems

Burns et al. [3] examined the cost and operating performance of AMoD systems to serve the existing travel demand
atisfied by private vehicles. They found that AMoD systems are compelling because they could provide mobility services
ith shorter waiting times and low operating costs. Fagnant and Kockelman [4] investigated the travel and environmental

mplications of AMoD systems using exogenous demand. Their findings indicated that Shared Automated Vehicles (SAV)
ould improve vehicle utilization and reduce negative environmental impacts. Several works focused on the operational
fficiency of AMoD systems and gave insights into the operational aspects of parking, relocation, charging, dispatching,
nd routing [5–9]. Wang et al. [10] investigated the travel and energy impacts of forming platoons in an urban AMoD
ystem. Some studies have provided an assessment of operating AMoD systems when combining public transportation
ptions [11,12]. Modeling frameworks in the above studies use either static demand imposed for AMoD systems or
xogenously determined modal share for the AMoD service and public transportation options. Therefore, the behavioral
esponse to the level of AMoD services is usually not captured.

.2. Modeling single-operator AMoD systems in the presence of public transportation options with endogenous demand

More recent research explicitly models the supply and demand interaction when studying AMoD systems in the
resence of public transportation options. Attention is given to how travelers dynamically choose their transport mode
n response to the performance of the different transport services.

Chen and Kockelman [13] have incorporated different fare schemes in the mode choice model to examine the impact
f electric AMoD service pricing strategies on mode share and fleet performance. Bösch et al. [14] provided a cost-
ased analysis of AMoD services. The study by Bösch et al. [14] considered user-case-specific preference for modes of
ransportation. The mode choice was determined according to the operating cost of the AMoD service. Pinto et al. [15]
ormulated a modeling framework to solve the problem of redesigning a bus network while introducing an AMoD service.
he modal share for the AMoD service and the bus service was determined endogenously, based on the bus service’s
requency and the AMoD fleet’s performance. Wen et al. [16] formulated a modeling framework to evaluate an integrated
MoD and public transportation system in which shared-use AVs provide a connection service to rail stations in low-
ensity areas. The modeling framework captured the changes in travelers’ behavior in response to the operating policies.
andl et al. [17] proposed a new simulation framework for AMoD systems that focuses on asynchronous approaches
o computing decisions for a fleet operator in serving demand. The asynchronous framework is used to address the
rade-off between computational complexity and policy optimality of operators. Narayan et al. [18] studied the problem
f combining scheduled and fixed-route transit systems with AV fleets, where AVs provide either connection service
o transit services or direct door-to-door services in a demand-responsive fashion. Using the MATSim framework, the
emand for transit services, exclusive AV services, and integrated AV-transit systems was endogenously determined.
h et al. [19] examined the impact of introducing AMoD systems into the existing transportation system in Singapore
hrough SimMobility, which was an integrated agent-based and activity-based simulation framework. The responsiveness
f demand to the change in the fleet supply and operations was explicitly modeled. Hörl et al. [20] simulated AMoD
ystems in a multimodal transportation system in Zurich using MATSim. The proposed modeling framework can model
he customers’ response to the level of service attributes (waiting time and price). In particular, their study proposed a
ost-covering pricing scheme for the AMoD fleet. The relationship between AMoD demand (served requests) and fleet
ize was established under the constraint of providing a cost-covering AMoD service.

.3. Modeling single-operator MoD or carsharing systems considering the supply–demand interaction

The works discussed above are directly related to the application of AMoD systems. Similar studies have been
onducted to investigate the impacts of introducing mobility-on-demand (MoD) and carsharing systems in urban mobility
ystems while considering the supply–demand interaction.
2
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Vasconcelos et al. [21] presented a cost–benefit analysis method to analyze and compare the performance of one-way
carsharing systems with and without vehicle relocation in the presence of private transport (private cars and motorcycles)
and public transport. To simulate the behavioral response to the different transport modes, a discrete choice model was
incorporated to allocate travelers to the transport modes in the city of Lisbon. One of the findings suggested that the
use of electric vehicles in one-way carsharing systems can achieve environmental benefits, while vehicle relocations can
counteract the environmental benefits due to the additional relocation kilometers. Lu et al. [22] proposed an optimization
model to examine the effect of pricing and vehicle relocation strategies on the performance of one-way carsharing systems,
taking into account the competition with private cars. A logit model was incorporated into the optimization method to
calculate the probability of the alternative choices. Findings suggested that combining a vehicle relocation strategy with
a strategy of varying prices depending on vehicle stock can effectively balance the trade-off between the operator’s profit
and travelers’ cost. Djavadian and Chow [23] developed a modeling framework to incorporate an agent-based day-to-day
adjustment process for both an MoD operator and travelers. In the modeled two-sided transportation market, travelers can
adjust their behaviors to choose a transport service, while the MoD operator can adjust the service offered using within-
day operating policies and day-to-day fleet size policy. The modeling framework was applied to a first/last mile problem
with an emphasis on testing the sensitivity of within-day operating policies and fare price. Liu et al. [24] developed a
framework to model the customers’ choice for MoD systems in the multimodal transportation system aiming to optimize
MoD fleet size and fare.

2.4. Modeling multiple-operator MoD systems with exogenous demand

In all the above studies on AMoD, MoD, and carsharing systems, the services are assumed to be managed by a single
operator. The phenomena associated with the coexistence of multiple AMoD operators are overlooked.

With the rapid growth of the ride-hailing market, multiple commercial MoD companies (e.g., Uber, Lyft, and Didi
Chuxing) are operating their services simultaneously with other companies. Séjourné et al. [25] studied the overall sys-
tem’s efficiency in a situation where multiple MoD platforms coexist and independently manage vehicles to meet a fixed
demand. Pandey et al. [26] presented an optimization-based approach to study cooperative and competitive assignments
between multiple ridesharing operators. The proposed assignment method solved the coordinated assignment problems
in multiple-operator situations without lowering the level of service compared to a fully centralized assignment. The
modeling framework quantified the impact of customer preference on assignment results with varying percentages.
Kondor et al. [27] quantified the cost of adding more vehicles to serve demand when the market is segmented in the
urban mobility system. They compared the cost of non-coordinated urban MoD systems with multiple operators to the
cost of operating the vehicle fleet by a single operator for different cities. Their findings suggest that the total fleet needs
to be increased by up to 67% to serve the given demand in non-coordinated urban MoD systems.

Despite the fact that AMoD systems are analogous to MoD systems, both of which rely on ride-hailing technology,
underneath, the two systems differ because of the adoption of AV technology in AMoD systems. First, automation is
expected to lengthen vehicle lifespan and lower maintenance requirements, leading to a reduction in operating costs
[28]. The elimination of drivers can further reduce the operating cost in AMoD systems [14]. Second, vehicles in AMoD
systems can be fully controlled by the fleet management center and made to comply with the management’s decisions.
Therefore, efficient operations related to vehicle dispatching and routing can be performed without drivers interfering
[29,30].

2.5. Research limitations in the literature

To our best knowledge, the phenomena associated with the coexistence of multiple AMoD operators competing for
customers are overlooked. There is no modeling framework to study this phenomenon in the current literature, and
insights into how to develop effective operating strategies by AMoD operators competing for customers are lacking.

We are aware of studies that model MoD systems with multiple operators (analogous to AMoD systems) using
analytical methods (as referred to above). However, the development of analytical methods in existing studies has
limitations. Analytical methods do not capture the network congestion effect while multiple MoD operators provide
demand-responsive services in a shared road network. Moreover, the mode choice behavior of the travelers is not
considered. Therefore, the competition between MoD operators for customers is not modeled realistically. Furthermore,
the impact of operating policies (fleet size, fare price, and vehicle-to-passenger assignment) on the level of service as well
as demand (travelers’ choice decision) in multiple-operator systems is not examined.

Agent-based modeling can overcome the shortcomings of analytical methods identified in the existing literature [31–
33]. Agent-based techniques can model a system with a high level of detail (e.g., travelers’ behavior), leading to a high
model resolution. Moreover, agent-based modeling can realistically represent multiple interactions between multiple
entities (e.g., vehicle-to-vehicle and vehicle-to-traveler interactions or the effect of operating strategies of an operator
on the system performance of competing operators) with a modular design. Furthermore, it is easy to make changes
to the model assumptions and specifications (e.g., operating strategies) given the flexibility of this modeling approach.
Therefore agent-based modeling is well suited to our study on modeling urban AMoD systems characterized by multiple
entities and multiple facets of interactions between entities.
3
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.6. Research contributions

Inspired by multiple MOD operators and motivated by the rapid development of AMoD solutions by self-driving
ar companies (e.g., Waymo, Baidu, Mercedes-Benz), an Agent-Based Model (ABM) has been developed for modeling a
ew multiple-operator AMoD system in which operators competes for customers. Notably, we take advantage of agent-
ased modeling to address the identified limitations of analytical methods. To achieve this, the developed ABM with a
odular architecture consists of a demand component, a fleet service management component, and a traffic management
omponent.
The main contributions of this paper are summarized into four main points:
The first is that an endogenous demand model is developed to represent the behavioral response of travelers to the

evel of service of AMoD operators. That is, a multinomial logit (MNL) model is used to calculate the choice probability in
hich utility is a function of service attributes. The MNL model is incorporated into the agent-based modeling framework
o determine the AMoD service choices of travelers. The behavior of individual requests is simulated with high-level detail,
eading to a high spatial and temporal model resolution.

The second is that in the AMoD service simulation, we explicitly model the interaction between vehicles operated by
MoD operators and their customers. An advanced vehicle-to-passenger assignment algorithm is designed to match the
vailable vehicles of an AMoD operator with incoming travel requests.
The third is that we implement a mesoscopic traffic simulation model, in which link and node movement rules

re defined, into the agent-based modeling framework. In this respect, we do not contribute to the traffic models but
ormulate a framework that accounts for the network congestion effects of all SAVs operated by different AMoD operators.
n this way, the levels of services provided by different operators to all the morning commuters can be measured while
onsidering the impedance on the road network.
The final main contribution is that future service scenarios of multiple-operator AMoD systems are proposed and

odeled for the case-study city of The Hague in The Netherlands. We perform simulation experiments for competition
cenarios to study the impact of operating strategies (fleet sizes, assignment methods, and pricing schemes) on the
ehavioral response to different AMoD alternatives. Notably, we explore how behavioral choices affect the performance
f competing AMoD operators.

. Model rationale

The following are the main ABM assumptions:

• The AMoD system are studied for morning peak commuting scenario in an urban area.
• There are three operators in the study area. Vehicles managed by their respective operators provide on-demand

mobility solutions between service points (centroids) over the network.
• In replacing all private car trips with SAVs, travelers can remain unserved when there are no vehicles available. We

assume that the unserved clients will use private cars. These private cars are considered in road traffic but are not
included in the mode choice model. This is because private car trips affect road traffic, which may contribute to road
congestion. Moreover, the utility of the private car mode is assumed to be considerably lower when compared to the
AMoD services which benefit from the elimination of the driver, improved operating efficiency with fully controlled
movements, and parking cost because of continuous operation to serve subsequent trips.

• Travelers cannot cancel services after they have been assigned vehicles.

.1. Model overview

The modeling framework with three main components is presented in Fig. 1. The demand component includes a
emand generator and a mode choice component. The demand generator is used to generate individual travelers with
patial and temporal attributes. The decision-making mechanism for travelers is considered by incorporating the mode
hoice component into the agent-based framework; the mode choice component allocates the time-dependent requests
rom the travelers to the different AMoD services according to the level of service attributes. Therefore, in reality, it is a
ervice choice module since the mode is the same. Price with other choice attributes (i.e., out-of-vehicle waiting time and
n-vehicle travel time) that can be measured in the simulation is incorporated into the discrete choice model in which
ravelers’ preferences toward AMoD services are decided.

A centralized traffic management center that consists of a traffic simulation component and routing component is
esigned. It can determine the current state of network conditions and inform the different SAVs which route to take.
hese routes are computed at two moments: toward picking up a client and traveling with a client to his/her destination.
he traffic management center has full knowledge of the network and traffic conditions. Therefore, we envision a system
hereby the traffic operator will provide the routing information to AVs in a centralized manner independently of how
any companies are providing AMoD services.
In the fleet management center, the vehicle-to-passenger assignment component is responsible for matching incoming

equests of travelers with the available vehicles of an operator. The interaction between individual vehicles and individual
4
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Fig. 1. The conceptual simulation framework for multiple operators.

travel requests for each operator is explicitly captured in the vehicle-to-request assignment process; thus, the model
framework has the capability of evaluating the impact of SAVs which can be measured with different key performance
indicators such as the empty movements to pickups clients. In the following sections, detailed descriptions of the functions
of each component are given.

3.2. Mode choice component

Demand (travel requests) is determined endogenously for competing AMoD operators. Requests of the travelers are
allocated to different AMoD operators by the mode choice component. The AMoD system studied in the application in
this paper comprises three operators, each of which operates a fleet of SAVs. In this section, we will use this example
to further explain the mode choice. The three AMoD operators provide direct door-to-door service to the public. That is,
customers can access the service offered by any operator. Naturally, the choice sets of individuals have three alternatives.
The probability of choosing a specific AMoD alternative is calculated based on an MNL model. In the MNL model, the
probability of an individual k choosing an AMoD alternative i is assumed to increase monotonically with that alternative’s
systematic utility Vi.

Important alternative-specific attributes for AMoD services are waiting time, travel time, and fare, all reflecting the
evel of service offered by the AMoD operators. The systematic utility is expressed as a linear function of out-of-vehicle
aiting time wi, in-vehicle travel time (IVTT) ti and out-of-pocket cost fi associated with the service usage of operator i.
he expected systematic utility Vi for the AMoD operator i can be formulated as follows:

Vi = V (wi) + V (ti) + V (fi) (1)

The alternative i with the highest utility will have the highest probability of being chosen by customer k relative to
other travel options (the other two AMoD services in this case).

The probability of choosing alternative i for an MNL is described by the logit expression:

Pr (i) =
exp (Vi)∑3 (2)

i=1(exp(Vi))

5
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.2.1. Discomfort of the out-of-vehicle waiting time for a vehicle V (wi)

The first component V (wi) of the utility describes discomfort of the out-of-vehicle waiting for the vehicle of the chosen
perator i. The waiting time includes the time spent in the waiting queue where requests are waiting for being assigned
vehicle and the time spent waiting for the arrival of the pickup vehicle. The former is defined as the assignment time,
hile the latter refers to the expected pickup time. In this study, the expected assignment time wa is formulated as a

unction of the number of requests on the waiting list to be assigned. The expected pickup time wp is estimated based
on the vehicles’ availability.

wa = ϕ ∗ m (3)

wp = tmax

(
Ni − ni

Ni

)
(4)

V (wi) = −(α ∗ VOTTAMoD) ∗ wa − (α ∗ VOTTAMoD) ∗ wp

= −(α ∗ VOTTAMoD) ∗ (ϕ ∗ m) − (α ∗ VOTTAMoD) ∗

(
Ni − ni

Ni

)
∗ tmax (5)

Where,
wa is the expected assignment time.
wp is the expected pickup time.
ϕ is the average assignment time for individual requests. The average assignment time is computed through multiple

simulation runs.
m is the number of requests on the waiting list.
tmax is the maximum pickup time, which is computed based on the maximum searching distance. Idle vehicles within

a searching radius are considered to be available vehicles. The radius is defined as the maximum distance from a request
to the available vehicles. We use the radius to estimate the maximum pickup time.

ni is the number of idle vehicles of operator i. Note that travelers are allocated among operators based on the number
of idle vehicles, while travelers are only served by available vehicles.

Ni is the total number of vehicles of operator i.
α is the multiplier that reflects the inconvenience and discomfort of time spent outside a vehicle.
VOTTAMoD is the monetary value of the travel time for AMoD mode. The monetary value of out-of-vehicle waiting time

can be estimated using the multiplier α and the monetary value of travel time (VOTTAMoD). This should typically be a value
reater than 1.

.2.2. Disutility of in-vehicle travel time V (ti)
The second component V (ti) of this utility function models the cost of IVTT in AMoD vehicles. The cost of IVTT depends

n the IVTT and VOTT in AMoD vehicles.

V (ti) = −si ∗ VOTTAMoD (6)

Where,
sik is the expected travel time for the OD of user k.

.2.3. Disutility of fare V (fi)
The third component V (fi) of this utility function regards the fare for the AMoD service. Fare is the out-of-pocket cost

f a customer k of the chosen operator i. In this study, the fare is structured by a base fare, a distance-based fare, and a
ime-based fare for a single ride.

V (fi) = −ε ∗ η ∗ (c + m ∗ dik + n ∗ sik) (7)

here,
η is the saving factor for AMoD services relative to an existing MoD service (we are using the UberX fare structure as

reference in the case study).
c is the base fare for MoD services.
m is the distance-based fare for MoD services.
n is the time-based fare for MoD services.

ε is the controlling factor of a pricing strategy.

6
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Regarding the pricing strategies, two different pricing schemes will be considered in the modeling framework to
analyze the service uptake and operating performance of the AMoD fleets.

The first pricing strategy refers to a discount pricing strategy where users can access the service of a specific AMoD
operator at a discounted rate. A percentage-based discount is implemented on the service offered by the operators. A 20%
discount on the fares in relation to the baseline AMoD pricing is tested.

In the second pricing strategy, the fare of a specific operator is estimated according to the vehicle availability and
future demand in an area (TAZ: Traffic Analysis Zone) where travelers request AMoD services. A rule-based supply–
demand balancing pricing strategy aims to encourage travelers to use AMoD services when the vehicle supply is high
and discourage travelers from using AMoD services when there is a vehicle shortage. The parameter ε follows the work
uggested by Chen and Kockelman [13].

ε =

⎧⎨⎩
0.5, pav ∗ pad < 0.1
1, 0.1 < pav ∗ pad < 10
2, 10 < pav ∗ pad

(8)

here
pav is the proportion of the total number of available vehicles in the study area to the number of available vehicles

n the origin TAZ of the incoming travel request. A larger value of pav suggests few available vehicles in the origin TAZ
here a request is made compared to the other TAZs, while a smaller value means more vehicles available in the origin
AZ.
pad is the proportion of the anticipated demand that will be generated in a TAZ (origin) to the anticipated demand

n the entire study area. A larger pad means a high volume of requests in a TAZ, while a smaller value indicates fewer
equests are made in a TAZ compared to the other TAZs. It is noted that the anticipated demand is the number of travel
equests in the subsequent time interval. Individual travel requests in the subsequent time interval are not generated, but
he anticipated number of travel requests is calculated.

.3. The interaction between vehicles and travelers for each AMoD company

In AMoD systems, decisions on assigning vehicles to serve travel requests are made immediately. The behavior of
ravelers and vehicles is further depicted in Fig. 2. The assignment component knows the current vehicle locations and
scertains the states of all of them: upon receiving a trip request, it determines which vehicles in the fleet are able to
each the customer. Once the assignment has been done, the information on travelers’ locations is sent to the assigned
ehicles and the traveler is notified about the vehicle details. The assigned vehicle will transition from the idle to the
n-service state when arriving at the traveler’s origin location, while the state of a traveler will transition from ‘‘waiting
or the vehicle arrival’’ to ‘‘traveling in the assigned vehicle’’. Once a traveler is assigned a vehicle, the AMoD service cannot
e canceled. After reaching the destination location, the traveler switches to a served state. To avoid unrealistically long
ssignment times, travelers can remain unserved when there are no available vehicles and use a private car as referred
o in model assumptions.

Vehicle-to-passenger assignment strategies could influence the AMoD system performance in terms of service levels
e.g., waiting and travel times), the number of served requests, and VKT. Therefore, we developed an optimal assignment
lgorithm and a simple heuristic algorithm and aimed to demonstrate the effectiveness of the two methods in the
ultiple-operator AMoD system.
The optimal assignment algorithm is implemented to assign available vehicles to incoming travel requests. The method

an assign a group of available vehicles V = {v0, v1, . . . , vn} to bundled travel requests R = {r0, r1, . . . , rn} to minimize
he total pickup travel distance of the bundled travel requests.

For every travel request in the set R, the group of vehicles V is found by searching for the closest idle vehicles of
ach travel request in the set R. We construct the n × n cost matrix C where the element in the ith row and jth column
epresent the cost of assigning jth vehicle to the ith request. The cost cij is weighted by the Euclidean distance between
he location of each vehicle j and the origin of each traveler i. The closest idle vehicles can be assigned to serve the time-
dependent requests. However, cost varies depending on the vehicle-to-request assignment. The Hungarian assignment is
used to assign one vehicle in V to serve a travel request in R with the objective of minimizing the total cost (total distance
between vehicles and requests) [34]. It is noted that the size of bundled travel requests in R varies over time according
to the demand that coincides in the same time interval ∆t . The Hungarian algorithm described in Algorithm 1 is used to
deal with the minimum cost assignment problem.

In addition, a simple heuristic algorithm for the request-to-vehicle assignment is also implemented in the modeling
framework. In the simple heuristic algorithm, each fleet operator assigns the closest available vehicles within a search
distance to serve travel requests. The real-time SAV assignment decision of fleet operators is based on the Euclidean
distance. Priority is given to trips that request the service earlier.
7



S. Wang, G.H.d.A. Correia and H.X. Lin Physica A 605 (2022) 128033

r
f
l

r
d
c
l
s

a

Fig. 2. The interaction between individual vehicles and individual travelers.

3.4. A mesoscopic traffic simulation and route calculation

The vehicle–passenger assignment component that we have explained assigns available vehicles to serve travel
equests, but there is a need to compute routes between locations. The vehicle routing component is responsible
or providing time-dependent shortest routes between two locations, such as the current vehicle location and pickup
ocations, the pickup location, and the drop-off location.

The routing component in the centralized traffic management center can utilize the static and dynamic information
elating to the road lengths and traffic conditions provided by the traffic simulation component to calculate the time-
ependent shortest routes between any two given points. Upon the assignment of an SAV to a traveler, the routing
omponent will compute the time-dependent shortest route from the current location of the assigned vehicle to the
ocation of the traveler using the Dijkstra algorithm. When the vehicle arrives at the pickup location, the time-dependent
hortest route from the traveler’s location to its destination will be obtained from the central traffic management system.
The mesoscopic traffic simulation model combines a microscopic level representation of individual vehicles (which is

lready present for the shared vehicles) with a macroscopic description of traffic patterns [35,36].The traffic simulation
8
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Fig. 3. Road network.

model includes both a link movement and node transfer step. The rules of link movement and node transfer will govern
the movement of individual vehicles operated by the different AMoD operators. Notably, individual vehicular movements
experience a speed calculated by a macroscopic speed-density relationship. The speeds of the vehicles are updated based
on the changed vehicle density on the road segments [10]. When the density d is less than the critical density dc , the
speed V can be calculated: V = v0

(
1 −

d
dj

)
. v0 is the maximum speed while respecting the urban speed limit, and dj

is the jam density. When the density d exceeds the critical density dc , the speed is calculated: V = γ

(
1
d −

1
dj

)
. γ is a

parameter that can be estimated as γ = v0dc from the requirement that v (d) should be continuous at the point d = dc .

4. Model application to the case-study city of The Hague, the Netherlands

4.1. Urban road network

The simulation model is developed in Anylogic proprietary modeling platform coded with Java programming language.
Fig. 3(a) displays the road network of the Zuidvleugel region. The tailored road network and the locations of centroids of
the TAZs used for the study are shown in Fig. 3(b).

Regarding the road attributes (free-flow speed, speed at capacity, and traffic capacity), the deployment of AVs has
not yet occurred in a city; therefore, there is no empirical data to calibrate the traffic-related parameters for automated
driving. We keep the attributes of different road types, such as urban roads, rural roads, and local roads, that come from
the original transport model, naturally based on existing human-driven vehicles [10].

The TAZs are not displayed in the model environment, but their centroids are used as the points for injecting requests
into the network. As depicted in Fig. 3(b), 49 nodes specified in yellow color are designed as the origins and destinations
of all the travel requests. All travelers are thus picked up from those service points and dropped off at the same service
point. These are also the locations where the vehicles stay idle, waiting for requests.

4.2. Demand data and fleet deployment

The total private transport demand in the region of Zuidvleugel (285 TAZs) is 270,050 trips by car in the morning
peak hours (5:30 AM to 10:00 AM). 27,452 trips happen within the boundaries of the selected study area of The Hague.
However, intrazonal trips are not modeled. Therefore, the generated effective requests amount to approximately 25,800.

The demand is distributed over 18 time intervals in the morning peak period, each of which has a temporal step length
of 15 min, starting from 5:30 AM to 10:00 AM. The OD matrix contains 2401 non-zero pairs between 49 TAZs. Fig. 4 shows
the departure time distribution. A demand generator generates individual travel requests based on aggregate travel data
(available in the form of an OD Matrix) and departure time. Individual requests are characterized by origin, destination,
and request time. Requests for each OD pair can be allocated among operators using a mode choice component.

Regarding fleet deployment, we denote the average number of vehicles of each operator i ∈ I = {1, 2, 3} at each
centroid (service point) as noi . The average is used because the fleet is proportionally distributed as a function of the
total demand of each centroid in the simulation period. We define N as the average number of vehicles deployed by all
operators in each centroid (service point) of the model. Then, we have the average total number of vehicles at a service
point given as N = n + n + n .
o1 o2 o3

9
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Fig. 4. The departure time distribution per 15 min of OD matrix.

4.3. Simulation parameters

Table 1 gives a summary of model parameters and case study characteristics for the base scenario. Regarding the
values of parameters in the MNL, the monetary value of out-of-vehicle waiting time is larger than the monetary value of
in-vehicle travel time. There is evidence that the out-of-vehicle waiting time multiplier is between 1.6 to 2.2 times the
in-vehicle travel time in the Dutch context [37,38]. In this study, the multiplier α is set to 2. That means the out-of-vehicle
aiting time is valued twice as much as the VOTT of the AMoD mode.
The VOTT inside AMoD is still uncertain, given the lack of experience with these vehicles. The VOTT in AMoD vehicles

s estimated based on VOTT in private cars and on the transit mode (bus, tram, and metro). In the Netherlands, the VOTT
n private cars mode and transit mode is valued at about 9.25 euros per hour and 7.75 euros per hour, respectively,
or commuting purposes [39]. Travelers in AVs can perform productive and leisure activities without having to drive in
rivate cars or having to stand in transit mode. VOTT in AMoD vehicles is supposed to be lower than in a private car
ode and transit mode for that fact. The value of IVTT in AMoD vehicles is valued at about a 35% reduction of the VOTT

n private cars [40,41]. In this study, VOTT in AMoD vehicles is valued at 6.01 euros per hour.
We are using the UberX fare structure that is active in the Netherlands. We consider a baseline pricing scenario, 60%

f the existing MoD. Then, we have η = 0.6 c = 1.4 euros, m = 1.2 euros per km, n = 0.26 euros per min in Eq. (7).
Regarding the valuation of the controlling factor ε that is used in pricing strategies, we have ε = 1.0 in the baseline

scenarios and ε = 0.8 when a 20% discount is tested. In the scenario where the supply–demand balancing pricing strategy
is applied, the value of ε is given through a step function in Eq. (8).

In relation to the vehicle type used in this study, carmakers (Renault UK, Toyota) are producing and marketing small
driving pods. The small vehicles can take up less road and parking space. Moreover, small-sized vehicles can save more
energy with reduced weight [10]. Hence, we assume that purposely designed small SAVs are suitable for urban mobility
applications, and could be available and affordable for future large-scale deployment.

The simulation model is run with a growing fleet size and one operator to find the fleet that serves 80% of all the
travel requests. This results in N = 60 vehicles as shown in Table 1. The model is also run for three operators where the
fleet is distributed equally (n_(o_1) = n_(o_2) = n_(o_3 )). Moreover, scenarios with vehicle increments for operator 1 are
simulated, each of which has an increment of ∆g (10 vehicles) per service point. In our results, we also show the average
performance of the three-operator system (named overall performance — OP) so that this can be easily compared to the
performance of a single operator. Ten simulation runs (replications) are performed for each scenario yielding average
results.

5. Results and discussion

We aim at generating insights into the competition between AMoD operators. The fleet sizes, pricing strategies, and
assignment strategies are factors that influence the level of service offered by competing AMoD operators. The mode
chosen by travelers is determined based on the levels of service which in turn affects the levels of service through
the usage of the system. Therefore, we examine how operating strategies affect the demand as well as the operating
performance.
10
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Table 1
A Summary of the model parameters for the base scenario.
Parameter/characteristics Value

Road segments 836
Road nodes 510
Total travel requests (Z) 25,800 trips
Service points (centroids)(denoted by s) 49
Fleet operators I {operator 1, operator 2, operator 3}
Vehicle assignment Time interval ∆t 20 s
The search distance for vehicle assignment 6000 m
The VOTT inside AMoD vehicles 6.01 euros per hour
The multiplier α 2
The controlling factor ε used in pricing strategies in the baseline scenario 1
The controlling factor ε used in pricing strategies in the discount pricing scenario 0.8
η is the saving factor for AMoD services 0.6
c is the base fare for MoD services. 1.4 euros
m is the distance-based fare for MoD services. 1.2 euros per km
n is the time-based fare for MoD services. 0.26 euros per min
Vehicle seat capacity 1 person (no pooling)
The number of vehicles per centroid at the beginning of the simulation (N) 60 vehicles (20 vehicles for each operator)
VOTT in AMoD vehicles 6.01 euros per hour
Vehicles increment of operator 1 per service point ∆g for sensitivity analysis 10 vehicles (e.g., 2 ∗ ∆g = 20 vehicles)

Table 2
Operating performance for different assignment strategies.
Demand levels 100% (25,800)

Systems Multiple-operator AMoD system with the simple
heuristic assignment

Multiple-operator AMoD system with the optimal
assignment

Operator 1 Operator 2 Operator 3 Overall
Performance
(OP)

Operator 1 Operator 2 Operator 3 Overall
Performance
(OP)

Fleet size no1 = no2 = no3 no1 = no2 = no3

Demand share 8606 8519 8675 25800 8600 8580 8620 25800
Avg. waiting time
(min)

8.11 8.32 8.45 8.29 6.29 6.23 6.37 6.30

Empty VKT (km) 11008 11216 11010 33234 9275 9244 9204 27723
Served requests 6897 6769 6957 20623 6874 6870 6981 20725
Unserved requests 1709 1750 1719 5177 1726 1710 1639 5075
Avg. travel time
(min)

20.17 20.46 20.46 20.37 20.12 20.17 20.64 20.31

Average in-service
time

28.28 28.78 28.91 28.66 26.71 26.40 27.01 26.71

5.1. Analysis of the competition scenarios: effect of assignment strategies on operating performance

Two different methods of assigning vehicles to passengers (a simple heuristic algorithm and an optimal assignment
lgorithm, as described in Section 3.4) are implemented and compared for the base scenario. As shown in Table 2,
ompared to the simple heuristic algorithm, the optimal assignment algorithm can reduce the average waiting time by
p to 2 min, which is a 24% reduction in the average waiting time of the overall AMoD system. The main reason is
hat the optimal assignment method can optimally match bundled requests with available vehicles to minimize the total
ickup distance for bundled requests. Simulation results show that the optimal assignment algorithm generates fewer
mpty vehicle kilometers traveled (VKT), resulting in a significant reduction of 5511 km for the morning hours than the
cenarios using the simple heuristic algorithm.
We also find that with the optimal assignment algorithm, the decline in the average waiting time leads to a reduction

n the average in-service time, including average waiting and travel times. Simulation results show that the average in-
ervice time is reduced by more than 1 min, which is a 3% reduction. Results also show that the optimal assignment
ethod slightly improves the system capacity in serving the demand (the number of served travel requests): there is a
light increase of 102 requests compared to the simple heuristic method. Therefore, the optimal assignment method is
sed in all scenarios in the following sections.

.2. Analysis of the competition scenarios: effect of fleet size

The simulation results in Table 3 show that travel requests shift drastically from operators o2 and o3 to operator o1
hen the number of vehicles of operator o increases compared to the base scenario of equal fleet size among operators.
1
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Table 3
Demand for different vehicle increments.
Demand level 100% (25,800)

Operators o1 o2 (no2 = 20 vehicles) o3 (no3 = 20 vehicles) OP

Vehicle increments of
operator o1 per
service point

Requests
for the
operator

Served
demand
(requests)

Requests
for the
operator

Served
demand
(requests)

Requests
for the
operator

Served
demand
(requests)

Total served
demand

Baseline: No vehicle
increment (no1 =

no2 = no3 = 20)

8565 6889 8553 6896 8682 6972 20757

no1 + 2 ∗ ∆g = 40 9759
(+13.94%)

8464
(+22.86%)

7990
(−6.58%)

6531
(−5.29%)

8051
(−7.27%)

6618
(−5.08%)

21613
(+4.12%)

no1 + 4 ∗ ∆g = 60 10859
(+26.78%)

9767
(+41.78%)

7546
(−11.77%)

6335
(−8.14%)

7395
(−14.82%)

6233
(−10.60%)

22335
(+7.60%)

no1 + 6 ∗ ∆g = 80 11845
(+38.30%)

11068
(+60.66%)

7031
(−17.79%)

6096
(−11.60%)

6924
(−20.25%)

5973
(−14.33%)

23137
(+11.47%)

no1 + 8 ∗ ∆g = 100 12841
(+49.92%)

12277
(+78.21%)

6420
(−24.94%)

5725
(−16.98%)

6539
(−24.68%)

5782
(−17.07%)

23784
(+14.58%)

no1 + 10 ∗ ∆g = 120 13707
(+60.04%)

13345
(+93.71%)

6058
(−29.17%)

5538
(−19.69%)

6035
(−30.49%)

5536
(−20.60%)

24419
(+17.64%)

Fig. 5. The relationship between total VKT and congestion levels.

The increases are done as referred in Table 1 with a value of ∆g of 10 vehicles. More demand chooses the operator o1 in
esponse to the added vehicle availability. It is suggested that demand for an operator can be significantly affected by the
leet size of competing operators. This is because a large fleet size increases the number of potentially available vehicles,
hich is a competitive factor in evaluating service levels and assigning vehicles to incoming travel requests.
Moreover, simulation results in Table 3 show that the total demand served by the urban multiple-operator systems

ises as the fleet size of operator o1 increases. This is due to the assumption that the urban private car demand is very
igh, and travelers can remain unserved when there are no available vehicles. A large fleet of operator 1 can increase the
verall number of available vehicles; thus, more demand (attracted from competitors and not served without available
ehicles) is served.
When the total demand increases, more VKT will be needed to serve increased demand, resulting in a more congested

oad network. We introduce the indicator of congestion level to evaluate the road traffic conditions. In the baseline
cenario, a 45.97% congestion level represents the additional 45.97% time required on average to travel from origin to
estination compared to the uncongested travel time. Fig. 5 illustrates the established relationship between the total VKT
nd congestion levels. We find that the total VKT in AMoD with multiple operators is growing as the fleet of operator o1
ncreases. Meanwhile, the congestion level is increasing with the rise in the total VKT. Compared to the baseline scenario,
7% more served demand (see Table 3) for the entire multiple-operator AMoD system leads to an 8.51% VKT increase,
eaching 174626 km in the 10 ∗ ∆g scenario, and the congestion level soars from 45.97% to 88.84% (Fig. 5).

The analysis of the waiting times is performed; we use the average waiting times, the 90% quantile of the distribution
f the waiting times and the 96% quantile of the distribution of the waiting times (Fig. 6). Take the 90% quantile of the
aiting times as an example: we are finding a waiting time where 90% of the trips are lower than that.
Given the demand results (requests for the service of an operator) (in Table 3), more demand shifts to the operator o1

hen its number of vehicles increases, while the demand for the service of the other operators (operator o and operator
2

12
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Fig. 6. Waiting time analysis.

o3) is reduced. Therefore, from the simulation results in Fig. 6(a), we can see that the average waiting times for travelers
choosing the service offered by operator o2 and operator o3 fall as the demand shifts to operator o1.

A large fleet size leads to low waiting times. The average waiting times of operator o1 decline with the increase in its
number of vehicles; however, there is an increasing trend in average waiting times of all served requests when the vehicle
increment is higher than 6 ∗ ∆g (60 vehicles per pickup point). Generally speaking, a larger fleet size could reduce the
average waiting times in scenarios where AMoD systems replace conventional bus services in a regional area or provide
feeder (first-mile or last-mile) services to complement public transit services. However, in a high-demand urban area,
a large fleet size may increase the average waiting time, according to our results. This is because the added demand of
13
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Fig. 7. Demand share for different AMoD operators for discount pricing.

operator 1 is not just brought from the other operators but also from the demand that was not being served before.
We found that more VKT are needed to serve the increased demand, resulting in a more congested road network. When
traffic moves at lower speeds on a congested urban road network, travel and waiting times of served travelers increase.
We found that some served requests experienced long waiting times as measured by an extreme value of 96% quantile
waiting time in the waiting time distribution. Simulation results in Fig. 7(b) show that the 90% quantile of the waiting
times of operator o1 decline and then level off as the vehicle fleet increases, while the 90% quantile of the waiting times
of operators o2 and o3 have a declining trend. Simulation results suggest that a few served travelers have long waiting
imes with a larger fleet size (i.e., in the vehicle increment scenarios of 10 ∗ ∆g) compared to operator 2 and operator
. Simulation results in Fig. 6(c) show that the 96% quantile of the waiting times of operator o1 declines and then rises
ignificantly in the scenarios with vehicle increments on the fleet. Surprisingly, the 96% quantile of the waiting times are
ound from simulation results at the level of 38.01 min, 74.30 min, and 96.65 min for the vehicle increment scenarios of
∗ ∆g , 8 ∗ ∆g , and 10 ∗ ∆g . Therefore, the larger fleet can serve more travel requests, but this leads to extremely long
aiting times for just a few travelers.
In the model, we assume that travelers cannot cancel their services after they are assigned vehicles. Based on this

ssumption, extremely long waiting times can be observed in the simulation results as congestion levels become higher
or some travelers.

Moreover, simulation results show that operator 1 serves more than 2.4 times more requests than operator 2 and
perator 3. Therefore, there are more requests served by operator 1 with long waiting times compared with operator
and operator 3. Average waiting times are easily affected by the extreme values of a few waiting times because they

nclude all the waiting times of all served requests.
Overall, one operator’s myopic increase in vehicle supply degrades everyone’s system performance due to added traffic

ongestion. We find that travel times for all travelers served by different AMoD operators increase significantly due to
orse congestion on the road network as the fleet of operator o1 grows. The increase in travel times reflects the reduction

n the quality of service across the entire AMoD system. The increase in the fleet size of an operator affects not only the
hoices available to the travelers and the operators’ levels of service in terms of average waiting travel times but also
he levels of service offered by the competing operators. Nevertheless, one should have in mind that more requests have
een satisfied with the increase in the vehicle fleet of one operator which is a positive outcome for the travelers.
14



S. Wang, G.H.d.A. Correia and H.X. Lin Physica A 605 (2022) 128033

s
s
f

5

c

c
l

F
t
o
b
p
t
c
v
F

t
s
m
n

m
f
w

a
r
t
o
o
s
a
t
i
t

o
c

Table 4
Operating performance for the discount pricing strategy.
Demand levels 25800 (100%)

AMoD system o1 o2 o3
Fleet size no1 = no2 = no3

Pricing strategies Discount pricing strategy

Served demand The number of served requests in [5:30 AM, 10:00 AM] 7457 6769 6744
The percentage of the number of served requests in [5:30 AM, 7:20 AM] 64.97% 21.08% 21.84%
Avg. waiting times (min) of trips in [5:30 AM, 10:00 AM] 2.90 6.33 6.16

Service quality The 96% quantile waiting times of trips in [5:30 AM, 10:00 AM] 7.06 11.01 11.57
Average time of trips in [5:30 AM, 10:00 AM] 14.29 29.86 29.95
The 96% quantile travel times of trips in [5:30 AM, 10:00 AM] 54.00 72.28 76.19

VKT Empty VKT (km) per trip in [5:30 AM, 10:00 AM] 1.86 1.81 1.80
Occupied VKT (km) per trip in [5:30 AM, 10:00 AM] 5.90 5.89 5.93

5.3. Effect of pricing strategies on service uptake and operating performance

In this section, we analyze demand changes in response to price changes using the discount pricing strategy and the
upply–demand balancing pricing strategy. In the context of multiple-operator AMoD systems, the two different pricing
trategies are applied to operator o1, while the other two operators (o2, o3) use the baseline pricing scheme where the
are is calculated based on travel time and distance.

.3.1. Discount pricing strategy
We study the effect of the discount pricing strategy on attracting customers in the morning hours. A closer look at the

hart in Fig. 8 shows that the volume of requests for the different AMoD operators changes at different rates over time.
In the very early morning hours ([5:30 AM, 7:20 AM]), we find that the discount pricing strategy used by operator o1

an significantly impact the choice made by travelers. Simulation results in Fig. 7 show that more travelers choose the
ow-price service of operator o1, it is about triple the number of users of operator o2 or operator o3 at 7:20 AM.

Intuitively, a lower fare can attract more customers. However, in the morning period [7:20 AM, 8:20 AM], we see in
ig. 8 that the increase in the number of travelers choosing the service of operator o1 slows down, while a large number of
ravelers choose the service of operator o2 and operator o3 who offer a regular price service. This is related to the volume
f travel requests as well as the number of available vehicles. Because more travelers choose the low-price services offered
y operator 1 in the very early morning [5:30 AM, 7:20 AM]. Hence, more vehicles are transporting travelers from place to
lace on the road network (see Fig. 8). As a result, fewer vehicles are available for subsequent travelers. A high volume of
ravel requests between 7:20 AM and 8:20 AM continue to request rides; accordingly, travelers choose the service of the
ompeting operators (operator o2or operator o3) in the early morning. Meanwhile, we see that the number of in-service
ehicles of operator o1 declines while the number of in-service vehicles of operator o2 and operator o3 rises sharply (see
ig. 8).
In the mid-morning period [8:20 AM, 10:00 AM], the same increasing rate of users is observed for all three operators,

wo of which are offering a regular-price service. Simulation results in Fig. 7 indicate that the number of users increases
imilarly for all operators, by about 3300. This suggests that the discount pricing strategy has no advantage in attracting
ore demand at this time of day, ceteris paribus. For the same time, simulation results in Fig. 8 indicate that the total
umber of vehicles driving on the network is at the highest level, which could lead to bad traffic conditions.
By analyzing the demand for different AMoD operators as well as the in-service vehicles over time, we found that

ore requests are served in the very early morning when fewer vehicles are driving on the network, while the demand
or operator o2 and operator o3 is high in the next period, when many vehicles are driving on the road network. Hence,
e infer that the discount pricing strategy can strongly affect service levels related to waiting and travel times.
Regarding the service levels in terms of waiting time and travel times, the operator that offers the discount can provide
service with shorter waiting and travel times than the regular-price services of the other operators. The simulation

esults in Table 4 show that the average waiting and travel times of operator o2 and operator o3 are more than double
hose of operator o1. The 96% quantile waiting time of operator o1 is located around 7.06 min, while operator o2 and
perator o3 have a larger 96% quantile waiting time of about 11 min. The 96% quantile travel times of operator o2 and
perator o3 are significantly larger than that of operator o1. The reason for this is that up to 64.7% of the travel requests
erved by operator o1 are in the very early morning [5:30 AM,7:20 AM] when fewer vehicles are driving on the network,
s shown in Fig. 8. We also see that the number of in-service vehicles from operator o2 and operator o3 is much higher
han that of operator o1 in the early morning [7:20 AM, 8:20 AM] and mid-morning hours [8:20 AM, 10:00 AM]. This
ndicates that the users of the services of operators o2 and o3 are transported at a time when the number of vehicles on
he road is the highest. This leads to increased waiting and travel times of operator o2 and operator o3.

Given the simulation results, we can infer that the discount pricing strategy should be dynamically changed in multiple-
perator AMoD systems. It is suggested that providing low-priced services becomes less effective in attracting more
ustomers to use an operator’s service when the demand is high and competing operators have fewer vehicles in use.
15
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Fig. 8. The number of busy vehicles circulating across the road network for discount pricing.

Therefore, careful consideration is required when planning to apply flexible discount pricing strategies under certain
demand scenarios.

5.3.2. Supply–demand balancing pricing strategy
Regarding the simulation scenario related to the supply–demand balancing pricing strategy, the simulation results in

Fig. 9 suggest different demand shares in AMoD services offered by the different operators, where one of them (operator
o1) applies the supply–demand balancing pricing strategy. Results show that the number of requests for the service
provided by operator o1 levels off in two periods, namely, [7:00 AM, 7:20 AM] and [7:35 AM, 7:50 AM]. The supply–
demand balancing pricing strategy can raise the price according to the relationship established between anticipated
demand and available vehicles. In this situation, competing AMoD services become viable travel options. Instead of
choosing the high-priced service, customers use the regular-priced service. Simulation results indicate that the number
of travelers who use the services of another operator (o2, o3), instead of the service provided by operator o1, increases
apidly. As shown in Fig. 10, the number of in-service vehicles of operator o1 falls rapidly, while the number of the other
operators’ vehicles engaged in transporting customers increases.

Subsequently, we find that more and more travelers choose operator o1. Eventually, the number of customers choosing
the services of any of the three operators is approximately the same. It is suggested that the high-priced service can
be competitive in attracting travelers when a large number of subsequent travelers request rides. This is because more
vehicles of operators o2 and o3 are in service to transport customers from place to place as the demand for their service
grows. When more vehicles are in use, fewer vehicles of regular-priced service provided by operators o2 and o3 are
available for subsequent trips. Therefore, travelers choose the high-priced service.

On the one hand, we find that the supply–demand balancing pricing strategy can influence the choice of travelers
by raising the price of the service provided at certain times in the morning, leading to a reduction in demand. In that
situation, the competing AMoD services can become the favored services. On the other hand, the service whose price is
dynamically determined by the supply–demand balancing pricing strategy can be equally competitive at specific times
when all operators are busy handling a large volume of requests.

We can also analyze the waiting times, the travel times, and the empty pickup VKT (in Table 5) to evaluate the impact
of the supply–demand balancing strategy on service quality.

The simulation results in Table 5 show that the supply–demand balancing pricing strategy leads to a reduction in
the total number of served requests for the service provided by operator o . This is plausible because travelers opt for
1
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Fig. 9. The number of travel requests for different AMoD operators for supply–demand balancing pricing.

Fig. 10. The number of busy vehicles across the road network for supply–demand balancing pricing.

he alternative service with the regular price in the morning [7:00 AM, 7:50 AM] (as shown in Fig. 9) rather than the
igh-priced service prompted by the supply–demand balancing strategy.
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Table 5
Operating performance for the supply–demand balancing pricing strategy.
Demand levels 25800 (100%)

AMoD system o1 o2 o3
Fleet size no1 = no2 = no3

Pricing strategies Supply–demand balancing pricing
strategy

Served
demand

The number of served requests in [5:30 AM, 10:00 AM] 6711 7120 7118
The percentage of the number of served requests in [7:50 AM,
10:00 AM]

63.86% 52.92% 52.41%

Avg. waiting times (min) of trips in [5:30 AM, 10:00 AM] 6.26 4.76 4.61

Service
quality

96% quantile waiting times of trips in [5:30 AM, 10:00 AM] 14.32 13.51 13.85
Average travel time of trips in [5:30 AM, 10:00 AM] 22.45 20.54 20.70
96% quantile travel times of trips in [5:30 AM, 10:00 AM] 73.26 71.37 71.40

VKT Occupied VKT (km) per trip in [5:30 AM, 10:00 AM] 5.91 5.89 5.92
Empty VKT (km) per trip in [5:30 AM, 10:00 AM] 1.63 1.86 1.85

Moreover, we find that the empty pickup VKT of operator o2 and operator o3 is larger than that of operator o1 when the
supply–demand balancing pricing strategy is used. It is suggested that this pricing strategy can be effective in attracting
travelers to use the service in locations where there is a surplus of idle vehicles, thereby reducing the pickup distances.

Although the pickup VKT is reduced and the number of requests for operator o1 is lower than for the other operators,
igher average waiting times and average travel times are found for the operator o1. Similarly, the 96% quantile waiting
ime and the 96% quantile travel time are found slightly higher for operator o1. This is because a high percentage (63.86%)
f travel requests are served in the morning [7:50 AM, 10:00 AM] when the number of vehicles in use on the road network
s the highest (shown in Fig. 10).

Applying the supply–demand balancing pricing strategies can reduce empty pickup VKT, which is a key performance
ndicator in evaluating operating costs and environmental emissions. Detailed analysis of when travelers choose the
perator shows that fewer travelers use the high-priced service in the early morning, while travelers prefer the high-
riced service in peak hours. We found that the service levels, including waiting times and travel times, become slightly
orse.

. General discussion and recommendations

AMoD operators may apply different operating strategies to improve service levels and attract more customers in the
uture competitive AMoD market. Three operating strategies are tested through the agent-based modeling framework,
emonstrating their potential effects on the operators, the clients, and the network.
We compared different vehicle-to-request assignment strategies and found that the optimal assignment method that

atches bundled travel requests with a group of fully controlled AVs can improve the waiting times and allow operators
o serve more requests. That means AV operators can take advantage of vehicle automation technology to develop an
ffective assignment to compete for customers.
Regarding fleet size, interesting findings are that a larger fleet size can attract more demand to choose an operator’s

ervice in the scenario of multiple AMoD operators competing for customers; however, an operator’s fleet size growth
eads to more congestion over the road network. As a result, the service levels are degraded in terms of waiting and
ravel times. It means that in the multiple-operator system, the travelers faced long waiting and travel times. Because
f the convenience and low price of the AMoD services, travelers (commuters) are most likely to choose the AMoD
ervice provided by different operators. Similar to the evidence that the entrance of multiple transportation network
ompanies into the existing urban mobility system can increase congestion [42], our results suggest that the entry of
ultiple AMoD operators without regulating fleet sizes can cause worse travel conditions. In this regard, future cities
ay experience severe congestion externalities (e.g., emissions and traffic accidents). The city authorities need, therefore,

o develop regulations to avoid the negative impact of an unregulated market.
Concerning the pricing strategies, the supply–demand balancing pricing strategy incentivizes travelers to choose the

ervices of the operator in the area where vehicles are oversupplied, and we found the empty VKT for users is reduced.
owever, service levels deteriorate when more travelers are served, and many busy vehicles in the road network are
oving travelers from one location to another. A detailed analysis of when travelers choose operators shows that few

ravelers choose the high-priced service in the early morning; with the reduction in the available vehicles from competing
ehicles, a high percentage of travel requests are served by the operator during peak hours. This finding suggests that high-
riced AMoD services could be more competitive than lower-priced AMoD services in attracting customers in morning
eak hours. AMoD operators could introduce high-priced services in very busy hours because of the potential benefits
e.g., more profit), while it is not recommended to promote a high-priced service in the early morning hours. Otherwise,
ravelers will opt for the competitor’s service.
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Different from the supply–demand balancing pricing strategy, the discount pricing strategy attracts more travelers
to use their services in the very early morning hours while providing a high level of service to users. We also find
that low-priced service is not always effective in attracting demand in a situation when a high volume of travelers
continue to request rides and there are more idle vehicles from competing operators. Therefore, we strongly recommend
that flexible discount pricing strategies must be considered in alignment with the demand temporal characteristics. The
detailed demonstration of when travelers choose which services different AMoD operators provide can help the operators
better understand the pricing strategies. In future applications, operators can decide strategies that they will use to attract
customers.

We consider multiple main aspects (waiting and travel time, pricing) in the utility evaluation for allocating travelers,
which is very close to the reality of travelers in choosing transportation services. Notably, the utility evaluation accounts
for the flexible changes in pricing schemes. Transportation planners or AMoD service providers could integrate the
proposed mechanism into a platform where multiple AMoD operators coexist to deal with the problem of allocating
requests.

7. Conclusions and future directions

Introducing multiple operators into Automated Mobility-on-Demand (AMoD) systems makes the interactions and
dynamics of system components more complex. Therefore, there is a need to create an Agent-Based Model (ABMs) that
captures such complexity. This paper has proposed such a framework, implemented it, and tested it for a real case-study
city.

The ABM is used to understand how different operating strategies affect travelers’ choices and what the resulting
operating performance of competing AMoD operators is. Concerning travelers’ choices of operators under different
operating strategies, we have implemented a choice model that allows estimating the relative share in the requests for
each of three operators in the case-study city of The Hague, The Netherlands. We provide a detailed analysis of the overall
performance of AMoD systems with competing operators and the performance of individual operators as measured by
waiting times, travel times, and empty pickup VKT. Fleet sizing, assignment methods, and pricing schemes as important
decisions that any operator must take have been analyzed in detail.

In a multiple-operator AMoD system, a larger fleet allows one operator to attract more travelers. However, we find
that the larger fleet size can degrade the level of service in terms of waiting times and travel times for the operator using
this strategy but also with regards to the travel times for the users of competing operators. Instead of increasing fleet sizes
of competing operators since they all have to share the same road network, cooperative mechanisms between operators
in mobility as a service platform, especially the cooperative assignment of the SAVs to clients to improve fleet utilization,
could be an important research direction.

A shortcoming of this framework is that the socio-demographic attributes are not considered in the mode choice model.
Attributes of decision-makers may create differences over different AMoD services in the dynamic pricing scenarios. In
future research, surveys can be conducted to investigate travelers’ preferences toward different emerging mobility service
operators, as currently, very little research can be found in the literature. Moreover, the developed agent-based modeling
framework can be extended to consider the within-day and day-to-day dynamics with the objective of user equilibrium
in AMoD systems comprised of multiple fleet operators.

The mesoscopic traffic simulation model can provide an appropriate level of detail in estimating average speeds on
the network, which is a requirement for modeling the pickups or drop-off of SAVs on the road network in a realistic
way. However, the more details the traffic model contains, the higher the resolution of the model. A microscopic traffic
simulation can provide a detailed representation of every vehicle movement and interaction between vehicles. We will
consider implementing a microscopic traffic simulation model or integrating a microscopic traffic simulation platform
with the developed agent-based modeling framework in the future. Moreover, the modeling framework can be extended
to consider different vehicle technologies (battery electric vehicles, hydrogen fuel cell vehicles) and different vehicle sizes
(small, medium, and large vehicles).
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