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We aimed at investigating host-virus co-metabolism during SARS-CoV-2 infection. Therefore, we
extended comprehensive sex-specific, whole-body organ resolved models of human metabolism with
the necessary reactions to replicate SARS-CoV-2 in the lung as well as selected peripheral organs.
Using this comprehensive host-virus model, we obtained the following key results: 1. The predicted max-
imal possible virus shedding rate was limited by isoleucine availability. 2. The supported initial viral load
depended on the increase in CD4+ T-cells, consistent with the literature. 3. During viral infection, the
whole-body metabolism changed including the blood metabolome, which agreed well with metabolomic
studies from COVID-19 patients and healthy controls. 4. The virus shedding rate could be reduced by
either inhibition of the guanylate kinase 1 or availability of amino acids, e.g., in the diet. 5. The virus vari-
ants differed in their maximal possible virus shedding rates, which could be inversely linked to isoleucine
occurrences in the sequences. Taken together, this study presents the metabolic crosstalk between host
and virus and emphasises the role of amino acid metabolism during SARS-CoV-2 infection, in particular of
isoleucine. As such, it provides an example of how computational modelling can complement more
canonical approaches to gain insight into host-virus crosstalk and to identify potential therapeutic
strategies.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Covid-19 is an infection of the respiratory tract caused by the
severe acute respiratory syndrome corona virus-2 (SARS-CoV-2)
[1]. It is characterised by a wide range of symptoms, including
cough, fever, diarrhoea, and shortness of breath, depending on
the disease severity [1]. The severity of Covid-19 varies between
infected individuals, ranging from asymptomatic to critical, severe
pneumonia, with multiple organ failure as a leading cause of death
[1]. Several susceptibility factors and pre-dispositions, such as age,
sex, and co-morbidities, have been linked to disease severity and
outcome [1–3]. In addition to affecting the respiratory system,
SARS-CoV-2 affects other organs [4], which has been mainly attrib-
uted to the broad expression of the receptors (hACE2) to which
SARS-CoV-2 binds [5]. Accordingly, SARS-CoV-2 has been found
in various organs beyond the lung, such as the liver [6], adipose tis-
sue [7,8], and small intestine [9–11]. The brain can also be affected
leading to clinical phenotypes, such as cognitive impairment
[12,13]. Hence, Covid-19 has been recognised as a multisystem dis-
ease involving numerous organs [4].

Viruses are known to hijack the metabolism of the infected cells
[14], as they require the host’s cell metabolic machinery to produce
the viral particles [5]. Consequently, a viral infection could lead to
substantial alterations of cellular metabolism in the SARS-CoV-2
infected organs. Hence, the question is whether the metabolic
changes do not only occur on a cellular or organ level but rather
involve metabolic reprogramming on a whole-body scale, which
could underlie the multi-organ failure.

The disentanglement of the complex host-virus interactions can
be aided by computational modelling. One suitable approach is the
constraint-based reconstruction and analyses approach (COBRA)
[15], in which the metabolic network of a target organism is
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constructed based on genomic, biochemical, physiological, and
phenotypic data [16]. The metabolic reconstruction can then be
used to interrogate emergent, functional properties [15]. The
COBRA approach has been successfully applied to a variety of
biomedical questions [17,18], including host-pathogen interac-
tions [19]. One of the advantages of metabolic reconstructions is
that they can be tailored to a particular question or condition
through the application of constraints [15], which could, for exam-
ple, be dietary availability [20–22], gene defects [23,24], or omics
data [25–27]. Hence, one metabolic reconstruction can give rise
to many condition-specific models. Moreover, the metabolic mod-
els of different organisms can be combined into a ‘‘superorganism”
metabolic model, which allows the investigation of the metabolic
interactions between the modelled organisms. For example, host-
pathogen models have been investigated to understand the inter-
play between the host and pathogen metabolism and to predict
potential drug targets. A few host cell – Covid-19 models have been
generated to provide insights into cellular reprogramming and to
propose anti-viral drug targets [28–30].

We have recently generated sex-specific, whole-body organ-
resolved reconstructions of human metabolism (WBMs) [21],
which account for 28 and 32 organs in the male and female recon-
struction, respectively, as well as 13 biofluids (Fig. 1A). The WBMs
capture more than 80,000 reactions and have been constrained
using metabolomic and physiological data to correspond to a refer-
ence man and woman [21,31]. Thus, the WBMs are ideally suited to
infect the lung with SARS-CoV-2 and investigate host-virus meta-
bolic interactions on a whole-body level (Fig. 1B). Importantly,
WBM-virus modelling represents a complementary approach to
observational and interventional clinical studies, providing novel
insights on the systemic consequences of COVID-19 infection and
replication, which would be otherwise not possible.
2. Methods

2.1. Whole-body metabolic reconstructions

We used the sex-specific organ-resolved whole-body recon-
structions of human metabolism, WBMs (v1.03), with default con-
straints [21] (Fig. 1A). Briefly, the male reconstruction consisted of
81,094 reactions and 56,452 metabolites distributed across 28
organs. The female reconstruction consisted of 83,521 reactions
and 58,851 metabolites across 30 organs. Both reconstructions
accounted for 13 biofluid compartments, including a blood com-
partment, which supplies the different organs with metabolites.
The whole-body reconstructions were built from the generic
human metabolic reconstruction, Recon 3D [32], using organ-
specific literature, proteomic, and metabolomic data [21]. Both
WBMs have been converted into personalised, condition-specific
computational models using physiological and phenomenological
data from a reference male and female [31] as well as constraints
derived from blood, cerebrospinal fluid (CSF), and urine metabolite
concentration data retrieved from the human metabolome data-
base (HMDB) [33]. Here, we added reactions involved in N-linked
glycan metabolism from Recon 3 [32] to various organs as they
were missing from the WBM reconstructions and were required
for the N-linked glycosylation of the spike and envelope proteins
of COVID-19 (Table S1). Furthermore, additional metabolites and
reactions have been added to allow better mapping of metabolo-
mics data (Table S1). The final male reconstruction contained
83,082 reactions, 58,501 metabolites (Fig. 1C), and 105,479 cou-
pling constraints [21,34]. The final female reconstruction con-
tained 85,568 reactions, 60,494 metabolites, and 109,294
coupling constraints (Table S1).
4099
2.2. Metabolic reconstruction of virus replication

The human angiotensin-converting enzyme 2 (hACE2) serves as
a receptor for SARS-CoV-2 enabling virus endocytosis via virus
spike protein interaction [1]. The receptor has been found in
numerous organs and tissues based on antibody staining and
RNA expression, including the lung, gastrointestinal tract, liver,
and adipose tissue [7,8]. Additional evidence supports virus repli-
cation in the intestine [9–11] and the liver [6]. Upon endocytosis,
the virus releases its genome, which consists of a positive-
stranded RNA (+ssRNA) [35]. The virus genome contains 12 open
reading frames, encoding for at least 5 accessory, 15–16 non-
structural, and four structural proteins [35]. The virus is then
assembled intracellularly in a dynamic compartment between
the endoplasmic reticulum and the Golgi (ERGIC) [36], where the
virus also gets its membrane envelop [5]. The nascent virus particle
is released from the host cell via exocytosis.

The ssRNA strand of SARS-CoV-2 is translated by the host cell
translation machinery, leading to the production of virus non-
structural proteins that are replicating the RNA strand, resulting
in the reverse (negative) RNA strand, which serves as a template
for the translation of the structural proteins and for the positive
strand, which will be incorporated in the nascent virus particle
[35]. SARS-CoV-2 has four envelope proteins, being spike (S),
envelop (E), membrane (M), and nucleoprotein N [35]. At the time
of the model formulation (May 2020), the copy numbers were
unknown for SARS-CoV-2. However, SARV-CoV has an estimated
structural protein stoichiometry of 1S3:16M:4N to 1S3:25M:4N
proteins and additional N proteins throughout the virion core
[37]. Moreover, it has been reported that an averaged sized (i.e.,
with a diameter of 120 nm [38]) SARS-CoV virus particle contains
about �50 to 100 spike trimers and �200–400 copies of N [37]. For
the E protein, about 15–30 copies have been estimated to be pre-
sent in the transmissible gastroenteritis coronavirus, and no infor-
mation was available for SARS-CoV-2 or SARS-CoV [39].
Additionally, the SARS-CoV-2 virus particle contains a small but
unknown quantity of accessory proteins [40]. The structural pro-
teins are heavily modified, including N- and O-linked glycosylation
of S and E (Fig. 1D). In SARS-CoV, S has 22 N-linked glycosylation
sites per monomer [41] and E has two potential N-linked glycosy-
lation sites [42]. Furthermore, the cytoplasmic C-terminal end of
the SARS-CoV S and E proteins are palmitoylated through the addi-
tion of palmitate to a cysteine residue via a thioester linkage [43]
carried out by host proteins [44]. The S protein has nine potentially
palmitoylated cytoplasmic cysteine residues, whereas E has two to
three potentially palmitoylated cytoplasmic cysteine residues [43].

Based on this information, we formulated the biomass reaction,
which represents the virus replication, for the SARS-CoV-2 virus
using SARS-CoV-2-specific information where available or substi-
tuted it with related coronavirus data otherwise. For the biomass
formulation, we followed the workflow provided elsewhere
[16,28,45]. First, we obtained the COVID-19 genome and protein
sequence from NCBI (NC_045512.2, May 2020). The fasta file con-
tained 13 annotated (poly)proteins. The nucleotides of the genome
sequence were counted for the negative and the reverse strand.
The amino acids were counted for each (poly)protein and multi-
plied by the respective copy numbers (Fig. 1D). We assumed that
i) only one negative ssRNA strand, ii) 300 S proteins [37,46],
1000 N proteins [37,46], 2000M proteins [37,46], and 20 E proteins
[39], iii) one copy of each of the remaining, non-structural are pre-
sent in each virus particle. The precursor requirements for the N-
linked glycosylation were calculated assuming that all 22 potential
glycosylation sites per S monomer [41] and two per E protein are
glycosylated [42] and using the aforementioned protein copy num-
bers. All four O-linked glycosylation sites in the S protein were
assumed to be glycosylated [47]. All palmitoylation sites were



Fig. 1. Overview of the sex-specific host-virus metabolic whole-body models. A. Schematic overview of the host-virus model. B. Schematic overview of the virus metabolic
reactions added to the sex-specific, organ-resolved whole-body human metabolic models. B. Statistics on reaction and metabolite content of the host-virus models. D.
Structural viral proteins, their copy numbers used for modelling the viral infection, and their protein modifications (see Methods for more details).
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assumed to be palmitoylated (nine for S and two for E) [43]. The
molecular weight of the virus particle was calculated accordingly.
The energy cost (adenosine triphosphate (ATP) requirement) for
nucleotide sequence polymerisation was assumed to require the
hydrolysis of one ATP to adenosine diphosphate (ADP) and
orthophosphate (Pi). The formation of a peptide bond was assumed
to require four ATP. The virus replication reaction was added to the
lung, liver, adipocytes, and small intestinal enterocytes of the
WBMs (Fig. 1B).

Additionally, we added the following reactions to the WBMs to
complete the virus metabolic reconstruction. A virus uptake reac-
tion (EX_virus_template[a]), representing the inhalation of the
virus to both WBM reconstructions, and a virus shedding reaction
(EX_virus[a]). An import and export reaction of the virus template
and the virus particle, respectively, to and from the lung (Fig. 1B). A
virus accumulation reaction for the liver (Liver_virus_production),
the adipocyte tissue (Adipocytes_virus_production), and the small
intestinal epithelium (sIEC _virus_production) (Fig. 1). The virus
template can be transported from the lung into the blood circula-
tion (Lung_virus_template_transport[bc]) and then be taken up
by the liver (Liver_virus_template_transport[bc]) and the adipo-
cytes (Adipocyte_virus_template_transport[bc]). The small intesti-
nal epithelium can take up the virus template from the air
representing that the virus can enter the gastrointestinal tract (lu-
men, [lu]) via the mouth and/or nasal cavity (sIEC_virus_template_
transport[lu]). The viral replication in the peripheral organs does
not contribute to the viral shedding flux [EX_virus[a]) representing
newly produced viruses leaving the host via the airways.

To account for the host immune response, we added the uptake
and degradation of the virus template to the reconstructions of the
CD4+-T-cells present in the WBMs (CD4Tcells_virus_template_de
grad), which accounts only for the breakdown of the ssRNA into
its constituents but not of the viral shell (i.e., the amino acids).
We did not represent the release of cytotoxins by the CD4+-T-
cells and the host cell death upon cytotoxin release. The resulting
WBM models were deemed WBM-SARS-CoV-2. In recovering
COVID-19 patients, increased CD8 + -T-cell and increased CD4+-
T-cell levels have been found [48]. Accordingly, we created a
4100
female and male model that represents the increase in T-cells,
deemed WBM-SARS-CoV-2-CD4+. The CD4+-T-cells were chosen
as the WBMs do not account for CD8+ T-cells. All virus-related
reactions can be found in Table S2.

2.3. Initial viral load

We enforced, with coupling constraints [21,34], that the
increases in replication reaction flux (i.e., of the virus biomass reac-
tion) were linked in the models to higher virus template uptake
flux (e.g., EX_virus_template[a]). This is the case for all four organs.
The upper, or maximal, coupling coefficient was set to 2,000, in
accordance with the estimate that about 1,000 viruses are pro-
duced from one virus per 10 h [46]. In addition, we also enforced
that when a virus template is taken up that the lung has to produce
at least as many viruses as there were taken up. This was not the
case for the other tissues.

2.4. Diets

All simulations have been carried out using an average Euro-
pean diet [49], if not specified differently. Diet formulations were
taken from the Virtual Metabolic Human (vmh.life) database
[49]. Each diet formulation defines the uptake rates for the differ-
ent dietary constituents (Table S7). The diets do not differ in the
metabolites (or constituents) but rather in their overall contribu-
tion to the diet. The list of constituents is likely to be incomplete
as only up to 132 metabolites are regularly measured and reported
per food stuff and hence, were included in the diet database of the
vmh.life [49].

2.5. COBRA modelling and flux balance analysis

The sex-specific WBM-SARS-CoV-2 and WBM-SARS-CoV-2-CD4
+ models were mathematical representations of the host and virus
metabolic transformation and transport reactions that were param-
eterised as described above. The COBRA approach assumes the
modelled system to be at a steady state meaning that the change
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in metabolite concentration (dx) over time (dt) is zero. The under-
lying system of linear equations can be efficiently solved using lin-
ear programming. Generally, an objective function is either
maximised or minimised subject to mass-balance constraints as
well as other imposed constraints (e.g., nutrient uptake). This
approach is called flux balance analysis [50]. If not stated differ-
ently, we used the virus shedding reaction (‘EX_virus[a]’) as an
objective function and maximised the flux through this reaction.
The resulting solution contains a flux value for each reaction in
the WBM-SARS-CoV-2 or WBM-SARS-CoV-2-CD4+ models. How-
ever, due to the degenerative nature of the underlying linear pro-
gramming problem, i.e., we have more reactions (variables) than
mass balances (equations), the solution vector is non-unique (but
the objective value is). To obtain a reproducible, unique solution
(out of the set of infinite possible solutions), one can minimise
the Euclidean norm of the solution vectors upon maximisation of
the objective function. The resulting solution vector is assumed to
be closest to a thermodynamically feasible flux distribution. These
flux distributions were used for the overlay onto the human meta-
bolic map (ReconMap [51]) hosted at the VMH [49] using the corre-
sponding functions in the COBRA Toolbox [52]. To determine
metabolites, which limited higher values through the objective
function, here the virus shedding reaction, we investigated the sha-
dowprices, which are dual to the linear programming problem [15].
2.6. Prediction of the blood metabolome

The in silico blood metabolome was determined by adding to
each model individually for each of the 1,033 metabolites in the
blood compartment ([bc]) a demand reaction (e.g., for D-glucose:
DM_glc_D[bc]: 1 glc_D[bc] ?Ø). These artificial reactions break
the steady-state assumption and allow for the accumulation of
the respective metabolite in the blood compartment. We then
maximised each demand reaction individually in the sex-specific
version of the healthy WBMs, WBM-SARS-CoV-2, and WBM-
SARS-CoV-2-CD4+ models. We compared the flux through the
respective demand reactions between the three models for each
sex. A metabolite was considered to be increased in the blood com-
partment if the maximal possible flux was higher in the SARS-CoV-
2 infected models compared to the healthy WBM model of the
same sex and decreased if the maximal possible flux was smaller.
All objective flux values less than 1e-6 U were considered to be
zero. The comparison with published plasma metabolomic data
was done by mapping the reported metabolite names into the
namespace of the virtual metabolic human database [49], which
was also used for the WBMs (Tables S5, S6). To test whether the
prediction accuracy was statistically significant, we chose
1,000,000 random sets of 103 metabolites and their predictions
from the 1,033 blood metabolites and compared them with the
measured changes.
2.7. Variant and sequence-specific modelling

We downloaded the COVID-19 sequences for the different vari-
ants from GISAID (https://www.gisaid.org/, between June 2021 and
February 2022). To ensure that we only obtained high-quality
sequences, we required the sequences to be complete, to have high
coverage, with patient status, and to have complete collection
dates. All submissions to GISAIDS must have been done after
01.01.2020, and the collection date must also have been on or after
that date. Where necessary, we specified dates and/or geographical
locations to reduce the number of downloaded sequences. We then
used Diamond [53] with default parameters to perform blastp for
each downloaded sequence against the reference strain
(NC_045512.2). For further computational analysis, only those
4101
variants/sequences were used, for which all 13 (poly)proteins
could be identified and contained no duplicates.

For each sequence, we adapted the female WBM-SARS-CoV-2
model by formulating a sequence-specific virus biomass reaction
assuming that the copy number of each protein remained the same
(Fig. 1D) but adjusted the frequency of nucleosides and amino
acids based on the sequence. We also assumed that the protein
modifications (Fig. 1D) were not affected by mutations. Each of
these variant sequences resulted in a sequence-specific model.
We maximised the virus shedding reaction for each sequence-
specific model. To compare the amino acid frequency of each
model, we added the occurrence of each amino acid per protein
multiplied by the copy number of the protein.
2.8. Code availability

All simulations were carried out using the COBRA Toolbox v3.0
[52] and the PCSM toolbox [21] using Matlab 2020 (Mathworks,
Inc) as simulation environment and Ilog clpex (IBM, Inc) as linear
programming solver. The code is available in the GitHub repository
of the COBRA Toolbox: https://github.com/opencobra/COBRA.
papers.
3. Results

3.1. Generation of sex-specific host-virus metabolic whole-body
models

To model SARS-CoV-2 viral infection, we expanded the compre-
hensive, organ-resolved, sex-specific whole-bodymodels of human
metabolism (WBM) [21] with SARS-CoV-2 specific reactions
(Fig. 1B). These reactions were formulated based on available data
on SARS-CoV-2 and related coronaviruses (Method section).
Briefly, the virus is taken up from the air (EX_virus_template[a])
and then by the lung where the virus replicates (viral biomass
reaction, VBR). The resulting virus particles leave the lung and
are released into the air (EX_virus[a], Fig. 1B). The VBR was formu-
lated such that it accounts for all known viral biomass precursors,
being 1. the nucleotides for the single-strand RNA (ssRNA), 2. the
amino acids for the structural and non-structural viral proteins
encoded by the ssRNA, 3. the N-linked and O-linked glycans pre-
sent on the spike (S) and the envelope (E) proteins, and 4. the
palmityl-CoA required for the palmitoylation of the S and E pro-
teins (Fig. 1D). The structural protein copy numbers were retrieved
from the literature (see Method section for details). The virus par-
ticle can be degraded by the CD4+ T-cells in the WBMs. We do not
represent the death of lung cells and non-metabolic inflammation
and immune responses. However, the WBMs contain reactions for
the metabolism of immuno-metabolites (e.g., eicosanoids) and
thus may capture potential changes along those pathways. Fur-
thermore, the setup allows the virus to replicate in the liver, adipo-
cytes, and the small intestine, consistent with reports of high
expression of the human ACE2 receptor, to which the virus binds
[7,8]. In total, 25 virus-specific reactions were formulated and
included in the WBMs (SI Table S2), yielding the WBM-SARS-
COV-2 models consisting of 83,082 metabolic reactions for 28
organs for the male model and 85,568 reactions for 30 organs for
the female model (Fig. 1C). The WBM-SARS-COV-2 models were
constrained based on the physiological parameters of a reference
man and a reference woman (e.g., weight, height, organ contribu-
tions to the whole-body weight, blood perfusion rates of the differ-
ent organs) [21]. No sex-specific or personalised constraints were
placed on the virus reactions, as such data were not available.
However, we limited the ratio of the virus uptake reaction (e.g.,
EX_virus_template[a]) to the virus biomass reaction (e.g.,
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Lung_virus_production) to be maximally 2,000 (per day and per-
son), representing the estimated burst size of 1000 per 10 h [46].
Furthermore, the dietary uptake constraints were set to correspond
to an average European diet [49], if not specified differently. Taken
together, we generated computational metabolic models of viral
infection of the human host, which have been tailored using
condition- and sex-specific constraints.

3.2. Modelling COVID-19 infection

First, we investigated the consequences of virus replication in
the lung. In the male and the female WBM-SARS-COV-2 models,
using flux balance analysis [50], the maximally possible flux
through the virus shedding reaction (EX_virus[a]) was 33.0254 U
(mmol/day/person) from 1 U inhaled virus (EX_virus_template
[a]) (Table S3). The predictions were not quantitative and thus,
the viral uptake of one mmol/day/person cannot directly be corre-
lated with the viral load reported in individuals [54]. Notably, in
both WBM-SARS-COV-2 models, the uptake of the essential amino
acid isoleucine by the lung from the blood circulation was limiting
the maximally possible flux through the virus shedding flux reac-
tion. To test whether isoleucine was indeed rate limiting, we
relaxed the upper bound on the lung isoleucine uptake reaction,
which was set based on the blood concentration of isoleucine in
healthy individuals and the blood perfusion rate through the lung
[21]. The maximal flux through the virus shedding flux reaction
increased to 41.0819 U for the male model and 38.711 U for the
female model when other metabolites became rate-limiting
(Table S3).

TheWBM-SARS-COV-2 models corresponded to a mild, not hos-
pitalisation requiring, infection with normal amounts of CD4+ T-
cells. To simulate the increased viral load reported for mild (but
hospitalised) and severe COVID-19 patients (5.11 vs 6.17 log10
copies per mL, respectively, [54]), we increased the viral uptake
flux to 10 U. However, no feasible solution could be obtained,
which was expected as already a mild (but hospitalisation requir-
ing) SARS-COV-2 infection led to an increase in CD8 + T-cells of
approximately six times and approximately three times for CD4+
T-cells [48]. Since the WBM-SARS-COV-2 models did not account
for CD8 + T-cells, we decided to use a factor of ten in the subse-
quent simulations to approximate the combined raise of T-cells.
The increase in T-cells was modelled by adjusting the coefficient
corresponding to CD4+ T-cells in the whole-body biomass reaction.
The resulting models, deemed WBM-SARS-COV-2-CD4+, had a the
maximally possible flux through the virus shedding reaction of
33.0254 U (female and male), when the constraint on the isoleu-
cine uptake was unchanged or to 41.0819 U for the male model
and 38.711 U for the female model when the lung isoleucine was
increased to 100 U (Table S3).

These results show that in the host-virus WBMs an increase in
T-cells is required to deal with a higher initial viral load, consistent
with our current knowledge.

3.3. Whole-body metabolic remodelling during Covid-19 infection

To obtain an assessment of whole-body metabolic remodelling,
we pursued two alternative approaches. First, we investigated the
metabolic changes associated with the infection, the increase in
virus load, and CD4+ T-cell availability. Therefore, we used three
models for each sex: the healthy WBM, the WBM-SARS-COV-2
model with 1 U virus uptake and normal CD4+ T-cell levels, and
the WBM-SARS-COV-2-CD4+ model with 10 U virus uptake and
10 times increase in CD4+ T-cells. We calculated the flux distribu-
tion that minimises the Euclidean norm, thereby approximating
the closest thermodynamically feasible flux distribution for each
model. When comparing the flux distribution obtained from the
4102
WBM-SARS-COV-2 with the one from the healthy WBM model,
approximately 15% of the metabolic reactions changed in flux val-
ues by at least 10% for both sexes (Fig. 2A, Table S4). Similar num-
bers in reaction flux changes were observed when comparing the
WBM-SARS-COV-2-CD4+ results with the WBM-SARS-COV-2 and
with the healthy WBM model results. These results indicate an
overall change in metabolism due to virus infection but also
between mild and severe infection, involving almost all organs
(Table S4). In the female lung, 12% of the 3,467 lung reactions
increased in flux, while 14.7% of reactions decreased in flux com-
pared to the healthy female WBM (Fig. 3B). We noticed that these
results were sensitive to the applied constraints and the reaction
content of the WBMs, as can be seen in the differences between
male and female models. This problem arose as we calculated only
one of an infinite number of possible flux distributions that are
consistent with the applied constraints. Nonetheless, the results
illustrate that the metabolism in the entire body was affected dur-
ing the viral infection, consistent with our current knowledge and
reports in the literature [4].

As a second approach, we calculated the maximally possible
increase or decrease of metabolites in the blood compartment.
Therefore, we added for each of the 1,033 metabolites present in
the blood compartment an artificial reaction allowing for the
metabolite accumulation (Methods) and maximised the flux
through each reaction individually. We found that 353 out of
1,033 (34%) metabolites changed in the female WBM-SARS-COV-
2 model and 359 out of 1,033 (35%) metabolites changed in the
male WBM-SARS-COV-2 model (Table S5). In the female WBM-
SARS-COV-2-CD4+ model, we predicted an increase of 79 and a
decrease of 278 blood metabolites. Next, we compared the pre-
dicted blood metabolite changes with published metabolomic data
[55], which reported 474 statistically significant changes between
healthy and non-severe Covid-19 patients (n = 28 and n = 37,
respectively) (Table S6). We could map 127/474 (27%) measured
metabolites onto the blood metabolites in the WBMs. Of these
127, 103 had a non-zero maximal flux value through their respec-
tive demand reaction. For the female WBM-SARS-COV-2 model,
the predictions agreed for in 73/103 (71%, p = 0.0006) of the cases.
In six (6%) cases, we predicted a decreased metabolite level while
an increase was reported. In further 24/103 (23%) of the cases,
we predicted no change. The numbers were very similar for the
male WBM-SARS-COV-2 model (Table S5).

Taken together, our simulation results illustrate a metabolic
remodelling on a whole-body level that also affect the blood meta-
bolome, which showed good agreement with the published data.

3.4. Simulation of potential anti-viral drug targets.

Over the past two years, various potential drug treatment
strategies have been suggested. One study proposed a set of 69
FDA-approved drugs targeting 66 host proteins as potential drugs,
as they had shown that these interacted with COVID-19 proteins
[56]. Hence, we investigated whether any of these drugs would
alter the virus shedding rate (EX_virus[a]) in our host-virus mod-
els. Only ten of the 66 host proteins were covered in the WBM
models (Fig. 3A). We inhibited each of these proteins by setting
the upper and lower constraints on the corresponding lung reac-
tions to zero and maximised the virus shedding flux. None of these
inhibitions resulted in a decrease of the maximally possible virus
shedding flux in silico (Fig. 3B). Another study, which also used a
computational model of COVID-19 and a metabolic model of
human macrophages, has suggested the guanylate kinase as a drug
target [28]. The guanylate kinase catalyses the reversible ATP-
dependent phosphorylation of GMP to GDP. In agreement with that
study, the inhibition of the corresponding reactions (VMH ID: GK1,
DGK1) in the WBM-SARS-COV-2 models reduced the maximal



Fig. 2. Metabolite changes occurring during mild and severe virus infection. A. Overall changes in reaction flux values in the WBM models in mild (WBM-SARS-COV-2) and
severe (WBM-SARS-COV-2-CD4+) infection models compared with the healthy WBM models. B. Biochemical network visualisation of predicted metabolic changes occurring
in the female lung during mild infection. Flux values that increased (red) or decreased (blue) by more than 10% when comparing the female WBM-SARS-COV-2 with the
healthy WBM model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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virus production potential to about 3.3% of the original WBM-
SARS-COV-2 model flux values (Fig. 3B, Table S3). The complete
inhibition of the associated reactions led to an infeasible model,
meaning that a small residual flux through these reactions was
necessary to sustain the maintenance of the WBM model. Addi-
tionally, we inhibited the lung uptake of various amino acids, moti-
vated by the result that isoleucine was rate-limiting for the viral
shedding flux (Fig. 3B). The reduction of the lung uptake of isoleu-
cine and threonine resulted in a similar reduction of the maximal
virus shedding flux as did the GK1 inhibition (Fig. 3B). In contrast,
the reduction of uptake flux in tryptophan and lysine resulted in a
reduction of the maximal virus shedding flux to 12.25% and 40.3%,
respectively, in both sexes. These results highlight the potential of
metabolic targets for reducing the viral replication rate within the
lung tissue.

3.5. Predicted effect of diet on virus replication in various organs

The reduction in lung amino acid uptake could be achieved by,
e.g., dietary changes. Hence, we investigated whether different
diets may alter the maximal possible viral shedding rate. Therefore,
we altered the in silico diet of the WBM-SARS-COV-2 and WBM-
SARS-COV-2-CD4+ models and maximised the maximally possible
virus shedding rate (EX_virus[a]) (Fig. 3C, Table S3). In total, we
used eight different diets from the Virtual Metabolic Human data-
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base (vmh.life) [49]. The lowest maximally possible virus shedding
rate was predicted for the vegan and vegetarian diets (Fig. 3C),
which also have the lowest isoleucine content (Table S7), while
all other diets resulted in the same maximal shedding flux as the
average European diet. Interestingly, tryptophan became the
rate-limiting amino acid in the vegan and the vegetarian diet
(Table S3). Both diets have the lowest tryptophan content
(Table S7). Next, we investigated whether diet may influence the
virus replication rate in the other infected organs. The maximally
possible virus replication fluxes were dependent on the diet in
the liver and the adipocytes. In contrast, in the small intestine,
the flux was limited by a glycan (VMH ID: g3m8mpdol_L), which
was required for the N-linked glycosylation of the S and E proteins
(Fig. 1D, Table S3). The vegan and the vegetarian diet resulted in
the lowest liver and adipocyte virus replication fluxes. In the liver,
the highest virus replication flux was obtained for the unhealthy
diet, which has been defined as a burger- and steak rich diet
[49], followed by the high fat and the high protein diets (Fig. 3D).
The virus replication fluxes were limited by tryptophan in the liver
and the adipocytes (Table S3). Sex-specific differences were
obtained for the unhealthy, high fat, and high protein diets in the
adipocytes (Fig. 3E), which can be attributed to women having a
higher percentage of body fat, which was also the case for our
female WBM (Fig. 3E). The results were similar for the WBM-
SARS-COV-2-CD4+ models (Table S3). Taken together, these results



Fig. 3. Predicted effect of drug treatment (A) and different dietary regimes on the
maximally possible virus shedding rates in the different organs (B). All fluxes are
given in mmol/day/person.
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suggest that diet and sex could influence the virus shedding flux in
the different infected organs.
3.6. Analysis of virus variants

Numerous SARS-CoV-2 variants have been identified over the
past two years, some of which have been the drivers behind the
different pandemic waves. In February 2021, the World Health
Organisation introduced a naming and monitoring system, which
lead to the classification of variants under monitoring (VUM), vari-
ants of potential interests (VOI), and variants of concerns (VOC). So
far, we have used for our in silico investigations the original, or par-
ental, virus genome sequence, which was released in February
2020 and updated in May 2020. To investigate whether the muta-
tions found in the different variants may have adapted not only to
evade the immune response, through mutations of critical amino
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acids in the spike protein, but also to the host metabolism, we
obtained genome sequences from GISAID for the five VOCs, two
VOIs, and one VUM (classification status of December 2021,
Fig. 4A). Furthermore, to have more sequences that are likely to
be closest to the parental virus, we also obtained sequences from
Italy in February 2020, where the first wave in Europe started
and that resulted in many deaths. We then created a total of
12,233 WBM-SARS-COV-2 models (Methods), each specific for a
virus sequence, and maximised the virus shedding reaction. Inter-
estingly, the predicted virus replication rates varied significantly
between the variants (Fig. 4B). The delta variant achieved the high-
est shedding rate followed by B.1.640, a variant under monitoring
by the WHO, which had been reported in France in December 2021
[57], and its occurrence overlapped with the omicron wave. The
maximal virus shedding rate predicted for the omicron variant,
which now represents the dominant variant worldwide, was lower
than that of the parental strain (Fig. 4B, Table S8). The variant
sequenced in Italy in Spring 2020 had an average maximal virus
shedding rate comparable to the parental variant but was lower
than the delta variant and the B.1.640 variant. However, only 69
sequences of B.1.640 had been deposited at GISAID at the time of
analysis, and of those, only 28 passed our stringent quality require-
ments (see Methods). The subvariant of the omicron variant,
deemed BA.2, has overtaken the omicron variant BA.1 since Jan-
uary 2022. Its predicted maximal virus shedding rate BA.2 was
slightly higher than that of BA.1 (Fig. 4B, Table S8).

To better understand the variation in replication rates, we anal-
ysed the amino acid composition of COVID-19 variants (Fig. 4C,
Table S9). As the sequence itself is not sufficient for the amino acid
requirements to create a new virus particle, we multiplied each
amino acid frequency with the copy number of the viral proteins
(Fig. 1D). We found that the highest requirements were for leucine,
alanine, glycine, serine, and threonine, while the lowest require-
ments were for histidine, methionine, cysteine, and tryptophan
(Fig. 4C). Curiously, but consistent with the simulation results
using the parental variant, the predicted virus shedding flux
increased linearly with decreasing isoleucine abundance in the
viral proteome (R2 = 0.99, Fig. 5A, Table S8). In contrast, we
observed that the virus exhalation flux increased linearly with
increasing threonine requirements, except for the omicron sub-
variants (Fig. 5B, Table S8, Fig. S1). The omicron threonine require-
ments were comparable to those of the delta variant, but its
replication rate was limited by its high requirement for isoleucine.

The Covid-19 variants are defined by their mutations, which
differ in type (i.e., nucleotide change) as well as in the affected pro-
teins (Fig. 4F, Fig. S2-4). Much attention has focused on mutations
in the spike protein, which is of high importance as the vaccines
have been developed to enable immune system recognition of cer-
tain parts of the spike protein. However, less attention has been
given to the other open reading frames. For instance, in the delta
and the B.1.640 variant, one isoleucine has been substituted in
the M protein with threonine when compared with the parental
variant (Fig. 5C). However, since one virus particle contains
2,000 M proteins, this single non-synonymous replacement led to
the greatly reduced requirement for the essential amino acid iso-
leucine and thus, to an increased maximal possible virus shedding
rate. The B.1.640 variant had one additional isoleucine in the N
protein (Fig. S3) reducing its maximal possible shedding flux com-
pared to the delta variant. In contrast, the omicron variants did not
contain this mutation (Fig. 4F). Overall, the sequences of the delta
variants were decreased in aspartate and isoleucine content, while
increased in cysteine and methionine content, compared to the
variant that caused the Italian wave (Table S9). Omicron, in con-
trast, was mostly decreased in glutamine (Fig. S2) and increased
in lysine (Fig. S4) content. However, for all variants lung isoleucine
uptake remained rate-limiting for the virus shedding flux.



Fig. 4. Analysis of SARS-CoV-2 variants in the context of the host-virus whole-body models. A. List of considered variants and their classifications. A total of 12,233 variant
sequences were analysed. B. Predicted maximal possible virus shedding flux using the variant-specific WBM-SARS-COV-2 models. C. Mean amino acid requirements per virus
particle were determined by multiplying the number of amino acids in the structural and non-structural proteins by the protein copy numbers (Fig. 1D).
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Taken together, single mutations and their combinations in the
structural proteins can lead to differences in in silico virus shedding
rates and may reflect potential adaptation to metabolic properties
of the host.
4. Discussion

We investigated host-virus co-metabolism during SARS-CoV-2
infection. Therefore, we extended the comprehensive sex-specific,
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whole-body organ resolved models of human metabolism with
the necessary reactions to replicate SARS-CoV-2 in the lung as well
as selected peripheral organs. We used the host-virus model to
predict the maximal possible virus shedding rate in silico. To repli-
cate within the in silico host cells, the virus template is transcribed
and translated, and the nascent proteins may be further modified
(Fig. 1B) [5]. As such, the viral infection poses an additional meta-
bolic burden on the in silico host and leads to the re-direction of
metabolic fluxes towards the viral replication. Our predictions of
large-scale metabolic changes in metabolic fluxes (Fig. 2A) are thus



Fig. 5. Predicted dependency of the maximal possible virus shedding flux on
isoleucine and threonine requirements of the nascent virus particle. Predicted
anticorrelation of the maximal possible virus shedding flux in the variant-specific
female WBM-SARS-COV-2 models on isoleucine (A) and threonine (B). C. Sequence
alignment of randomly chosen sequences of three variants and the parental virus
for the M protein. See also Fig. S2-4 for more examples.
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consistent that any viral infection can lead to remodelling of cellu-
lar metabolism [14,58,59]. However, the identification of potential
bottlenecks, or rate-limiting steps, might be difficult using in vitro
or in vivo experimental systems. Hence, computational modelling
provides a great opportunity to gain further mechanistic insight
and to identify potential innovative drug targets and treatment
strategies. Our simulation results using the genome sequence of
SARS-CoV-2 identified the essential amino acid isoleucine as a
rate-limiting metabolite. To our knowledge, such a dependency
has not been reported in the literature. One study [60] linked lower
isoleucine biosynthesis capability by the gut microbiome of sev-
ere/critical COVID-19 patients to higher inflammation. While this
observation seems counterintuitive to our results, it is not known
whether these patients had a more isoleucine-rich diet than
healthy individuals, and thus a pre-infection microbiome low in
isoleucine biosynthetic capabilities [60].

The viral load has been reported to be about ten times higher in
patients with severe COVID-19 infections compared to the mild
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cases [54]. Consistently, for the WBM-virus models to remain fea-
sible, we needed to increase the fraction of CD4+-T-cell, corre-
sponding to T-cell activation, in the whole-body maintenance
reaction to the reported increase of about 10 times (Table S3). This
requirement is also consistent with our knowledge that immuno-
compromised individuals have a more severe COVID-19 infection
outcome [2,61,62] and the central role of CD4+ T-cells in effective
immune response and protection [63]. Thus, our host-virus model
captures this aspect even though we do not explicitly model
inflammation and immune response.

COVID-19 is primarily characterised by an infection of the res-
piratory tract [1] but its multisystemic nature has been well docu-
mented [4] and has been mainly attributed to the broad tissue
expression of the hACE2 receptor [1]. In COVID-19 patients with
severe infection or poor outcome, multi-organ failure has been
observed [1], which raises the question of whether co-
morbidities, such as liver damage, or the viral infection itself
caused the multi-organ failures. Our computational modelling
indicated a metabolic remodelling beyond the four organs that
we infected in silico with SARS-CoV-2 (Fig. 2, Table S4), while we
did not model any organ damages. These results suggest that
SARS-CoV-2, and likely any viral infection, initiates a metabolic
remodelling on the whole-body level and not only on the level of
the infected cells [14,58,59]. We observed such remodelling also
in our mild SARS-CoV-2 models (Fig. 2, Table S4), consistent with
recent findings that also asymptomatic and mild infections can
lead to, e.g., cognitive impairment [12] and long covid [13], which
is characterised by a range of symptoms, such as fatigue, cognitive
impairment, and shortness of breath [64]. This feature of COVID-19
raises the question of whether the observed and predicted, whole-
body metabolic changes may become irreversible via, e.g., meta-
bolic imprinting, thereby leading to chronic disease [65].

The blood metabolome represents a multi-facet readout of
whole-body metabolic activity and environmental cues. Hence,
we predicted potential changes in the blood metabolome upon
SARS-CoV-2 infection, with and without T-cell activation, as an
alternative read-out of whole-body metabolic remodelling
(Table S5). Comparison with published plasma metabolomic data
[55] from COVID-19 patients and healthy controls overlapped well
with our predictions, thus, illustrating that the WBMs can be used,
in principle, to predict plasma metabolome changes. Furthermore,
numerous reported metabolites are either diet and/or microbiome
associated. For instance, the tryptophane metabolism is well
known to be influenced by the microbiome, which has also been
shown to alter significantly in individuals infected with mild and
severe COVID [66]. We are currently not accounting for microbial
metabolic activity, but it would be a valuable extension of the cur-
rent effort as it also permits to elucidate host-microbiome co-
metabolism [21]. Moreover, in our models, the availability of car-
nitine and its derivative was limited by the defined diet uptake,
while carnitine and associated lipids have been reported to change
with infection and disease severity [67]. Similarly, biotin is
increased in COVID patients [68]. Biotin is either produced by the
microbiome [69] or taken up with the diet. Similarly, one study
[68] reported an increase in theophylline in COVID-2 patients. This
metabolite is a drug, which is used to prevent and treat shortness
of breath in asthma and COPD patients. Hence, medication needs to
be recorded and corrected (as a confounding variable) when con-
ducting metabolomic analysis, as it is well studied that medication
directly influences the plasma metabolome [70,71].

Almost 70 potential host drug targets and corresponding FDA-
approved drugs have been suggested based on host-virus pro-
tein–protein interaction data [56]. We expected that of the few
host proteins that mapped onto the genes included in the WBM
model, which nonetheless covers the metabolic function of nearly
1,700 genes (Fig. 1), at least some would alter the maximally pos-



I. Thiele and Ronan M.T. Fleming Computational and Structural Biotechnology Journal 20 (2022) 4098–4109
sible virus shedding rate (Fig. 3A, B). However, the inhibition of
these proteins did not reduce the virus shedding rate. This result
may be explained by how these drug targets were identified. These
drug targets were chosen based on protein–protein interaction
experiments [72] indicating that there is a physical interaction
between the virus and host protein. However, interruption of this
physical interaction cannot be modelled with our approach. It is
also notable that only a very small fraction of these potential drug
targets represents metabolic enzymes. In contrast, a substantial
reduction in maximal possible virus shedding rate was achieved
by inhibiting the guanylate kinase 1, which also can activate
anti-viral prodrugs [73]. Interestingly, a similar flux reduction
was also achieved by reducing the lung uptake of either isoleucine
or threonine. Such reduction in uptake rates may be achieved by
reducing the blood concentration of the respective amino acids,
e.g., through an altered diet.

No definite link between diet and the susceptibility to COVID-
19 infection and the disease severity has been established yet
[74]. Nonetheless, during the pandemic, the World Health Organi-
sation (WHO) has been promoting healthy eating to boost the
immune system and lower the risk of chronic diseases,1 which
are risk factors for a more severe outcome of COVID-19 [2]. Our sim-
ulation results suggest a link between diet and maximally possible
virus shedding rate and even propose a sex-specific effect (Fig. 3B–
D). Our in silico results can be explained due to the mechanistic nat-
ure of our computational models and are a direct consequence of the
varied amino acid content (especially of isoleucine) in the different
in silico diets. This observation is exemplified by the finding of an
essential amino acid (isoleucine) limiting the virus replication capac-
ity, leading to the plausible hypothesis that inter-individual diet dif-
ferences may contribute to the broad range of observed disease
outcomes and clinical phenotypes. However, only integrating infec-
tion and clinical data with nutrition data will enable the validation
of this hypothesis that we derived from our simulations. Future epi-
demiological studies, using infection, transmission, and nutritional
data across various countries may be able to shed a light on the role
of diet habits in COVID-19 as will clinical trials involving nutritional
components [74].

Most studies have focused on the significance ofmutations in the
spike (S) protein, as these have direct implications on how well the
virus may be able to enter the cells and the effectiveness of the
developed vaccines. While mutations in the other proteins may
have structural and functional consequences, our simulation results
suggest that there could also be a link to how fast the virus can repli-
cate in the lung and that increases in virus replication, and thus
virus shedding,may be achieved by adapting better to hostmetabo-
lism. We observed a striking anticorrelation between isoleucine
requirement and the predicted virus shedding rate (Fig. 5A). In con-
trast, the threonine requirement correlatedwith the predicted virus
shedding rate for all variants, except for omicron (Fig. 5B). Notably,
while the abundance of these two amino acids did not alter substan-
tially in the variant sequences (Fig. 5C), the fact that they occurred in
highly abundant proteins decreased/increased the amino acid’s
requirement for viral replication. To our knowledge, this observa-
tion has not yet been reported in the literature and complements
structural considerations of the virusmutations.Many factors influ-
ence whether a mutant becomes dominant and has a more severe
outcome for infected individuals, including isolation, contract trac-
ing, and lockdowns, which slow done transmission as well as the
vaccination status of the population. Hence, our predicted virus
shedding rates cannot be easily correlated with virus dominance.
Also, the availability of genome sequences of variants on public ser-
1 https://www.emro.who.int/nutrition/nutrition-infocus/nutrition-advice-for-
adults-during-the-covid-19-outbreak.html.
4107
vers, such as GISAID, is not suitable for correlating our predictions
with a prominence of a variant due to biases in the selection of sam-
ples to be sequenced or differences in sequence capabilities of the
different countries [75]. Nonetheless, it is remarkable that the delta
variant, which has dominated most countries for many months in
2021 and caused many deaths worldwide, was predicted to have
the highestmaximal possible shedding ratewhile having the lowest
isoleucine andhighest threonine requirements. In contrast, the omi-
cron variant, which has higher infectiousness but results overall in
less severe COVID-19 cases [75], has a predicted virus shedding rate
lower than the parental variant. Consistently, the sub-variant of
omicron BA.2, which currently dominates the northern European
countries has a similar predicted virus shedding rate as omicron
BA.1. Our results highlight that, in addition to the structural impli-
cations of virus mutations, one should also consider host metabo-
lism implications. Importantly, these observations could lead to
further novel treatment strategies for viral infections, including
dietary restrictions on amino acid intake.

Numerous assumptions underlie our computational WBM-
SARS-COV-2 models. One of the chief assumptions is the steady-
state of the modelled metabolic network. As we consider, e.g.,
the virus replication potential for a day, we can assume that meta-
bolism is at a steady-state, as biochemical reaction rates generally
occur at a millisecond to seconds time scale [76]. A consequence of
the steady-state assumption is that we cannot predict any concen-
tration changes, except for those changes occurring across the sys-
tem’s boundaries (e.g., virus shedding rate or blood metabolite
accumulation/depletion rates). Equally, our modelling approach
does not capture the dynamic changes occurring during infection
but rather predicts a final feasible steady-state. Moreover, our
WBM-SARS-COV-2 models only capture metabolism and thus can
only inform about virus-host metabolic interactions, while viral
infections and immune response are associated with substantial
changes in the regulatory and signalling machinery [59]. Similarly,
we do not consider the effect of fever on enzymatic rates or gene
expression and also do not alter the blood supply to the different
organs, which corresponded in our simulations to the resting state
[21]. Moreover, we do not model decreased oxygen blood satura-
tion that has been reported in severe COVID-19 cases [77,78].
However, it has been estimated that virus shedding occurs already
two to three days before symptoms appear [79], justifying our
choice of not further parameterising the models with symptoms.
Our models should therefore be seen as a model best suited for
the early stages of the infection. Finally, we only performed our
simulations using a representative reference man and woman
[31]. More extensive simulations need to be carried out by param-
eterising the WBM-SARS-COV-2 models with data from, e.g., vul-
nerable populations (e.g., elderly or obese individuals), as well as
ethnicity-specific parameters.

Despite these assumptions and limitations, we believe that our
modelling approach provides valuable insights and strengths, such
as the generation of novel hypotheses in a sex-specific, whole-body
yet organ resolved manner during COVID-19 infection. These
hypotheses, such as the possibility to reduce the virus replication
rate by restricting isoleucine availability in the diet, can be trans-
lated into clinical research, delivering thereby additional targets
for intervention. Notably, the overall computational modelling
paradigm could be extended to other viruses, such as influenza,
and human pathogens.
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