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Abstract

The Hilbert class polynomial has as roots the j-invariants of elliptic curves whose
endomorphism ring is a given imaginary quadratic order. It can be used to compute
elliptic curves over finite fields with a prescribed number of points. Since its coefficients
are typically rather large, there has been continued interest in finding alternative
modular functions whose corresponding class polynomials are smaller. Best known are
Weber’s functions, which reduce the size by a factor of 72 for a positive density subset
of imaginary quadratic discriminants. On the other hand, Bröker and Stevenhagen
showed that no modular function will ever do better than a factor of 100.83. We
introduce a generalization of class polynomials, with reduction factors that are not
limited by the Bröker–Stevenhagen bound. We provide examples matching Weber’s
reduction factor. For an infinite family of discriminants, their reduction factors surpass
those of all previously known modular functions by a factor at least 2.

Keywords: Class invariants, Complex multiplication, Modular curves

1 Introduction
TheHilbert class polynomial HD[j] of the imaginary quadratic orderO of discriminantD is
the minimal polynomial of the j-invariant of an elliptic curve with endomorphism ringO.
It is a defining polynomial of the ring class field of O and can be used for constructing
elliptic curves over a finite field with a given number of points. Its coefficients are however
rather large, which limits its practical usefulness. Already in 1908, Weber [37] therefore
introduced alternative class invariants to be used instead of j, which resulted in class
polynomials with coefficients that have roughly 1/72 of the digits of the coefficients of the
Hilbert class polynomial for certain discriminants.
There has been continued interest in alternative class invariants ever since (e.g. [2,4,8–

12,14,17,18,29,30]). None howevermatched, let alone surpassed, the factor 72 ofWeber’s
functions. Moreover, Bröker and Stevenhagen [4] showed that no class invariant will ever
do better than a factor 100.83. Under Selberg’s eigenvalue conjecture [31, Conjecture 1],
this bound reduces to 96.
We introduce generalized (multivariate) class polynomials, define an appropriate notion

of their reduction factor, and show that this notion indeed gives a measure of their “size”
compared to theHilbert class polynomial (Sect. 3). Contrary to classical class polynomials,
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the reduction factors of generalized class polynomials are not limited by the Bröker–
Stevenhagen bound.
We give a family of generalized class polynomials for which we prove that the reduction

factormatchesWeber’s 72 for a large range of values ofD, including infinitelymany values
of D where no reduction of 36 or better was previously known (Sect. 4). We also give an
example that possibly achieves the factor 120 (Remark 7.6).
Though the focus of this paper is on introducing the generalized class invariants and

studying their height, we also give a preliminary analysis indicating that the height reduc-
tion leads to a speed-up in their computation (Sect. 6), and we show how to use them for
constructing elliptic curves over finite fields (Sect. 5).

2 Generalized class polynomials
Definition 2.1 By a modular curve over Q we mean a smooth, projective, geometrically
irreducible curve C overQ together with a map ψ : H → C(C) from the upper half space
H ⊂ C with the following property. There exists a positive integer N such that for every
function f ∈ Q(C), the function f ◦ψ is a modular function for �(N ) with all q-expansion
coefficients inQab.
We identify f with f ◦ ψ and we identify ψ with the induced morphism of curves

X(N ) → C .

For anorderO in an imaginaryquadratic numberfieldK , wedenotebyKO the associated
ring class field. Let f be a modular function and τ ∈ H imaginary quadratic, say a root
of aX2 + bX + c for coprime integers a, b, c. The pair (f, τ ) is called a class invariant
for the imaginary quadratic order O = Z[aτ ] if f (τ ) lies in the ring class field KO . The
discriminant D of the class invariant is the discriminant of O. The Galois group G of
K (f (τ ))/K is isomorphic via the Artin map to a quotient of the Picard group Cl(O).
Associated to a class invariant is its minimal polynomial over K , also known as the class
polynomial,

Hτ [f ] :=
∏

σ∈G

(
X − σ (f (τ ))

) ∈ K [X].

Under additional restrictions, class polynomials can sometimes be shown to have coeffi-
cients inQ (cf. [9, Thm. 4.4], [13, Thm. 5.4]); in that case we call the class polynomials real.
Oftentimes, a modular function admits class invariants for an infinite family of discrimi-
nants, determined by a certain congruence condition ( [30], [9, Thm. 4.3]). Sometimes the
discriminant uniquely determines the class polynomial for a given modular function.

Example 2.2 The modular j-function admits a unique class polynomial for any discrim-
inant D < 0, called the Hilbert class polynomial HD[j] := Hτ [j]. It can be seen as a
function on P1 whose zeros are the j-invariants of elliptic curves with CM by the imag-
inary quadratic order of discriminant D and whose poles are restricted to the point at
infinity.

We propose a generalization of class polynomials, seen as functions on modular curves
of higher genus, for which the classical class polynomials can be viewed as the genus
zero case. We will mostly restrict ourselves to the case of genus one, as this will make
notation considerably less complicated. We discuss the arbitrary genus case in Sect. 7.
Let C be a modular curve over Q with a smooth Weierstrass model y2 + a1xy + a3y =
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x3 +a2x2 +a4x+a6, and suppose that (x, τ ), (y, τ ) are class invariants for some imaginary
quadratic τ ∈ H. Consider G = Gal(K (x(τ ), y(τ ))/K ) andm = #G. If we denote byD the
divisor of the unique point at infinity of C , then L(∞D) has a basis b0 = 1, b1 = x, b2 =
y, b3 = x2, b4 = xy, b5 = x3, b6 = x2y, . . . (ordered by ascending degree). There exist
ai ∈ K , not all zero, such that

m∑

i=0
aibi(τ ) = 0. (2.3)

In fact, up to scaling by an element of K×, there exists a unique function Fτ [C] =∑m
i=0 aibi ∈ K (C) such that

divFτ [C] =
[

∑

σ∈G
(σ (ψ(τ )))

]
+

(
−

∑

σ∈G
σ (ψ(τ ))

)
− (m + 1)D. (2.4)

Definition 2.5 We call Fτ [C] as in (2.4) a generalized class function for τ . The associated
generalized class polynomial is the unique Hτ [C] ∈ K [X, Y ] of degree ≤ 1 in Y such that
Hτ [C](x, y) = Fτ [C].

We note that the polynomial Hτ [C] depends on the choice of x and y, but we leave
this out of the notation. In Sect. 7 (and in particular Definition 7.3) we will allow more
general divisorsD andbasesB, leading tomore general functionsFτ [C,B] andpolynomials
Hτ [C,B].

Definition 2.6 We call the point P = ∑
σ∈G σ (ψ(τ )) ∈ C(K ) the Heegner point of the

class function F .

If the Heegner point P is the point at infinity, then am = 0. Otherwise, the point −P is a
zero of F . In particular, if P = −(0, 0), then a0 = 0.
For N ∈ Z>0, we denote by X0(N ) the smooth, projective, geometrically irreducible

curve overQwith functionfield consisting of themodular functions for themodular group

�0(N ) = {a b
c d

∈ SL2(Z) | b ≡ 0 (mod N )} that have rational q-expansion. We denote

by X0+(N ) the quotient of X0(N ) by the Fricke-Atkin-Lehner involution z 	→ −N/z, and
write η(z) for the Dedekind η-function

η(z) = q1/24
∞∏

n=1
(1 − qn), where q = exp(2π iz).

Example 2.7 Consider the genus one modular curve C := X0+(119). Its conductor as an
elliptic curve is 17 (Cremona label 17a4)1. A Weierstrass model for E is given by2

y2 + 3xy − y = x3 − 3x2 + x, (2.8)

1One way to deduce this is as follows. Using the command J0(119).decomposition() in SageMath [36] one
finds that C has conductor 17. For each of the Weierstrass models of the now finitely many possible curves [35],
there are finitely many options for the divisor of the function w7,17 given by (2.9). The curve C has two rational CM
points (both of discriminant −19), so given a possible Weierstrass model together with a possible divisor for w7,17 ,
one can first determinew7,17 as a function of theWeierstrass coordinates x, y by evaluating in one CM point, and then
determine whether it has the expected value in the other CM point. This process excludes all but one of the options,
and we at once in fact deduce both the Weierstrass model (2.8) and the relation betweenw7,17 and x and y (2.10).
2We note that a slightly “simpler”Weierstrass model v2 +uv+v = u3 −u2 −u exists by taking u = x and v = −y−2x,
but the given model (2.8) turns out to yield slightly better practical reduction factors (see Sect. 4.5).
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where x, y ∈ Q(C) have respective q-expansions

x = q−2 + q−1 + 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + 4q6 + 5q7 + . . . ,

y = q−3 + 1 + 2q + 2q2 + 4q3 + 4q4 + 7q5 + 9q6 + 12q7 + . . . ,

where this time q = exp(2π iz/119).

The “double eta quotient” w7,17 given by

w7,17(z) = η(z/7)η(z/17)
η(z)η(z/119)

(2.9)

is invariant under the action of�0(N ) [26, Thm. 1] and the Fricke-Atkin-Lehner involution
[11, Thm. 2], hence also forms an element of the (rational) function field of C . It is related
to x and y by

w7,17 = −y + x2 − x. (2.10)

The curve X0+(119) has two cusps, and they are both rational. In the given Weierstrass
model, these correspond to the point (0, 0) and the point at infinity. Numerical examples
of generalized class polynomials specifically for X0+(119) are given in Sect. 4.5. We will
treat this curve as our main test case in the rest of the paper.

3 Estimates and reduction factors
3.1 Reduction factors

We define the reduction factor of a modular curve C to be

r(C) = deg(j : X(N ) → P1)
deg(ψ : X(N ) → C)

. (3.1)

In the caseC = P1, we denote this number also by r(ψ) and our notation and terminology
coincide with that of [4]. The number r(ψ)−1 is denoted by ĉ(ψ) in [8] and by c(ψ) in
[9]. Bröker and Stevenhagen [4, Theorem 4.1]3 show r(ψ) ≤ 32768/325 ≤ 100.83. Under
Selberg’s eigenvalue conjecture, one can evenprove r(ψ) ≤ 96.Thebest knownψ achieves
r(ψ) = 72. This result does not however apply directly to r(C). For example, we have

r(X0(N )) = N
∏

p|N
(1 + 1

p
) and r(X0+(N )) = 1

2
r(X0(N )) if N > 1. (3.2)

Our main example C = X0+(119) therefore achieves r(C) = 1
2 (7 + 1)(17 + 1) = 72. For

(hyper)elliptic modular curves C we get r(C) ≤ 201.65 (or r(C) ≤ 192 under Selberg’s
eigenvalue conjecture), by applying the bounds to the x-function. Surprisingly, all elliptic
curve quotients of X0(N ) we found so far have r ≤ 72 (Sect. 4.7). In Sect. 7 we will discuss
higher-genus curves, which allow for unbounded r(C).

Remark 3.3 In the applications we have in mind, the reduction factor is the main source
of improvement in computational efficiency. It is important to note, however, that this
number r(C) does not tell the complete story, even in the “classical” setting (C ∼= P1), for
example for the following reasons.

(1) There are many challenges when computing class polynomials, and evenmore with
generalized class polynomials. See Sect. 6.

3The arXiv versionv1of [4] hasweakerbounds than thefinal publication andneeds tobe combinedwith [21,Appendix 2]
to get the same result.
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(2) In the CM method (Sect. 5), we will want to find a j-invariant in Fp from a point
in C(Fp). This is done using the minimal polynomial of the j-function over Q(C),
known as the modular polynomial (Lemma 5.1). This works best if the degree of j
overQ(C) is small. For example, this degree is 1 forC = X0(N ), is 2 forC = X0+(N ),
and ranges from 1 to 20 in [9, Table 7.1], making X0+(119) a good choice in this
respect.

(3) If the (generalized) class polynomial is not real, then its coefficients lie in an imag-
inary quadratic extension of Q; roughly doubling its bit size. This issue can be
avoided by imposing additional restrictions on C or τ , see Sects. 4.2 and 4.3.

On the other hand, there are two important tricks that may be used in complementary
directions, providing computational improvements beyond the reduction factor r(C):

(1) Under some constraints, typically when all primes dividing the level of the modular
curve ramify in the CM field, both the degree and height of the class polynomial
are cut in half. This happens for example in the record-computation of [14] for the
Atkin invariant A71 when 71 divides the discriminant, leading to class polynomials
that are 22 ·36 = 144 times smaller than the Hilbert class polynomial (note that the
reduction factor r(A71) is 36 in this case). The same trick also applies to generalized
class polynomials, see Sect. 4.4, which in the case of X0+(119) leads to a factor
22 · 72 = 288 in size reduction.

(2) When the class number is composite, one can decompose the ring class field into a
tower of fields whose defining polynomials have smaller degrees, also leading to a
significant speed-up in the CMmethod [34].

These last two tricks only work when the class number is composite. We expect both of
them to work well for generalized class polynomials, so will mainly restrict to the case
of prime class number in our examples, as this more clearly illustrates the role of the
parameter r(C).

The goal of the rest of this section is to show under some hypotheses that the reduction
factor r(C) is indeed an asymptotic reduction factor of the size of the polynomials involved.
For that, we will first introduce the appropriate notions of “size”.

3.2 Measures of polynomials and heights of their roots

For a polynomial A ∈ C[X], let |A|1 (resp. |A|∞) be the sum (resp. maximum) of
the absolute values of the coefficients of A. The Mahler measure of a polynomial
A = a

∏n
i=1(X − αi) ∈ C[X] is

M(A) = |a|
∏

i
max{1, |αi|}.

Lemma 3.4 We have

|A|∞ ≤ |A|1 ≤ (n + 1)|A|∞,

M(A) ≤ |A|1 ≤ 2nM(A),
∣∣log |A|1 − log |A|∞

∣∣ ≤ log(n + 1),
∣∣log |A|∞ − log(M(A))

∣∣ ≤ n log(2).
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Proof The first two inequalities are by definition and the third is Equation (6) of
[23]. For its converse, observe that we have |AB|1 ≤ |A|1|B|1, and hence also |A|1 ≤
|a|∏i max{2, 2|αi|} ≤ 2nM(A). Then take logarithms. ��
For an element α in a number field L of degree n, we define its (absolute logarithmic)

height to be

h(α) = 1
n

∑

v
max{0, log |α|v},

where the sum ranges over the Archimedean and non-Archimedean absolute values,
suitably normalized (that is, those denoted ||·||v in [19, §B.1]). Ifα is a root of an irreducible
A ∈ Z[X] of degree n, then we have

log(M(A)) = nh(α). (3.5)

Remark 3.6 Another measure for the complicatedness of A would be its total bit size, or
the sum s of the logarithms of the absolute values of the nonzero coefficients. We will
instead focus on |A|∞ for the following reasons.
First of all, for computational purposes, it is more useful to look at p = deg(A) · log |A|∞,

as the required precision (or number of primes with the CRT approach) is proportional
to log |A|∞ and the number of computations to do with that precision is proportional to
deg(A).
Secondly, we get the impression from numerical computations that s is close to p.

For example, the value of s/p is spread out over the interval (0.75, 0.9) for the larger
discriminants in both Sect. 4.5 and Example 7.4.
Finally, it is hard to prove lower bounds on s other than s ≥ log |A|∞, as it seems to

already be hard to show that a sufficient proportion of coefficients is nonzero.

3.3 Proof of the height reduction

Theorem 3.7 Let C be a modular curve overQ and suppose that C is an elliptic curve of
rank 0 with Weierstrass coordinates x and y. Suppose that τ ∈ H ranges over a sequence of
imaginary quadratic points for which C yields real generalized class polynomials Hτ [C],
and with

h(j(τ ))
log(log(#Cl(O)))

→ ∞. (3.8)

Scale each Hτ [C] such that it has coprime coefficients in Z. Then

d · log |Hτ [C]|∞
log |Hτ [j]|∞ → 1

r(C)
,

where d is the degree of KO over K (ψ(τ )).

Remark 3.9 We argue that the hypothesis (3.8) is very reasonable. Under GRH, we have

#Cl(O) = O(
√|D| log(log |D|)), (3.10)

where D is the discriminant of O (see [22, 9.Theorem 1 and 11. on page 371], suitably
extended to arbitrary D.)
Moreover, [8, §6.2] gives the approximation log |Hτ [j]|∞ ≈ π

√|D|S(D), with S(D) =∑
Q a−1,where the sumrangesover reducedprimitivequadratic formsQ = ax2+bxz+cz2

of discriminant D. We now give a heuristic lower bound of this sum on average over all
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|D| ≤ X . We have
∑

D S(D) ≈ ∑
Q a−1, where this time the sum is taken over all reduced

quadratic formsofnegativediscriminant> −X (using theheuristic that imprimitive forms
have a negligible contribution). As we are only computing a lower bound, we may restrict
to a ≤ √

X/8. Then b ranges from−a to a, and c ranges from a or a+1 to �(X+b2)/(4a)�;
a range that contains at least �X/(8a)� integers. This yields at least roughly X/4 values of
b and c for each a, hence

∑
D S(D) is roughly at least (X/4)

∑
a2≤X/8 a−1 ≥ 1

8X log(X).
It follows that the average S(D) is at least proportional to log |D|. Thus, for “average”

S(D), we have that log |Hτ [j]|∞ is at least proportional to
√|D| log |D|. Combined with

(3.10), (3.5), and Lemma 3.4, we find for such D that h(j(τ ))/ log(log(#Cl(O))) is at least
proportional to log |D|/(log(log |D|))2. We thus see that (3.8) indeed holds for “average”
S(D).

Theorem 3.7 is the analogue of the following result.

Theorem 3.11 (cf. Enge-Morain [8]) Let f be amodular function and suppose that τ ∈ H
ranges over a sequence of imaginary quadratic points for which (f, τ ) is a class invariant
with h(j(τ )) → ∞. Then d · log |Hτ [f ]|∞

log |Hτ [j]|∞ → 1
r(f ) , where d is the degree of KO over K (f (τ )).

The goal of the remainder of Sect. 3 is to prove Theorem 3.7. We start with a proof of
Theorem 3.11.

Proof Letm be the degree of K (f (τ )) over K and let n = dm be the degree of KO over K .
By Lemma 3.4 and (3.5), we get | 1n log |Hτ [j]|∞ − h(j(τ ))| ≤ log(2) and |dn log |Hτ [f ]|∞ −
h(f (τ ))| ≤ log(2).
As h(j(τ )) → ∞, we also get

h(f (τ ))
h(j(τ ))

→ 1
r(f )

(3.12)

by [19, Proposition B.3.5(b)]. Altogether, this gives the result. ��

Proposition 3.13 Let C be amodular curve overQ and suppose that C is an elliptic curve
of rank 0 with Weierstrass coordinates x and y. For every imaginary quadratic τ ∈ H for
which C yields a real generalized class polynomial Hτ [C], let m be the degree of K (ψ(τ ))
over K and let d′ ∈ {1, 2} be the degree of K (ψ(τ ))/K (x(τ )). Scale each Hτ [C] such that it
has coprime coefficients in Z. Then we have

∣∣∣∣log |Hτ [C]|∞ − d′

2
log |Hτ [x]|∞

∣∣∣∣ < Bmax{1, m log(log(m))},

for some constant B that only depends on C and the choice of Weierstrass model.

Proof We first put the equation for C in a nice form. We have C : y2 + g(x)y = f (x).
Without loss of generality we have g = 0 and f ∈ Z[X] monic of odd degree such that
f (z) ≤ −1 for all real z ≤ 0. Indeed, we obtain g = 0 by the substitution y′ = y + 1

2g(x),
then do scalings x′ = vx and y′ = wy to make f integral and (thanks to its odd degree)
monic, and then do a substitution x′ = x + c to make f (z) ≤ −1 for all z ≤ 0. This affects
Hτ [C] = A+ BY andHτ [x] as follows. The first substitution changes A into A+ 1

2g(X)B,
the second changesA intoA(vX) andB intowB(vX), and the third changesA intoA(X+c).
Each of these substitutions change log(max{|A|1, |B|1}) at most by O(m), as does clearing
the denominators afterwards.
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Next, we relate a normof Hτ [C] toHτ [x]. The extra elliptic curve point (a/b2, c/b3) :=∑
σ∈G σ (ψ(τ )) ∈ C(Q) from (2.4) (which is minus the Heegner point) is torsion by our

assumption thatC has rank0.There are finitelymany torsionpoints inC(Q), hencefinitely
many possibilities for the polynomial T = b2X − a. Writing Hτ [C] = A(X) + B(X)Y ,
we get that N (Hτ [C]) = A(X)2 + (−f (X))B(X)2 has the same divisor as the primitive
polynomialHτ [x]d

′ ·T , hence there is a constant s ∈ Z\{0}withN (Hτ [C]) = sHτ [x]d
′ ·T .

We claim that s = ±1. If not, take a prime p | s and consider the highest-weight term
of (Hτ [C] mod p), where X has weight 2 and Y has weight deg(f ). This gives rise to the
highest-degree term of (N (Hτ [C]) mod p), which is therefore nonzero, a contradiction.
Now we use interpolation to bound Hτ [C] in terms of Hτ [x]. We will choose inter-

polation points z = g(i) ≤ 0. Note that for z ≤ 0 we have

A(z)2, B(z)2 ≤ A(z)2 + (−f (z))B(z)2 = N (Hτ [C]) ≤ max{1, |z|}m|Hτ [x]|e1|T |1,
and since there are finitely many polynomials T , we get

log |A(z)|, log |B(z)| ≤ m
2
max{0, log |z|} + d′

2
log |Hτ [x]|1 + O(1).

Interpolation then gives, for P ∈ {A, B}:

P(X) =
k∑

i=1
P(g(i))

∏

j �=i

X − g(j)
g(i) − g(j)

, (3.14)

where k = deg(P) + 1 = O(m).
Taking g(u) = − log(eu)2, we find |g(i) − g(j)| ≥ |i − j|minz∈[1,k] |g ′(u)| = |i −

j|minu∈[1,k] 2 log(eu)
u = 2|i − j| log(ek)k . So for each i there are at most k/ log(k) values of

j �= i with |g(i) − g(j)| < 1 and each of them has |g(i) − g(j)| ≥ 1/k . We get

log
∏

j �=i

1
|g(i) − g(j)| ≤ (k/ log(k)) log(k) = k = O(m).

For the other factors in (3.14), we have log |X − g(j)|1 ≤ log(1 + log(em)2) =
O(log(log(m))), so log

∏
j |X − g(j)|1 = O(m log(log(m))), as well as log |P(g(i))| ≤

d′
2 log |Hτ [x]|1 + O(m log(log(m))). Taking the sum in (3.14) gives another + log(k), so
that the end result is log |P(X)|1 ≤ d′

2 log |Hτ [x]|1 +O(m log(log(m))). By Lemma 3.4, this
also holds with | · |∞, which proves the upper bound on log |Hτ [C]|∞.
For the lower bound, note that Hτ [x]d

′ is a factor of Q = A2 − f (X) · B2, and we have
|Q|1 ≤ |A|21 + |f |1|B|21 ≤ |f |1(m + 1)2|Hτ [C]|2∞. Using the fact that M is multiplicative
by definition and is related to | · |1 and | · |∞ by Lemma 3.4, we get exactly what we need:
d′ log |Hτ [x]|∞ ≤ d′ logM(Hτ [x]) + O(m) ≤ logM(Q) + O(m) ≤ log |Q|1 + O(m) ≤
2 log(|Hτ [C]|∞) + O(m). ��

Proof of Theorem 3.7 Denote again by n = #Cl(O) the degree of KO over K . First we
apply Theorem 3.11 to x and get dd′ log |Hτ [x]|∞

log |Hτ [j]|∞ → 2
r(C) . Proposition 3.13, together with

the hypothesis h(j(τ ))/(n log(log(n))) → ∞, gives 1
d′

log |Hτ [C]|∞
log |Hτ [x]| → 1

2 (as in the proof of
Theorem 3.11). The product of these two limits gives the result. ��

Remark 3.15 Theorem 3.7 states that asymptotically the effect of the choice of a model of
the curve C is negligible, as is the effect of replacing f by 2f or f + 1 or any other element
ofQ(f ) in Theorem 3.11.
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However, in practice the error terms can be quite large and depend on these choices.
For example, if f is integral over Z[j] then Hτ [f ] is monic, and if f −1 is integral over Z[j],
then f has zero constant coefficient. This can make a difference in practical examples as
it forces the coefficients at the beginning and end to be small, though this improvement
is negligible asymptotically by the theorems. See also Remark 3.6.

4 Class invariants for X0(N) and X0+(N)
In this section we assume that C is a quotient over Q of X0(N ); in other words, C is a
smooth, projective, geometrically irreducible curve over Q with function field consisting
only of modular functions for �0(N ) that have rational q-expansion.We will show how to
obtain generalized class functions for every discriminantD < 0 that is square modulo 4N
(Sect. 4.1).
In some cases we get further reductions from class invariants generating subfields ofKO

or from real class polynomials (Sects. 4.2–4.4).
In Sects. 4.5–4.6 we study what this means forX0+(119) and in Sect. 4.7 we look for more

examples of elliptic curve quotients of X0(N ).

4.1 Class invariants for X0(N)

The following result does not require C to be an elliptic curve, except that (unless C is an
elliptic curve) one needs to read the definitions in Sect. 7 for the parts about generalized
class polynomials.

Proposition 4.1 (based on Schertz [30]) Let C = (C,ψ) be a quotient over Q of X0(N )
and let D < 0 be a square modulo 4N.
There exist a, b, c ∈ Zwitha, c > 0, b2−4ac = D,N | c, andgcd(a,N ) = gcd(a, b, c) = 1.

Choose such a, b, c, let τ ∈ H be a root of aX2 + bX + c, with orderO = Z[aτ ], which has
discriminant D. Then we have

ψ(τ ) ∈ C(KO),

thus giving rise to a generalized class polynomial Hτ [C].
The Galois orbit of ψ(τ ) can be computed as follows. There exists an N-system, that

is, there exist τ1, . . . , τn ∈ H such that (τiZ + Z)i is a system of representatives of Cl(O)
and such that τi is a root of aiX2 + biX + ci with gcd(ai, N ) = gcd(ai, bi, ci) = 1 and
bi ≡ bmod 2N. Moreover, for any such choice, we have

Gal(KO/K ) · ψ(τ ) = {ψ(τi) : i = 1, . . . , n}.

Proof For the existence of a, b, c, take an arbitrary square root b of D modulo 4N , let
a = 1, and c = (b2 − D)/4. Then the existence of an N -system is [30, Proposition 3].
For any f ∈ Q(C), Theorem 4 of Schertz [30] states f (τ ) ∈ KO ∪ {∞} and gives the

Gal(KO/K )-orbit as {g(Nτi) : i}, under an additional condition on the function f (1/z).
However, the condition on f (1/z) is not needed, as stated in Theorems 3.9 and 4.4 of [13].
This proves the result. ��

4.2 Real class polynomials from ramification

There are some situations in which we can actually get real class polynomials, cutting the
total required bit size in half. The first such situation is when all primes dividingN ramify.
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Proposition 4.2 (based on Enge-Morain [9]) Let C = (C,ψ) be a quotient over Q of
X0(N ) and let D < 0 be a discriminant divisible by N if N is odd and by 4N if N is even.
There exist a, b, c ∈ Z with a, c > 0, N | b, c, gcd(a,N ) = 1, and b2 − 4ac = D. Choose

such a, b, c, let τ ∈ H be a root of aX2 + bX + c, with order O = Z[aτ ], which has
discriminant D.
Then the Gal(KO/K )-orbit of ψ(τ ) is stable under complex conjugation, and hence we

may take Hτ [C] ∈ Q[X, Y ].

Proof If D is odd, take b = N , and if D is even, take b = 0. If N is even, then we find
4N | b2 − D. If N is odd, then we find both 4 | b2 − D and N | b2 − D, hence also
4N | b2 − D. Let a = 1 and c = (b2 − D)/4.
The complex conjugate of ψ(τ ) is ψ(−τ ) by the fact that the q-expansion coefficients

are real. Here −τ is a root of aX2 − bX + c, and as N | b, we can choose the N -system in
Proposition 4.1 in such a way that −τ = τi for some i. This proves the result. ��

4.3 Real class polynomials from X0+(N)
The second situation inwhichweget real class polynomials iswhenworkingwithquotients
of X0+(N ).

Proposition 4.3 (based on Theorem 3.4 of Enge-Schertz [10]) In the situation of Propo-
sition 4.1, suppose furthermore that C is a quotient of X0+(N ), and that gcd(c/N,N ) = 1.
Then the Gal(KO/K )-orbit of ψ(τ ) is stable under complex conjugation, and hence we

may take Hτ [C] ∈ Q[X, Y ].

Proof The complex conjugate of ψ(τ ) is ψ(−τ ) by the fact that the q-expansion coeffi-
cients are real. As ψ is invariant under the Fricke-Atkin-Lehner involution, this in turn
is ψ(τ ′) with τ ′ = N/τ , a root of (c/N )X2 + bX + Na. As c/N is coprime to N , we can
choose the N -system in Proposition 4.1 in such a way that τ ′ = τi for some i. This proves
the result. ��
To use this result, we will need gcd(c/N,N ) = 1, which can be achieved most of the

time, as follows.

Lemma 4.4 If D is a square modulo 4N and D = F2D0 for a negative fundamental
discriminant D0 and a positive integer F coprime to N, then there exist a, b, c as in Propo-
sition 4.1 with gcd(c/N,N ) = 1.
More generally, let D < 0 be a square modulo 4N. Then there exist a, b, c as in Proposi-

tion 4.1 with gcd(c/N,N ) = 1 if and only if all of the following do not hold.

(1) there exists a prime p | N with ordp(N ) odd and ordp(D) > ordp(4N ),
(2) m := ord2(N ) > 0 and D is of the form 2m+1d with d ≡ 1 (mod 4),
(3) m := ord2(N ) > 0 and D is of the form 2md with d ≡ 1 (mod 8).

Proof The triple (a, b, c) exists if and only if there exists b ∈ Z such that for all p | N :
ordp(b2 − D) = ordp(4N ).
Suppose that we are not in case (1), (2), or (3). By the Chinese remainder theorem, it

suffices to find one b ∈ Z for each p | N . So let p | N be prime and let k = ordp(4N )
and l = ordp(D). If k < l, then as we are not in case (2), we find that k is even, and we
can take b = p(k/2). If k = l, then we can take b = pe with e > k/2. Now the case k > l
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remains. As D is a square modulo 4N , there exists b0 ∈ Z be such that D ≡ b20 (mod 4N ).
If ordp(b20 − D) = ordp(4N ), then we are done, so suppose ordp(b20 − D) > k .
Note that 2 ordp(b0) = l, hence l is even. Let b = b0 + pe with e to be determined

later. We get b2 − D = (b20 − D) + 2peb0 + p2e, and the terms have valuation > k ,
e + (l/2) + ordp(2), 2e respectively.
If p �= 2, then we choose e = k − (l/2), so 2e = k + (k − l) > k , hence ordp(b2 −D) = k .

If p = 2 and k > l + 2, then we choose e = k − (l/2) − 1, so 2e = k + (k − l − 2) > k ,
hence ordp(b2 − D) = k .
Now only the case p = 2with k−l ∈ {1, 2} remains.Write d = 2−lD and b1 = 2−(l/2)b0,

so b1 is odd and b21 − d is divisible by 2k−l .
In the case k − l = 1, we get b21 − d ≡ 0 (mod 2), and we claim that this is nonzero

modulo 4. Indeed, b21 is 1 modulo 4 and d is not (as we are not in case (2)). Therefore
ord2(b21 − d) = 1 and ord2(b20 − D) = 1 + l = k , so we take b = b0.
In the case k − l = 2, we get b21 − d ≡ 0 (mod 4), and we claim that this is nonzero

modulo 8. Indeed, b21 is 1 modulo 8, and d is not (as we are not in case (3)). Therefore
ord2(b21 − d) = 2 and ord2(b20 − D) = 2 + l = k , so we take b = b0.
Conversely, suppose that b exists.
In case (1), we have ordp(D) > ordp(4N ), hence 2 ordp(b) = ordp(4N ) is odd, contra-

diction.
In case (2), we have ord2(b2 − 2m+1d) = m + 2, hencem + 1 = 2 ord2(b) =: 2e. Write

b = 2eb1 and note ord2(b21 − d) = 1, but b21 − d is 0 modulo 4.
In case (3), we have ord2(b2−2md) = m+2, hencem = 2 ord2(b) =: 2e.Write b = 2eb1

and note ord2(b21 − d) = 2, but b21 − d is 0 modulo 8.
It remains only to prove the first statement, for which it suffices to show that the

exceptions (1), (2), and (3) all imply gcd(N, F ) > 1. In case (1), we see that p2 | D and if
p = 2, then p4 | D, hence p | F . In cases (2) and (3), write D = 2vd with v ∈ {m,m + 1}.
As D is a square modulo 2m+2, we find that v is even, and hence D = (2v/2)2d for a
discriminant d, so 2 | F . ��

Lemma 4.5 Let N be the product of distinct odd primes p1, . . . , pk . The negative discrim-
inants that are a square modulo 4N and not in one of the exceptions of Lemma 4.4 have
density

k∏

i=1

p2i + pi − 2
2p2i

in the set of all negative discriminants.
The negative fundamental discriminants that are a square modulo 4N (which are not in

one of the exceptions of Lemma 4.4) have density

k∏

i=1

p2i + pi − 2
2(p2i − 1)

in the set of all fundamental negative discriminants.

Proof Being a discriminant is the condition of being 0 or 1 modulo 4. It is equivalent to
being a square modulo 4. This is independent of being a square modulo pi that does not
suffer from (1), which is happens for the (pi − 1)/2 residue classes modulo pi that are
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nonzero squares modulo pi, and the pi − 1 nonzero residue classes modulo p2i that are
zero modulo pi. As pi(pi − 1)/2 + pi − 1 = (p2i + pi − 2)/2, we get the first statement.
Being a fundamental discriminant means being nonzero modulo the squares of all odd

primes and being 1, 5, 8, 9, 12, 13 modulo 16. This happens for ζ (2)−1(1 − 1/4)−1 6
16 of

all negative integers. In order to restrict this to products that satisfy the conditions of
Lemma 4.4, we have to adjust the Euler product exactly by the given factor. ��

For example, if N = 119 = 7 · 17, then the numbers in Lemma 4.5 are > 0.2898 and
19/64 > 0.2968.

4.4 Lower-degree class polynomials from ramification

In the case where all primes dividing N ramify, we get an even greater size reduction.
The point ψ(τ ) will then be defined over a subfield, cutting the degree of its minimal
polynomial in half. This in turn also cuts the height of the coefficients of this polynomial
in half, as we get d ≥ 2 in Theorem 3.7. The amount of work required for computing
the class polynomial, as well as the bit size of the polynomial (Remark 3.6), is related to
the degree times the logarithm of the largest coefficient, and this product is reduced by a
factor ≥ 2 × 2 × r(C) = 4r(C).

Proposition 4.6 (based on Enge-Schertz [12]) Let C = (C,ψ) be a quotient over Q of
X0(N ) and let D = F2D0 < 0 be such that N | D, gcd(F,N ) = 1, and D /∈ {N, 4N }.
There exist a, b, c ∈ Z with a > 0, N | b, c = N, b2 − 4ac = D, and gcd(a, b, c) = 1.

Choose such a, b, c, let τ ∈ H be a root of aX2 + bX + c, with orderO = Z[aτ ], which has
discriminant D.
Let n = ((−b+√

D)/2, a), and let K [n]
O be the subfield of KO fixed by the image of n under

the Artin map. Then [n] has order 2 in Cl(O) and ψ(τ ) ∈ C(K [n]
O ), where KO has degree 2

over K [n]
O .

We get m ≤ #Cl(O)/2 in the definition of Hτ [C], we get Hτ [C] ∈ Q[X, Y ], and we get
and d ≥ 2 in Theorem 3.7.
If ai are the ideals τiZ + Z of an N-system, then ai and ain yield the same point ψ(τi),

while a−1
i and a−1

i n yield ψ(τi).

Proof This is exactly what we get when applying [12, Theorem 9] to the coordinate
functions f of C . ��

4.5 Numerical results for X0+(119)
For the rest of this section wewill return to ourmain Example 2.7, so setN = 119 = 7 ·17.
For any τ as in Proposition 4.3, we haveHτ [C] ∈ Q[X, Y ]. By scaling, we may assume that
the coefficients of Hτ [C] are integral and coprime, and that the leading coefficient (i.e.
the coefficient of the monomial of highest degree as a function on C) is positive, and this
uniquely determines Hτ [C] ∈ Z[X, Y ].
For any discriminant D < 0 coprime to N such that D is a square modulo N , there

are two generalized class polynomials (depending on the choice of τ ). We experimentally
computed both of these for all fundamental discriminants of prime class number < 100.
The main reason for restricting to prime class number is to exclude the two tricks of
Remark 3.3; for these discriminants, the reduction factor thus provides a fair comparison
with the Hilbert class polynomial. The method we employ numerically evaluates class
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Table1 Some conjecturally correct generalized class functions for C = X0+(119)

D n Fτ [C]

−52 2 y + 1

−523 5 x3 + x2 − 2xy − 3x − 2y

−5347 13 x7 + 58x6 − 13x5y − 39x5 − 143x4y − 85x4 − 135x3y

−19x3 − 51x2y + 47x2 + 7xy − 12x − y + 1

−15139 29 x15 + 1028x14 − 40x13y + 37342x13 − 10557x12y + 79865x12

−167759x11y − 385199x11 − 474165x10y − 425857x10 − 69261x9y

+345059x9 + 493309x8y + 309689x8 + 168403x7y − 132377x7

−145439x6y − 22165x6 − 16029x5y + 16139x5 + 15225x4y − 4867x4

−7127x3y − 456x3 + 623x2y + 423x2 + 337xy − 65x − 64y

The second column lists the class number n of the discriminantD

invariants by their q-expansions, and finds a minimal polynomial relation (2.3) using
lattice basis reduction (LLL). We leave faster methods for future research, but see Sect. 6
for the first ideas. Since the q-expansions can only be evaluated up to finite precision, this
does not result in provably correct polynomials, although – based on heuristic estimates
– they are highly unlikely to be incorrect.
A few examples of computed polynomials are listed in Table 1. Here, for the given

discriminantD, we consistently chose τ such that its primitive equation isX2+bX+(b2−
D)/4 with b ∈ Z>0 minimal satisfying b2 ≡ D (mod 4N ) and gcd((b2−D)/(4N ), N ) = 1.
Still assuming thatHτ [C] is scaled such that it has coprime coefficients in Z, we denote

by

rA(τ ) := log |Hτ [j]|∞
log |Hτ [C]|∞

thepractical reduction factor of τ .Under the assumptionh(j(τ ))/ log(log(n)) → ∞ forn =
#Cl(O) (cf. Theorem 3.7) we have d−1rA(τ ) → r(C). Experimentally obtained practical
reduction factors, plotted against both the class number n and log(|Hτ [j]|∞)/ log(log(n)),
can be seen in Fig. 1. To visualize the role of the class number and the hypothesis
h(j(τ ))/ log(log(n)) → ∞, the points of higher class number are given a darker color
in the second figure.
The values of the practical reduction factor rA(τ ) seem to be around their expected

asymptotic value r(C) = 72 (represented by the horizontal grey line), though the con-
vergence is not apparent; especially compared to, e.g. some classical class polynomials [8,
Fig. 1]. However, in practical applications (see Sect. 5), the class numbers employed are
typically several orders of magnitude higher (cf. e.g. [34]), so here we expect the speed
of convergence not to cause major deviations in expected running times (cf. Sect. 6). For
small class numbers, one can in practice even take advantage of this phenomenon by con-
structing generalized class polynomial with surprisingly good practical reduction factors
by selecting a basis of L(∞D) different from 1, x, y, x2, xy, . . . (see Example 7.4).

4.6 Comparison with existing class invariants

Real class invariants typically arise subject to congruence conditions on the discriminant.
For example, Weber’s functions with reduction factor 72 are not known to give class
invariants for discriminants ≡ 5 (mod 8). The reduction factors obtained by class invari-
ants coming from the family of (double) eta quotients wn and wp,q (such as the Weber
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Fig. 1 Practical reduction factors for Hτ [X0+(119)] for fundamental discriminants D with gcd(D, N) = 1 and
prime class number n < 100

function w2, as well as the function w7,17 of Example 2.7) have been extensively studied;
cf. most notably [9]. These modular functions are not known to yield class invariants
if D is not a square modulo 4n or 4pq. Hence, to the best of our knowledge, they also
are not applicable to discriminants ≡ 5 (mod 8) as soon as n, p or q is even. Excluding
these cases, the (double) eta quotient with highest known reduction factor is w9, with a
reduction factor of 36 [9, Table 7.1].
A less-studied generalization are multiple eta quotients [12], which are quotients of

products of 2k eta functions. As far as we know these do not yield reduction factors better
than 36 for k > 1.
The only other known family of “good” class invariants (in the sense that they have

large reduction factors) are the Atkin functions Ap for prime numbers p, defined to be
the smallest-degree functions inL(∞D), whereD is the unique cusp of X0+(p). The “best”
known one here is A71, again with a reduction factor of 36, owing to the fact that X0+(71)
has genus zero [14, §3]).
The curveC = X0+(119) has a reduction factor r(C) = 72 and yields real class invariants

whenever D is a square modulo 4 · 7 · 17 and not divisible by 72 or 172. The set of such D
has density > 28.98% among the set of all negative discriminants (by Lemma 4.5). Out of
these discriminants, one-fourth are ≡ 5 (mod 8). Hence, for at least 28.98% · 1

4 > 7.24%
of imaginary quadratic discriminants, the reduction factor exceeds the previously best
known reduction factors by a factor of at least two.
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Fig. 2 Bit-length reduction for Hτ [X0+(119)] for discriminants D ≡ 0 (mod 119) of class number n < 100.

Remark 4.7 One should note that the above comparison does not take into account the
discussion of Remark 3.3. Most importantly, the reduction factor is not synonymous with
the true size reduction of the class polynomials. Indeed, as noted in that remark, the
record-breaking CM construction [34] uses the Atkin invariant A71 of reduction factor
36, because the effective size reduction of class polynomials is by a factor of roughly
22 · 36 = 144 for certain discriminants. However, by Sect. 4.4, the same trick applies to
generalized class polynomials, leading forX0+(119) to a size reductionof 22·72 = 288, again
for a positive density subset of discriminants. In Fig. 2 we plot the practical reductions in
bit size we found compared to the Hilbert class polynomial using this trick.

Remark 4.8 Note that the “classical” class polynomialHτ [x], arising fromthe functionx on
X0+(119) by itself attains a reduction factor of 36 for the same 28.98%of discriminants. This
beats all previously-known class invariants for a smaller subset (≈ 1.2%) of discriminants:
those that additionally are non-square modulo both 3 and 71. This x can be viewed as a
generalisation of the Atkin functions to non-prime levels: it is the function of minimal
degree in L(∞D) for one of the cusps D of X0+(119).
Similarly, the degree-two map of the hyperelliptic curve X0+(191) (not to be confused

with 119) has reduction factor 48, as observed by David Kohel in the AGC2T 2021 Zulip
group chat. This beats the reduction factor 32 of the Atkin function A191 of degree 3 on
the same curve (see Example 7.2).
This shows that the search for generalized class invariants can even uncover new “clas-

sical” class invariants.

4.7 More modular curves of genus one

We searched for more elliptic curves that could be used, and the results are in Tables 2,
3, and 4. In our search, we used the fact that X0(N ) is well-studied and that there is an
isomorphismX0(N ) → X0(N ) : z 	→ Nz. Surpisingly, we found lots of elliptic curves with
reduction factor 72 and no elliptic curves with a greater reduction factor.
In Sect. 7, we will allow curves of higher genus, which do achieve arbitrarily high values

of r(C). Moreover, our search is by nomeans exhaustive, as Tables 2 and 3 restrict tomaps
φ : X → C of degree≤ 2 andTable 4 only looks at one curveX = X0(N ) per isomorphism
class of curves C . For example, the curve C = X0+(119) has r(C) = 72. However, in
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Table 2 The curves X = X0+(N) for which there exists a map φ : X → C of degree ≤ 2 with g(C) ≤ 1
and r(C) ≥ 48

N g(X) r(X) deg(φ) g(C) r(C)

119= 7 · 17 1 72 1 1 72

120= 23 · 3 · 5 7 144 2 1 72

144= 24 · 32 5 144 2 1 72

176= 24 · 11 7 144 2 1 72

188= 22 · 47 9 144 2 1 72

131= 131 1 66 1 1 66

75= 3 · 52 1 60 1 1 60

95= 5 · 19 1 60 1 1 60

171= 32 · 19 5 120 2 1 60

54= 2 · 33 1 54 1 1 54

81= 34 1 54 1 1 54

90= 2 · 32 · 5 4 108 2 1 54

108= 22 · 33 4 108 2 1 54

110= 2 · 5 · 11 5 108 2 1 54

135= 33 · 5 4 108 2 1 54

136= 23 · 17 6 108 2 1 54

142= 2 · 71 8 108 2 1 54

159= 3 · 53 4 108 2 1 54

101= 101 1 51 1 1 51

48= 24 · 3 1 48 1 1 48

56= 23 · 7 1 48 1 1 48

63= 32 · 7 1 48 1 1 48

64= 26 1 48 1 1 48

84= 22 · 3 · 7 4 96 2 1 48

96= 25 · 3 3 96 2 1 48

105= 3 · 5 · 7 5 96 2 1 48

124= 22 · 31 6 96 2 1 48

128= 27 3 96 2 1 48

141= 3 · 47 6 96 2 1 48

155= 5 · 31 4 96 2 1 48

191= 191 2 96 2 0 48

We used Furumoto–Hasegawa [15] and Jeon [20] to get a complete list

the Cremona database, it is listed as 17a4, and comes with a modular parametrization
φ17 : X0(17) → C of degree 1, which has r(φ17) = 18. This is why C does not appear in
Table 4.
Finally, the tables are restricted to quotients of X0(N ). Letting go of X0(N ), we find that

the genus-one modular curves 7C1, 8K 1, 9H1, 12V 1, 15I1 = X1(15), 16M1, 24J1, 27C1,
32E1 in the Pauli-Cummins database [6] all achieve r(C) ∈ {84, 96, 108}. We have not
pursued these curves yet, as Proposition 4.1 does not apply to them.

5 Application: the CMmethod
Class polynomials are used in the CM method for constructing elliptic curves over finite
fields with a specified characteristic polynomial of Frobenius.
The input to the CMmethod is a monic quadratic polynomial P = x2 − tx + q ∈ Z[x],

where q is a prime power coprime to t, and the discriminant d = t2 − 4q is negative.



M. Houben, M. Streng Res. Number Theory (2022) 8:103 Page 17 of 26 103

Table 3 The curves X = X0(N) for which there exists a map φ : X → C of degree ≤ 2 with g(C) ≤ 1
and r(C) ≥ 48 and N is not already in Table 2

N g(X) r(X) deg(φ) g(C) r(C)

36= 22 · 32 1 72 1 1 72

60= 22 · 3 · 5 7 144 2 1 72

72= 23 · 32 5 144 2 1 72

92= 22 · 23 10 144 2 1 72

94= 2 · 47 11 144 2 1 72

49= 72 1 56 1 1 56

24= 23 · 3 1 48 1 1 48

32= 25 1 48 1 1 48

42= 2 · 3 · 7 5 96 2 1 48

48= 24 · 3 3 96 2 0 48

62= 2 · 31 7 96 2 1 48

69= 3 · 23 7 96 2 1 48

We used Ogg [27] and Bars [1] to get a complete list

Table 4 The elliptic curves E/Q of conductor < 500.000 such that the modular parametrization
φ : X → E according to the LMFDB [5,35,36] gives r(C) ≥ 66 or gives r(C) ≥ 48 and odd N

E N r(X) deg(φ) rank(E) r(C)

36a1 22 · 32 72 1 0 72

92a1 22 · 23 144 2 0 72

94a1 2 · 47 144 2 0 72

144a1 24 · 32 288 4 0 72

368e1 24 · 23 576 8 1 72

558a1 2 ·32· 31 1152 16 1 72

704a1 26 · 11 1152 16 1 72

704k1 26 · 11 1152 16 1 72

1728a1 26 · 33 3456 48 1 72

1728v1 26 · 33 3456 48 1 72

3456a1 27 · 33 6912 96 1 72

3456e1 27 · 33 6912 96 0 72

131a1 131 132 2 1 66

575a1 52 · 23 720 12 1 60

711a1 32 · 79 960 16 1 60

755b1 5 · 151 912 16 1 57

999b1 33 · 37 1368 24 1 57

49a1 72 56 1 0 56

1323m1 33 · 72 2016 36 1 56

243a1 35 324 6 1 54

405c1 34 · 5 648 12 1 54

459a1 33 · 17 648 12 1 54

101a1 101 102 2 1 51

335a1 5 · 67 408 8 1 51

591a1 3 · 197 792 16 1 99/2

485b1 5 · 97 588 12 1 49

723b1 3 · 241 968 20 1 242/5

69a1 3 · 23 96 2 0 48

105a1 3 · 5 · 7 192 4 0 48

141d1 3 · 47 192 4 1 48

155c1 5 · 31 192 4 1 48

213a1 3 · 71 288 6 0 48



103 Page 18 of 26 M. Houben, M. Streng Res. Number Theory (2022) 8:103

The output is an elliptic curve E/Fq with q + 1 − t rational points, which has P as its
characteristic polynomial of Frobenius.
The algorithm of the classical CMmethod (without using class invariants for now) is as

follows. Let K = Q(
√
d).

(1) Compute the Hilbert class polynomial HK ofOK .
(2) Find a root j0 ∈ Fq of HK (which is known to split into linear factors in Fq).
(3) Construct an elliptic curve E/Fq with j(E) = j0. Compute all twists of E and return

the one with q + 1 − t rational points.

In practice, one can discard the curves for which (q + 1 − t)Q �= O for some random
pointQ, although there are also more straightforward methods to select the correct twist
[28].
As the degree and height of the Hilbert class polynomial grow quickly with the absolute

value of the discriminant�K ofK , the CMmethod is only feasible for small values of |�K |.
The record computation of [34] uses class invariants, specifically arising from the Atkin
function A71. Combined with the tricks listed in Remark 3.3 this allows to handle a case
where |�K | > 1016.
We will now describe how to apply the CM method using generalized class polyno-

mials. Hence let C be an elliptic modular curve. Since we are working with alternative
class invariants instead of the usual j-invariant, we will relate the two using modular
polynomials as follows.

Lemma 5.1 Let dj := [Q(C, j) : Q(C)]. Then there exists a polynomial �C = ∑dj
i=0 fiZ

i ∈
Z[X, Y ][Z] of degree dj in Z such that

(i) �C (j) = 0;
(ii) degY (fi) ≤ 1 for each i;
(iii) the coefficients (in Z) of �C viewed as an element of Z[X, Y, Z] are coprime;
(iv) viewed as elements ofQ(C), the fi have at most one common zero in C(Q).

Furthermore, �C is unique up to sign.

Proof Consider the minimal polynomial �0
C = ∑dj

i=0 giZ
i ∈ Q(C)[Z] of j overQ(C). Let

E :=
∑

P∈C\{O}
min
i
(ordP(gi))(P).

Then E − (∑
P∈C ordP(E)P

) − (deg(E) − 1)(O) is aQ-rational principal divisor. There is
a unique function g up to Q×-scaling such that div(g) = E . Dividing each gi by g gives
gi ∈ L(∞(O)) = Q[x, y] satisfying (iv) and unique up to Q×. Now take representatives fi
satisfying (ii) and scale to get (iii), which makes �C unique up to sign. ��

For each curve C with which we would like to apply the generalized CM method, the
polynomial �C ∈ Z[X, Y, Z] can be precomputed and stored. Next we need a criterion
for which discriminants D yields class invariants. For example, if C = X0+(N ) then this
is given by Proposition 4.1. Now, given a desired characteristic polynomial of Frobenius
x2 − tx+ q such that D = t2 − 4q satisfies this criterion, we have the following algorithm
for sufficiently large |D|.
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(1) Compute a generalized class function F of discriminant D as well as its Heegner
point Q.

(2a) Find a zero P = (x, y) ∈ C(Fq) of F that is neither −Q nor a common root of the
polynomials f1, . . . , fdj of Lemma 5.1.

(2b) Find all roots j0 ∈ Fq of the polynomial �C (x, y, Z) ∈ Fq[Z].
(3) For each j0, construct an elliptic curve E/Fq with j(E) = j0 and all of its twists up to

isomorphism over Fq . Return one with q + 1 − t rational points.

The main advantage compared to the classical CM method, both in terms of memory
and speed, is expected to be in the (dominant) first step (1) (see Sect. 6). Out of the
computationally non-dominant steps, only (2a) is less straightforward.Oneway toproceed
would be as follows.

(i) Compute Fx := NFq(C)/Fq(x)(F ).
(ii) Find a root x ∈ Fq of Fx.
(iii) Solve for the corresponding value of y using the linear polynomial Hτ [C](x, Y ), or

continue with both solutions y coming from the Weierstrass equation.

Remark 5.2 ThepolynomialFx is very close to the classical class polynomialHτ [x]; indeed,
it has the same roots, together with one additional root at the x-coordinate of the Heegner
point of F . The norm computation in step (i) is however computationally asymptotically
dominated by the computation of F .

6 The computational benefits of our invariants
6.1 Space complexity of the functions

The advantage of using generalized class functions lies in their size. This already gives a
serious advantagewhen storing one ormore class polynomials for later use, e.g. for various
values of q in the CMmethod. Additionally, one would expect the smaller size tomake the
generalized class polynomials less expensive to compute. Again for C a modular elliptic
curve with a given Weierstrass model, we present a preliminary analysis of the cost of
computing a generalized class polynomial Hτ [C] when compared to the “classical” class
polynomial Hτ [x] (though recall that the latter already dominates all previously-known
class invariants along a positive density subset of discriminants for C = X0+(119), cf.
Sect. 4.6).

6.2 Speed of complex analytic computation

We now explain how to adapt the complex analytic approximation algorithm to general-
ized class polynomials.
To compute the classical class polynomial Hτ [x] one first evaluates x(τ ) and all its

conjugates, which are of the form xi(τi), where xi and τi can be obtained using Shimura’s
reciprocity law [18] or N -systems [30]. Then one multiplies the linear polynomials X −
xi(τi) together in a binary tree using fast multiplication algorithms.
As Hτ [C] has roughly half the height, we only need half the precision at each step. This

gives a great speed-up when evaluating xi(τi), but then we also need to compute yi(τi).
Fortunately that should only take a fraction of the time required for computing xi(τi), as
we can first compute it to low precision and then obtain as many digits as desired quickly
using
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y = −g(x) + √
g(x)2 + 4f (x)
2

for C : y2 + g(x)y = f (x).
The binary tree step is harder to analyze. Instead of having polynomials A(X) =∏
i∈S(X − xi(τ )) to multiply for various subsets S ⊂ {1, 2, . . . , n}, we will have pairs (F,Q)

with F = A(X) + B(X)Y and

div(F ) =
∑

i∈S
(Pi) + (Q) − (#S + 1)D.

Instead of a single multiplication A1A2 to go from S1 and S2 to S3 = S1 � S2, we now need
to compute the point Q3 = Q1 + Q2 (with the elliptic curve group law) and a function F3
with

div(F3) =
∑

i∈S
(Pi) + (Q3) − (#S3 + 1)D = div(F1) + div(F2) + (Q3) + (O) − (Q1) − (Q2).

The following formula can be used:

F3 = F1 F2 R mod (Y 2 − f (X))
(X − x(Q1))(X − x(Q2))

, where (6.1)

R = (x(Q1) − x(Q2)) Y + (y(−Q2) − y(−Q1)) X (6.2)

+ x(Q2)y(−Q1) − x(Q1)y(−Q2), (6.3)

and where the reduction modulo Y 2 − f (X) keeps the outcome of degree ≤ 1 in Y .
We can multiply F1 with F2 using three multiplications of half the degree, by the same

trick that is used in Karatsuba multiplication. Indeed, let

C = A1A2, D = B1B2, and E = (A1 + B2)(A2 + B1)

to get F1F2 = (C + Df ) + (E − C − D)Y . So computing F3 involves three polynomial
multiplications of half the degree of F1 and F2, as well as various multiplications and long
divisions by fixed-degree polynomials and various additions and subtractions. The most
serious computations in the binary tree are now done with half the degree and half the
number of digits, but three times as often, which takes 3/16th of the time with naive
multiplication and still less than 3/4 of the time with quasi-linear-time multiplication.
The impact of the extra additions and subtractions, as well as the extra multiplications
by a linear polynomial in X and Y and long division by the denominator of (6.1) requires
further analysis, but we expect this to be minor. Regardless, for large discriminants, the
main bottleneck is in memory complexity (as noted in [7, Sect. 7]), and here we obtain an
improvement of a factor of 1/2 when passing from Hτ [x] to Hτ [C].

6.3 Adapting the CRTmethod

6.3.1 Overview of CRT class polynomial computation

We now heuristically estimate the expected speed-up when computing Hτ [C] instead of
Hτ [x] using the (currently state-of-the-art)CRTmethod for class polynomial computation
[14,33,34]. We restrict to the case of C such that all q-expansion coefficients of x and y
are rational, and will analyse some steps only in the main case where C is a quotient of
X0+(N ). To keep our exposition simple, we will not treat the main improvement of [34],
even though we do expect it to combine well with our generalized class invariants. We
plan to give a more detailed account and an implementation in future work.
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For the CM method, it is more efficient to directly compute class polynomials modulo
q using the online CRT as in [33, Sect. 2]. In other words, we never write down Hτ [C] ∈
Z[X, Y ], but instead compute (Hτ [C] mod q) ∈ Fq[X, Y ] directly from (Hτ [C] mod p) for
p in a set S of small primes. The space complexity of the CM method is then n log(q),
which is independent of our choice of class function. The set S must be chosen in such a
way that

∏
p∈S p is larger than 4 times the largest coefficient.

By cutting the number of digits in half when switching from x to C , we essentially cut
#S in half. If the amount of work that we do for each prime p does not grow too much,
then our class functionHτ [C] yields a speed-up over the classical class polynomialHτ [x].
What needs to be done for each p is the following.

(1) Enumerate all E′′ with endomorphism ringO and compute the appropriate points
in C(Fp).

(2) Compute (F mod p) by putting together the information from Step 1.

In practice, for “typical” discriminants D with 9 to 14 digits, Sutherland [33, Sects. 8.3
and 8.4] finds that performing Steps 1 and 2 together #S times is the dominant part of the
CRT method.
We will now argue why we expect each of these steps to take (much) less than twice as

long with the generalized class polynomial for suitable C . Together with the fact that our
set S is only half the original size due to the reduction factor, this means that computing
Hτ [C] takes less time than computing Hτ [x].

6.3.2 Enumerating via the Fricke involution

Step 1 is already very subtle in the case of a single class invariant f . Indeed, there could be
multiple Galois orbits of values f (τ ) for the same orderO, and hence multiple irreducible
class polynomials Hτi [f ] ∈ K [X]. In the CRT method, one has to make sure to compute
the polynomials (Hτi [f ] mod p)p for the same value of i, and only for τi for which this is a
class invariant. This issue is addressed in detail in [14, Sect. 4].
Wewill first explain how to adapt one solution to ourmain case of quotientsC ofX0+(N )

where N is coprime to the conductor ofO and D = disc(O) is a square modulo 4N .
We adapt themethodof Sect. 4.3 of [14] as follows.WehaveQ(X0(N )) = Q(j, jN ), where

jN (z) = j(z/N ) = j(WNz) for the Fricke-Atkin-Lehner involutionWN : z 	→ −N/z (this
follows for example from [32, Proposition 6.9]). In particular, every function f ∈ Q(C) for
a quotientC ofX0(N ) can be expressed as a rational function in j and jN . In practice, these
expressions can be quite large, but (analogously to [14, Lemma 2]) we can also obtain the
value f (z) as a root of gcd(�f (X, j(z)),�f ◦WN (X, jN (z))) instead.
In theparticular casewhereC is a quotient ofX0+(N ), we evenhaveQ(C) ⊂ Q(X0+(N )) =

Q(j + jN , j · jN ), and we can use �f instead of �f ◦WN .
So instead of enumerating just the j-values, wewish to link themwith the corresponding

jN -values, and we do that as follows.
Suppose thatN is coprime to the conductor ofO and thatD is a squaremodulo 4N . Then

by Lemma 4.4 we get a, b, c ∈ Z with a, c > 0, b2 − 4ac = D, N | c, and gcd(ac/N,N ) =
gcd(a, b, c) = 1. In line with Lemma 2 of [14] we could even take c = N by replacing
a by ac/N . We take z = −b+√

D
2a , n = azZ + NZ, and a = zZ + Z. Then we have

O = azZ + Z, and we find that n is an invertible O-ideal with O/n ∼= Z/NZ. In fact, we
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find na = zZ + NZ and hence

σ[n]j(z) = j(n−1a) = j(na) = jN (z).

Exactly as in Sect. 4.3 of [14], we list the j-values of elliptic curves over Fp with endomor-
phism ring O, and arrange them into unoriented [n]-isogeny cycles. If C is a quotient of
X0+(N ) overQ, then for each edge of this graph, we find the f -value from the two j-values
of the end points. (In the case where the [n]-isogeny cycles are 2-cycles, we only get one
f -value per 2-cycle and we get a lower-degree class polynomial Hτ [f ].)
In practice, we could do this for f = x exactly as in [14], and then solve for y using

�C (x, y, j) = 0, which is linear in y. The only additional work compared to what is done
in [14] is computing and solving the linear equation to get y, which is much faster than all
the other steps.
In particular, Step 1 takes much less than twice as long with C than with x, while we

need to do it only half as often, which leads to a speed-up. Further research into these
modular polynomials is needed in order to determine the exact gain.
To also make this work for quotients of X0(N ) that are not quotients of X0+(N ), one

would need to compute oriented [n]-isogeny cycles.

6.3.3 Other tricks for enumerating

The methods from [14, Sects. 4.1 and 4.2] also seem amenable.
The main computational tool at the beginning of Sect. 4.1 is the modular polynomial


�,f , which we generalize from f to C as follows.
Let
�,C be aGröbner basis of the ideal inQ[X1, Y1, X2, Y2] of polynomials that vanish on

{(ψ(z),ψ(�z)) : z ∈ H}, with respect to the lexicographic ordering with X1 > Y1 > X2 >

Y2. To get from ψ(z) to all possible values of ψ(�z), one substitutes ψ(z) for (X1, Y1), and
then solves first for X2 and then for Y2. For each C and � this works for all but a finite set
of primes p. Such multivariate modular polynomials would need to be precomputed. One
possible starting point for computing these would be [24,25], which computemultivariate
(Hilbert) modular polynomials, each with a different method. For yet another approach
to computing modular polynomials, see [3].
We expect the reduction factor to also give a reduction of the size of these multivariate

modular polynomials, but on the other hand, we need two of them: one to solve for x of
an isogenous curve, and one to evaluate in x and get y. As evaluating is faster than solving,
we expect the use of these modular polynomials to take much less than twice as long (and
we need to do it only half as often, because we have half as many primes).
The ‘Trace Trick’ of [14, Sect. 4.2] enables the use of the Weber function f in the CRT

method. In case we would also need this trick, for some more exotic curves C , we could
consider applying it with arbitrary functions f ∈ Q(C) such as f = ax + by for small
integers a and b. In loc. cit. the relevant trace is computed with much fewer primes, so it
is ok to apply this with the lower reduction factor of f .
We did not yet consider the general algorithm of [14, Sect. 4.4]. It is the method that

works for all class invariants, but is only practical under additional restrictions.We do not
have examples of generalized class invariants where this trick is needed. The challenging
step to generalize is factoring a large-degree function inQ(C) in order to obtain the small
class functions.
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6.3.4 Constructing a function from its roots

In the CRT setting the multiplications and long-divisions by small-degree polynomials of
Sect. 6.2 only take timeO(nM(log(p))) per level, which is asymptotically dominated by the
O(M(n log(p)) time of the multiplications of large-degree polynomials. Therefore, Step 2
seems to take about 1.5 times as long per prime p for Hτ [C] when compared to Hτ [x].

6.3.5 The total running time

Concluding this preliminary analysis, we estimate the cost of computing Hτ [C] to be
significantly lower compared to Hτ [x], though further research, in particular into (the
implementation of) modular polynomials for C is required to determine the exact gain.
This is beyond the scope of the current paper, which focuses on introducing the general-
ized class functions and their height reduction. We plan to give a more detailed account
and an implementation in future work.

7 General curves and bases
Now suppose that our modular curve C is not necessarily an elliptic curve. Let D be an
effective divisor over Q on C and let B = {b0, b1, . . .} be a Q-basis of L(∞D) ordered by
ascending degree.
The classical case is the case where we have onemodular function f andwe takeC = P1,

ψ = f = (f : 1), D = ((1 : 0)) = (∞), and B = {1, f, f 2, . . .}. The case of all previous
sections of this paper is the case where C is an elliptic curve given by a Weierstrass
equation,D = ((0 : 1 : 0)), and B = {1, x, y, x2, xy, x3, x2y, . . .}.

Example 7.1 One systematic way to choose aQ-basis ofL(∞D) is as follows. First choose
x ∈ L(∞D) \ Q of some degree d. (For example, one can take x = f with d = 1 in the
classical case, and x = x with d = 2 in the elliptic case.) Now, let y0 = 1 and choose yj for
j = 1, 2, . . . , d − 1 in such a way that

yj ∈ L(mjD) \ 〈ykxe : k < j, e ∈ Z〉,
where mj is minimal such that this set is non-empty. This way we obtain a vector y =
(y0, . . . , yd−1) of d functions. (For example, in the classical case we have y = 1, and in the
elliptic case we chose y = (1, y).) Then B = {xeyj : e ∈ Z≥0, j ∈ {0, 1, 2, . . . , d − 1}} is a
basis of L(∞D). We order this basis by ascending degree de + mj , and if two elements
have the same degree, then we put the one with lowest j first.

Example 7.2 Consider the modular curve X0+(191) (not to be confused with 119), which
is hyperelliptic with model t2 = s6 +2s4 +2s3 +5s2 −6s+1 [16, Table 3], and the unique
cusp is at D = ((1 : 1 : 0)). One of the possible bases of L(∞D) obtained by the recipe
above is B = {1, x, y1, y2, x2, x2y1, x2y2, . . .}, where x = (t + s3 + s + 1)/2, y1 = sx, and
y2 = s(y1 + 1). The degrees of these functions are respectively 3, 5, and 7.
The function x is, up to multiplicative and additive constants, equal to the Atkin func-

tion A191. The reduction factors are r(C) = 96, r(s) = 48, and r(A191) = 32.

As in Sect. 2, let τ ∈ H imaginary quadratic and assume that (bi, τ ) is a class invariant for
every bi ∈ B. Then, again unique up to scaling, we obtain a non-zero function Fτ [C,B] =∑k

i=0 aibi ∈ K (C) (ai ∈ K ) with k minimal such that
∑k

i=0 aibi(τ ) = 0.
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Table 5 Some conjecturally correct generalized class functions for the curve C = X0+(119) using the
L(∞D)-basis B := {1, x, z, w, xz, wx, wz, w2, wxz, w2x, . . .}
D n Fτ [C,B]
−52 2 z − x + 1

−523 5 xw − xz − x + 3w + z

−5347 13 xw3 − 10xw2z + 42xw2 + 48w3 + 13xwz + 35w2z + 62xw

+104w2 + 39xz + 90wz − 11x + 41w + 39z + 1

−15139 29 xw7 − 33xw6z + 5874xw6 + 849w7 − 2119xw5z − 3865w6z

+31183xw5 − 4249w6 + 2200xw4z − 15449w5z + 36423xw4

−29399w5+6066xw3z−46282w4z+46223xw3−27578w4+6207xw2z

−30128w3z + 31320xw2 − 47581w3 + 6757xwz − 35595w2z

+8017xw − 17181w2 − 742xz − 10159wz − x − 2797w + 22z

Definition 7.3 We call this Fτ [C,B] the generalized class function for the triple C,B, τ .
If B is as in Example 7.1 then we again refer to the associated polynomial Hτ [C,B] ∈

K [X, Y1, . . . , Yd] (of total degree ≤ 1 in Y1, . . . , Yd and such that Hτ [C,B](x, y1, . . . , yd) =
Fτ [C,B]) as the generalized class polynomial.

Example 7.4 It turns out that, already for the case of elliptic curves, allowing the freedom
of the choice of basis of may in reality lead to potentially better practical reduction factors.
Revisiting our main example C := X0+(119), denote by w := w7,17 the function (2.9) and
by z := x + y the sum of the Weierstrass coordinates for the model (2.8). Now consider
the basis B := {1, x, z, w, xz, wx, wz, w2, wxz, w2x, . . .} ofL(∞D). The resulting generalized
class polynomials corresponding to the discriminants of Table 1 are listed in Table 5. We
get practical reduction factors in Fig. 3 that are better than those in Fig. 1.
A likely explanation for this improvement is that now not only the poles, but also the

zeroes are as much restricted to the cusps of X0+(119) as possible. Indeed, the points
O = (0 : 1 : 0) and P = (0, 0) are the cusps, while 2P and 3P are rational CM points. Now
div(w) = 4(P) − 4(O), div(x) = (P) + (3P) − 2(O), and div(y) = 2(P) + (2P) − 3(O). In
particular, the function w is a modular unit. As explained in Remark 3.15, modular units
in the classical setting give better practical reduction factors than non-units, even though
the reduction factors are asymptotically the same.

Theorem 7.5 Let C : y2 + g(x)y = f (x) with f, g ∈ Q[X] be a hyperelliptic curve such
that 4f (x) + g(x)2 has odd degree and Jac(C)(Q) is finite. Set D to be the unique point at
infinity and choose the basis B = {1, x, x2, y, xy, x2y, . . .} of L(∞D). Then Theorem 3.7 and
Proposition 3.13 also hold for C and Hτ [C,B].

Proof The original proof now goes through with only the following change. There are
finitely many possibilities for the class c of the divisor −∑

σ ((σ (ψ(τ ))) − D) by our
assumption that Jac(C)(Q) is finite. For every c, choose a representative

∑m
i=1((Pi) − D)

with m minimal and consider a primitive polynomial T ∈ Z[X] with roots x(Pi) for
i = 1, . . . , m. ��

Remark 7.6 Our proofs of Theorems 3.7 and 7.5 heavily rely on the fact that Heegner
points are torsion. To completely remove the assumption on ranks, one would therefore
need to bound the Heegner points, even in the rank-one case. Moreover, the proofs rely
on the hyperelliptic equation where we use that |a| ≤ |a + bi| for real numbers a and b.
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Fig. 3 Practical reduction factors for Hτ [X0+(119),B] for fundamental discriminants D with gcd(D, N) = 1 and
prime class number n < 100

Though we expect an analogue of these results to hold for general modular curves, this
would require additional ideas. Do note that such an analogue would yield arbitrarily high
reduction factors for generalized class polynomials by (3.2). For example, forC = X0+(239)
of genus 3 we already obtain r(C) = 120, exceeding the Bröker–Stevenhagen bound.
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