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ABSTRACT 

 

As one of the world’s largest palm oil producers, Malaysia encountered 

a major disposal problem as vast amount of oil palm biomass wastes are 

produced. To overcome this problem, these biomass wastes can be liquefied into 

biofuel with fast pyrolysis technology. However, further upgradation of fast 

pyrolysis bio-oil via direct solvent addition was required to overcome it’s 

undesirable attributes. In addition, the high production cost of biofuels often 

hinders its commercialisation. Thus, the designed solvent-oil blend needs to 

achieve both fuel functionality and economic targets to be competitive with the 

conventional diesel fuel.  

In this thesis, a multi-stage computer-aided molecular design (CAMD) 

framework was employed for bio-oil solvent design. In the design problem, 

molecular signature descriptors were applied to accommodate different classes 

of property prediction models. However, the complexity of the CAMD problem 

increases as the height of signature increases due to the combinatorial nature of 

higher order signature. Thus, a consistency rule was developed reduce the size 

of the CAMD problem. The CAMD problem was then further extended to 

address the economic aspects via fuzzy multi-objective optimisation approach.   

Next, a rough-set based machine learning (RSML) model has been 

proposed to correlate the feedstock characterisation and pyrolysis condition 

with the pyrolysis bio-oil properties by generating decision rules. The generated 
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decision rules were analysed from a scientific standpoint to identify the 

underlying patterns, while ensuring the rules were logical. The decision rules 

generated can be used to select optimal feedstock composition and pyrolysis 

condition to produce pyrolysis bio-oil of targeted fuel properties.  

Next, the results obtained from the computational approaches were 

verified through experimental study. The generated pyrolysis bio-oils were 

blended with the identified solvents at various mixing ratio. In addition, 

emulsification of the solvent-oil blend in diesel was also conducted with the 

help of surfactants. Lastly, potential extensions and prospective work for this 

study have been discuss in the later part of this thesis.  To conclude, this thesis 

presented the combination of computational and experimental approaches in 

upgrading the fuel properties of pyrolysis bio-oil. As a result, high quality 

biofuel can be generated as a cleaner burning replacement for conventional 

diesel fuel.  
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CHAPTER 1                                                                           

INTRODUCTION 

1.1. Oil Palm Biomass’s Potential as Renewable Energy Source  

Over the century, burning of fossil fuels had generated most of the 

energy required in our daily life. Even today, the fossil fuels are still serving 

about 80 % of the world’s daily energy needs (EESI, 2021). Report have shown 

that in July 2022, 98.8 million barrels/day of petroleum and liquid fuels were 

consumed globally. This amount was forecasted to further increase up to an 

average of 101.5 million barrels/day by the year of 2023 (EIA, 2022a). 

Nevertheless, the rising demand and the increased cost of fossil fuels, along 

with the growing environmental issues from their uses had led to the search for 

renewable and sustainable fuels resources. In Malaysia, efforts had been made 

to elevate the renewable energy production by introducing the Malaysia Energy 

Plan. To date, the installed capacity of renewable energy in Malaysia was 

reported to be 7995 MW (MIDA, 2021). Under the 12th Malaysia Plan, it is 

projected for Malaysia to achieve the renewable energy capacity of 31 % by 

2025 and 40 % by 2035 (MIDA, 2021). 

Biofuel has been recognised as a highly preferable alternative to 

conventional fossil fuels for their reduced environmental impacts. Generally, 

the biofuel can be referred to as a renewable and clean burning liquid fuel which 

can be obtained from biomass feedstock, such as agricultural and industrial 
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wastes, energy crops and algae sources. The quality and characteristics of 

biomass varied regionally and are dependent on multidimensional components 

mechanism and drives, such as water, soil, climate etc. (Kaniapan et al., 2021). 

In Asia region, specifically in Malaysia and Indonesia, palm oil waste has been 

perceived as one of the potential biomass sources for its abundant availability.  

Malaysia is one of the world’s largest palm oil producers and exporters 

with 25.8 % of world palm oil production and 34.3 % of world exports (MPOC, 

2022). In 2021, the total oil palm planted area in Malaysia reached 5.74 million 

hectares. In addition, production capacity of approximately 39 million tonnes of 

oil palm products such as crude palm oil, palm kernel, crude palm kernel oil and 

palm kernel cake were reported by The Malaysia Palm Oil Board (MPOB, 2021). 

For every tonne of crude palm oil produced, roughly 5.8 tonnes of fresh fruit 

bunch were used, of which 70% was removed as waste, such as press fibre 

(30%), empty fruit bunch (28.5%), palm kernel shell (6%), decanter cake (3%) 

and others (2.5%) (Pleanjai et al., 2007). As of December 2021, there were 451 

operating palm oil mills in Malaysia with a total fresh fruit bunch processing 

capacity of 115 million tonnes per year (MPOB, 2022). In other words, a total 

of 80.5 million tonnes of palm oil biomass wastes were generated in Malaysia 

annually.  

A variety of thermochemical technologies were available for palm 

biomass conversion, such as liquefaction, gasification, and pyrolysis where 

different type of biofuel can be generated. Among these available biomass 

conversion technologies, pyrolysis process has the advantage of being a 

relatively simple and inexpensive technology (Fermoso et al., 2017). With 
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pyrolysis process, solid palm biomass feedstock can be converted into pyrolysis 

bio-oil along with biochar and gaseous products as by-product. Here, the 

pyrolysis bio-oil, sometimes also known as the bio-crude, is the liquid product 

produced from the pyrolysis of biomass through rapid heating at high 

temperature. However, pyrolysis bio-oil is a complex mixture which mainly 

composed of water, fine solid particles, and various organic compounds such as 

hydrocarbons, acids, alcohols, ketones, aldehydes, phenols, as well as large 

molecular oligomers (Yang et al., 2014). These compounds often lead to poor 

fuel properties and performance of pyrolysis bio-oil. Problems like 

corrosiveness, high viscosity, low heating value, thermal and chemical 

instability, as well as non-miscibility with petroleum fuels were often 

encountered with the direct application of pyrolysis bio-oil in diesel engines or 

gas turbines (Khosravanipour Mostafazadeh et al., 2018). To overcome these 

disadvantages, a vast amount of pyrolysis bio-oil upgrading methods through 

physical or chemical pathway have been proposed and studied (Ansari et al., 

2022; Omar et al., 2019). Direct solvent addition is one of the most popular 

pyrolysis bio-oil upgrading approaches as it is relatively simple and 

economically viable. With the addition of solvent, lower viscosity, higher 

stability, and homogenisation of pyrolysis bio-oil can be achieved (Yang et al., 

2014).  The greater higher heating value (HHV) of solvent was also proven to 

improve the HHV of pyrolysis bio-oil (Khosravanipour Mostafazadeh et al., 

2018).  
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1.2. Background Problems 

In the past, most of the studies focused on the experimental mixing of 

pyrolysis bio-oil with one or more solvents selected based on their general 

properties without knowing the underlying mechanisms between constituent of 

pyrolysis bio-oil with solvent. The conventional approach in the identification 

and selection of solvents often involve tedious trial-and-error experimental 

process within a large set of candidates. This process could be time consuming 

to test all potential solvents and ineffective in optimising blend performance to 

meet the property targets (Venkatasubramanian et al., 1994). In response to 

these challenges, computer-aided molecular design (CAMD) techniques were 

commonly employed to identify potential candidates that satisfy a set of 

property targets and constraints in the design and optimisation of solvents 

(Achenie et al., 2003). CAMD is a reverse engineering approach which predicts, 

estimates, and construct molecules from a given set of molecular building 

blocks based on the predefined target properties (Harper and Gani, 2000).  

In the past, CAMD approach has been attempted to design solvents for 

bio-oil applications. To develop a CAMD problem, it is essential to have 

reliable property prediction models. One of the most widely used methods for 

the molecular property prediction is the group contribution (GC) methods 

(Joback and Reid, 1987). However, previous research on the design of bio-oil 

solvent focused mainly on the solvent functionality that can be predicted using 

GC prediction models with 1st order groups due to the computational difficulties 

associated with higher order groups. In addition, the nonavailability of the 

required GC contributions restricted their applicability in CAMD problem 
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(Conte et al., 2008). Moreover, the selected GC model may not have all the 

model parameters required for the estimation of property of a specific chemical 

(Hukkerikar et al., 2012a). For this reason, topological index (TI) like 

connectivity index, shape index, or wiener index can be applied as they are a 

function of the entire molecular graph, which reflect the entire nature of the 

molecular structure (Austin et al., 2016). Nevertheless, incorporating TI and GC 

models with higher-order group contributions together is computationally 

challenging (Chemmangattuvalappil and Eden, 2013). Thus, molecular 

signature-based algorithms were introduced in this thesis to incorporate higher-

order molecular groups from GC models and multiple TIs on a common 

platform for CAMD. 

Molecular signature descriptor is one of the two-dimensional (2-D) 

fragment-based TI that systematically captures the structural information of a 

2-D structural formula. It describes the molecular atoms in terms of extended 

valencies up to a predefined height (Faulon et al., 2003b). Owing to the fact that 

molecular signature descriptor is known as the canonical representation of a 

molecule, all other 2-D classes of descriptors can be represented in terms of 

molecular signature (Visco and Chen, 2016). Signatures of different height can 

be used to represent different TI and GC models with higher-order contributions. 

However, coverage of TIs and higher-order GCs require signatures of higher 

height due to the requirement of higher structural information. Despite the high 

accuracy of estimation with the use of signatures of higher height, the 

complexity of CAMD increases due to the combinatorial nature of higher-order 
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signatures. Thus, it is crucial to develop an efficient approach to reduce the size 

of CAMD problem, keeping it at a manageable problem size.  

Other than the poor fuel quality and stability of biofuel, its high 

production cost further hold back on the commercialisation of biofuels 

(Clemente, 2015). The low heating value of biofuels make them more costly for 

heat generation (Clemente, 2015). As the biofuel ratio increases in the fuel, the 

fuel’s energy density decreases. Therefore, the addition of solvent is often 

required to improve the biofuel’s properties. These solvents can either be 

manufactured as commodity or specialty chemicals. However, if the design 

problem focused solely on optimising the product’s performance, it may end up 

selecting the specialty chemicals as optimal solvents, which are generally 

associated with high cost. This further increases the production cost of biofuels. 

In addition, the existing and progressing biofuel legislative framework sparks 

the urge to assess the cost associated with upgrading bio-oil. To date, most of 

the research on the design of bio-oil solvent mainly focused on the functionality 

of the solvent itself. It is also important to incorporate the economic aspects into 

the development of bio-oil solvent for the designed solvent-oil blend to be 

competitive with the conventional diesel fuel. The HHV of pyrolysis bio-oil can 

be increased with the addition of solvent. The higher the mass fraction of solvent 

in the solvent-oil blend, the higher is the energy content. However, a higher 

amount of solvent was often associated with higher cost, and thus, lower 

profitability obtained from the solvent-oil blend. Currently, most of the CAMD 

techniques focus on optimising a single objective or property of the chemical 

product (Zimmermann, 1978), but having a multi-objective problem 
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necessitates the use of more complex optimisation methods. Thus, a multi-

objective optimisation (MOO) approach is required to investigate the trade-off 

between high HHV and high profitability of the solvent-oil blend 

It is also to be noticed that the quality and properties of the pyrolysis 

bio-oil played a major role in determining the final solvent candidates. 

Meanwhile, the fuel properties of generated pyrolysis bio-oil varied widely 

depending on the biomass feedstock sources and operating conditions of the 

pyrolysis process. One of the most significant properties of pyrolysis bio-oil is 

its HHV, which indicates its quality as a liquid fuel. Many studies had related 

the HHV of pyrolysis bio-oil to its elemental composition (Vargas-Moreno et 

al., 2012). However, the studies to estimate HHV of pyrolysis bio-oil from its 

feedstock properties and operating conditions are not common. In addition, the 

low pH value of pyrolysis bio-oil often leads to corrosion issues in some 

materials such as carbon steel, copper, iron, and aluminium which mainly 

impede its application as engine fuel (Wright et al., 2010). Although 

characterisations of bio-oil also include the stability, solid content, and water 

content, these properties are mostly affected by the pyrolysis operating 

condition such as heating rate, secondary reactions, and separation process. 

Different from the abovementioned properties, the pyrolysis bio-oil's pH is 

more directly related to the characterisation of biomass feedstock. Nevertheless, 

the estimation of bio-oil pH from feedstock and operating conditions have yet 

to be explored.  

In the past, machine learning (ML) tools have been used for predicting 

the performance of thermochemical biomass processing because of the poor 
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understanding of the complex underlying reaction mechanisms. The difficulties 

are further compounded by the highly variable composition and properties of 

different kinds of biomass feedstocks. As a result, there has been a notable trend 

in the use of ML tools such as regression, support vector machine (SVM), 

artificial neural network (ANN) and decision tree to complement mechanistic 

models for such applications (Kostetskyy and Broadbelt, 2020; Zhu and Yang, 

2021). Nevertheless, it is noticed that difficulties were faced in the extraction of 

practical information from inputs (Tsekos et al., 2021). Popular black-box ML 

techniques such as ANN and SVM suffer from poor inherent interpretability 

where the process linking the inputs to outputs is opaque. (Yang et al., 2015). 

This has led to difficulties in inferring conclusions regarding the underlying 

mechanisms of a considered process from the network’s prediction (Ascher et 

al., 2022). Other than ML techniques, statistical tools including response surface 

method (RSM) and multiple linear regression (MLR) approaches will lead to 

regression models that are also black-box in nature. In the view of this, the 

rough-set machine learning (RSML) approach can be used to address problems 

encountered in other ML approaches. With the RSML approach, 

straightforward and transparent rules can be generated for further information 

extraction. In addition to being inherently interpretable, ML techniques that use 

rule-based models allow fusion of expert knowledge with data embedded in 

information during the training process. Domain knowledge can be introduced 

via user-defined training parameters to ensure that the final rules are plausible 

from the perspective of physical mechanisms (Rudin and Ertekin, 2018).  
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While optimal solvent candidates can be identified from the developed 

CAMD approach, there are also needs to verify the accuracy of the developed 

model. On many occasions, the computational solvent design framework ended 

with the identification of promising chemical compounds. The feasibility and 

functionality of the identified chemical compounds are usually verified via 

online database search. However, the results from prediction model often 

deviates from the experimental results due to the presence of uncertainties in 

the property relationship. Thus, experimental verification is crucial to ensure 

the identified solvent candidates are feasible for real-life application while 

meeting the required targeted properties and performance. In addition, 

emulsification approach was also required for the application of stable bio-oil 

with diesel. Pyrolysis oil which was originally immiscible with diesel can be 

emulsified with the aid of surfactant, resulting in promising stability and 

ignition characteristic. Nevertheless, previous research on biodiesel blend with 

surfactant demonstrated varying properties such as low heating value, low 

cetane number and corrosiveness. Thus, it is crucial to develop an efficient 

emulsification strategy to generate a stable solvent-oil-diesel blend.  

1.3. Thesis Outline 

The thesis has been divided into eight chapters. A comprehensive 

literature review covering the topics of pyrolysis bio-oil, CAMD techniques, 

MOO approaches, and ML algorithms was presented in Chapter 2. Based on the 

conducted literature review, the research gaps were determined and described 

in Chapter 3. This also led to the detailed discussion of research objectives, as 

well as research methodology in Chapter 3. Following these, four research 



Chapter 1 
 

 10 

scopes were then demonstrated in Chapter 4 to 7, respectively. In Chapter 4, a 

multi-stage CAMD framework was demonstrated for the design of bio-oil 

solvent. A novel consistency rule was introduced to reduce the size and 

complexity of the CAMD problem. Chapter 5 presented an extension of the 

research scope in Chapter 4, by considering the economic aspect in solvent 

design. The third research scope is proposed in Chapter 6, where a ML 

prediction model was developed to predict the fuel properties of pyrolysis bio-

oil based on the characterisation of biomass feedstock. Chapter 7 presented the 

ultrasonic emulsification of pyrolysis bio-oil and diesel fuel with the aid of 

surfactant and solvents identified in Chapter 4 and 5. The achievements and 

contributions of this research work were summarised in Chapter 8. The potential 

future works that can be considered in this area of research work were highlight 

as well.  
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CHAPTER 2                                                                                          

Literature Review 

The focus of the present work is the combination of computational and 

experimental approaches in improving pyrolysis bio-oil’s fuel properties and 

combustion quality. This section included the literature review on biomass 

feedstock, pyrolysis bio-oil, emulsification of pyrolysis bio-oil, computer-aided 

molecular design (CAMD), machine learning (ML) and rough set theory (RST). 

2.1. Biomass Feedstock 

Biomass feedstock was referred to as the organic materials, wastes or 

residues that can be used to produce energy. These biological materials 

originated from agriculture, including plant and animal wastes as well as aquatic 

and industrial wastes (OJEU, 2009). Almost all the biomass feedstocks can be 

converted to energy fuels by either biochemical or thermochemical conversion 

routes (EIA, 2022b). 

2.1.1. Wastes/Low-Valued Co-Products 

A large number of agriculture residues are generated annually, 

especially in agriculture-based countries like China and India (Ross, 2019). 

However, only 27 % of the agricultural residues generated are further processed 

as fuel and wood products (DOSM, 2019). On the other hand, biomass wastes 

generated from wood processing industry came mainly from sawmilling and 

logging activities such as sawdust, wood chips, damaged or unwanted stem 

wood and logs.  
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In addition, the generation of biodiesel from animal fats such as beef 

tallow, chicken fats and pork lard were reported as well (Banković-Ilić et al., 

2014; Toldrá-Reig et al., 2020). These waste animal fats are usually collected 

as by-products from meat processing facilities and rendering processes. Usage 

of animal fats as biomass feedstock offered advantages in economic, 

environmental and food security aspects over the used edible vegetable oils. The 

high concentration of saturated fatty acid and free fatty acid in animal fats 

require production techniques with higher complexity, resulting in biodiesel 

with lower physical and chemical quality. High free fatty acid contents also 

resulted in soap formation during the base-catalysed transesterification process 

due to the reaction between free fatty acids and base catalysts. This had led to 

the loss of catalyst and ester products which increased the production costs 

(Encinar et al., 2011). On the other hand, low unsaturation of free fatty acids 

offered several advantages which include high calorific value, high cetane 

number and high oxidation stability (Adewale et al., 2015).  

Waste cooking oil is easily available from restaurants, cafeterias, and 

household kitchens. It was estimated that approximately 25 million tonnes of 

waste cooking oil were generated globally, where the United States alone 

generated 10 million tonnes of waste cooking oil annually (Yaakob et al., 2013). 

Waste cooking oil collected from kitchen can be categorised as either yellow 

grease or brown grease. Yellow grease means used cooking oil, spent 

shortenings or any other vegetable oil, with free fatty acids content of less than 

15% (C. E. Goering et al., 1982). It is considered as a “clean” type of grease 

with little to no contamination and can be recycled. On the other hand, brown 



Chapter 2 
 

 13 

grease included the fat, oil and grease materials collected in grease traps or 

waste traps, with free fatty acids content of more than 15 % (C. E. Goering et 

al., 1982). Brown grease is often associated with issues such as food and trash 

contamination, heavy emulsification, foul odour, and cold flow. Waste cooking 

oil was reported to be a cheaper alternative of biodiesel feedstock compared to 

vegetable oils, lowering the biodiesel production cost by 60 % to 90 % 

(Talebian-Kiakalaieh et al., 2013). Figure 2-1 illustrated the examples of 

feedstocks categorised under wastes and low-valued co-products. However, in 

recent years, the drawbacks of using wastes or low-valued co-products for 

energy have become more apparent. In fact, it was reported that the waste-to-

energy approach works against the circular economy (Sara Muznik, 2018). In 

addition, its negative impacts also include the production of toxic particulate, 

pollutions, and the possibility to discourage more sustainable waste 

management solutions (RTS, 2021).  

 

Figure 2-1 Type of wastes/low-valued co-products 

Rice Straw

Corn Stover Palm Kernel 
Shell

Rice Husk

Primary 
Residues

Secondary 
Residues

AGRICULTURE 
RESIDUES

Beef Tallow

Chicken Fats

ANIMAL 
FATS

Used 
Cooking Oil

FOOD 
INDUSTRY 

WASTE

WOOD
PROCESSING

INDUSTRY

Wood Logs

Sawdust

Wastes/Low-Valued Co-Products



Chapter 2 
 

 14 

2.1.2. Dedicated Energy Crops 

Dedicated energy crops are crops grown specifically for energy 

production which require low cost and maintenance. Energy crops can be 

generally categorised as grassy, woody, and oil crops as shown in Figure 2-2. 

Both fast-growing woody and grassy plant species like poplar, willow, 

miscanthus and switchgrass are cultivated in perennial plantation. Typical 

rotation periods for woody plants species are between three to seven years and 

one year for grassy plant species (Rosillo-Calle et al., 2008). Grassy plant 

species can be classified as high yield and low-energy input crops (Singh and 

Trivedi, 2017). Switchgrass is a promising biofuel feedstock as it can be 

cultivated on land with minimal agricultural value while adaptable to a wide 

range of climates. On the other hand, miscanthus is a perennial, warm-season 

Asian grass with rapid growth rate and low fertiliser and pesticide inputs 

(McCalmont et al., 2017).  

 

Figure 2-2 Type of dedicated energy crops 
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Oil energy crops are the base feedstocks for biodiesel production. 

Grown mainly in Malaysia and Indonesia, oil palm was reported to be the most 

efficient oil seed crop in the world. Approximately 3.95 tonnes of palm oil and 

0.47 tonnes of palm kernel oil can be produced with 1 hectare of land (MPOC, 

2020). Based on the total yield of about 4.5 tonnes per hectare, oil palm is 10 

times more productive than soybean (MPOB, 2020). Unlike soybean and 

rapeseed, palm oil is a perennial crop which starts bearing palm fruits for oil 

about three years after planting. Besides, palm oil has a relatively long 

productive lifespan of 25 to 30 years (Kurnia et al., 2016). Crude palm oil 

referred to palm fruit oil extracted from the fruit’s flesh. Crude palm oil will be 

sent to palm oil refineries to be refined, followed by conversion to methyl esters. 

Methyl esters from palm oil can be directly used as biodiesel or by blending 

with petroleum diesel. They also exhibit low engine emission and high 

oxidation stability (Mekhilef et al., 2011). 

2.1.3. Algae 

Algae are very diverse, ranging from microscopic (microalgae) to large 

seaweed (macroalgae), as seen in Figure 2-3. They can be found almost 

everywhere on earth. In recent years, algae have emerged as one of the most 

promising alternative sources for biodiesel production for their high lipid 

content, high rate of carbon dioxide absorption, higher growth rate and 

productivity (Kandaramath Hari et al., 2015).  
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Figure 2-3 Type of algae biomass feedstock 

Microalgae are capable to reproduce themselves through 

photosynthesis, converting sunlight, carbon dioxide and nutrients such as 

nitrogen and phosphorus into biomass. A complete growth cycle of microalgae 

takes only a few days, resulting in higher biomass productivity and oil yield 

compared to other crops (Ahmad et al., 2011). Moreover, they can be grown 

almost everywhere and can be harvested all year. Algae can be grown using 

water resources such as seawater, brackish water and wastewater which are 

unsuitable for human consumption, and thus reduces the food-fuel conflict 

(Mata et al., 2010). Microalgae with an oil production of at least 70 wt. % of 

dry biomass only requires 0.1 m2 year per kg biodiesel of land to produce 

121,104 kg of biodiesel per year (Ahmad et al., 2011).  In recent years, the focus 

of research in this area has shifted from direct extraction of lipids to the direct 

thermal processing and/or fermentation of algae biomass into sustainable 

alternative fuel (Chuck et al., 2016). Algae biodiesels are reported to be zero-

sulphur while having the same performance as petroleum diesel with reduced 

emissions of particle matters, carbon monoxide, hydrocarbons, and sulphur 
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oxides. However, emission of nitrogen oxides may be higher in certain engine 

types (Delucchi, 2003). 

Similar to microalgae, seaweed (macroalgae) derived sustainable 

alternative fuel is also gaining increasing attention as a potential feedstock. 

Seaweed biomass can be produced either by cultivation and harvesting or by 

collecting wild drift seaweed, followed by dewatering process(Singh and 

Trivedi, 2017). In 2017, 30 million fresh weight tonnes of seaweed were 

produced globally as biomass supply (Buschmann et al., 2017). Chuck et al. 

(2016) estimated that production from offshore farms could achieve 110 EJ, 

coastal farms 35 EJ and open sea colonies could even reach 6000 EJ. However, 

the carbohydrates content of seaweed is low while the ash content is significant, 

which leads to lower efficiency in conversion through thermal processing and 

fermentation. 

2.2. Pyrolysis Bio-Oil 

2.2.1. Pyrolysis Process 

Pyrolysis process involves the thermal cracking of biomass feedstock 

under an inert atmosphere, producing biochar, bio-oil, and syngas. Pyrolysis 

process can be compared to the charcoal production that was used for centuries 

(Jenkins et al., 2016). Final product distribution of pyrolysis is dependent on the 

operating conditions, such as temperature, vapour residence time, heating rate 

and feedstock size. However, temperature has the most influence on the final 

pyrolysis product composition. At a lower temperature (< 300 ºC) and heating 

rate, the conversion of biomass to biochar and gaseous products such as carbon 

dioxide and water dominates. On the other hand, higher temperature (400 ºC – 
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500 ºC) and heating rate promote the formation of levoglucosan, a substance 

that kickstart the production of smaller molecules, thus producing liquid 

products. At temperature above 650 ºC, the decomposition of the biomass and 

liquid products dominates, generating gaseous products such as carbon 

monoxide, hydrogen, and methane (Müller-Langer et al., 2017). Pyrolysis 

technologies can be categorised into three reaction pathways, which is the slow, 

fast and flash pyrolysis, depending on the pyrolysis operating conditions. Table 

2-1 summarised the operating conditions and approximate product yields for 

these processes (Nanda et al., 2014).  

Table 2-1 Summary of different pyrolysis technologies 

Conversion Technology Slow 
Pyrolysis 

Fast 
Pyrolysis 

Flash 
Pyrolysis 

Operating Conditions: 
Temperature (ºC) 300 – 700 400 – 800 800 – 1000 
Vapour Residence Time (min) 10 – 100 0.5 – 5 < 0.5 
Heating Rate (ºC/s) 0.1 – 1 10 – 200 >1000 
Feedstock Size (mm) 5 – 50 < 3 < 0.2 
Product Yield: 
Bio-oil ~ 30 wt. % ~ 50 wt. % ~ 75 wt. % 
Biochar ~ 35 wt. % ~ 20 wt. % ~ 12 wt. % 
Gases ~ 35 wt. % ~ 30 wt. % ~ 13 wt. % 

 

In fast and flash pyrolysis, the high operating temperature and heating 

rate enable the pyrolysis process to go beyond the temperature which the first 

reaction dominates, straight to the second reaction pathway, producing products 

with mainly liquid fraction. To maximise the bio-oil production, a finely ground 

feedstock (< 3 mm) is preferred for their low thermal conductivity, which 

improves the heating rates and heat transfer rates. Besides that, maximum 
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pyrolysis bio-oil yield can be achieved under the operating temperature of 

around 500 ºC and short vapour residence time (< 2 seconds) while limiting the 

secondary reactions. A rapid removal of product char and cooling of pyrolysis 

vapours results in minimal vapour cracking and higher bio-oil yield (Bridgwater, 

2012). Generally, fast pyrolysis method is preferred in industrial bio-oil 

production due to its scalability and economics of particle grinding (Jenkins et 

al., 2016). 

2.2.1.1. Slow Pyrolysis  

In slow pyrolysis, biomass feedstock is pyrolysed at lower heating rates 

(0.1 – 1 ºC/s). Conversion of biomass to char product dominates at slow 

pyrolysis, and thus leads to less liquid and gaseous product. A considerable 

amount of study has been done on this process. Slow pyrolysis of palm kernel 

cake was carried out in a fixed bed reactor at 700 ºC, heating rate of 20 ºC/min, 

nitrogen gas flow rate of 200 cm3/min to obtained bio-oil yield of 54.3 wt. % 

(Weerachanchai et al., 2011). Ronsse et al. (2013) conducted slow pyrolysis of 

pine wood, wheat straw, green waste and dried algae and obtained up to 98.4 

wt. % yield of bio-char. Hernandez-Mena et al. (2014) performed slow pyrolysis 

of woody bamboo in a fixed bed reactor at temperature ranging from 300 – 600 

ºC, at a 10 ºC/min heating rate. A maximum biochar yield of 80 % was attained 

at 300 ºC. However, the yield of biochar decreases as the pyrolysis temperature 

increases, due to the increased in thermal degradation rate. Similar trend was 

also obtained for slow pyrolysis of coconut fibre and willow (Cai et al., 2020; 

Dhar et al., 2020). On the other hand, slow pyrolysis of palm empty fruit bunch 

was conducted to product bio-oil in a bench scale tubular furnace reactor, with 
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temperature ranging from 400 – 600 ºC at heating rate of 10 ºC/min (Sutrisno 

and Hidayat, 2018). Maximum bio-oil yield of 44.5 wt. % was obtained at 450 

ºC. The most used reactors in this process are fixed bed and tubular reactor 

(Canabarro et al., 2013).   

2.2.1.2. Fast Pyrolysis  

In fast pyrolysis, biomass is rapidly heated to a high temperature in the 

absence of oxygen. However, the heating rate of fast pyrolysis is not as fast as 

it is in flash pyrolysis. In general, product from fast pyrolysis can be categorised 

as high-grade bio-oil (Canabarro et al., 2013). Gupta et al. (2019) performed 

fast pyrolysis of teak sawdust in the temperature range of 400 – 700 ºC. 

Maximum bio-oil yield of 48.8 % was observed at 600 ºC. In Varma et al. 

(2019)’s work, maximum yield of wood sawdust pyrolysis bio-oil (44.16 wt.%) 

was observed  at temperature of 500 ºC and heating rate of 50 ºC/min. In another 

study, date palm tree mixture wastes, and date seed biomass were used to 

product bio-oil by fast pyrolysis. Maximum yield of 68 wt. % date seed bio-oil 

was obtained at a temperature of 500 ºC (Bharath et al., 2020). Fast pyrolysis of 

oil palm empty fruit bunch for bio-oil production was conducted in a bubbling 

fluidized-bed reactor (J.-W. Park et al., 2019). Improved liquid yield was 

observed by pre-treating the empty fruit bunch via acid washing with dilute 

nitric acid. Besides, oil palm frond and palm oil empty fruit bunch were also 

used to produce pyrolysis bio-oil through fast pyrolysis process (Solikhah et al., 

2018). The higher heating value of oil palm frond and empty fruit bunch bio-

oils were reported to be 12.19 and 26.49 MJ/kg, respectively. Various reactor 

configurations such as fluidised bed, entrained flow reactor, wire mesh reactor, 
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vacuum furnace reactor, vortex reactor, rotating reactor, circulating fluidised 

bed reactor, etc are suitable to perform fast pyrolysis of biomass for bio-oil 

(Goyal et al., 2008). Among the abovementioned reactors, fluidised bed is the 

most promising technology in fast pyrolysis as it allows high heating rate, rapid 

de-volatilisation, easy control, simple char collection and low cost (Luo et al., 

2004). 

2.2.1.3. Flash Pyrolysis 

Flash pyrolysis is a process in which the reaction time is only a few 

seconds or even less, which require high heating rate. This involve special 

reactor configurations such as entrained flow reactor and fluidised bed reactor, 

where biomass residence times are only a few seconds (Luo et al., 2004). 

Biomass particle size for flash pyrolysis should be small as rapid heating is 

required. The effect of temperature and pressure in flash pyrolysis of palm 

kernel shell as investigated in Matamba et al. (2020)’s work. The study 

concluded that higher operating temperatures and pressures favoured the 

generation of polycyclic aromatic hydrocarbons and hydrogen gas. Next, 

Maliutina et al. (2017) concluded that maximum bio-oil yield of 73.74 wt. % 

can be obtained with flash pyrolysis of palm kernel shell at 600 ºC. Flash 

pyrolysis of biomass can achieve up to 75 % of bio-oil yield (Jahirul et al., 2012). 

However, this process has some technological challenges such as corrosiveness 

of the bio-oil and solids in the bio-oil. Besides, ash content in the bio-oil has 

negative impact on the quality and stability of the produced bio-oil. Furthermore, 

occurrence of catalytic repolymerisation reactions inside the bio-oil due to char 

fines often lead to a higher viscosity (Canabarro et al., 2013). 
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2.2.2. Pyrolysis Bio-Oil Upgrading 

Bio-oil obtained from the pyrolysis of biomass contains several organic 

compounds such as hydrocarbons, acids, alcohols, ketones, aldehydes, phenols, 

and large molecular oligomers, as well as inorganic species. However, these 

compounds often lead to poor fuel properties and performance of pyrolysis bio-

oil. Problems like high oxygen content, high solids content, high viscosity, 

chemical instability, acidic and corrosive inhibits its application as biofuel. 

Depending on the operating condition and type of feedstock used, the pyrolysis 

products are typically distributed among gaseous phase, liquid oil phase, liquid 

aqueous phase, and solid phase (Müller-Langer et al., 2017). Pyrolysis oil 

produced will be in stable mixtures of each state, which is impossible to separate 

them mechanically. Further suspension or thermal drying process is necessary 

to remove water from the pyrolysis oil. Upgradation of bio-oil can take place in 

three different pathways:  

2.2.2.1. Catalytic Upgrading of Pyrolysis Bio-Oil 

In conventional refinery fluid catalytic cracking, petroleum fractions 

with high molecular weight and high boiling points were converted into lighter 

products like gasoline or gases. The cracking of these heavy distillates was 

originally carried out by the thermal cracking process, which requires high 

temperature with high-pressure hydrogen flow (Zhang et al., 2019). However, 

this process is then replaced by catalytic cracking as higher production yield of 

gasoline with a high-octane rating can be achieved. Catalytic vapour cracking, 

also known as zeolite cracking, has reactions like those of conventional refinery 

fluid catalytic cracking. Zeolite cracking typically takes place between 300 ºC 
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and 600 ºC at atmospheric pressure over a zeolite catalyst. HZSM-5 is the 

common catalyst used in this reaction, which is also applicable in fluid catalytic 

cracking industry (Chen and Yoshikawa, 2018). An increase in temperature 

results in a decrease in oil production and an increase in gas production 

(Mortensen et al., 2011). Higher temperature promotes cracking reactions, 

resulting in the production of smaller volatile compounds. To remove oxygen 

elements from bio-oil, a certain amount of cracking at high temperature is 

required. However, if the rate of cracking is too high, at increased temperature, 

degradation of the bio-oil to light gases and carbon will occur instead.  

2.2.2.2. Chemical Upgrading of Pyrolysis Bio-Oil 

Pyrolysis can act as thermal pre-treatment before gasification via 

synthesis gas (Müller-Langer et al., 2017).  A small amount of energy penalty 

can be observed from the lower pyrolysis energy efficiency, transportation 

energy and additional bio-oil gasification stand (Bridgwater, 2009). As reported 

by Dahmen et al. (2012), gasification of solid and liquid suspensions of 

pyrolysis product is possible to conduct in a large experimental scale. Synthetic 

hydrocarbons from gasification include diesel, gasoline, kerosene, liquefied 

petroleum gas and synthetic natural gas, are suitable for conventional fuel 

application, but much cleaner (Bridgwater, 2012).  

2.2.2.3. Physical Upgrading of Pyrolysis Bio-Oil 

Addition of polar solvents has been proved to homogenise and reduce 

the viscosity of bio-oil. Usage of common polar solvents such as ethyl acetate, 

acetone, methanol and ethanol are extensively studied in the past few decades 

(Zhang et al., 2019). On the other hand, addition of polar solvents also showed 
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a significant improvement in oil stability, pH value and high heating value. 

Blending of bio-oil and solvent under supercritical reactions further enhanced 

the bio-oil properties by promoting reactions such as esterification and 

hydrogenation, resulting improvement in physicochemical properties of bio-oil 

(Omar et al., 2019).  

In addition, pyrolysis bio-oils are not miscible with hydrocarbon fuels 

like diesel. However, the bio-oil can be emulsified with diesel or biodiesel with 

the aid of surfactants. In work done by (Liu et al., 2021), emulsified oil with 

fuel properties such as density, viscosity, corrosivity and heating value are close 

to those of diesel oil can be produced under optimal emulsification conditions, 

with a mixture of Span 80 and Tween 80 emulsifiers. Emulsification is a 

comparatively straightforward technique to upgrade bio-oil with diesel or 

biodiesel, however the downside of this technique includes the high cost of 

surfactants and high energy requirement for this process.  

2.2.3. Emulsification of Pyrolysis Bio-oil and Diesel 

Emulsification is a process where two immiscible liquid are blended into 

a colloidal suspension to form a liquid emulsion. There are many types of 

emulsion systems, such as the oil-in-water (O/W), water-in-oil (W/O) and 

multiple emulsions (W/O/W or O/W/O) (Williams, 2001). However, the 

presence of polar compounds in the pyrolysis bio-oil will lead to stratification 

of the pyrolysis bio-oil/diesel emulsion (Chong et al., 2017). Thus, a certain 

amount of surfactants and specific agitation techniques were required in the 

emulsification in order to generate a stable bio-oil/diesel emulsion. Here, the 

surfactant can be referred to as a small surface-active materials containing both 
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lipophilic and hydrophilic groups (Taha et al., 2020). Addition of surfactants 

with adequate agitation power can form a closely adsorbed monolayer interface 

on the immiscible liquid droplet to prevent phase separation and coalescence of 

droplets (Yin et al., 2010). It is reported that the stability of the generated 

emulsion depends greatly on the surfactant type and the amount of surfactant 

added to the emulsion (Bertoli et al., 2000). Due to the acidic nature of pyrolysis 

bio-oil, non-ionic surfactants are favoured for their low sensitivity against 

electrolytes and compatible nature with cationic and anionic surfactants 

(Summers et al., 2022). Up to date, non-ionic surfactants such as Tweens, Spans 

and Brijs has been widely applied in the emulsification of bio-oil and diesel (Liu 

et al., 2021).  

On the other hand, the hydrophilic-lipophilic balance (HLB), depending 

on the chemical structure and surfactant characteristic, played a major role in 

choosing a non-ionic surfactant (Lin et al., 2016). The HLB system was initially 

introduced by Griffin (1954) for the classification of non-ionic surfactants. In 

the established system, the lipophilic surfactants are featured by low HLB 

values, while the hydrophilic surfactants are associated with high HLB values. 

Generally, lipophilic surfactants were ascribed to HLB value ranges of 4 to 8, 

generating W/O emulsion. Alternatively, O/W emulsions can be obtained with 

hydrophilic surfactants with HLB value ranging from 9 to 13 (Farooq et al., 

2019; Lin et al., 2016).  

In recent years, studies involving emulsification of bio-oil and diesel 

have been reported. Emulsification attributes of four bio-oils from fast pyrolysis 

of wood wastes and diesel along with the addition of three different commercial 
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surfactants, namely the Span 80, Tween 80 and Altox 4914 were analysed at 

different operating conditions (Lin et al., 2016). It was reported that the bio-

oil/diesel emulsion with Altox 4914 outperformed the other two surfactants 

when individually employed. In Farooq et al. (2019)’s work, the resulted ether-

extracted bio-oil/diesel emulsion by mixing surfactant with HLB of 7.3 (mixture 

of Span 80 and Tween 60) showed stable performance with no phase separation 

up to 40 days. The work was further extended to emulsify the ether-extracted 

bio-oil/diesel via ultrasonic agitation. Stable emulsion up to 15 days can be 

obtained at a mixing ratio of 3 wt. %  surfactant (mixture of Span 80 and Altox 

4916), 15 % pyrolysis oil and 82 % diesel (Farooq et al., 2020). On the other 

hand, optimal bio-oil/diesel emulsion can be obtained using surfactant with 

HLB of 7 (by mixing 6 wt. % of Span 80 and Tween 80 as surfactant, 4 wt. % 

of 2-octanol as co-surfactant), shear velocity of 15,000 rpm, emulsifying time 

of 5 minutes at emulsifying temperature of 40 ºC. It is expected for the bio-

oil/diesel emulsion to be stable up to 384 hours (Liu et al., 2021).  

2.2.3.1. Ultrasonic Emulsification of Bio-Oil and Diesel  

Emulsification process can be carried out through different agitation 

approaches such as mechanical agitation (i.e. rotor-stator system), membrane 

emulsification and ultrasound agitation (i.e. ultrasonic bath). The first 

application of emulsification via ultrasound agitation was reported in 1927 by 

Wood and Loomis (1927). From then onwards, extensive research has been 

conducted on the application ultrasound emulsification, particularly in cosmetic, 

pharmaceutical and food industries (Mason et al., 1996). In sonication process, 

ultrasonic sound waves at frequencies greater than 20 kHz were generated (Taha 
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et al., 2020).  The transmission of elastic sound waves will produce alternating 

positive and negative pressure regions. The generation of these regions were 

subjected to the rate of frequency at which the ultrasound was applied (BYJU’S, 

2022). When the intensity of the ultrasonic sound waves is strong enough, small 

vacuum bubbles can be generated in the liquid. Then, the formed bubbles will 

collapse and explode at their saturation level, generating a huge amount of 

energy (Geetha Bai et al., 2017). This process is also commonly known as the 

cavitation. The cavitation promotes the disruption of the molecular interaction 

between the emulsion droplets and thus, minimizing the size of emulsion 

droplets (Taha et al., 2020).   

Nevertheless, the application of ultrasound emulsification to generate 

pyrolysis bio-oil/diesel emulsion is still limited. An emulsions from crude 

glycerol and bio-oil was directly prepared by Zhang et al. (2018) via ultrasound 

and/or mechanical agitation without addition of surfactant. The conducted 

experiment has proven that the resulted crude glycerol/bio-oil emulsion 

demonstrated similar fuel properties or even better as compared to the bio-oil 

alone. The study from Hansen and Mirkouei (2019) demonstrated improved 

turbidity and stability when ultrasonic emulsification was employed to emulsify 

bio-oil and diesel with the addition of surfactant and co-surfactant. On the other 

hand, optimised emulsions of the pyrolysis bio-oil’s aqueous fraction and 0# 

diesel can be obtained under 120 minutes of ultrasonication with the aid of 

blended surfactants at mass ratio of 72:9:9:10 (Span 80 : Tween 80 : Tween 20 : 

n-octanol) (Li et al., 2010).  Emulsification of hydrothermal liquefaction 

biocrude from food waste and diesel with the addition of Atlox 4912 surfactant 
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was performed by Summers et al. (2022) via centrifugation and ultrasonification 

approach. The results have demonstrated that the ultrasonic approach 

demonstrated improved energy yield and energy return ratio as compared to the 

centrifuge method.  

2.3. Biodiesel’s Standards and Specifications 

The quality of biodiesel was significantly affected by various factors 

such as the composition of biomass feedstock, method of bio-oil extraction, 

biodiesel synthesis methodology and refining processes. To ensure the biodiesel 

produced display high performance in engine application, various standards and 

specifications were established to assess the quality of biodiesel together with 

proper guidelines for biodiesel fuels testing. Appropriate ranges for various 

physical and chemical properties of biodiesel fuel were also defined 

accordingly.  

The blend of bio-oil and petroleum diesel was commonly referred to as 

BX, where X referred to the volume percent of bio-oil in the blend. For example, 

B5 consisted of 5 % bio-oil, B10 consisted of 10 % bio-oil, and B100 consisted 

of 100 % bio-oil (Baljet, 2009). To be used in commercial automotive 

applications, biodiesel must first fulfil the requirements described in the 

relevant specifications published by various bodies that specialise in fuel 

certification. These certification bodies include international standards 

associations, national governments, and corporations. Typically, these 

specifications were established to control the chemical and physical properties 

of commercial biodiesel and allow product to be periodically checked for 

compliance. In 2002, American Society for Testing and Materials (ASTM) 
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International issued the specification ASTM D 6751 – “Standard Specification 

for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuel”. In October 

2013, the European Committee for Standardisation published EN 14214 

standard, which described the requirements and testing methods for biodiesel. 

Table 2-2 listed out the ASTM D6751 and EN 14214 standards of biodiesel 

together with petroleum diesel fuel standard ASTM D975 for comparison 

(Sakthivel et al., 2018).  
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Table 2-2 International standards biodiesel fuels and petroleum diesel fuels.  

Property Units 
Petroleum 

Diesel 
Biodiesel 

ASTM D975 ASTM D6751 EN:14214 
Flash point ºC 60 – 80 > 130 > 101 
Cloud point ºC -15 to -5 -3 to -12 – 
Pour point ºC -35 to -15 -15 to-16 – 

Cetane number  46 > 47 > 51 
Density @ 15 ºC kg/m3 820 – 860 880 860 – 900 

Kinematic viscosity 
at 40 ºC 

mm2/s 2.0 – 4.5 1.9 – 6.0 3.5 – 5.0 

Iodine number g I2/100 g – – – 
Acid number mg KOH/g – < 0.5 < 0.5 

Cold filter plugging 
point 

ºC - 8 Maximum +5 – 

Oxidation stability  < 25 mg/L – > 3 hrs 
Carbon residue % m/m < 0.2 < 0.05 < 0.3 

Copper corrosion  
Maximum 

Class 1 
Maximum No. 

3 
Maximum 

Class 1 
Distillation 
temperature 

ºC < 370 360 – 

Lubricity (HFRR) m < 0.460mm < 520 – 
Sulphated ash content % mass – < 0.002 < 0.02 

Ash content % mass < 100 – – 
Water and sediment  < 0.05 < 0.005 vol% 500 mg/kg 

Monoglycerides % mass – – < 0.8 
Diglycerides % mass – – < 0.2 
Triglycerides % mass – – < 0.2 
Free glycerine % mass – < 0.02 < 0.02 
Total glycerine % mass – 0.24 0.25 

Phosphorus % mass – < 0.001 < 0.001 
Sulphur (S 10 grade) ppm < 10 – – 
Sulphur (S 15 grade) ppm – < 150 – 
Sulphur (S 50 grade) ppm < 50 – – 

Sulphur (S 500 
grade) 

ppm < 500 < 500 – 

Carbon wt.% 87 77 – 
Hydrogen wt.% 13 12 – 
Oxygen wt.% – 11 – 

BOCLE scuff G 2000 – 5000 > 7000 – 
Total contamination mg/kg – 24 24 

Boiling point ºC – 100 – 615 – 
Saponification value mg KOH/g – < 370 – 
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2.3.1. Flash Point 

Flash point of a chemical substance is the lowest temperature at which 

the combustible vapours of the volatile fuel ignite when exposed to an ignition 

source. Flash point is an essential criterion for safety purposes. Conventional 

diesel fuel possesses flash point around 50 – 65 ºC while biodiesel exhibit flash 

point higher than 93 ºC (National Biodiesel Board, 2020). Compared to 

conventional diesel fuel, biodiesel fuel poses greater safety aspects when it 

comes to storage and handling. The minimum flash point for biodiesel is 130 ºC 

and 101 ºC, according to the ASTM D6751 and EN 14214 standards, 

respectively. This is to ensure all the alcohol content was removed as the 

presence of residual alcohol in biodiesel fuel will affect fuel pumps, seals, and 

elastomers which ultimately leads to poor engine combustion (Alleman and 

McCormick, 2016).  

2.3.2. Heating Value 

Heating value or the calorific value of the fuel was defined as the amount 

of heat energy generated by the combustion of the unit value of fuels. Greater 

heating value was preferable as it indicated the combustion with higher 

efficiency. However, the heating value of biodiesel fuel was lower than of 

conventional diesel fuel due to the higher moisture content in bio-oil. Although 

heating value was not specified in both ASTM D6751 and EN:14214 standards 

for biodiesel, it has been prescribed in EN:14214 standard for biodiesel of 

heating purpose with a minimum value of 35 MJ/kg (Sakthivel et al., 2018).  
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2.3.3. Density 

Fuel density played an important role in engine operation by 

manipulating the quantity of fuel supplied to the engine for proper combustion. 

Quantity of fuel injected to the combustion chamber fully relied on the fuel 

injection system which operated on volume based. As density equals to the ratio 

of mass per unit volume, increased density resulted in a decreased volume. The 

density of the biodiesel fuels varied depending on the biomass feedstock used, 

method of biodiesel conversion and methyl ester profile (Pratas et al., 2011). 

Biodiesel fuel with a higher percentage of bio-oil resulted in a higher value of 

density. 

2.3.4. Kinematic Viscosity 

Viscosity which represented the capability of fuel to flow played a 

crucial role in injector nozzle design which included the spray atomisation and 

spray penetration (Sakthivel et al., 2018). Comprising larger chemical structure 

and molecular mass, biodiesel exhibited viscosity of 10 to 15 times higher than 

conventional diesel fuel. Highly viscous biodiesel directly impacted the fuel 

atomisation which led to incomplete combustion and soot deposition in the 

combustion chamber and thus, lowering the thermal efficiency of the engine. 

Viscosity of methyl esters in biodiesel fuel was generally reduced by carrying 

out the transesterification process (Gnanaprakasam et al., 2013).  

2.4. Computer-Aided Molecular Design (CAMD) 

Traditionally, the design of solvents often involves heuristic rule-based 

and/or trial-and-error experimental-based approaches, generating safe and 

reliable product designs (Zhang et al., 2020). However, these traditional solvent 
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design approaches are usually tedious, time-consuming, and costly. In addition 

to that, it is not practically feasible to evaluate all the alternatives or to obtain 

the optimal solution. To overcome these limitations, a more efficient model-

based design method, known as the CAMD can be introduced as an alternative 

to the traditional trial-and-error technique. 

The CAMD technique can be defined as a reverse engineering approach 

to property prediction model-based design. With the CAMD technique, the 

optimal molecule and/or molecular structure can be identified with a given set 

of building blocks and specified set of targeted properties (Gani et al., 2003). In 

other words, the design objective was specified in terms of targeted properties 

and performance, and property prediction methods were utilised to design the 

molecule structure with the best performance (Gertig et al., 2020). In the past, 

CAMD approach has been widely incorporated in the designing of solvent for 

various applications. A comprehensive review on the solution techniques, 

applications, and future opportunities of CAMD tools are presented in the 

review articles of Austin et al. 2016) and Ng et al. (2015). In addition, more 

detailed discussion on the development of CAMD applications in the design of 

solvents can be found in the review articles of Zhou et al. (2020) and 

Chemmangattuvalappil (2020). 

Other than the abovementioned application areas, the use of CAMD 

approach in the design of bio-oil solvents were reported as well. In the past, bio-

oil solvents had been applied as additives to the bio-oil to generate a stable 

solvent-oil blend with promising fuel functionality. Hada et al. (2014) combined 

property clustering techniques and characterisation-based group contribution 
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(GC) method in a reverse problem formulation for the design of biodiesel 

additives. On the other hand, a fuzzy optimisation based CAMD approach was 

developed in the design of alternative solvents for recovery of palm pressed 

fibre’s residual oil (Khor et al., 2017). Physical properties of the potential 

solvent along with safety and health attributes were optimised in the study. In 

addition, Yunus et al. (2018) applied CAMD in the solvent design for palm oil 

residual extraction from spent bleaching earth. The solvent candidates were 

screened and evaluated by using a simulation software. Mah et al. (2019) 

developed a multi-objective optimisation based CAMD framework for bio-oil 

solvent design. The trade-off between low solvent ratio and high heating value 

of solvent-oil blend was determined. Due to the rising awareness on 

environmental issues and stringent environmental regulations, the demand for 

green solvent has intensified in recent years (Byrne et al., 2016). In the view of 

this, Neoh et al. (2019) proposed a two-stage multi-objective optimisation 

problem for the design of bio-oil additives where environmental, health and 

safety aspect and fuel functionality were optimised simultaneously. However, 

the environmental, health and safety aspects considered in this work were 

limited to those properties for which GC property prediction models are 

available. 

Among the different types of property prediction models, some of the 

prediction models for environmental or non-thermodynamic properties were 

derived based on semi-empirical quantitative structure-property relationship 

(QSPR) and quantitative structure-activity relationship (QSAR) models. 

QSAR/QSPRs are predictive models derived mathematically, correlating 
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between biological activity or molecular property and one or more 

physicochemical and/or molecular structural properties, known as descriptors 

(Dearden, 2017). The ultimate objective in QSAR/QSPR was to convert the 

chemical structures into molecular descriptors that were relevant to a certain 

physical property or bioactivity (Dimian et al., 2014). QSAR/QSPR modelling 

techniques had been widely applied in CAMD problems for their simplicity and 

efficiency. With the QSAR/QSPR model, the abstract chemical space was 

associated with a more practical space of quantitative properties, where 

properties can be estimated on a rather straightforward and efficient approach. 

In addition to that, QSAR/QSPR in CAMD problems decompose larger 

molecular structure into smaller sub-molecular collections of atoms and bonds. 

Each of these sub-structures was assumed to contribute to the property of the 

final molecule. Owing to that, direct application of combinatorial optimisation 

in CAMD problem was possible with this type of representation of molecular 

space (Austin et al., 2016).  A simple example of QSAR model was shown by 

Equation Error! Reference source not found. for the acute toxicity of 

Pimephales Promelas by polar and non-polar narcosis (Manuela Pavan et al., 

2005):  

 log 𝐿𝐶50 = −0.81 log𝐾𝑜𝑤 − 1.744 (2.1) 

 𝑛 = 144; 𝑟2 = 0.88; 𝑞2 = 0.87; 𝑠 = 0.45  

Where 𝐿𝐶50 is the concentration of narcosis required in feed that was 

lethal to 50% of the exposed population and log 𝐾𝑜𝑤  is the octanol/water 

partition coefficient. Goodness-of-fit, robustness and predictive ability of the 

QSAR model can be indicated by the statistical information, such as the total 
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number of chemical used in QSAR training set (𝑛), the correlation coefficient 

(𝑟2), the cross-validated correlation coefficient (𝑞2) and the predicted standard 

error(𝑠) (Dearden, 2017).  

2.4.1. Group Contribution Method 

Group contribution (GC) method is one of the most commonly used 

property prediction methods for CAMD problem for its simple application and 

reasonable prediction accuracy. In addition, GC-based model can provide quick 

estimation without requiring intensive computational resources (Constantinou 

et al., 1993). In GC method, molecule’s properties were estimated by the 

number of occurrences of each molecular sub-structure known as “groups”. For 

example, 2-butanol can be represented as a combination of the “ –CH3 ”, “ –

CH2– ”, and “–OH” groups as shown in Table 2-3. 

Table 2-3 GC groups representations for 2-Butanol  

 

Group No of Occurrences, 𝑵𝒊 
–CH3 2 
–CH2– 2 
–OH 1 

 

Coefficient 𝐶𝑖  was assigned to each group to quantify its effect or 

“contribution” to a specific property 𝑋 . Properties 𝑋  can be calculated as 

Equation 2.1:  

 𝑓(𝑋) =∑𝑁𝑖𝐶𝑖
𝑖

 (2.1) 

Where 𝑓(𝑋)  is the function of the actual properties 𝑋,  𝐶𝑖  is the 

contribution of molecular group 𝑖 that occurred 𝑁 times. These contributions, 
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𝐶𝑖  were generated from the regression of property 𝑋 over a large amount of 

experimental data for different molecules.  

Benson and Buss (1958) developed a simple group additivity rules for 

the estimation of bond dissociation energies, which was then referred as the 

group increment theory, or Benson group increment theory (BGIT). In the 

original paper, BGIT was applied to estimate the entire heat of formation for a 

molecule by using the experimentally calculated heat of formation for 

individual groups of atoms. Benson et al. (1969) further expanded the concept, 

considering a greater diversity of groups for the heat of formation’s estimation. 

Several works have been done by means of Benson’s group additivity scheme, 

estimating the thermodynamic properties of organic compounds in gas, liquid, 

and solid phases (Domalski and Hearing, 1988; Jalowka and Daubert, 1986; 

Roganov et al., 2005). However, BGIT does have a few drawbacks such as 

inaccuracy and group availability issues (Sudlow and Woolf, 1995). 

On the other hand, Joback and Reid (1987) developed GC models which 

estimate heat capacity, liquid viscosity as well as other pure component 

thermodynamic properties such as the normal boiling and melting point, critical 

temperature, pressure, and volume. Absence of interaction between groups were 

assumed, and structurally dependent parameters were thereby calculated by the 

summation of the number of occurrences of each group multiplied by their 

group contribution. Constantinou and Gani (1994) then extended the general 

GC method by introducing two levels of groups, showing significant 

improvements in accuracy and applicability. This approach was further 

expanded by Marrero and Gani (2002, 2001) with the introduction of a three-
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level group contribution estimation approach. The estimation of basic level, also 

known as first-order groups, considered the contributions from simple groups 

in describing a diverse range of organic compounds. However, the first-order 

group only covered parts of the proximity effects and differences among 

isomers. The second level was known as the second-order groups, having first-

order groups as their building blocks. The second-order groups described the 

interactions between first-order groups and the effects of certain molecular 

group combination to the property of a molecule. Although second-order group 

was capable to provide a more accurate estimation of complex compounds and 

differentiate among isomers, they were unable to provide a good representation 

of poly-ring and open-chain polyfunctional compounds with more than four 

carbon atoms in the main chain (Marrero and Gani, 2001) . This can be further 

refined by introducing the third-order groups, providing more structural 

information on fused ring compounds and polycyclic compounds. Analogous to 

second-order group, third-order group also have first-order group as their 

building blocks (Marrero and Gani, 2001). The property-estimation model has 

the form of Equation 2.2:  

 𝑓(𝑋) =∑𝑁𝑖𝐶𝑖
𝑖

+ 𝑤∑𝑀𝑗𝐷𝑗
𝑗

+ 𝑧∑𝑂𝑘𝐸𝑘
𝑘

 (2.2) 

Where 𝑓(𝑋)  is the function of the actual properties 𝑋,  𝐶𝑖  is the 

contribution of first-order group 𝑖 that occurred 𝑁 times, 𝐷𝑗  is the contribution 

of second-order group 𝑗 that occurred 𝑀  times and 𝐸𝑘  is the contribution of 

third-order group 𝑘 that occurred 𝑂 times.  
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In GC method, a different combination of functional groups was 

possible, which resulted in a vast variety of chemical compounds of different 

structures. This was especially useful from a CAMD perspective (Austin et al., 

2016). On the other hand, GC methods described a molecule structure in 

reference to its functional groups. This can then easily translate into 

mathematical formulations of CAMD problems. Over the years,  the GC method 

has been widely used to estimate thermodynamic properties of organic 

compounds. Constantinou et al. (1995) developed GC methods for the 

estimation of the acentric factor and the liquid molar volume. In addition, GC 

method was also used to predict the thermodynamic properties such as normal 

boiling and melting point, critical temperature, pressure and volume, standard 

enthalpy of formation, vaporisation and fusion, and standard Gibbs energy 

(Marrero and Gani, 2001). Other than the thermodynamic properties, the GC-

based property prediction model also can be used to predict environmental 

related properties including the acute toxicity, aqueous solubility, 

bioconcentration factor, global warming potential etc. (Hukkerikar et al., 2012a).   

2.4.2. Topological Indexes  

Other than the GC method, the topological indexes (TI) is also one of 

the well-established method in developing property prediction models. TIs are 

described as the numerical values associated with chemical constitutions for the 

correlation of chemical structure with physical, chemical or biological activity 

(Minkin, 1999). TI model considered the connection and interaction between 

the atoms in a molecule unlike GC models where properties are estimated based 

on the fixed contributions from the functional groups. In addition to the non-
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availability of the required GC contributions, the selected GC model may not 

have all the model parameters required for the estimation of property of a 

specific chemical. Moreover, not all properties are not additive. There are 

properties which are mainly influenced by the interaction between the atoms, 

types of bonds and degree of branching in the structure. Hence, TI-based 

property prediction models will be used in this thesis to estimate environmental-

related properties including the octanol/water partition coefficient, acute 

toxicity, global warming potential, etc.  

Chemical structures of a molecule contained information of its’ 

molecular geometry which includes the bond lengths, bond angles, torsional 

angles and other geometrical parameters that determine the position of each 

atom. In addition, the electronic structure of the molecule can also be 

determined from its chemical structure, providing insights into the chemical 

behaviour and the valence shell of the atom. In molecular modelling, 

relationships between the structure, properties and activity of chemical 

compounds are studied. Generally, molecules are modelled by a molecular 

graph. Molecular graph is a simple graph, generally represented as a hydrogen-

suppressed graph where molecular skeletons without hydrogen atoms were used, 

whose vertices represent the atoms and its edges the bonds. For example, the 

molecular graph for a hydrocarbon molecule consisted of a carbon-atom 

skeleton. Thus, the vertices of the molecular graph corresponded to the carbon 

atoms, and its edges corresponded to the carbon-carbon bond.  

A molecular graph can be expressed as 𝐺 = (𝑉, 𝐸) for graph 𝐺, with 

vertex set 𝑉 and edge set 𝐸. Vertices were said to be “adjacent” when both 
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vertices were connected by an edge. The number of vertices of 𝐺, adjacent to a 

given vertex 𝑉, is the “degree” of this vertex and will be denoted by 𝑑𝑣. The 

edge 𝐸, however, does not always represent a single covalent bond. In fact, it 

may be in the form of any type of bond, such as double bond, triple bond, ionic 

bond, hydrogen bond and more (Basak and Gute, 1997). Figure 2-4 showed the 

molecular graph of 2,4,4-trimethyl-hexane with its vertex degrees indicated. 

The 2,4,4-trimethyl-hexane contained five vertices of degree 1, two vertices of 

degree 2, one vertex of degree 3 and one vertex of degree 4. Vertices of degree 

1 were also referred to as the “pendent” vertices, which was described as an end 

vertex, representing methyl groups. On the other hand, molecular graphs of 

hydrocarbons cannot possess vertices whose degrees were greater than 4 

(Gutman, 2013). 

 

Figure 2-4 Molecular graph of 2,4,4-trimethyl-hexane 

Molecular graph can be expressed in different ways, by a drawing, a 

polynomial, a sequence of numbers, a matrix or by a derived number called TIs, 

which can take in many forms. One of the main interests of the TI is their ability 

to segregate very similar structures, such as isomers, providing a more 

comprehensive picture of the molecule (Austin et al., 2016). Usage of 

topological descriptors were preferred in QSAR and QSPR in which the 
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biological activity or other properties of molecules are correlated with their 

chemical structure studies.  

Considering standard molecular graph properties like the degree counts 

of nodes, connectivity between atoms, branching of molecules, etc, the TIs can 

be expressed in various forms and expression. The Wiener indexes, or Wiener 

number, 𝑊(𝐺) can be introduced as the “path number”, and is the first TI to be 

used in chemical graph theory (Wiener, 1947). The Wiener indexes can be 

described as the sum of the distances between any two carbon atoms in the 

molecule, in terms of the carbon-carbon bond (Wiener, 1947). The Wiener 

index, 𝑊(𝐺) of a molecular graph 𝐺  is said to be the half sum of the off-

diagonal elements of the distance matrix, 𝐷𝑖𝑗 as shown in Equation 2.3. Wiener 

index can be applied together with other molecular descriptors, such as 

adjacency matrix, degree row-matrix and the Laplacian eigenvalues to predict 

properties like boiling points, heats of formation, heats of vaporisation, molar 

refractions and molar volume (Nikolić et al., 1995). 

 𝑊 =
1
2
∑∑𝐷𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 (2.3) 

On the other hand, the connectivity index (CI) is another form of TI 

which consider the structural features of a molecule and related to its properties.  

In the initial development, Randic et al. (1975) proposed a structural descriptor, 

which is known as the branching index. The branching index of molecular graph 

𝐺, is defined as the sum of the weights [(𝑣𝑖)(𝑣𝑗)]
𝛼

 of all edges of 𝐺, where 𝑣 

is the valency of the considered vertex and 𝛼 is a constant, −0.5. The larger the 

branching in a molecular structure, the lower the branching index obtained due 
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to the inverse relationship. Figure 2-5 illustrates the molecular skeleton of 2,2 

dimethylbutane.  

            

Figure 2-5 Molecular Skeleton of 2,2 Dimethylbutane Molecule 

In Figure 2-5, a, b, c, d, and e indicate different bond, while numbers in 

red indicates the valency value for each carbon atom. According to the 

definition above, branching index for 2,2 dimethylbutane can be calculated as : 

𝐵𝑜𝑛𝑑 𝑎: (1 × 2)−0.5 = 0.707 

𝐵𝑜𝑛𝑑 𝑏: (2 × 4)−0.5 = 0.354 

𝐵𝑜𝑛𝑑 𝑐: (1 × 4)−0.5 = 0.500 

𝐵𝑜𝑛𝑑 𝑑: (1 × 4)−0.5 = 0.500 

𝐵𝑜𝑛𝑑 𝑒: (1 × 4)−0.5 = 0.500 

𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥2,2 𝑑𝑖𝑚𝑒𝑡ℎ𝑦𝑙𝑏𝑢𝑡𝑎𝑛𝑒

= 0.707 + 0.354 + 0.500 + 0.500 + 0.500 = 2.561 

However, the branching index possesses limitations like treatment of 

cyclic molecules and heteroatoms, and difficulties in differentiating saturated 

and unsaturated bonds. Thus, further development in connectivity method was 

proposed, where electronic character of atoms was introduced into the graphic 

representation of molecules. The new structural descriptor, the valence delta, 

𝛿𝑣 was introduced and defined as Equation 2.5: 
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 𝛿𝑖𝑣 = 𝑍𝑖𝑣 − 𝑔𝑖 (2.5) 

where 𝑍𝑖𝑣 is the number of valence electrons for atom 𝑖, and 𝑔𝑖 is the 

number of hydrogen atoms bonded to atom 𝑖. However, in Equation 2.5, the 

number of non-valence core electrons were not considered. Thus Equation 2.6 

were redefined by taking the atomic number of an atom, 𝑍 into account.  

 
𝛿𝑣 =

𝑍𝑣 − ℎ
𝑍 − 𝑍𝑣 − 1

 
(2.6) 

The valence delta, 𝛿𝑣 , encoded the electronic identity of the atom in 

terms of both valence electron count and core electron count. An individual 

vertex was said to be in zeroth order when it possesses no edges. Each atom was 

simply characterised by its valence delta value. The subgraph connectivity term, 

𝑐 was introduced for the zeroth order of valence form for atom 𝑚 (Equation 2.7): 

  0𝑐𝑚𝑣 = 𝛿𝑚𝑣
−0.5 (2.7) 

The corresponding molecular CI of zero-order,  0𝜒𝑣 for a molecule is 

the sum of  0𝑐𝑣 value for all atom (Equation 2.4):  

  0𝜒𝑣 =  ∑  0𝑐𝑚𝑣  (2.4) 

The zeroth order molecular CI contains a low level of structure 

information, only with the fact of the presence of the nearest neighbour to each 

atom was encoded. Subgraph connectivity term for first order,  1𝑐  can be 

defined as the product of valence delta values for the pair of atoms involved as 

shown in Equation 2.5: 

  1𝑐𝑚𝑣 = (𝛿𝑖𝑣𝛿𝑗𝑣)𝑚
−0.5

 (2.5) 
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The first-order molecular CI,  𝑣𝜒1 was defined similarly to  0𝜒𝑣 with the 

summation over all the graph edges in Equation 2.10: 

  1𝜒𝑣 =  ∑  1𝑐𝑚𝑣  (2.60) 

The first-order molecular CI contained more structure information 

compared to zeroth order molecular CI. The immediate bonding environment 

of each atom was encoded by virtue of the edge weight. The 1𝜒𝑣 index included 

both the atom identities as well as the connectedness in the molecular skeleton. 

For higher order of molecular CI, calculation can be done following the same 

concept. The 𝑛𝑡ℎ  order of molecular connectivity,  𝑛𝜒𝑣  can be calculated by 

using Equation 2.7 and 2.8: 

  𝑛𝑐𝑚𝑣 = (𝛿𝑖𝑣𝛿𝑗𝑣 … 𝛿𝑛𝑣)𝑚
−0.5

 (2.7) 

  𝑛𝜒𝑣 =  ∑  𝑛𝑐𝑚𝑣  (2.8) 

As mentioned previously, QSAR/QSPRs were often expressed in terms 

of more than one TI. Different properties may be expressed in terms of different 

TI as well. However, different TI exhibit different mathematical expression, 

which pose challenges in combining and solving it simultaneously on a common 

platform (Chemmangattuvalappil and Eden, 2013). To overcome this issue, a 

universal descriptor, namely the molecular signature descriptor was introduced, 
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where various GC models and TIs can be expressed as a function of the new 

descriptors on a common platform (Visco et al., 2002). 

2.5. Molecular Signature Descriptor 

Molecular descriptors are the mathematical representations of molecules’ 

properties that can be generated by an algorithm where these numerical values 

of molecular descriptors were used to describe the physical and chemical 

information of the molecules (Chandrasekaran et al., 2018). Molecular 

descriptors were commonly categorised according to their respective 

dimensionality which includes zero-dimensional descriptors (0-D), one-

dimensional descriptors (1-D), two-dimensional descriptors (2-D), and three-

dimensional descriptors (3-D) (Visco and Chen, 2016). 0-D descriptors were 

established depending solely on the molecular formula of a molecule without 

any knowledge of structure. 1-D descriptors were a list of substructures in the 

molecule which contained information that can be calculated from the 

molecular formula of the molecule. 2-D descriptors had been utilised in most of 

the molecular descriptor’s application. Being more complex than 1-D 

descriptors, the 2-D descriptors commonly represented molecular topology 

information such as the size, shape and electronic distribution in the molecule 

which was handled using graph theory. In 3-D descriptors, the 3-D spatial and 

features of a molecule were considered.  

Molecular signature descriptor is one of the 2-D fragment-based TI that 

systematically captures the structural information of a 2-D structural formula 

(Klein, 2002). The molecular signature descriptor was illustrated as a systematic 

codification system which characterised the molecular atoms in terms of 
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extended valencies up to a predefined height (Faulon et al., 2003b). Assuming 

𝐺 is a molecular graph and 𝑥 is an atom of 𝐺, the signature of height ℎ of atom 

𝑥, ℎ𝜎𝐺(𝑥) is the canonical representation of subgraph 𝐺 with all atoms that were 

at distance ℎ from 𝑥. This canonical representation can be established following 

the procedure as Figure 2-6:  

1. Atoms and bonds that were at distance ℎ from atom 𝑥 were extracted 

from 𝐺 and showed up in subgraph ℎ𝐺(𝑥).  

2. The vertices (atoms) of ℎ𝐺(𝑥) were labelled in canonical order, starting 

from atom 𝑥.  

3. A tree spanning over all the edges (bonds) of ℎ𝐺(𝑥) was constructed one 

layer at a time up to level ℎ, with the root of the tree being atom 𝑥 itself. 

The first layer of the tree was the closest neighbours of atom 𝑥, and the 

second layer consisted of the neighbours of the vertices in the first layer 

except for atoms 𝑥. Assuming the tree has been constructed up to layer 

ℎ − 𝑛, layer ℎ − 𝑛 + 1 will be constructed considering each vertex 𝑦 of 

layer ℎ − 𝑛. All vertex in the tree will be labelled and coloured with the 

colouring function accordingly. As vertex can be neighbour of several 

vertices present in the previous layer, it is normal for vertex appearing 

more than once in the tree. However, no edge should be repeated in the 

same tree.  

4. The signature was written by reading the tree from atom 𝑥, with child-

level vertices enclosed in parentheses, level by level, until the required 

height is reached. The vertex colour must be included in the label even 

if the vertex appeared several times. All neighbours including the root 

atom must be written.  
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Figure 2-6 Atomic signature of 2-methylbutanoic acid up to height 3 

At a given height ℎ , the set of atomic signatures is of finite size. 

Molecules can be represented by its coordinates in a vectoral space with base 

vectors as the distinct atomic signatures. Thus, the signature of a molecule can 

be defined as the linear combination of its atomic signatures as shown in 

Equation 2.13: 

  ℎ𝜎(𝐺) = ∑  ℎ𝜎𝐺(𝑥)
𝑥∈𝑉𝐺

= ∑  ℎ𝛼𝑖 ℎ𝜎𝐺( ℎ𝑋𝑖)
 ℎ𝐾𝐺 

𝑖=1

 (2.13) 

Where  ℎ𝜎𝐺(ℎ𝑋𝑖) is a base vector,  ℎ𝛼𝑖 is the number of atoms having 

the signature of the base vector and  ℎ𝐾𝐺  is the number of base vectors. 

Signature descriptors are capable to express various TIs from signature base, 

representing independent building blocks for a complete molecule while 

relating the rest of the building blocks (Chemmangattuvalappil and Eden, 2013). 

The relationship between a TI and its signature can be expressed as a dot product 

between two vectors,  ℎ𝛼𝑔 , the vector of occurrence number of atomic 

signatures of height ℎ, and 𝑇𝐼 (𝑟𝑜𝑜𝑡( ℎ ∑  )), the vector of predicted values 

from the model computed for each of the atomic signatures (Equation 2.14). 

C2

C3 C4

C1C2 O2 O1

CC2

C2(C3(CCC)C4(=OOC))
C2(CC)
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Meanwhile, the 𝑘 from Equation 2.14 can be referred as a constant specific to 

the TI.  

 𝑇𝐼(𝐺) = 𝑘ℎ𝛼𝑔 ∙ 𝑇𝐼 (𝑟𝑜𝑜𝑡 ( ℎ∑  )) (2.14) 

Molecular signature descriptors possess several advantages which make 

them stand out from other available molecular descriptors. One of its advantages 

is the complete documentation of atomic topography (Visco and Chen, 2016). 

Each atom and bond exist in the molecule was identified and tabulated with 

respective to atomic signature in the molecule. With this complete consideration 

on the available 2-D structural information, any combination of atomic 

signature is possible in developing QSARs and QSPRs models (Faulon et al., 

2003b; Visco et al., 2002). Owing to the fact that molecular signature descriptor 

is known as the canonical representation of molecule, all other 2-D classes of 

descriptors can be represented in terms of molecular signature (Visco and Chen, 

2016). This can be beneficial by transforming pre-existing models in other 

molecular descriptors into models with molecular signature descriptors. An 

additional key advantage is the degeneracy of molecular signature which is 

controlled by the height of signatures (Faulon et al., 2005, 2003a). In addition 

to that, the presence of an efficient algorithm in the molecular signature eases 

the CAMD process by combining atomic signatures in a structural and 

comprehensive method (Martin, 2012). This algorithm computes and creates all 

structures that have a given molecular signature by combining atomic signatures 

based on their connectivity and valencies. A novel compounds can be created 

with such an approach as atomic signature fragments will be combined in all 

possible ways while generating nonintuitive molecules (Visco and Chen, 2016).  
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Originally formulated as a new TI, the molecular signature was used to 

create molecules and predict the target properties of these created molecules 

(Visco and Chen, 2016). In reverse problem application, the non-linearity 

associated in the original definition of the TIs can be avoided as unknown 

parameters will be the contribution of individual building blocks instead 

(Chemmangattuvalappil and Eden, 2013). With the employment of molecular 

signatures descriptors, mathematical expressions contributing to the non-

linearity will be disassembled from other equations, scaling down the 

complexity of the equation to a certain degree.  

In the past, molecular signature descriptors have been applied in various 

CAMD fields. QSPR based approach with molecular signature descriptor was 

applied in the design of novel polymers (Brown et al., 2006) and novel 

glucocorticoid receptor ligands with pulmonary selectivity (Jackson et al., 

2008). In Weis and Visco (2010)’s work, ethyl lactate was identified as green 

industrial solvent by applying the CAMD approach with molecular signature 

descriptor. Chemmangattuvalappil et al. (2010) redefined the TIs by 

incorporating molecular signature descriptors in the reverse problem 

formulation framework. The developed algorithm was then applied in the 

design of alkyl substituent of fungicide.  Ng et al. (2015a) developed a novel 

two-stage optimisation approach for optimal mixture design in an integrated 

biorefinery. In addition, molecular signature descriptors were also used to 

formulate a CAMD model to design fragrance molecules by connecting 

different prediction models and machine learning algorithm in a common 

framework (Ooi et al., 2022).  
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2.6. Economic Consideration in Solvent Design  

Aside from the poor fuel quality, the high production cost of pyrolysis 

bio-oil is another obstacle to the commercialisation of biofuels. Due to their 

poor heating value and high raw material costs, biofuels are more expensive for 

heat generation in comparison to the conventional diesel fuel (Clemente, 2015). 

Additionally, solvents are frequently required to enhance the biofuel’s 

properties. In some cases, the selected solvent might be manufactured as a 

specialty chemicals which are generally associated with high cost. This further 

increases the production cost of biofuels. Moreover, the current and evolving 

biofuel legislation framework further motivates the assessment of cost 

associated with upgrading bio-oil. 

Various recent contributions have included the economic aspects such 

as product pricing, profitability, market share, and operating cost in the product 

design. In the design of a traditional Chinese medicinal supplement, customers’ 

preference on product quality and economic considerations was taken into 

account while developing the chemical product design framework (Cheng et al., 

2016). Zhang et al. (2020) provided an overview of chemical product design in 

the context of a multidisciplinary hierarchical framework including design 

issues such as project management, market study, economic analysis, product 

design, and process design. Moreover, an activated carbon production plant 

from industrial waste nutshells was proposed (León et al., 2020). In the plant 

design, an economic analysis was developed by considering the cost of the main 

equipment, the price of the raw materials, basic services, and operations. On the 

other hand, application of neural network approach is often reported in cost 
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estimation and investment evaluation. A neural network growth model was 

proposed to estimate potential of investment in renewables in Japan by 

(Shahzadah Nayyar Jehan and Mirzosaid Sultonov, 2019). In addition to the 

existing growth model, the extended growth model considered both 

environmental risk diversion and risk mitigation. With the developed neural 

network-based approach, the establishment and operation of a renewable 

investment opportunity is possible. Further, an artificial neural network method 

was used to develop a cost estimation model for the tendering of engineering 

services (Matel et al., 2019). 

In this thesis, the pricing model proposed by Bagajewicz (2007) was 

employed to relate the product quality to demand and price of the product, 

which is the objectives to be optimised in this Chapter 6 (Fung et al., 2016). In 

the past, the pricing model has been incorporated in various product design such 

as wine (Whitnack et al., 2009), carpet deodorizers/ disinfectants (Street et al., 

2008), skin moisturising lotion (Bagajewicz et al., 2011), die-attach adhesive 

(Fung et al., 2016), and dry-cleaning solvent (Lai et al., 2019). The 

mathematical expression for the pricing model has been shown in Equations 

2.15 and 2.16.  

 𝐴𝑃𝑇𝑃 = 𝐴𝐶(𝑇𝑃)𝛿 (
𝛼
𝛽
)
𝛿
(
𝑌 − 𝐴𝑃𝑇𝑃

𝐴𝐶
)
1−𝛿

 (2.15) 

 𝑌 ≥ 𝐴𝑃𝑇𝑃 + 𝐴𝑐𝑇𝑐 (2.16) 

Here, 𝐴𝑃 and 𝑇𝑃 referred to the price and demand of the new product 

while 𝐴𝑐 and 𝑇𝑐 referred to the price and demand of the competitor’s product. 

Based on Equation 2.15, 𝑌 is the total market size for the new product and 𝛿 is 
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the elasticity of substitution, which is an adjustable parameter that measures the 

change in the ratio of products demand in response to a change in the ratio of 

their prices. On the other hand, the parameter 𝛼  can be expressed as the 

consumer’s awareness on the new product, which can be raised by allocating 

higher budget in the marketing of new product. The value of parameter 𝛼 ranges 

between 0 and 1, where 𝛼 with the value 0 indicates that the consumers have no 

knowledge about the new product, and vice versa. Lastly, 𝛽 is the consumer 

preference coefficient that relates the consumer’s interest in the new product 

over the competing product, which can be determined using Equation 2.17.  

 𝛽 =
𝜆𝐶

𝜆𝑃
 (2.17) 

In Equation 2.17, the parameters 𝜆𝐶 and 𝜆𝑃 represented the consumer’s 

preference function of competitor’s product and new product, respectively. The 

new product is said to be preferred by consumers if 𝛽 is smaller than 1. However, 

the competitor’s product is preferred when the value of 𝛽 is greater than 1.  

Notably, past studies on the design of bio-oil solvents focused primarily 

on the solvents’ functionality. Nevertheless, it is also critical to integrate the 

economics considerations into the development of bio-oil solvent in order for 

the solvent-oil blend to compete with conventional diesel fuel. Generally, the 

heating value of pyrolysis bio-oil increases with the addition of solvent. 

However, as the amount of solvent increases, the cost of solvent-oil blend 

increases as well, resulting in lower profitability. Thus, a multi-objective 

optimisation problem is required to optimise both the fuel property and 

profitability of the solvent-oil blend, simultaneously.  
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2.7. Multi-Objective Optimisation Problem 

Currently, most of the developed chemical product design frameworks 

only focused on optimising a single target property. This type of design problem 

is commonly known as the single-objective optimisation problem. However, in 

most of the design problems, multiple product properties, such as the 

thermodynamic properties, safety, health and environmental criteria, and 

economic aspects need to be considered and optimised simultaneously to design 

an optimal product. When there is more than one objective function to be 

optimise, the CAMD design problem have to be solved as a multi-objective 

optimisation (MOO) problem. For a non-trivial MOO problem, single solution 

that can simultaneously optimise all the objectives do not exist, but rather is a 

nondominated set. The nondominated set can also be known as the Pareto set, 

which was referred to a set of solutions that are non-dominated to each other 

but are superior to the rest of solutions in the search space (Akbari et al., 2014).  

Generally, the methods to solve MOO problem can be categorised into 

two main categories, which is the preference-based methods and generating 

methods (Akbari et al., 2014). The goal programming method is one of the 

oldest and most widely applied methods in the preference-based category 

(Wang et al., 2017). In this method, the decision-makers are required to set a 

goal for each objective. The deviations from the set goals will then be minimise 

using the optimisation approach. Nevertheless, the solution obtained may not 

be in the Pareto set if the unreasonable goals were set. On the other hand, the -

constraint method and weighted sum method were reported to be the two 

common generating approach to MOO problem (Arora, 2012). In the -
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constraint method, one of the objective function was selected to be optimised, 

while the other objectives were converted into additional constraints.  A number 

of non-inferior solutions on a non-convex boundary can be identify using the -

constraint method. However, the selected of  value does not always ensure a 

feasible solution. Hence, a large number of iterations were often required to 

obtain the optimal  value (Pirouz and Khorram, 2016).  

The mathematical expression for the weighted sum method can be found 

in Equation 2.18: 

 𝑈𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑢𝑚 =∑𝑤𝑖𝐹𝑖(𝐱)
𝑘

𝑖=1

 (2.18) 

Here, the 𝑤 can be referred to as the weighting factor assigned to each 

of the individual objective function 𝐹𝑖(𝐱), such that ∑ 𝑤𝑖𝑘
𝑖=1 = 1 and 𝑤 > 0 

(Marler and Arora, 2010). This has allowed multiple objectives to be converted 

into an aggregated scalar objective function. An optimised overall objective 

function, 𝑈𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑢𝑚 can be obtained by summing up all the contributions 

from each individual objective. In the past, the weighted sum method has been 

vastly applied in various MOO problem for different applications. A weighted 

sum multi-objective model was proposed by Majidi et al. (2017) to minimise 

the operation cost and carbon dioxide emission operation of a PV-battery-fuel 

cell hybrid system in the presence of demand response program. Recently, 

Madathil et al. (2021) used the weighted sum method for electrical energy 

management in a residential building by maximising the electrical energy 

comfort and minimising the drain on electrical energy.  
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The weighted sum approach is simple and easy to use. Furthermore, the 

minimum of Equation 2.18 is always Pareto optimal if all the weights are 

positive (Arora, 2012). Nevertheless, there are several major drawbacks with 

the weighted sum method. Firstly, the Pareto optimal points could not be located 

if the MOO problem is non-convex. In addition, an evenly distributed set of 

weighting coefficient does not guarantee an evenly distributed representation of 

the Pareto set, even if the problem is convex (Das and Dennis, 1998). Secondly, 

the decision maker is required to assign a satisfactory weighting factors to each 

objective function. Hence, there will be a bias in finding the trade-off solution 

as expert knowledge or personal subjective preferences of the decision maker 

were involved. As a result, a small change in the weighting coefficient may lead 

to a big changes in the objective vectors (Diwekar, 2008). However, the 

weighting factor of each objective function is not always definable in the 

chemical product design. Furthermore, the relative importance of each objective 

function is either fuzzy or uncertain, or even might be incomplete, unclear, or 

contradictory to each other in nature.  

2.7.1. Fuzzy Optimisation 

Fuzzy optimisation algorithm is another popular alternative in solving 

the MOO problem. The fuzzy set theory was first proposed by Zadeh (1965) as 

an improvement over the classical set theory to solve decision-making problem 

under fuzzy environment. The fuzzy set can be defined as a class of elements 

with a continuum of grades of membership, ranging from zero to one. Bellman 

and Zadeh (1970) then introduce fuzzy optimisation approach where preferred 

alternative can be identified by solving the fuzzy goal in respect to a set of fuzzy 
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constraints. Here, the fuzzy goals and fuzzy constraints can be described as 

fuzzy sets in the space of alternatives. Hence, the fuzzy decision can be 

portrayed as the intersection of the defined goals and constraints. The fuzzy set 

theory was then employed by Zimmermann (1976) in a fuzzy linear 

programming problems. Later, the fuzzy set theory was extended to address 

linear mathematical programming problems involving multiple objectives 

(Zimmermann, 1978). The fuzzy optimisation approach is capable to solve 

decision-making problems under the fuzzy environment by defining and 

quantifying the uncertainties and vagueness. Within the fuzzy optimisation 

algorithms, the trade-off between the objective functions to be optimised can be 

identified by introducing the fuzzy membership function. As a result, an optimal 

compromised solution can be identified by achieving near optimality for all the 

objectives. 

In recent years, the fuzzy optimisation approaches have been extensively 

employed in various industries and research disciplines. Among them, the fuzzy 

max-min aggregation approach introduced by Zimmermann and Zysno (1983) 

has received great attention. A systematic fuzzy optimisation-based method was 

developed to design molecules for chemical processes with both property 

superiority and robustness optimized (Ng et al., 2015b). Khor et al. (2017)  

adapted the fuzzy optimisation via max-min aggregation in the CAMD of 

alternative solvents for oil extraction from palm pressed fibre. The developed 

approach was able to optimise the physical properties of the solvent 

simultaneously with the safety and health aspects. A similar approach was 

employed and extended with the introduction of disjunctive programming in the 
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work by Ten et al. (2017) to design solvent for gas sweetening process. Recently, 

a max-min aggregation fuzzy optimisation approach was employed along with 

CAMD method in the design of green solvents for pyrolysis bio-oil upgrading 

with consideration of environmental, health and safety aspect while ensuring 

minimal compromise on the fuel functionality (Neoh et al., 2019). Gurav and 

Regulwar (2020) has utilized fuzzy MOO approach in determining optimal 

cropping pattern for sustainable irrigation planning by simultaneously 

maximizing four objectives, including net benefits, crop production, 

employment generation and manure utilization. In addition, the fuzzy multi-

objective model was also adapted in Ghanbarzadeh-Shams et al. (2022)’s work 

to study the trade-off between profitability, energy consumption and carbon 

emission in the carpet production industry.  

2.8. Machine Learning 

Machine learning (ML) is a branch of artificial intelligence (AI) and 

computer science which provided the machine with capability to self-learn 

through experience, without being explicitly programmed. The main objective 

of ML is to train the machine to learn and predict based on the provided labelled 

or unlabelled data sets to generate results from the specified problem (Dhall et 

al., 2020). Once the machine’s algorithm learned and identified the underlying 

mechanisms or patterns of the given data, it is capable to carry out its task 

automatically (Dey, 2016). ML algorithms can be divided into 4 primary 

categories, depending on the desired outcome of the algorithm.  
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2.8.1. Supervised Learning 

Today, supervised learning method is one of the most popular sub-

branches in the ML field. A dataset consisting of training data and validation 

data is required for supervised learning process (Kotsiantis et al., 2006). In the 

training data set, input attributes are matched with the desired outputs. During 

the training process, this training set is used as an example inputs to analyse 

data and/or predict outputs accurately (Simon et al., 2015). The supervised 

learning algorithms will identify the underlying patterns in the data that 

associate with the respective outputs. After the training, the developed model is 

capable to label and classify the new unseen inputs based on the previous 

training data. The ML model then achieved the desired outcome by adjusting 

the error based on the comparison between the computed output and expected 

output (Das et al., 2015). At the data mining stage, supervised learning can be 

separated into two main types of problems, classification, and regression.  

In classification problem, algorithm was applied to assign training data 

into pre-defined categories accurately. Common classification algorithms are 

linear classifiers, support vector machines, naïve bayes, decision trees, k-nearest 

neighbour, and random forest. In the regression approach, the ML model 

attempts to identify and understand the relationship between the dependent and 

independent attributes. Some popular examples from the regression algorithm 

include the linear regression, logistical regression, and polynomial regression 

(Wilson, 2019). Supervised learning models were often used in organisation or 

business applications to solve real-world problems at scale such spam detection, 

predictive analytic, recognition of handwriting, face and speech, information 
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retrieval, natural language processing and computer vision (Das et al., 2015; 

Dhall et al., 2020; IBM Cloud Education, 2020a).  

2.8.2. Unsupervised Learning 

The unsupervised learning algorithm self-learn through discovering and 

adopting, based on the pattern of input data (Das et al., 2015). Unlike supervised 

learning, the unsupervised learning algorithms analyse, discover hidden patterns 

and cluster unlabelled dataset. The developed algorithms were capable to 

predict the outcome of the new data introduced based on the past experiences 

and previously learned features (Dhall et al., 2020). Three common methods 

used in unsupervised learning are the clustering, association, and dimensionality 

reduction. Clustering algorithms can be further categorised into a few types, 

specifically k-means clustering, exclusive clustering, overlapping clustering, 

hierarchical clustering, and probabilistic clustering. Clustering algorithm is a 

data mining technique used to process raw and unclassified dataset, by grouping 

them based on their similarities or patterns (IBM Cloud Education, 2020b). On 

the other hand, association rule is a rule-based method which discovers the 

underlying associations between attributes of a large database. Examples of 

association rules application can be seen in market basket analysis, to develop 

better cross-selling strategies and recommendation engines (IBM Cloud 

Education, 2020b).  Few algorithms were commonly used for association rule 

generation, such as Apriori, Eclat and FP-Growth. Although larger dataset can 

provide more accurate outcome, high number of dimensions or features in a 

dataset could impact the performance and complexity of the learning process. 

Thus, the dimensionality reduction was commonly applied in the pre-processing 
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stage, where large dataset can be reduced into a manageable size with while 

preserving the integrity of the dataset. Some of the commonly used algorithms 

in dimensionality reduction methods are principal component analysis, singular 

value decomposition and autoencoders (IBM Cloud Education, 2020b). 

Unsupervised learning techniques have become a common approach in 

organising large dataset for real-world applications such as recommendation 

engines, DNA classification, market segmentation, social network analysis, 

computational biology and etc. (Das et al., 2015; Dhall et al., 2020)  .  

2.8.3. Semi-supervised Learning 

Semi-supervised learning algorithm is a combination of both supervised 

and unsupervised learning algorithm. A smaller size of labelled data set was 

used to develop and train the algorithm, which was then used to classify and 

extract information from a larger sized of unlabelled data (IBM Cloud 

Education, 2020c). This had benefited the learning process by avoiding the 

challenges of finding a large amount of labelled data, which is a very costly 

process. In order to fully utilise the unlabelled data, certain assumptions need to 

be proposed, which formalize the types of expected interaction (Chapelle et al., 

2006). The most widely recognized assumptions are the smoothness assumption, 

the low-density assumption, the cluster assumption, and the manifold 

assumption (Olivier et al., 2006; van Engelen and Hoos, 2020). Various semi-

supervised learning methods were derived based on the abovementioned 

assumptions such as generative models, low density separation, graph-based 

methods, heuristic approaches and transductive support-vector machine (Dey, 

2016; Olivier et al., 2006). A common example of the practical applications of 
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semi-supervised learning is the internet content classification. As it is tedious 

and impractical to manually classify all of the webpage, thus semi-supervised 

learning algorithm was used to rank the relevance of a webpage for a given 

query (Gupta, 2019). Other example of semi-supervised learning in real-world 

application includes the speech analysis, protein sequence classification  

2.8.4. Reinforcement Learning 

Reinforcement learning algorithm, also termed as behavioural ML 

model, was trained on a reward and punishment mechanisms, based on trial-

and-error search and delayed feedback within an environment (Sutton, 1992). 

Basic reinforcement learning machine is often modelled as a Markov decision 

process. Value-based, policy-based, and model-based reinforcement learning 

method are three of the most used learning approaches in the implementation of 

reinforcement learning algorithm. Dissimilar to supervised learning algorithm, 

reinforcement learning algorithm was trained based on the interactions with the 

environment instead of given sample data. This algorithms take actions based 

on the more favourable outcomes (Dey, 2016). Correct outcomes will be 

rewarded while incorrect outcomes will be penalised. A series of positive 

outcomes will be reinforced to develop the best recommendation or policy for 

a given problem (IBM Cloud Education, 2020c). The Q-learning, state-action-

reward-state-action, deep Q network and deep decision policy gradient are few 

of the common learning models used in the reinforcement learning. The 

reinforcement learning algorithm is also applied in other disciplines, such as 

game theory, control theory, genetic algorithms, multi-agent systems, 

information theory, simulation-based optimisation etc. Some of the real-world 
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application of reinforcement learning includes autonomous driving, industry 

automation, business strategy planning, natural language processing, computer 

games, traffic light controls, personalised recommendation, and web system 

configuration (Arel et al., 2010; Bu et al., 2009; Mwiti, 2021; Silver and 

Hassabis, 2017; Zheng et al., 2018). 

2.8.5. Rough Set Theory 

The idea of rough set theory (RST) was first proposed by Pawlak (1982) 

as an extension of set theory, which is a new mathematical approach to 

overcome vagueness, imprecision, consistencies, and uncertainties in 

information and knowledge (Zhang et al., 2016). The establishment of RST was 

based on the assumption that each object of the universe of discourse some 

information is associated (Pawlak, 2002).  Since RST allows for sets with ill-

defined boundaries, it is inherently robust and can be used for handling data of 

poor or inconsistent quality. It is the basis for rough-set machine learning 

(RSML) which has the advantage of not requiring any preliminary or additional 

information (such as probability in statistic, or grade of membership in the fuzzy 

set theory) other than a data set. Furthermore, RST provided an efficient 

approach and algorithms for identifying the underlying patterns in the data. 

Other than the abovementioned advantages, RST has many other attractions 

such as data reduction (discover minimal sets of data), assess the significance 

of data, automatically generate sets of decision rules from data, apparent 

interpretation of obtained results, and suited for concurrent (parallel/distributed) 

processing (Suraj, 2004). In the past, RST has been widely adopted in the field 

of AI and cognitive sciences, specifically for the applications in ML, knowledge 
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discovery, data mining, expert systems, approximate reasoning, and pattern 

recognition. 

RSML yields models consisting of “IF-THEN” rules that are 

particularly useful where direct and transparent interpretations are needed. In 

addition, meaningful insights and mechanistic plausibility (i.e. consistency with 

known scientific principles) can be evaluated for the decision rules generated. 

RSML is especially useful for dealing with sparse datasets that are encountered 

in many engineering applications. In RSML, the user can thus select the best 

model based on both statistical performance and subjective judgement or 

background knowledge. In addition, RSML can differentiate between objects 

that can be certainly categorised into a certain class and those that may possibly 

be categorised. These algorithms can be further applied in knowledge reduction, 

concept approximation, decision rule induction, and object classification 

(Mahajan et al., 2012). 

2.8.5.1. Information Table and Decision Table 

In rough set model, data set was represented as a table, which is known 

as the information table. Each row of the table represents an object, a case, or 

an event. Meanwhile, each column of the table represents attributes 

corresponding to each object. This table can be represented as a pair of 

information system, 𝑆 = (𝑈, 𝐴) , where  𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛}  is a non-empty 

finite set of objects (also called universe) and 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚}  is a non-

empty finite set of attributes, such that 𝑎: 𝑈 → 𝑉𝑎  and 𝑎 ∈

𝐴 (Kalaivani et al. , 2017). The set 𝑉𝑎 is also known as the domain set, which 

contained the values for 𝑎. The set of attributes can be further partitioned into 
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condition attributes, which describe the object; and the decision attributes which 

indicate the classes of the object. An information table is often known as a 

decision table when it consist of the decision attribute/attributes. The decision 

table can be represented as decision system of the form 𝑆 = (𝑈, 𝐴 ∪ {𝑑}) where 

𝑑 ∉ 𝐴 is the decision attribute. Table 2-4 represents a decision table with 2 

conditional attributes and a decision attribute. 

Table 2-4 Example of a decision table 

Object Conditional Attributes Decision Attributes 
A1 A2 Dec 

P1 1 3 1 
P2 1 0 0 
P3 2 1 0 
P4 2 1 1 
P5 3 2 0 
P6 1 2 1 
P7 3 2 0 

 

2.8.5.2. Reducts and Cores 

It is possible for a large dataset to contain two or more objects which 

perform similarly in the attributes or features, commonly known as the 

indiscernible objects. In RST, reduct can be referred to as a subset of 

indispensable attributes which can partition the database with the same level of 

discrimination as the original set of attributes (Pawlak, 1982). On the other hand, 

the intersection of all reducts are known as the core. It may also be regarded as 

the essential attributes set which cannot be excluded from the decision system 

without losing the equivalence class structure. In other word, if core attributes 

were removed from the information table, it will result in data inconsistency. 

To reduce the redundancy of data while retaining its basic features, only one 
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representative object was stored in the dataset for every set of indiscernible 

objects (Dutta, 2019) 

For the decision system, 𝑆 = (𝑈, 𝐴), with set of attributes 𝑃 ⊆ 𝐴 , a 

binary relation denoted by 𝐼𝑁𝐷𝑃(𝑈) can be expressed as Equation 2.19: 

 𝐼𝑁𝐷𝑃(𝑈) = {(𝑥, 𝑦) ∈ 𝑈2|∀𝑎 ∈ 𝑃, 𝑎(𝑥) = 𝑎(𝑦)} (2.19) 

Equation 2.19 can also be known as P-indiscernibility relation. If 

(𝑥, 𝑦) ∈ 𝐼𝑁𝐷𝑃, then objects 𝑥 and 𝑦 are indistinguishable from each other over 

the set of attributes from 𝑃 (Mahajan et al., 2012). Taking Table 2-4 as example, 

the indiscernibility relation of attribute 𝐴1 can be shown as Equation 2.20: 

 𝐼𝑁𝐷 (𝐴1) = {𝑃1, 𝑃2, 𝑃6}, {𝑃3, 𝑃4}, {𝑃5, 𝑃6} (2.20) 

2.8.5.3. Decision Rules and Algorithm  

Let the decision table be 𝑆 = (𝑈, 𝐶, 𝐷), where 𝐶 and 𝐷 is the sets of 

condition and decision attributes, respectively. Every 𝑥 ∈ 𝑈  determines a 

sequence 𝑐1(𝑥), 𝑐2(𝑥),… , 𝑐𝑛(𝑥)  and 𝑑1(𝑥), 𝑑2(𝑥), … , 𝑑𝑚(𝑥) , where 𝐶 =

{𝑐1, 𝑐2, … , 𝑐𝑛} and 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑚}. This sequence is known as a decision 

rule induced by 𝑥  in system 𝑆 . The decision rule can be expressed as 

𝑐1(𝑥), 𝑐2(𝑥),… , 𝑐𝑛(𝑥) → 𝑑1(𝑥), 𝑑2(𝑥),… , 𝑑𝑚(𝑥), or in short 𝐶 →𝑥 𝐷  (Pawlak, 

2002). The strength of the decision rule 𝐶 →𝑥 𝐷, can be obtained by Equation 

2.21:  

 
𝜎𝑥(𝐶, 𝐷) =

𝑠𝑢𝑝𝑝𝑥(𝐶, 𝐷)
|𝑈|

 
(2.21) 

where 𝑠𝑢𝑝𝑝𝑥(𝐶, 𝐷) = |𝐴(𝑥)| = |𝐶(𝑥) ∩ 𝐷(𝑥)|  is the number of 

elements that support the decision rule 𝐶 →𝑥 𝐷 and |𝑈| is the cardinality of 𝑈. 
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With every decision rule 𝐶 →𝑥 𝐷, the conditional probability of an element 

characterized as 𝐶(𝑥) being classified into the decision class 𝐷(𝑥)  can be 

known as the certainty factor. The certainty factor can be denoted as 𝑐𝑒𝑟𝑥(𝐶, 𝐷), 

and defined as Equation 2.22 and 2.23.  

 
𝑐𝑒𝑟𝑥(𝐶, 𝐷) =

|𝐶(𝑥) ∩ 𝐷(𝑥)|
|𝐶(𝑥)|

=
𝑠𝑢𝑝𝑝𝑥(𝐶, 𝐷)
|𝐶(𝑥)|

=
𝜎𝑥(𝐶, 𝐷)
𝜎𝑥(𝐶)

 
(2.22) 

 𝑐𝑒𝑟𝑥(𝐶, 𝐷) = 𝜋𝑥(𝐷|𝐶) (2.23) 

where as 𝜎𝑥(𝐶) =
|𝐶(𝑥)|
|𝑈|

. If a decision rule 𝐶 →𝑥 𝐷  have a certainty 

factor of 𝑐𝑒𝑟𝑥(𝐶, 𝐷) = 1, then the rule will be known as a certain decision rule. 

However, rule with certainty factor 0 < 𝑐𝑒𝑟𝑥(𝐶, 𝐷) < 1 will be referred to as 

an uncertain decision rule. On the other hand, coverage factor of a decision rule 

𝐶 →𝑥 𝐷  is defined as the percentage of an element belongs to 𝐷(𝑥)  being 

classified under the given rule, and can be denoted as 𝑐𝑜𝑣𝑥(𝐶, 𝐷) as shown in 

Equation 2.24 and 2.25:  

 
𝑐𝑜𝑣𝑥(𝐶, 𝐷) =

|𝐶(𝑥) ∩ 𝐷(𝑥)|
|𝐷(𝑥)|

=
𝑠𝑢𝑝𝑝𝑥(𝐶, 𝐷)
|𝐷(𝑥)|

=
𝜎𝑥(𝐶, 𝐷)
𝜎𝑥(𝐷)

 
(2.24) 

 𝑐𝑜𝑣𝑥(𝐶, 𝐷) = 𝜋𝑥(𝐶|𝐷) (2.25) 

where 𝜎𝑥(𝐷) =
|𝐷(𝑥)|
|𝑈|

.  

Decision rules in the form of “IF-THEN” are always generated from the 

decision table by applying the rough set-based algorithms. In other word, the 

“IF-THEN” decision rules implied that if some of the condition attributes have 

a given values, then some decision attributes will be having other given values 

(Anuradha et al., 2011; Qian et al., 2008). The rough set-based decision rule 

algorithm can be further categorized into three types, algorithm which generates 
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the minimum set of rules covering all objects from a decision table; algorithm 

which generates the exhaustive set of rules consisting of all possible rules for a 

decision table; and algorithms which generates the set of decision rules, even 

partly discriminant, covering relatively many object but not necessarily all 

objects from the decision table (Charturvedi et al., 2017). Some of the examples 

of different algorithms used in generating the decision rules are shown in Table 

2-5 (Charturvedi et al., 2017). 

Table 2-5 Mechanisms for decision rules generation in RST approach 

Algorithm Approach 

LEM2 
Decision rules are generated based on the lower and upper 

approximations. This algorithm is suitable to be used in 
both increment and non-increment modes. 

RLEM2 

Decision rules are generated based on the lower and upper 
approximations with utilization of multi-set decision tables. 

In this algorithm’s approach, the extension of basic SQL 
operators is used for rules generation. 

BLEM2 

Decision rules are generated based on the lower and upper 
approximations with the partition of a boundary set.  

Generated rules are dependent on Bayes’ theorem and 
rough sets. 

 

2.8.6. Application of Rough Set Theory 

RST offers practical approaches in resolving various complex problems 

in various field including, the medicine, engineering, marketing analysis, 

bioinformation, banking, financial and others, and has gained achievements in 

respective field. At present, research on RST mainly focused on three aspects, 

specifically in the theoretical, application and algorithm research. This section 

provides a brief overview on the application of the rough set approach in real-

world problem.  
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The rough set-based approach was applied in pattern recognition of 

partial discharge in noise affected cable data. The proposed rough-set approach 

was proven to have higher accuracy compared to SVM and back-propagation 

neural network methods and can be applied for on-line partial discharge 

monitoring of cable systems after training with valid sample data (Peng et al., 

2017). A hybrid of RST and Bayesian reasoning approach was proposed for 

information retrieval in the ranking of webpages. User queries and web pages 

are presented in the form of rough sets, while the approximation regions for 

query and documents are calculated using the Bayesian Rough Set Model. The 

initial outcome of the presented model shows better performance than some of 

the existing model (Sharma and Kumar, 2020). Recently, Radhakrishnapany et 

al. (2020) incorporated RSML approach in CAMD for the design of fragrant 

molecules. Decision rules were generated based on the relationship between 

topology of fragrant molecules and their odour characteristic and were applied 

as constraint in the design problem. Ooi et al. (2022) further extended to work 

by implementing the hyperbox classifiers to predict the fragrance properties. A 

quantitative relationship between the structure parameters of molecules to their 

odour characteristic can be established with the disjunctive decision support 

rules generated from the developed model. 

2.9. Conclusion 

Based on the literature review conducted in this chapter, it is clear that 

the current bio-oil’s solvent design mainly focused on the fuel properties that 

for which GC property prediction models are available. Nevertheless, the 

incorporation of environmental and economic aspects into the CAMD 
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framework is crucial in order for the designed solvent-oil blend to compete with  

conventional diesel fuel. In this chapter, various raw biomass feedstock and 

different pyrolysis technique were also presented. The final product distribution 

of pyrolysis bio-oil is highly dependent on the feedstock and pyrolysis operating 

conditions. Nevertheless, the studies to estimate fuel properties of pyrolysis bio-

oil from its feedstock characterisation and pyrolysis operating conditions are 

not common. Therefore, there is a need to fill the research gap by predicting the 

optimal feedstock composition and pyrolysis operating condition that can 

generate pyrolysis bio-oil of desired fuel properties. This can be achieved by 

employing the RSML approach as a pre-processing and predictive modelling 

tool. Other than solvent addition, emulsification is also an easy, inexpensive, 

and effective physical method for pyrolysis bio-oil upgrading. In the past, 

numerous research focused on the emulsification of pyrolysis bio-oil and diesel 

via mechanical agitation with the addition of surfactant. However, the study 

emulsification of pyrolysis bio-oil/diesel via ultrasonification agitation is still 

scarce. In such cases, there exist an opportunity to explore the potential of 

generating pyrolysis bio-oil/diesel emulsion at different mixing ratio using 

sonicator probe with the aid of surfactant. The identified research gaps from this 

chapter will be further discussed and addressed in Chapter 3.  
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CHAPTER 3                                                                                              

RESEARCH SCOPES AND METHODOLOGIES 

3.1. Research Gaps 

Over the decade, the consumption of fossil fuels for energy has taken a 

toll on the human’s health and environment, from air and water pollution to 

global warming. In addition, the volatilities in crude petroleum oil prices further 

intensified the need to find a sustainable renewable fuels. Biomass has been 

identified as one of the potential renewable energy source by converting into 

biofuels via various conversion techniques. Among the available conversion 

techniques, fast pyrolysis received great attention for being a relatively simple 

and inexpensive technology. However, the industrial applications of pyrolysis 

bio-oil were limited due to its poor fuel properties such as corrosiveness, high 

viscosity, low heating value, low miscibility, high water content as well as 

storage instability due to product aging. Attempts had been made in various 

research to improve the fuel properties of pyrolysis bio-oil via direct solvent 

addition at different mixing ratio. In most of the studies conducted, alcohol 

solvents such as methanol, ethanol, 1-butanol and etc were commonly applied 

as solvent to improve the fuel properties of pyrolysis bio-oil. However, various 

shortcomings such as short-term stability (24-96 hours), high viscosity, poor 

miscibility, high water content, high acidity and formation of residual reactive 

compounds still remained. Thus, designing a solvent which is capable to fulfil 
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multiple property targets is essential to generate a stable and feasible solvent-

oil blend.  

The identification and selection of solvents usually involves tedious 

experimentation through trial-and-error process, and it could be time consuming 

to test all potential solvents and ineffective in optimising blend performance to 

meet the property targets. In response to these challenges, computer-aided 

molecular design (CAMD) techniques were commonly employed to identify 

potential candidates that satisfy the pre-determined product requirements. 

Previous research on the design of bio-oil solvent focused only on the property 

targets that can be predicted using group contribution (GC) method. However, 

there will be instances where different classes of property prediction models 

were required to estimate different target properties. For example, some of the 

property prediction models for environmental or non-thermodynamic properties 

were expressed in terms of topological indexes (TI). Nevertheless, different 

classes of properties prediction model may be expressed with different 

mathematical formulations. Thus, it is difficult to simultaneously accommodate 

and solve different classes of property prediction models using single 

calculation approach. To overcome this issue, molecular signature descriptor 

was introduced to incorporate higher-order molecular groups from GC models 

and multiple TIs on a common platform for CAMD.  

Signatures of different height were required to represent property 

prediction models of different classes. In order to achieve higher accuracy of 

estimation, signatures of higher height were essential to portray higher-order 

contributions from the prediction model due to the requirement of higher 
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structural information. Despite the high accuracy of estimation with the use of 

higher height signatures, the complexity of CAMD increases due to the 

combinatorial nature of higher-order signatures. Having several building blocks 

will result in a large number of signatures at higher height, which leads to 

computational difficulties in modelling and solving the CAMD problem. 

Furthermore, not all the signatures considered in the CAMD problem are 

consistent with each other to form a feasible  molecule. Hence, it is important 

to develop a framework to reduce the size of CAMD problem by excluding 

irrelevant molecular signature at a lower height from the building block sets.  

A major obstacle in the commercialisation of biofuels is their high 

production cost. The low energy density of biofuels makes them more costly for 

heat generation as compared to that of the conventional diesel fuel. In other 

word, the biofuel’s energy density decreases as the bio-oil ratio increases in the 

biofuel. Furthermore, the addition of solvent is often required to improve the 

bio-oil’s properties. In the past, previous research on the design of bio-oil 

solvent mainly focused on the functionality of the solvent itself. However, this 

may result in the selection of specialty chemicals as optimal solvents, which are 

generally associated with high cost. This further increases the production cost 

of biofuels. In addition, the existing and progressing biofuel legislative 

framework sparks the urge to assess the cost associated with upgrading bio-oil. 

Thus, the incorporation of economic aspects into the development of bio-oil 

solvent for the designed solvent-oil blend is crucial for the solvent-oil blend to 

be competitive with the conventional diesel fuel. Generally, the heating value 

of pyrolysis bio-oil increases with the addition of solvent. However, as the 
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amount of solvent increases, the cost of solvent-oil blend increases as well, 

resulting in lower profitability. Thus, it is crucial to investigate the trade-off 

between high heating values and high profitability of the solvent-oil blend.  

On the other hand, it is also important to understand and identify the 

underlying patterns and relations between biomass with bio-oil to produced bio-

oil of targeted fuel properties. Many studies have estimated the properties of 

pyrolysis bio-oil from its elemental composition. However, the production and 

the characterisation of pyrolysis bio-oil could be labour intensive, costly, and 

complicated. In addition, rigorous mechanistic models to allow accurate 

prediction of product properties from feedstock characteristics are not available. 

To avoid such difficulties, empirical models have been proposed in various 

studies to estimate the pyrolysis bio-oil’s properties based on its characterisation 

and pyrolysis condition. It is notable that the empirical models developed in the 

past mainly focused on the prediction of bio-oil yield, while prediction models 

for other parameters such as higher heating value (HHV) and pH of bio-oil are 

still limited. To address this research gap, it is important to develop a predictive 

model that predicts these pyrolysis bio-oil properties from feedstock 

characteristics and pyrolysis temperature using rough-set machine learning 

(RSML).  

Normally, most of the work on CAMD for solvent design ended at the 

identification of promising chemical compounds or solvents through 

computational approach. However, one shall verify that the solvent identified is 

feasible for real-life application while meeting the required targeted properties 

and performance. Therefore, it is crucial to include both computational and 
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experimental approach in the framework for solvent design. In addition, 

emulsification was also required to produce a stable biodiesel blend 

(solvent/bio-oil/diesel blend). Emulsification strategies with surfactant addition 

were reported to improve the stability of biodiesel. Nevertheless, previous 

research on biodiesel blend with surfactant showed varied properties. Hence, 

this lead to another research gap where there is a need to develop a more 

effective emulsification strategy to generate a stable biodiesel blend with 

promising fuel properties.  

3.2. Scopes of Research 

Based on the identified research gaps, this research work can be divided 

into four main scopes, aiming to generate a stable pyrolysis bio-oil blend which 

demonstrate promising property targets that fulfils the standards of biodiesel 

while displaying desirable profit margin. The four scopes presented in this thesis 

are as below:  

3.2.1. Multi-stage computational framework for solvent design to 

 upgrade pyrolysis bio-oil 

Solvent with promising physical properties and low environmental 

impact can be designed using CAMD tools. Generally, GC methods have been 

widely employed in the estimation of thermodynamic related properties. 

However, most of the available prediction models for environmental related 

properties are expressed in TI models. As different classes of prediction models 

use different mathematical formulations, hence it is mathematical challenging 

to combine and solve prediction models of different classes simultaneously. For 

this reason, molecular signature descriptors can be introduced as a common 
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platform to formulate the design problem consisting different property 

prediction models. However, the complexity of CAMD problem increases with 

the height of signatures, due to the combinatorial nature of higher-order 

signatures. Thus, there is a need to develop multi-stage framework to 

systematically eliminate infeasible signatures at different level to keep a 

manageable CAMD problem size.  

3.2.2. Multi-objective optimisation of solvent-oil blend’s fuel 

 quality and economic targets 

In research scope 1, CAMD approach has been utilised to identified 

solvent which satisfy the physical and environmental related properties. 

Nevertheless, it is also important to incorporate the economic aspects into the 

design of solvent-oil blend in order to be competitive with the conventional 

diesel fuel. Generally, the heating value of pyrolysis bio-oil increases with the 

addition of solvent. However, the cost of solvent-oil blend increases as the 

amount of solvent increases. To address this issue, multi-objective optimisation 

(MOO) approach has to be applied to investigate the trade-off between high 

heating value and high profitability of the solvent-oil blend.   

3.2.3. Estimation of fast pyrolysis bio-oil properties from the 

 biomass feedstock characterisation and pyrolysis condition 

Other than the solvent addition, the fuel quality of pyrolysis bio-oil can 

also be improved by selecting the suitable biomass feedstock and pyrolysis 

condition. In the past, various machine learning (ML) tools have been used for 

predicting the performance of thermochemical biomass processing. However, 

popular black-box ML techniques such as artificial neural network (ANN) and 
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support vector machine (SVM) suffer from poor interpretability. Other than ML 

techniques, statistical tools including response surface model (RSM) and 

multiple linear regression (MLR) approaches also lead to regression models that 

are also black-box in nature. Nevertheless, interpretability is important for ML 

tools to provide explanation on their models and better understanding on the 

value and accuracy of their findings. To overcome this limitation, application 

of an interpretable ML tool that is capable to generate straightforward and 

transparent rules is crucial for further information extraction, other than 

unveiling the relationship between the input and output attributes.  

3.2.4. Generate stable solvent-bio-oil-diesel blend with the aid of 

 emulsifiers through experiment.  

In most of the studies, the solvents generated from CAMD models are 

validated with the existing online database. Nevertheless, it is crucial to verify 

the feasibility of identified solvent in real-life application via experimental 

verification. Thus, there is a need to develop a solvent design framework which 

combines both computational and experimental approach. Instead of verifying 

the performance of all available solvents via trial-and-error approach, only the 

shortlisted potential solvents identified from the CAMD model need to be verify 

now. Furthermore, emulsification of solvent-oil blend and diesel fuel with the 

aid of emulsifier is essential to produce a stable biodiesel blend. However, 

previous research on emulsification of biodiesel demonstrated varied outcomes. 

Hence, it is crucial to develop an efficient emulsification strategies and 

determine the optimal mixing ratio to generate a stable solvent-bio-oil-diesel 

blend.  
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3.3. Research Objectives 

The research scopes identified in Section 3.2 leads to the specific 

objectives which were stated as followings: 

1. To develop a multi-stage CAMD framework for the design of 

pyrolysis bio-oil’s solvent via molecular signature descriptor to 

upgrade pyrolysis bio-oil’s fuel properties. 

2. To optimise the fuel functionality and economic aspect of solvent-

oil blend via fuzzy multi-objective optimisation approach. 

3. To estimate the fast pyrolysis bio-oil’s HHV and pH value from 

biomass feedstock characterisation and pyrolysis condition via 

RSML model. 

4. To generate a stable biodiesel blend with promising fuel 

performance via ultrasonification approach. 

3.4. Overall Research Methodology 

The overall methodology for this research work can be generalised into 

four main stages: research scope 1, research scope 2, research scope 3 and 

research scope 4, which is briefly discussed in Section 3.4.1 to 3.4.4. The 

detailed methodologies of all the four scopes are presented in the following 

Chapters 4 to 7. Figure 3-1 demonstrated the graphical representation of the 

overall research methodology.  
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Figure 3-1 Overall methodology developed for this research work 
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3.4.1. Multi-stage computational framework for solvent design to 

 upgrade pyrolysis bio-oil 

Solvent addition is a simple method to overcome the poor fuel properties 

of pyrolysis bio-oil to allow further processing and storage. To design a solvent 

that is capable to improve the stability and fuel properties of the pyrolysis bio-

oil, CAMD tools can be employed to identified molecules possessing desired 

properties based on the pre-determined product requirements. Initially, target 

solvent requirements can be translated into measurable physical properties. The 

identified target properties will either be used as constraints or optimisation 

objective. As different property prediction models consist different levels of 

structural information, molecular signature descriptor can be used as a common 

platform to formulate the design problem. Due to the combinatorial nature of 

higher order signatures, the complexity of a CAMD problem increases with the 

height of signatures. Thus, a multi-stage framework can be developed by 

introducing the consistency rules that restrict the number of higher-order 

signatures. Next, database search is conducted on the all the generated solvent 

to ensure its feasibility and is practical to be applied in real-life applications. In 

addition, phase stability analysis is required to evaluate the stability of the 

solvent-oil blend. Sensitivity analysis was also conducted on bio-oil’s water 

content to investigate its effect on the solvent ratio and miscibility of the final 

solvent-oil blend. The detailed methodology of this scope can be found in 

Chapter 4.  



Chapter 3 
 

 81 

3.4.2. Multi objective optimisation of solvent-oil blend’s fuel 

 quality and economic targets 

In Section 3.4.1, solvent design was performed to generate a solvent 

which is capable to upgrade bio-oil’s properties in terms of bio-oil’s fuel 

performance and environmental aspect. In the second scope, the previous work 

is further extended to incorporate the consideration of economic aspect into the 

solvent design of bio-oil. In this study, the solvent-oil blend’s quality can be 

related to the demand and price of the blend by employing the pricing model. 

In addition, a pyrolysis plant is proposed to aid the estimation of pyrolysis bio-

oil’s production cost. Generally, the higher the mass fraction of solvent in the 

solvent-oil blend, the higher is the energy content. However, a higher amount 

of solvent was often associated with higher cost, and thus, lower profitability 

obtained from the solvent-oil blend. Thus, fuzzy optimisation approach can be 

employed to investigate the trade-off between the functionality and profitability 

of the solvent-oil blend. With the identification of optimal solvent-oil blend 

ratio, phase stability analysis will be carried out to ensure the miscibility of the 

designed solvent-oil blend at the targeted mixing ratio. In addition to that, an 

economic study on the bio-oil-diesel blend will also be conducted to investigate 

the relationship between the ratio of bio-oil-diesel blend, the price and the HHV 

of the bio-oil/diesel blend. The proposed methodology for this scope is further 

discussed in Chapter 5.  
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3.4.3. Estimation of fast pyrolysis bio-oil properties from the 

 biomass feedstock characterisation and pyrolysis condition 

For the third scope, a data-driven rough-set based ML model was 

proposed as a pre-processing and predictive modelling to predict the pyrolysis 

bio-oil properties based on pyrolysis temperature and feedstock characteristics. 

At the first stage, a database consisting of biomass feedstock proximate and 

ultimate analyses, pyrolysis temperature, bio-oil’s pH value, and bio-oil’s HHV 

are compiled based on published literature and experimental studies. The 

generated decision rules will be analysed from a scientific standpoint to identify 

the underlying trends or patterns, while ensuring the logical and feasibility for 

the rules to be applied in the later stage. The most suitable prediction models 

and decision rules will be select based on the novel insights and mechanistic 

plausibility of the decision rules. In addition, validation dataset will be used to 

evaluate the statistical performance of rule-based models to ensure good 

predictive performance and low overfitting. Four case studies were proposed to 

investigate the effect of different combination of  biomass characteristics and 

pyrolysis temperature on the HHV and pH values of the pyrolysis bio-oil.  

3.4.4. Generate stable solvent-bio-oil-diesel blend with the aid of 

 emulsifiers.  

In order to validate feasibility and applicability of the solvents identified 

from scope 1 and 2 (as mentioned in Section 3.2.1 and 3.2.2, respectively), 

further experimental verifications are required. In the fourth scope, an efficient 

emulsification strategy via sonification is proposed to generate stable solvent-

oil-diesel blend. At the first stage, the best performing solvent are selected based 
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on its fuel performance at 20 wt. % of solvent mixing ratio. Then, the selected 

solvent will be mixed with pyrolysis bio-oil at different mixing ratio to find out 

the optimal solvent-oil blend ratio. Once the optimal mixing ratio are 

determined, the solvent-oil blend will be mixed with diesel with the aid of 

surfactants. The generated biodiesel blend will be analysed in terms of its fuel 

functionality and stability.  

3.5. Summary 

This chapter presents the research scopes and the overall research 

methodology. Based on the research gaps identified in Section 3.1, there is a 

need to design a solvent which could overcome all the shortcomings of pyrolysis 

bio-oil via CAMD framework. Owing to the combinatorial nature of the 

molecular signature descriptor, the complexity of the CAMD problem increases 

as the height of signature increases. Thus, a multi-stage framework needs to be 

developed to restrict the number of higher-order signature. In addition, it is also 

crucial to incorporate economic aspects into the solvent design. Hence, a fuzzy 

MOO approach should be developed to simultaneously optimise both fuel 

functionality and economic targets of solvent-oil blend. Besides, it is found that 

the properties of pyrolysis bio-oil can be related with the characterisation of 

biomass feedstock and pyrolysis condition. Therefore, straightforward rules can 

be generated using ML approach to estimate the HHV and pH of pyrolysis bio-

oil based on the characterisation of feedstock and pyrolysis condition. 

Nevertheless, it is also important verify the feasibility of the designed solvent 

in real-life application via experimental verification. The methodology should 
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be further extended to include the experimental procedures where pyrolysis bio-

oil are emulsified with diesel with the aid of solvent and emulsifiers.  
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CHAPTER 4                                                                                              

DESIGN OF BIO-OIL SOLVENTS VIA MOLECULAR SIGNATURE 

DESCRIPTORS USING A MULTI-STAGE COMPUTER-AIDED 

MOLECULAR DESIGN FRAMEWORK 

4.1. Introduction 

In this chapter, computer-aided molecular design (CAMD) tools were 

developed to design optimal solvents to upgrade bio-oil whilst having low 

environmental impact. Firstly, target solvent requirements were identified and 

translated into measurable physical properties. As different property prediction 

models consist different levels of structural information, molecular signature 

descriptor was used as a common platform to formulate the design problem. 

Because of the differences in the required structural information of different 

property prediction models, signatures of different heights were needed in 

formulating the design problem. Due to the combinatorial nature of higher-order 

signatures, the complexity of a CAMD problem increases with the height of 

signatures. Thus, a multi-stage framework was developed by introducing a 

novel consistency rule that restricts the number of higher-order signatures. 

Finally, phase stability analysis was conducted to evaluate the stability of the 

solvent-oil blend. As a result, optimal solvents that improve the solvent-oil 

blend properties while displaying low environmental impact were identified. A 
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case study on solvent design for pyrolysis bio-oil was conducted to illustrate the 

application of this proposed methodology.  

4.2. Problem Statement 

In recent years, bio-oil has risen as one of the most promising 

alternatives for conventional diesel fuels. However, poor fuel quality and 

stability of bio-oil often limit their applications in diesel engines. Various 

research has been done on enhancing the bio-oil fuel properties by blending it 

with solvent at different mixing ratio. Having a solvent that can fulfil multiple 

property targets is essential to produce a stable solvent-oil blend with improved 

physicochemical properties. By utilising the CAMD tools, an optimal solvent 

molecule can be predicted together with identifying the underlying reaction 

mechanisms. At present, most of the solvent design via CAMD approach had 

been done on group contribution (GC)-based methods. However, some property 

prediction models were expressed in indexes other than the GC method. To 

consider all related property prediction models, CAMD approach with 

molecular signature descriptors can be applied. Despite the higher accuracy of 

estimation at a higher height of signature, the complexity of CAMD increases 

as well due to the vast amount of possible molecular signatures to be considered.  

Thus, it is important to develop a framework in reducing the size of problem by 

removing irrelevant molecular signature at a lower height from the building 

blocks set.  

4.3. Methodology 

The main objective of this work is to develop a systematic multi-stage 

framework in reducing the size of CAMD problem due to the combinatorial 
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nature of molecular signature descriptor. Solvents that form stable blends with 

pyrolysis bio-oil and possess optimal properties can be generated with this 

framework by considering physical, environmental, and thermodynamic 

properties. An algorithm of GC method coupled with topological index (TI) 

approach was used to solve the multiple property indexes involved in the 

CAMD problem. This framework can be divided into 4 main stages and their 

correlated sub-steps are shown in Figure 4-1. 



Chapter 4 
 

 88 

 Error! Reference source not found.

 

Figure 4-1 Framework for the development of CAMD model for the design of solvent 
additives 
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4.3.1. Problem Definition 

Firstly, the problem definition was formulated, where the product needs 

were determined based on the requirements from regulations and specifications. 

This usually requires data on physical and thermodynamic properties as they 

contribute to the functionality of the designed product. In addition, 

environmental properties were considered to ensure that the generated solvent 

molecules have low environmental impact. The selected desired properties will 

be serving as the design objective to generate promising molecules.  

The identified product requirements were then translated into 

measurable quantitative target properties. For example, the flow consistency of 

solvent can be expressed in terms of its density and viscosity. These identified 

target properties will either be used as constraints or optimisation objective in 

the CAMD formulation stage. Upper and lower limits were defined for these 

target properties to ensure the designed solvents display similar physical 

characteristics as a conventional solvent.  

4.3.2. Property Prediction Models 

Next, suitable property prediction models were selected to estimate the 

target properties of the solvent. In this work, property prediction models in 

terms of GC and TI approaches were considered and expressed as a function of 

the molecular signature descriptor. For GC based property prediction models, 

higher-order molecular groups demonstrated higher prediction quality 

compared to the 1st order approach. In this work, higher-order molecular groups 

(2nd and 3rd order groups) along with the basic molecular building blocks (1st 

order) have been considered. Molecular signatures of desirable heights were 
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generated based on the root atoms and chemical families selected for the solvent 

design. The height and number of signatures required to describe the molecular 

group in GC models depend on the number of atoms present for the molecular 

structure and the nature of the final molecule. Thus, maximum signature height 

for the CAMD problem can be determined from the available property 

prediction models. 

4.3.3. CAMD Formulation 

The CAMD optimisation model were represented using the following 

set of generalised mathematical expression (Austin et al., 2016):  

 𝐹𝑜𝑏𝑗 = max 𝐹(𝑥, 𝑝) (4.1) 

 𝑝 = 𝑓(𝑥) (4.2) 

 ℎ1(𝑝, 𝑥) ≤ 0 (4.3) 

 ℎ2(𝑝, 𝑥) = 0 (4.4) 

 𝑠1(𝑥) ≤ 0 (4.5) 

 𝑠2(𝑥) = 0 (4.6) 

 𝑝𝑘𝐿 ≤ 𝑝𝑘 ≤ 𝑝𝑘𝑈   ∀𝑘 (4.7) 

 𝑥𝑑𝐿 ≤ 𝑥𝑑 ≤ 𝑥𝑑𝑈   ∀𝑑 (4.8) 

For the above expressions, 𝑝 is the vector of properties and 𝑝𝑘  is the 

property values for each property 𝑘. Meanwhile, 𝑛 is the vector representing the 

structural information of designed molecules. The 𝑥𝑑  vector indicates the 

number of occurrences of each molecular signature 𝑑 . The function 𝑓  then 

transforms this structural information into a property estimate using the 

appropriate QSPR relationship. Equation 4.1 is a general objective function for 

the CAMD problem. The 𝐹(𝑥, 𝑝) is known as the vector of objective function 
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which quantify the performance of the designed molecule based on its properties 

𝑝. The 𝐹  function can either be maximised or minimised depending on the 

design problem. Equation 4.2 is the function 𝑓  which estimates vector of 

properties 𝑝 from attributes such as number of molecular signatures. Equations 

4.3 and 4.4 are the general function representing the inequality and equality 

constraints, respectively. These equations corresponded to product design 

specifications such as property’s value for thermodynamic and environmental 

properties. As the property depends on the presence of signatures, these 

constraints can control the number of appearances of specific signatures in the 

designed molecule. As for Equations 4.5 and 4.6, they are the general function 

representing the inequality and equality constraints, respectively, related to the 

molecular structure generation. These structural constraints ensure the 

generated molecule is structurally feasible.  Equations 4.7 and 4.8 are the 

boundaries set on property values and the number of signatures. The parameters 

𝑝𝑘𝐿 and 𝑥𝑑𝐿 are the lower bounds for property 𝑘 and 𝑥𝑑, respectively. Similarly, 

parameter 𝑝𝑘𝑈 and 𝑥𝑑𝑈 are the upper bounds for property 𝑘 and 𝑥𝑑, respectively.  

For the CAMD problem, the function 𝑓(𝑥) may be formulated as a 

mixed integer non-linear programming (MINLP) model. However, due to the 

increasing size of the mathematical problem, it is usually challenging to solve 

such a MINLP models with the structural information included (Zhang et al., 

2015). In this work, molecular signature descriptors were used to present the 

CAMD problem as an equivalent mixed integer linear programming (MILP). 

The two-dimensional descriptor (both TI and GC models) of molecule 𝐺, 𝑇𝐼(𝐺) 

can be expressed as a dot product between two vectors,  ℎ𝛼𝑔 , the vector of 
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occurrence number of atomic signatures of height ℎ, and 𝑇𝐼 (𝑟𝑜𝑜𝑡( ℎ ∑  )), the 

vector of predicted values from the model computed for each of the atomic 

signatures as shown in (Equation 4.9) (Chemmangattuvalappil and Eden, 2013): 

 𝑇𝐼(𝐺) = 𝑘ℎ𝛼𝑔 ∙ 𝑇𝐼 (𝑟𝑜𝑜𝑡 ( ℎ∑  )) (4.9) 

By using the signatures, the non-linear part of the mathematical 

formulation can be hidden inside the molecular signature building blocks. As 

shown in Equation 4.9, the prediction model was expressed as linear equation, 

where the only variable is the number of respective building blocks, which are 

atomic signatures. In each of the building blocks, contribution to the target 

property can be estimated using the original property prediction model. When 

GC model was used for property prediction, the term in the bracket referred to 

the property contribution from the signature that represented the set of 

molecular groups present in the higher-order groups. In CAMD, since the 

structure of molecule is not known prior to the design, the presence of higher-

order groups is not known during the design. Molecular signatures were used to 

track the presence of all possible 2nd and 3rd order contributions by considering 

a signature height of 2 or 3. These models can be linear or non-linear. However, 

since these non-linear expressions were only used in the estimation of 

contribution of the building blocks, hence it will not be part of the variables. 

The only variable involved will be the number of appearances of each signature. 

Considering the prediction model for normal melting point, 𝑇𝑚 as an example 

(Equation 4.10)(Marrero and Gani, 2001): 
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 exp (
𝑇𝑚
𝑇𝑚0

) =∑ 𝑁𝑖𝑇𝑚𝑖 +
𝑖

∑ 𝑀𝑗𝑇𝑚𝑗 +
𝑖

∑ 𝑂𝑘𝑇𝑚𝑘
𝑖

 (4.10) 

 𝑇𝑚0 = 147.45𝐾  

Where 𝑁𝑖, 𝑀𝑗 and 𝑂𝑘 are the number of individual building blocks from 

1st order, 2nd order and 3rd order groups, respectively. The parameters 𝑇𝑚𝑖, 𝑇𝑚𝑗 

and 𝑇𝑚𝑘  are the contributions for 1st order, 2nd order and 3rd order groups, 

respectively. 𝑇𝑚 is the normal melting point and was set to be lower than 298.15 

K. The exponential term, exp ( 𝑇𝑚
𝑇𝑚0
)  at the left-hand side of Equation 4.10 

contributes to the non-linearity of the expressions. By substituting and solving 

the left-hand side of the equation, the prediction model is now a linear equation, 

as shown in Equation 4.11. The only variable in the equation is the number of 

building blocks.  

 7.554 >∑ 𝑁𝑖𝑇𝑚𝑖 +
𝑖

∑ 𝑀𝑗𝑇𝑚𝑗 +
𝑖

∑ 𝑂𝑘𝑇𝑚𝑘
𝑖

 (4.11) 

However, this approach will lead to the generation of a substantial 

amount of molecular signature building blocks to be considered for CAMD. To 

address this issue, a multi-level approach has been developed where the amount 

of generated molecular signature building blocks can be controlled. 

4.3.3.1. Feasibility Rules 

To ensure the feasibility of the final molecule, the selected signature 

building blocks should fulfil the requirements to form effective solvents. An 

efficient, structured algorithm for joining groups to form feasible chemical 

compounds was integrated into the signature based CAMD (Gani et al., 1991; 

van Dyk and Nieuwoudt, 2002). Generally, molecules are reported to be 
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unstable if two heteroatoms are bonded to the same carbon atom, and at least 

one of the atoms is also bonded to a hydrogen atom. Combination like 

heteroatom bonding with another should be avoided as these compounds are 

usually highly reactive and not suitable to be considered as solvents. Constraints 

from the work of van Dyk and Nieuwoudt (2002) classified the groups of 

molecules according to the type of free bonds as shown in Table 4-1. In general, 

Table 4-2 can be summarised based on Equation 4.12; where 𝑛𝑖  is the total 

number of free bond group 𝑖 in the molecule (van Dyk and Nieuwoudt, 2002).  

 𝑛4 + 𝑛5 ≥ 𝑛1 + 𝑛2 (4.12) 

Table 4-1 Free bond groups in terms of signature of height 2. 

Group Description Example 

I Bonding atom is a heteroatom bonded to a 
hydrogen atom 

O1(C2(CO)) 

II Bonding atom is a heteroatom bonded to a 
carbon atom 

O2(C2(CO)C3(CCO)) 

III 
Bonding atom is a carbon atom bonded to 

a heteroatom, which is bonded to a 
hydrogen atom 

C2(O1(C)C2(CC)) 

IV 
Bonding atom is a carbon atom bonded to 
a heteroatom, which is bonded to a carbon 

atom 
C2(O2(CC)C2(CC)) 

V Bonding atom is a carbon atom bonded to 
another carbon atom 

C2(C2(CC)C3(CCC)) 

 

Table 4-2 Allowed combination of group 

Group I II III IV V 
I      
II      
III      
IV      
V      
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As some of the property prediction models used GC method, signature 

descriptors were translated and assigned to their corresponding groups from GC 

approach. Only the root atom of each atomic signature was considered to 

prevent the overlapping issues during the property estimation. Taking the 

molecular signature C2(CC) as reference, the root atom C was connected to 2 

carbon atoms by single bonds and the rest was bonded to hydrogen atoms. Thus 

‘CH2’ is the corresponding GC group for this signature. In another example, the 

signature C4(=CCO) has the root atom C connected to an oxygen and two 

carbons by single and double bonds, respectively. To ensure no overlapping of 

groups, the simplest equivalent group was chosen. In this case, the group ‘C = 

C’ was chosen. The other examples of height 1 signatures and their 

corresponding groups are listed in Table 4-3. 

Table 4-3 Height 1 signature and their corresponding group 

Signatures Corresponding Group 
C4(=C=C) C=C 
C4(=CCC) C=C 
C4(CCCC) C 
C3(=CC) CH=C 
C3(CCC) CH 
C2(=C) CH2=C 
C2(CC) CH2 
C1(C) CH3 

 

4.3.3.2. Structural Constraints 

Structural constraints are essential in a CAMD problem to ensure the 

formation of a complete molecular graph with all signatures connected to 

generate a feasible solution. The structural constraints used in molecular 
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signature-based algorithms must follow a few rules in order to generate a 

complete structure (Chemmangattuvalappil et al., 2010):  

1. Signatures must be connected without any free bonds in the structure. 

Thus, the total number of available degrees (valencies) should be 

matching with the total number of vertices (atoms) in the graph 

(molecules).  

2. The number of bonds in each signature should be consistent with the 

bonds of the rest of signatures.  

To obey rule (I), Equation 4.13 was developed to express the relation 

between the number of signatures and the bonds where 𝑛1, 𝑛2, 𝑛3, and 𝑛4 are 

the number of signatures 𝑥𝑖  with valency of one, two, three and four 

respectively. Here 𝑁𝐷𝑖, 𝑁𝑀𝑖 and 𝑁𝑇𝑖 are the signatures with one double bond, 

two double bond and one triple bond respectively (Chemmangattuvalappil et al., 

2010). 

 

∑𝑥𝑖

𝑛1

𝑖=1

+ 2∑𝑥𝑖

𝑛2

𝑛1

+ 3∑𝑥𝑖

𝑛3

𝑛2

+ 4∑𝑥𝑖

𝑛4

𝑛3

= 2 [(∑𝑥𝑖

𝑁

𝑖=1

+
1
2
∑𝑥𝑖

𝑁𝐷𝑖

𝑖=0

+∑𝑥𝑖

𝑁𝑀𝑖

𝑖=0

+∑𝑥𝑖

𝑁𝑇𝑖

𝑖=1

) − 1] 

(4.13) 

On the other hand, rule (II) can be mathematically represented as 

Equation 4.14, which must be fulfilled by all colour sequences, including colour 

sequences in which 𝑖 = 𝑗  at each height. The expression (𝑙𝑖 → 𝑙𝑗)ℎ is for 

colouring sequence 𝑙𝑖 → 𝑙𝑗 at level ℎ (Chemmangattuvalappil et al., 2010): 

 ∑(𝑙𝑖 → 𝑙𝑗)ℎ =∑(𝑙𝑗 → 𝑙𝑖)ℎ (4.14) 

From Equation 4.14 we can know that if there is a signature with a colour 

sequence of 𝑙𝑖 → 𝑙𝑗 with 𝑖 = 𝑗, then there must be another signature with the 
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same colour sequence present from the same signature set to complement the 

previous signature. Considering a signature of height 2, 

𝐶4(𝐶4(𝐶𝐶𝐶)𝐶1𝐶4(𝐶𝐶𝐶)𝐶3(𝐶𝐶))  as example. This signature contains two 

𝐶4 → 𝐶4  colourings, one 𝐶4 → 𝐶1  colouring and one 𝐶4 → 𝐶3  colouring. 

Thus, there must be two more 𝐶4 → 𝐶4 colourings, one 𝐶1 → 𝐶4 colouring and 

one 𝐶3 → 𝐶4 colouring present in other signatures of the same molecule. This 

can be expressed mathematically as Equation 4.15 to confirm the consistency 

of the signatures with the same colour sequence on the same edges where 𝜂 is 

the number of colour sequence of 𝑙𝑖 → 𝑙𝑗  on a signature with 𝑖 = 𝑗, 𝑥 is the 

number of such colour sequence and 𝐾  is a constant integer 

(Chemmangattuvalappil et al., 2010).  

 ∑𝜂𝑖𝑥𝑖 =
𝑖=𝑗

2𝐾 (4.15) 

It is also important to make sure that the number of a specific colour in 

the child level would not exceed the total number of the same colour when it is 

in parent level. In other words, the total number of signatures with more degree 

of the vertex at a higher level should be lesser than the total number of vertices 

with the higher degree which can be represented by Equation 4.16 

(Chemmangattuvalappil et al., 2010):  

 ∑𝑥𝑖𝑛𝑖 ≤ ∑𝑥𝑗  (4.16) 

Where 𝑛𝑖  is the number of child vertex with higher degree than the 

parent vertex, while both 𝑖 and 𝑗 correspond to the colour of child and parent, 

respectively. 
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4.3.3.3. Consistency rules 

The CAMD problem was initially solved at height 1 level to identify 

promising signatures generated from the previous stage. Subsequently, height 2 

signatures were generated based on the identified height 1 signatures. However, 

to ensure the final generated molecule is structurally feasible, only signatures 

that fulfil the structural constraints were considered. 

To generate a feasible molecular structure from the signature building 

blocks, each signature must be connected to another signature that with the same 

structure at a level ℎ − 1 . An example on the enumeration of molecular 

structures from signatures are shown in Table 4-4. The collection of signatures 

presented in this example is one of the solutions obtained for the bio-oil solvent 

case study in Section 4.4. 

Table 4-4 Set of signatures for 2-Octanol with its corresponding height 2 signatures 

No Height 3 Signatures 
Corresponding 

Height 2 Signature 
1 C1(C3(C1(C)C2(CC)O1(C))) C1(C3(CCO) 
2 C1(C2(C1(C)C2(CC)) C1(C2(CC)) 

3 C2(C1(C2(CC))C2(C2(CC)C2(CC))) C2(C1(C)C2(CC)) 
4 C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC))) C2(C2(CC)C2(CC)) 
5 C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC))) C2(C2(CC)C2(CC)) 
6 C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO))) C2(C2(CC)C2(CC)) 

7 C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C))) C2(C2(CC)C3(CCO)) 
8 C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO))) C3(C1(C)C2(CC)O1(C)) 

9 O1(C3(C1(C)C2(CC)O1(C))) O1(C3(CCO)) 

 

First, any signature of height 3 was selected. In this case, Signature (1), 

C1(C3(C1(C)C2(CC)O1(C))) was selected. Next, it was inferred that there is 

only one signature possible from the first layer, which is 
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C3(C1(C)C2(CC)O1(C)). Referring to Table 4-4, the height 2 signature of 

Signature (8), C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO))) was 

exactly same as the signature from the first layer. Thus, Signature (1) was 

connected with Signature (8). The same procedure was then repeated on 

Signature (8) to get the next bond. In this study, an algorithm was developed 

based on the graph signature enumeration method by Faulon et al. (2003).  

In the developed approach, signatures of height ℎ were generated based 

on the collection of height ℎ − 1 signatures identified from the CAMD problem. 

The first layer of signature generated must contain one of the height ℎ − 1 

signatures from the previous result. For example, assuming the signatures 

C1(C), C2(CC), C2(CO) and C3(CCO) were identified as the promising height 

1 signature from the CAMD problem, the generated height 2 signatures based 

on C1(C) are shown as below: 

1. C1(C2(CC)) 

2. C1(C2(CO)) 

3. C1(C3(CCO)) 

With this approach, the total number of generated height 2 signatures 

was reduced from 13 signatures to 3 signatures. In another example, taking the 

collection of height 2 signatures, the following set is obtained:  

1. C1(C3(CCO) 

2. C1(C2(CC)) 

3. C2(C1(C)C2(CC)) 

4. C2(C2(CC)C2(CC)) 

5. C2(C2(CC)C3(CCO)) 

6. C3(C1(C)C2(CC)O1(C)) 
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7. O1(C3(CCO)) 

In this case, height 3 signatures generated based on the Signature (3), 

C2(C1(C)C2(CC)) are listed as:  

1. C2(C1(C2(CC))C2(C1(C)C2(CC))) 

2. C2(C1(C2(CC))C2(C2(CC)C2(CC))) 

3. C2(C1(C2(CC))C2(C2(CC)C3(CCO))) 

Similar approach was applied to the rest of signatures to generate the 

remaining height 3 signatures.   

4.3.4. Verification 

Verification step is crucial to ensure that the molecules generated from 

previous steps are feasible and practical. In this step, generated molecules were 

verified through database search from various platforms like ChemSpider, 

PubChem, etc. For compounds that exist in the database, comparison was made 

to verify the property values obtained from the CAMD result. As for compounds 

that do not exist in the database or proved to be infeasible, the previous step was 

repeated by modifying the property attributes and constraints.  

4.3.5. Miscibility Analysis 

It is crucial to ensure the designed solvent is miscible with the blend of 

bio-oil and diesel to avoid phase separation in the final solvent-oil blend. Phase 

stability test was conducted by computing the tangent plane distance. For an 𝑛-

component mixture at constant temperature and pressure, the phase stability 

analysis employed the Gibbs tangent plane distance function as shown in 

Equation 4.17 (Prausnitz, 1969): 
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 𝑑(𝑥) =∑𝑥𝑖[ln 𝑥𝑖 𝛾𝑖(𝑥) − ln 𝑧𝑖𝛾𝑖 (𝑧)]
𝑛

𝑖=1

 (4.17) 

Where 𝑧 is the compositions of component 𝑖 in mole fractions of the 

tested phase, 𝑥 is the composition component 𝑖 of a trial phase and 𝛾 indicates 

the activity coefficient of component 𝑖 in respective phase.  For mixture that is 

stable and exhibits homogenous single-phase, the following equation (Equation 

4.18) can be followed (Baker et al., 1982): 

 𝑑(𝑥) ≥ 0 (4.18) 

To estimate the activity coefficients in non-ideal liquid mixture, group 

contribution estimation approach developed by Fredenslund et al. (1975) was 

applied. In this work, the GC prediction model combines the solution-of-

functional-groups concept with a model for activity coefficient based on 

UNIQUAC. In a multi-component mixture, the UNIQUAC equation for the 

activity coefficient of component 𝑖 is given by Equation 4.19 (Fredenslund et 

al., 1975): 

 ln 𝛾𝑖 = ln 𝛾𝑖𝐶 + ln 𝛾𝑖𝑅 (4.19) 

In Equation 4.19, 𝐶  represented the combinatorial part while the 

residual part is denoted as 𝑅. Here, Equation 4.20 and 4.21 calculates the value 

ln 𝛾𝑖𝐶 and ln 𝛾𝑖𝑅 (Fredenslund et al., 1975):   

 ln 𝛾𝑖𝐶 = ln
𝜙𝑖
𝑥𝑖
+ 5𝑞𝑖 ln

𝜃𝑖
𝜙𝑖
+ 𝑙𝑖 −

𝜙𝑖
𝑥𝑖
∑𝑥𝑗𝑙𝑗
𝑗

 (4.20) 

 ln 𝛾𝑖𝑅 =∑𝑣𝑘
(𝑖)(ln Γ𝑘 −

𝑘

ln Γk
(𝑖)) (4.21) 
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Equation 4.22 to Equation 4.29 represents the calculation for terms in 

Equation 4.20 and 4.21 (Fredenslund et al., 1975):  

 𝑙𝑗 = 5(𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1) (4.22) 

 𝜙𝑖 =
𝑟𝑖𝑥𝑖
∑ 𝑟𝑗𝑥𝑗𝑗

 (4.23) 

 𝜃𝑖 =
𝑞𝑖𝑥𝑖
∑ 𝑞𝑗𝑥𝑗𝑗

 (4.24) 

 𝑟𝑖 =∑𝑣𝑘
(𝑖)𝑅𝑘

𝑘

 (4.25) 

 𝑞𝑖 = ∑𝑣𝑘
(𝑖)𝑄𝑘

𝑘

 (4.26) 

 ln Γ𝑘 = 𝑄𝑘 [1 − ln∑𝜗𝑚𝜓𝑚,𝑘
𝑚

−∑
𝜗𝑚𝜓𝑚,𝑘
∑ 𝜗𝑛𝜓𝑛,𝑚𝑛𝑚

] (4.27) 

 𝜗𝑚 =
𝑄𝑚𝑋𝑚
∑ 𝑄𝑛𝑋𝑛𝑛

 (4.28) 

 𝜓𝑚,𝑛 = −exp(
𝑎𝑚𝑛
𝑇
) (4.29) 

Where  𝛾𝑖 = activity coefficient of component 𝑖 

𝜙𝑖 = segment fraction (volume fraction) of component 𝑖 

𝜃𝑖 = area fraction of component 𝑖 

𝑥𝑖 = mole fraction of component 𝑖 

𝑟𝑖 = pure component molecular van der Waals volume parameter 

𝑞𝑖 = pure component molecular surface areas parameter 

𝑣𝑘
(𝑖)= number of groups of type 𝑘 in molecule 𝑖 

𝑅𝑘 = group volume parameters 

𝑄𝑘 = group area parameters 

Γ𝑘 = group residual activity coefficient 

 Γ𝑘
(𝑖) = residual activity coefficient of group 𝑘 in pure component 𝑖 
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𝜗𝑚 = area fraction of group 𝑚 

𝜓𝑚,𝑘 = group interaction parameter 

𝑋𝑚 = mole fraction of group 𝑚 in the mixture  

𝑎𝑚,𝑛 = group interaction parameters of experimental phase equilibrium data 

After obtaining feasible solvent candidates from the previous 

expressions, solvents and bio-oil are tested at different mixing ratio with the 

application of tangent plane criterion, to obtain the optimal mixing ratio. The 

Gibbs energy curve is constructed by reviewing the expression 𝑥𝑖 ln 𝑥𝑖 𝛾𝑖(𝑥) for 

different mixture composition of 𝑥 , followed by calculation of expression 

𝑥𝑖 ln 𝑧𝑖 𝛾𝑖(𝑧) to obtain the tangent to the curve where 𝑧 denotes the designed 

mixing ratio generated from the optimisation results. The solvent-oil blend is 

said to be in stable if the tangent plane distance is non-negative. If otherwise, 

the previous steps will be revisited by modifying the property attributes and 

constraints. 

4.4. Case Study 

4.4.1. Defining Target Properties and Constraints 

The main objective of the designed solvent is to improve the fuel quality 

of the pyrolysis bio-oil. The designed solvent should always be in a liquid state 

at room temperature for ease of handling and storage. Thus, the constraints for 

the normal melting and boiling points of solvent were set at 298.15 K and 

400.15 K, respectively. On the other hand, a greater higher heating value (HHV) 

is preferable for better fuel combustion. In present work, HHV for the designed 

solvent was maximized, which serves as the objective function. Besides, the 

final solvent-oil blends are expected to display good continuous flow. The 
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designed solvent should also exhibit high miscibility in pyrolysis bio-oil to 

ensure the homogeneity of the final blend. Finally, the designed solvent should 

also comply with the environmental regulations set by authorities for low 

environmental impact. The generated solvents should possess low toxicity with 

minimal accumulation in both land and aquatic ecosystem. The final solvent-oil 

blends are also required to be environmentally sustainable, which is usually 

measured by the global warming potential (Pacheco and Silva, 2019). In order 

to reduce the formation of photochemical smog, low photochemical oxidation 

potential is expected for the final biodiesel blend (Ooi et al., 2018). Constraints 

for the properties mentioned above were defined according to the ASTM D6751 

and EN:14214 standards. Table 4-5 shows the respective targeted properties and 

identified constraints for each product requirements. 

Table 4-5 Translation of product requirements into target properties and constraints 

Product 
Requirements Targeted Properties Constraints 

Liquid state at 
room temperature 

Normal boiling point (K) > 400.15 
Normal melting point (K) < 298.15 

Fuel combustion 
quality Higher heating value 

To be 
maximised 

Fuel flow 
consistency 

Viscosity (mPa s) 1 > 𝑣 > 6 
Density (kg m-3) 800 >𝜌 > 1000 

Homogenous form Tangent plane distance 
To be 

determined 

Environmental 
related properties 

and toxicology 

Aquatic acute toxicity, LC50 > 100 
Aquatic acute toxicity, EC50 > 100 

Oral acute toxicity, LD50 > 100 
Bioconcentration factor < 1000 

Soil-water partition coefficient (L 
kg-1) 

< 31622 

Global Warming Potential < 10 
Photochemical Oxidation Potential < 10 
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4.4.2. Selecting Appropriate Property Prediction Model 

Based on the target properties identified in Section 4.4.1, the respective 

property prediction models were selected to estimate the properties of the 

designed solvents as shown in Table 4-6.  

Table 4-6 Property prediction models 

Property Property Model 
Normal Melting Point 

(𝑻𝒎) (Marrero and Gani, 
2001) 

exp (
𝑇𝑚
𝑇𝑚0

) =∑ 𝑁𝑖𝑇𝑚𝑖 +
𝑖

∑ 𝑀𝑗𝑇𝑚𝑗 +
𝑖

∑ 𝑂𝑘𝑇𝑚𝑘
𝑖

 

𝑇𝑚0 = 147.450𝐾 

Normal Boiling Point (𝑻𝒃) 
(Marrero and Gani, 2001) 

exp (
𝑇𝑏
𝑇𝑏0
) =∑ 𝑁𝑖𝑇𝑏𝑖 +

𝑖
∑ 𝑀𝑗𝑇𝑏𝑗 +

𝑖
∑ 𝑂𝑘𝑇𝑏𝑘

𝑖
 

𝑇𝑏0 = 222.543𝐾 

Flash Point (𝑭𝒑) 
(Hukkerikar et al., 2012b) 

𝐹𝑝 − 𝐹𝑝0 =∑ 𝑁𝑖𝑇𝑝𝑖 +
𝑖

∑ 𝑀𝑗𝑇𝑝𝑗 +
𝑖

∑ 𝐸𝑘𝑇𝑝𝑘
𝑖

 

𝐹𝑝0 = 150.0218𝐾 

Molar Volume (𝑽𝒎) 
(Constantinou et al., 1995) 

𝑉𝑚(25𝑜𝐶) − 𝑑 =∑𝑁𝑖𝑣𝑚1𝑖
𝑖

+∑𝑀𝑗𝑣𝑚2𝑗
𝑗

 

𝑑 = 0.01211 

Vapour Pressure (𝑷𝒔𝒂𝒕) 
(Sinha and Achenie, 2001) 

𝑃𝑠𝑎𝑡 = 5.58 − 2.7 (
𝑇𝑏

298.15
)
1.7

 

𝑇𝑏 = 𝑁𝑜𝑟𝑚𝑎𝑙 𝐵𝑜𝑖𝑙𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡 

Higher Heating Value  

(𝑯𝑯𝑽) (Walters, 2002) 
𝐻𝐻𝑉 =

∑ 𝑁𝑖𝐻𝑖𝑖

∑ 𝑁𝑖𝑀𝑖𝑖
(𝑘𝐽 𝑔⁄ ) 

𝑀 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔/𝑚𝑜𝑙) 

Density (𝝆) 𝜌 =
𝑀𝑖

𝑉𝑚
 

Dynamic Viscosity (𝜼𝑳) 
(Conte et al., 2008) 

ln 𝜂𝐿 =∑𝑁𝑖𝐶𝑖 +∑𝑀𝑗𝐷𝑗
𝑗

+∑𝑂𝑘𝐸𝑘
𝑘𝑖

 

Octanol/water partition 
coefficient (𝑲𝒐𝒘) (Boyd et 

al., 1982) 

log𝐾𝑜𝑤 = 1.267 (𝑣𝜒1) + 0.612(𝑣𝜒3) − 0.976(𝑣𝜒3)
− 2.130 

Acute Toxicity (Aquatic, 
𝑳𝑪𝟓𝟎) (Manuela Pavan et 

al., 2005) 
log 𝐿𝐶50−1 = 0.81 log𝐾𝑜𝑤 + 1.744 

Acute Toxicity (Aquatic, 
𝑬𝑪𝟓𝟎) (FM Carpanini, 

1998) 
log 𝐸𝐶50 = −0.95 log𝐾𝑜𝑤 − 1.32 

Acute Toxicity (Oral, 
𝑳𝑫𝟓𝟎) (Lipnick, 1989) 

log 𝐿𝐷50−1 = 0.805 log𝐾𝑜𝑤
− 0.971 log(0.0807𝐾𝑜𝑤 + 1) + 0.984 

Relative Toxicity (𝑰𝑮𝑪𝟓𝟎) 
(Schultz et al., 2002) 

log 𝐼𝐺𝐶50−1 = 0.723(0.14) log𝐾𝑜𝑤 − 1.79(0.031) 

Bioconcentration Factor 
(Lu et al., 2000) log 𝐵𝐶𝐹 =0.032 + 0.636 log𝐾𝑜𝑤  
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Table 4-6 Property prediction models (continued) 

Soil-water partition 
coefficient (𝑲𝒐𝒄) (Liao et 

al., 1996) 
𝐥𝐨𝐠𝑲𝒐𝒄 = 𝟎. 𝟓𝟗 (𝒗𝝌𝟏) − 𝟎. 𝟗𝟕 

Global Warming 
Potential (Hukkerikar et 

al., 2012a) 

log 𝐺𝑊𝑃 =∑𝑎𝑖𝐴𝑖 + 𝑏(𝑣𝜒0) + 2𝑐(𝑣𝜒1) + 𝑑
𝑖

 

𝑏 = −0.01877; 𝑐 = −1.52848; 𝑑 = −0.52073 
Photochemical Oxidation 
Potential (Hukkerikar et 

al., 2012a) 

− log 𝑃𝐶𝑂 =∑𝑎𝑖𝐴𝑖 + 𝑏(𝑣𝜒0) + 2𝑐(𝑣𝜒1) + 𝑑
𝑖

 

𝑏 = −0.10486; 𝑐 = 0.005087; 𝑑 = −0.25708 
 

In this case study, the chosen property prediction models were expressed 

in terms of GC and TI method. These property prediction models require 

different degree of details on the structural knowledge to estimate the properties 

of the designed molecules. Different TI and GC models require different levels 

of structural information. Thus, the targeted signature height depends on the 

required structural information of the TI or GC models. Signatures with higher 

height contain more structural information of the molecules. It is possible to 

enumerate the lower order signature from a higher-order signature. Thus, 

signatures of lower height can be estimated as the sum of higher-order 

signatures. For GC models, higher-order (2nd and 3rd order) groups were 

considered as they can provide a better description on the interaction between 

1st order groups and the effects of certain molecular group combinations to the 

property of a molecule. Despite the higher accuracy of estimation for complex 

compounds, higher-order GC groups require more details on structural 

knowledge. Generally, a 2nd order group from GC method can be represented in 

a molecular signature of height 2 or 3, with examples shown in Table 4-7.  Other 

than GC models, the height of signature also dependent on the TI models. For 

instance, 1st order connectivity index requires signature of height 2; 2nd order 
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connectivity index requires signature of height 3, etc. From Table 4-6, the 

prediction model for octanol/water partition coefficient requires connectivity 

index of 3rd order. Therefore, the maximum signature height required in this 

problem was set at 4. However, all possible height 4 signatures need to be 

generated to solve the CAMD problem using molecular signature descriptor. As 

the height of signature increases, the possible combination of molecular 

signature increases as well. In this case study, the number of generated height 4 

signatures were expected to exceed 100,000 signatures. Pre-screening was 

conducted by applying feasibility rules on the generated signatures. As a result, 

the total number of height 4 signatures were reduced to around 10000 

signatures.  

Table 4-7 Example of 2nd order group expressed in terms of signature of height 2 or 3. 

2nd Order Group Molecular Signature 

(CH3)2CH C3(C1(C)C1(C)C2(CC)) 

CH(CH3)CH(CH3) C3(C1(C3(CCC)) C1(C3(CCC)) C3(C3(CCC)C1(C)C1(C)) 

CH3COOCH C4(C1(C4(=OOC) =O2(=C4(=OOC) O2(C4(=OOC)C2(CO))) 

 

4.4.3. CAMD Formulations 

The atoms that are commonly present in solvents, which includes: 

hydrogen (H), carbon (C), nitrogen (N) and oxygen (O) was chosen for the 

design of bio-oil solvent. The hydrocarbon groups considered in this study were 

limited to alkanes, alkenes, alcohol, carboxylic acid, ketones, aldehyde, esters, 

ethers, and nitriles which can be predominately found in solvents. The chemical 

groups are listed in Table 4-8 (Conte et al., 2008).  
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Table 4-8 Chemical classes considered and their respective chemical groups 

Chemical Class Chemical Group 
Alkanes CH3, CH2, CH, C 
Alkenes CH2=CH, CH=CH, CH2=C, CH=C, C=C 
Alcohol OH 

Carboxylic Acid COOH 
Ketones CH3CO, CH2CO, CHCO, CCO 

Aldehyde CHO 
Esters CH3COO, CH2COO, CHCOO, CCOO, HCOO 
Ethers CH3O, CH2O, CH-O, C-O 
Nitriles CH2CN, CHCN, CCN 

 

Initially, the signatures of height 1 were generated based on the selected 

atoms’ type and chemical families, resulting in a total of 65 different molecular 

signature combinations. By applying feasibility rules mentioned in Section 

4.3.3.1, the set of height 1 signatures was then reduced to a total of 24 

signatures. As some of the property prediction models were expressed in GC 

method, signature descriptors were translated and assigned to their 

corresponding groups from GC method as shown in Table 4-9.  

Table 4-9 Height 1 molecular signature set and their corresponding groups. 

No. Signature Corresponding 
Group No. Signature Corresponding 

Group 
S1 C1(C) CH3 S13 C4(=C=O) C = C 
S2 C1(O) CH3O S14 C4(=CCC) C = C 
S3 C2(=C) CH2 = C S15 C4(=CCO) C = C 
S4 C2(CC) CH2 S16 C4(=OCC) CHCO 
S5 C2(CO) CH2 S17 C4(=OCO) CH2COO 
S6 C3(=CC) CH = C S18 C4(≡NC) CCN 
S7 C3(=CO) CH = C S19 C4(CCCC) C 
S8 C3(=OC) CHO S20 C4(CCCO) C 
S9 C3(=OO) HCOO S21 N3(≡C) CCN 
S10 C3(CCC) CH S22 O1(C) OH 
S11 C4(CCO) CH S23 O2(=C) COOH 
S12 C4(=C=C) C = C S24 O2(CC) CH-O 
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CAMD problem was then solved using global solver by LINGO 

extended version 18.0.56. By solving the CAMD problem, 5 height 1 signatures 

were identified as promising signature candidates as shown in Table 4-13. Next, 

height 2 signatures were generated based on these 5 identified signatures of 

height 1. A total of 147 height 2 signatures were generated if only pre-screening 

step was conducted. Taking C1(C) from the resulting signature of height 1 

candidates as an example, a total of 23 signatures were generated by considering 

only the feasibility rules as shown in Figure 4-2,. However, not all these 23 

signatures were consistent with each other to form a feasible molecule. By 

applying the consistency rule, only 3 signatures out of the 23 signatures can 

fulfil the requirement, which include: 

1. C1(C3(CCO)) 

2. C1(C2(CC)) 

3. C1(C2(CO))  

 
Figure 4-2 Generation of height 2 signature based on the height 1 signature, CI(C) 

Same approach was applied to the remaining 4 height 1 signatures as 

shown in Figure 4-2. As a result, a total of 17 height 2 signatures were generated 

by applying both feasibility and consistency rules. The generated height 2 



Chapter 4 
 

 110 

signatures together with their corresponding GC group are shown in Table 4-10. 

The CAMD problem was then solved again for the 17 height 2 signatures set. 

As a result, 7 signatures from the height 2 set were identified as promising 

signature candidates. Similar methodology was then applied to generate height 

3 and height 4 signatures. List of generated height 3 and height 4 signatures are 

shown in Table 4-11 and Table 4-12. 

Table 4-10 Height 2 signature and their corresponding GC group 

No Signature Corresponding Group 
D1 C1(C3(CCO)) CH3 

D2 C1(C2(CC)) CH3 

D3 C1(C2(CO)) CH3 
D4 C2(C1(C)C2(CC)) CH2 

D5 C2(C1(C)C2(CO)) CH2 
D6 C2(C1(C)C3(CCO)) CH2 
D7 C2(C2(CC)C2(CC)) CH2 
D8 C2(C2(CC)C2(CO)) CH2 
D9 C2(C2(CC)C3(CCO)) CH2 
D10 C2(C2(CO)C3(CCO)) CH2 
D11 C2(C1(CO)O1(C)) CH2 
D12 C2(C2(CC)O1(C)) CH2 
D13 C3(C1(C)C1(C)O1(C)) CH 
D14 C3(C1(C)C2(CC)O1(C)) CH 
D15 C3(C2(CC)C2(CC)O1(C)) CH 
D16 O1(C2(CO)) OH 
D17 O1(C3(CCO)) OH 
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Table 4-11 Height 3 signature and their corresponding GC group 

No Signature Corresponding 
Group 

T1 C1(C3(C1(C)C2(CC)O1(C))) CH3 

T2 C1(C2(C1(C)C2(CC))) CH3 

T3 C2(C1(C2(CC))C2(C1(C)C2(CC))) CH2 

T4 C2(C1(C2(CC))C2(C2(CC)C2(CC))) CH2 

T5 C2(C1(C2(CC))C2(C2(CC)C3(CCO))) CH2 
T6 C2(C2(C1(C)C2(CC))C2(C1(C)C2(CC))) CH2 
T7 C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC))) CH2 
T8 C2(C2(C1(C)C2(CC))C2(C2(CC)C3(CCO))) CH2 
T9 C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC))) CH2 
T10 C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO))) CH2 
T11 C2(C2(C1(C)C2(CC))C3(C1(C)C2(CC)O1(C))) CH2 
T12 C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C))) CH2 
T13 C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO))) CH 
T14 O1(C3(C1(C)C2(CC)O1(C))) OH 

 

Table 4-12 Height 4 signature and their corresponding GC group 

No Signature 
Q1 C1(C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO)))) 

Q2 C1(C2(C1(C2(CC))C2(C2(CC)C2(CC)))) 

Q3 C2(C1(C2(C1(C)C2(CC))C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))) 

Q4 C2(C1(C2(C1(C)C2(CC))C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))) 

Q5 C2(C1(C2(C1(C)C2(CC))C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO)))) 

Q6 C2(C2(C1(C2(CC))C2(C2(CC)C2(CC)))C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))) 

Q7 C2(C2(C1(C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))) 

Q8 C2(C2(C1(C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO)))) 

Q9 C2(C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))) 

Q10 C2(C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))) 

Q11 C2(C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))) 

Q12 C2(C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO)))) 

Q13 C2(C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO)))) 

Q14 C2(C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C)))) 

Q15 C2(C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C)))) 

Q16 C2(C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO)))C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C)))) 

Q17 C2(C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO)))) 

Q18 C2(C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO)))C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO)))) 

Q19 C2(C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C)))C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO)))) 

Q20 C3(C1(C3(C1(C)C2(CC)O1(C)))C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C)))O1(C3(C1(C)C2(CC)O1(C)))) 

Q21 O1(C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO)))) 
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With this approach, the signature set size was reduced from a set of more 

than 10,000 height 4 signatures to the final 21 height 4 signatures. Finally, the 

CAMD problem was solved and promising molecular signatures of height 4 

identified are tabulated in Table 4-13. 

Table 4-13 Potential height 1, 2, 3 and 4 signatures generated 

No Signature 
Height 1 

S1 C1(C) 
S4 C2(CC) 
S5 C2(CO) 

S11 C3(CCO) 
S22 O1(C) 

Height 2 
D1 C1(C3(CCO)) 
D2 C1(C2(CC)) 
D4 C2(C1(C)C2(CC)) 
D7 C2(C2(CC)C2(CC)) 
D9 C2(C2(CC)C3(CCO)) 

D14 C3(C1(C)C2(CC)O1(C)) 
D17 O1(C3(CCO)) 

Height 3 
T1 C1(C3(C1(C)C2(CC)O1(C))) 
T2 C1(C2(C1(C)C2(CC))) 
T4 C2(C1(C2(CC))C2(C2(CC)C2(CC))) 
T7 C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC))) 
T9 C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC))) 

T10 C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO))) 
T12 C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C))) 
T13 C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO))) 
T14 O1(C3(C1(C)C2(CC)O1(C))) 

Height 4 
Q1 C1(C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO)))) 

Q2 C1(C2(C1(C2(CC))C2(C2(CC)C2(CC)))) 

Q3 C2(C1(C2(C1(C)C2(CC))C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))) 

Q7 C2(C2(C1(C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))) 

Q12 C2(C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO)))) 

Q15 C2(C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C)))) 

Q18 C2(C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO)))C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO)))) 

Q20 C3(C1(C3(C1(C)C2(CC)O1(C)))C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C)))O1(C3(C1(C)C2(CC)O1(C)))) 

Q21 O1(C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO)))) 
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The molecular structures of promising solvents were generated from the 

identified height 4 signature building blocks. Database search for the feasible 

molecules was then carried out. The feasible solvent molecules were identified 

as 2-octanol, 2-heptanol, 2-hexanol and 2-pentanol, respectively. Higher 

heating value of the identified solvent candidates were verified through NIST’s 

database as shown in Table 4-14 (NIST, 2018). The higher heating value 

estimated in present work for the abovementioned solvent candidates were close 

to the actual HHV obtained from NIST database, with less than 1% differences. 

According to Equation 4.30, the higher heating value for the final solvent-oil 

blend was expected to increase as the amount of solvent fraction increases. 

However, the solvent-oil blend will be mixed with a large portion of diesel, 

forming a solvent-oil-diesel blend. Thus, effect of the amount of solvent added 

on the higher heating value of solvent-oil blend will be negligible as compared 

to the amount of diesel present in the blend.  

 𝐻𝐻𝑉𝑚𝑖𝑥 =∑𝑥𝑖𝐻𝐻𝑉𝑖 (4.30) 

Table 4-14 HHV of solvent candidates from NIST’s database and present work  

Molecular 
Name 

Higher heating value from 
NIST / MJ kg-1 (NIST, 2018) 

Higher heating value from 
Present work / MJ kg-1 

2-Octanol 40.66 40.89 
2-Heptanol 39.72 40.00 
2-Hexanol 38.98 38.92 
2-Pentanol 37.72 37.50 

 

Other than contributing to the HHV of bio-oil, the solvent candidates 

also play a major role in improving the miscibility of the final blend. With the 

absence of solvent, strong intermolecular forces of the bio-oil will attract the 
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molecules instead of dispersing in aqueous phase and petroleum fraction 

(Manara et al., 2018). However, the amphiphilic properties of the identified 

solvent candidates are capable to help in dispersion of the bio-oil. Phase stability 

was conducted by computing the tangent plane distance for the 4 identified 

solvent molecules. Sensitivity analysis on the phase behaviour of solvent-oil 

blend was also conducted for different water content. The average water mass 

fraction for crude pyrolysis bio-oil was reported to be around 38 – 42% 

(Asadullah et al., 2013). Thus, crude pyrolysis bio-oil containing 40 wt.% of 

water was considered as the maximum water content. To investigate the effect 

of water content on the final blend’s miscibility, bio-oil with reduced water 

content will also be considered in the analysis. The water content in bio-oil can 

be reduced to 16 wt.% by eliminating the aqueous phase. In addition, water 

content of 25 wt.% was taken as the median value and considered in the 

sensitivity analysis. Figure 4-3 shows the Gibbs energy and tangent plot for 2-

octanol-oil blend at 16% (Figure 4-3a), 25% (Figure 4-3b) and 40% water 

content (Figure 4-3c), respectively. The optimal mole fraction obtained for 2-

octanol was 0.805, 0.83 and 0.85 at bio-oil’s water content of 16%, 25% and 

40%, respectively. The amount of solvent required in the solvent-oil blend 

increases slightly as the water content in bio-oil increases. Similar trends were 

obtained for 2-heptanol-, 2-hexanol- and 2-pentanol-oil blends where the Gibbs 

energy and tangent plots for these solvent-oil blends are shown in Figure 4-4, 

Figure 4-5, and Figure 4-6, respectively. From Figure 4-3(a), (b) and (c), the 

blend of 2-octanol and bio-oil is stable and exhibit homogenous single-phase as 

the tangent line was plotted below the Gibb’s curve. This could be explained by 
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the presence of alcohol (OH) group in the solvent’s molecular structure which 

aids in promoting miscibility of the blend.  

    
(a)                                                                                       (b) 

 
(c) 

Figure 4-3 Gibb’s energy and tangent plot for 2-octanol and bio-oil at (a) 16% water content 
(b) 25% water content and (c) 40% water content 

    
(a)                                                                                   (b) 

 
(c) 

Figure 4-4 Gibb’s energy and tangent plot for 2-heptanol and bio-oil at (a) 16% water 
content (b) 25% water content and (c) 40% water content 
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(a)                                                                           (b) 

 

(c) 

Figure 4-5 Gibb’s energy and tangent plot for 2-hexanol and bio-oil at (a) 16% water 
content (b) 25% water content and (c) 40% water content 

 

    

(a)                                                                                     (b) 

 
(c) 

Figure 4-6 Gibb’s energy and tangent plot for 2-pentanol and bio-oil at (a) 16% water 
content (b) 25% water content and (c) 40% water content 
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Besides, a ternary phase diagram was plotted for the mixtures of bio-oil, 

water, and 2-octanol (solvent) to evaluate the miscibility of final blend at 

various mixing compositions as shown in Figure 4-7(a). In the phase diagram, 

the red dots represent the immiscible blend while the green dots represent the 

miscible blend. The solvent-oil-water blend was miscible over most of the 

composition range. However, the blend was immiscible at the mixing ratio, 2-

octanol: bio-oil: water of 0 : 10 : 90 and 10: 0 : 90. Similar results were obtained 

for 2-heptanol-, 2-hexanol- and 2-pentanol-oil-water blends, as shown in Figure 

4-7(b), (c) and (d), respectively.   

 
(a)                                                                                              (b) 

 

(c)                                                                                            (d) 

Figure 4-7 Gibb’s phase ternary graph of bio-oil, water, and (a)2-octanol, (b) 2-heptanol, 
(c) 2-hexanol and (d) 2-pentanol 
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Table 4-15 summarises the key properties and information of the 

identified candidate solvents. All the resulting molecules possess a higher 

heating value of at least 37.5 MJ/kg. The solvent-oil blends were expected to be 

homogenous as the tangent plane distance calculated is non-negative for all 

solvent candidates. It can be concluded that 2-octanol is the most suitable 

solvent candidate with the highest higher heating value at 40.89 MJ/kg.  

Table 4-15 The identified feasible solvent candidates  

Molecular 
Name 

Formula Molecular Structure Higher heating 
value / MJ kg-1 

Miscibility 

2-Octanol CH3(CH2)5CH(OH)CH3 
 

40.89 Miscible 

2-Heptanol CH3(CH2)4CH(OH)CH3 

 

40.00 Miscible 

2-Hexanol CH3(CH2)3CH(OH)CH3 

 

38.92 Miscible 

2-Pentanol CH3(CH2)2CH(OH)CH3 

 

37.50 Miscible 

 

4.5. Summary 

This chapter introduces a multi-stage CAMD approach to design a 

solvent for pyrolysis bio-oil upgradation. At the initial stage, solvent 

requirements were determined and translated into target properties. Suitable GC 

and TI based property prediction models were selected to estimate the identified 

targeted physicochemical and environmental properties. Different property 
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prediction models possess different structures, thus, requiring different 

topological information. In this chapter, molecular signature descriptors were 

applied in the CAMD problem to accommodate different indexes on a common 

platform. Signature building blocks were formulated up to height 4 to cover 

higher order GC groups. Next, relevant structural constraints were incorporated 

in the CAMD model to ensure the feasibility of the designed molecules. In 

addition, the consistency rule developed was applied to reduce the size of 

CAMD problem by ensuring only relevant and consistent signatures are 

generated. In the next stage, stability analysis was conducted on the identified 

solvent candidates to ensure the miscibility and stability of final solvent-oil 

blend. Based on the case study conducted, 2-pentanol, 2-hexanol, 2-heptanol 

and 2-octanol were identified as the promising solvents candidates. Among the 

identified solvents, 2-octanol was selected as the most promising solvent 

candidate with a HHV of 40.89 MJ/kg along with other desirable attributes. To 

conclude, the developed methodology in this chapter can be applied in the 

design of solvents for any application. Further improvements can be made by 

incorporating the economic consideration into solvent design to ensure the 

competitiveness of the designed solvent. This design consideration will be 

further discussed in Chapter 5. 
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CHAPTER 5                                                                                              

COMPUTER-AIDED FRAMEWORK FOR THE DESIGN OF 

OPTIMAL BIO-OIL/SOLVENT BLEND WITH ECONOMIC 

CONSIDERATION 

5.1. Introduction 

In this chapter, the second research scope is presented as an extension 

of the first research scope. Other than the fuel functionality, it is also crucial for 

the designed solvent-oil blend to achieve economic targets in order to be 

competitive with the conventional diesel fuel. Hence, the economic aspect such 

as the product pricing, profitability, market share, and operating cost was 

incorporated into the design problem. The main objective of this chapter is to 

generate feasible solvent candidates by solvent the multi-objective optimisation 

(MOO) problem via computer-aided molecular design (CAMD) approach. 

Initially, an optimisation model was developed to identify potential solvents that 

satisfied the predefined targeted properties. Next, a MOO model was developed 

via fuzzy optimisation approach to identify the trade-off between the 

profitability and heating value of the solvent-oil blend. In this work, a pricing 

model was employed to estimate the profitability of the solvent-oil blend. The 

production of bio-oil in a pyrolysis plant was used to illustrate the applicability 

of the pricing model. Lastly, phase stability analysis was conducted to ensure 

the stability and miscibility of the solvent-oil blend at their optimal mixing ratio. 
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With the developed framework, a promising and cost-effective solvent-oil blend 

can be generated while displaying promising biofuel properties.  

5.2. Problem Statement 

A major obstacle in the commercialisation of biofuels is their high 

production cost as compared to that of the conventional diesel fuel. Their low 

heating value and the high cost of raw materials make biofuels more costly for 

heat generation. As the biofuel ratio increases in the fuel, the fuel’s energy 

density decrease. Furthermore, the addition of solvents is often required to 

improve the biofuel’s properties. However, the solvents are generally associated 

with high cost as most of them are manufactured as specialty chemicals. This 

further increases the production costs of biofuels. In addition, the existing and 

progressing biofuel legislative framework sparks the urge to assess the cost 

associated with upgrading bio-oil. Notably, previous research on the design of 

bio-oil solvent mainly focused on the functionality of the solvent itself. It is also 

important to incorporate the economic aspects into the development of bio-oil 

solvent for the designed solvent-oil blend to be competitive with the 

conventional diesel fuel. Generally, the higher heating value (HHV) of pyrolysis 

bio-oil increases with the addition of solvent. However, as the amount of solvent 

increases, the cost of the solvent-oil blend increases as well, resulting in lower 

profitability. Thus, a MOO approach was adapted in this chapter to optimise 

both objectives, which are the heating value and profitability of the solvent-oil 

blend, simultaneously. The weighted sum method is a more common approach 

for handling MOO problem, where each objective function was allocated with 

a weighting factor to convert different objectives into an aggregated scalar 
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objective function (Fishburn, 1967). Nevertheless, the weighting factor of each 

objective is not always definable. In most of the cases, the relative importance 

of each objective is either fuzzy or uncertain. In addition, these objectives might 

be contradictory to each other in nature. Thus, fuzzy optimisation via max-min 

aggregation approach was employed in this chapter to solve the MOO problem. 

The fuzzy optimisation approach is capable to solve decision-making problems 

under the fuzzy environment by defining and quantifying the uncertainties and 

vagueness. Within the fuzzy optimisation algorithms, the trade-off between the 

objective functions to be optimised can be identified by introducing the fuzzy 

membership function. As a result, an optimal solution can be identified by 

achieving near optimality for all the objectives without compromising on each 

other.  

5.3. Methodology 

In this work, a MOO framework was established to solve the CAMD 

problem using fuzzy optimisation approach. The developed framework can be 

divided into four main stages and their correlated sub-steps. The detailed 

methodology for each stage will be further discussed in this section. Figure 4-1 

demonstrates the overview of methodology for this solvent design problem.  
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Figure 5-1 Graphical summary of work carried out in this chapter 

5.3.1. Problem Definition 

Firstly, the problem definition was formulated, where the product needs 

of solvent and final solvent-oil blend were defined based on the requirements 

form the currently available regulations, specifications of biodiesel. In addition, 

the general safety and environmental regulatory requirements were also 

considered. The identified product requirements were then translated into 

measurable quantitative target properties. In this study, the crude bio-oil derived 

via fast pyrolysis of palm kernel shell (PKS) was used as the basis. However, 

only the organic phase of pyrolysis bio-oil was considered. The properties and 

components of the pyrolysis bio-oil applied in this study was summarised and 

listed in Table 5-1.  

Table 5-1 Pyrolysis bio-oil's properties 

Property Values 
Moisture content 16 wt.% 

Kinematic viscosity 17.4 mm2/s 
HHV 19.0 MJ/kg 

Density 1150 kg/m3 

Components Mole Fraction 
Phenol 0.62 

2,6 – dimethoxyphenol 0.11 
2 – methoxyphenol 0.11 

Furfural 0.08 
1.2 – benzenediol 0.08 

Acetic acid 0.07 
 

5.3.2. Property Prediction Models 

In the following steps, suitable property prediction models were selected 

to estimate the solvent’s target properties. Here, property prediction models in 
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terms of GC and TI approaches were employed and expressed as a function of 

the molecular signature descriptor. The upper and lower limits of property 

constraints were then defined based on the process requirements or customers’ 

need.  

5.3.3. CAMD Formulation 

The generalised mathematical expression (Equation 4.1 to 4.8) for 

CAMD optimisation model presented in Section 4.3.3 was implemented in this 

chapter. To generate structurally feasible solvent compounds, structural 

constrains presented in Section 4.3.3.1 to Section 4.3.3.3 were applied. Next, 

the generated molecules were verified through database search to ensure its 

feasibility and practicability.  

5.3.4. Multi-Objective Optimisation Problem Formulation 

5.3.4.1. Formulation of Pricing Model 

After the potential solvent candidates were identified in the previous 

stage, a detailed economic analysis was conducted to determine the selling price 

of the new solvent-oil blend based on the current market demand, availability 

and existing competitors identified via a comprehensive background study. The 

pricing model proposed by Bagajewicz (2007) was employed to relate the 

product quality to demand and price of the product (Fung et al., 2016). The 

mathematical expression for the pricing model has been shown in Equations 5.1 

and 5.2 (Bagajewicz, 2007).  

 𝐴𝑃𝑇𝑃 = 𝐴𝐶(𝑇𝑃)𝛿 (
𝛼
𝛽
)
𝛿
(
𝑌 − 𝐴𝑃𝑇𝑃

𝐴𝐶
)
1−𝛿

 (5.1) 
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 𝑌 ≥ 𝐴𝑃𝑇𝑃 + 𝐴𝑐𝑇𝑐 (5.2) 

Here, 𝐴𝑃 and 𝑇𝑃 referred to the price and demand of the new solvent-

oil blend while 𝐴𝑐 and 𝑇𝑐 referred to the price and demand of the competitor’s 

product. In this study, the value for 𝐴𝑃 can be obtained by summing up the cost 

of pyrolysis bio-oil production, cost of solvent and the profit obtained by selling 

the solvent-oil blend (Equation 5.3). 

 𝐴𝑝 = 𝐶𝑜𝑠𝑡𝐵𝑖𝑜−𝑜𝑖𝑙 + 𝐶𝑜𝑠𝑡𝑆𝑜𝑙𝑣𝑒𝑛𝑡 + 𝑃𝑟𝑜𝑓𝑖𝑡 (5.3) 

Based on Equation (5.1), 𝑌 is the total market size for the solvent-oil 

blend and 𝛿 is the elasticity of substitution, which is an adjustable parameter 

that measures the change in the ratio of products demand in response to a change 

in the ratio of their prices.  On the other hand, the parameter 𝛼 can be expressed 

as the consumer’s awareness on the new product, which can be raised by 

allocating higher budget in the marketing of new product. The value of 

parameter 𝛼 ranges between 0 and 1, where 𝛼 with the value 0 indicates that the 

consumers have no knowledge about the new product, and vice versa. Lastly, 𝛽 

is the consumer preference coefficient that relates the consumer’s interest in the 

new product over the competing product, which can be determined using 

Equation 5.4 (Bagajewicz, 2007).  

 𝛽 =
𝜆𝐶

𝜆𝑃
 (5.4) 

In Equation 5.4, the parameters 𝜆𝐶 and 𝜆𝑃 represented the consumer’s 

preference function of competitor’s product and new product, respectively. In 

this study, the consumer’s preference was related to the HHV of the solvent-oil 

blend, which possess a significant influence on the functionality of the solvent-
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oil blend. The new solvent-oil blend is said to be preferred by consumers if 𝛽 is 

smaller than 1. However, the competitor’s product is preferred when the value 

of 𝛽 is greater than 1.  

Based on the market analysis conducted, the total market size, 𝑌  of 

solvent-oil blend was identified to be US$ 500 million annually (Energy, 2020). 

Based on the previous studies for diesel fuel, the price elasticity was defined 

between the range of 0.11 to 0.33. The demand of solvent-oil blend was said to 

be price inelastic when the parameter 𝛿 lies between 0.1 to 1. Thus, in this work, 

the parameter 𝛿 was assumed to be 0.1 (Dahl, 2012). On the other hand, the 

parameter 𝛼  was estimated to be at the value 0.85. These values should be 

revised and updated based on the response received once the solvent-oil blend 

was introduced into the market. The benchmark for this work is the reported 

solvent-oil blend consisting of 50 wt.% pyrolysis bio-oil and 50 wt.% of iso-

propanol, with a HHV of 27.55 MJ/kg (Omar et al., 2019). The cost of iso-

propanol and pyrolysis bio-oil was assumed to be US$ 1336.57 per ton of iso-

propanol and US$ 354 per ton of pyrolysis bio-oil (China Petroleum and 

Chemical Industry Federation, 2021; EUBIA, 2021). The cost of the 

competitor’s solvent-oil blend can be calculated using Equation (5.5), where 𝑥𝑖 

and 𝐶𝑖 is the ratio and costs of the solvent and bio-oil, respectively  

 𝐶𝑏𝑙𝑒𝑛𝑑 = Σ𝑖𝑥𝑖𝐶𝑖 (5.5) 

Next, the selling price of competitor’s blend, 𝐴𝑐 can be calculated by 

summing up the cost of solvent-oil blend and the profit obtained, which was 

assumed to be US$ 50 per ton solvent-oil blend, in this case. Table 5-2 
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summarises the parameters and its respective values obtained from this market 

analysis.  

Table 5-2 Parameters and values from market analysis. 

Parameters Values 

Total market size, 𝑌 US$ 500,000,000 per year 

Consumer’s awareness coefficient, 𝛼 0.85 

Elasticity of substitution, 𝛿 0.10 

Price of competitor’s product, 𝐴𝑐  US$ 895.29 per ton solvent-oil blend 

HHV of competitor’s product, 𝜆𝐶  27.55 MJ/kg 

 

5.3.4.2. Formulation of Fuzzy Multi-Objective Optimisation  

The HHV of pyrolysis bio-oil can be increased with the addition of 

solvent. The higher the mass fraction of solvent in the solvent-oil blend, the 

higher is the energy content. However, a higher amount of solvent was often 

associated with higher cost, and thus, lower profitability obtained from the 

solvent-oil blend. In this study, a MOO problem was developed to investigate 

the trade-off between high HHV and high profitability. Most of the current 

CAMD techniques focus on optimising a single objective or property of the 

chemical product, but having a multi-objective problem necessitates the use of 

more complex optimisation methods (Khor et al., 2017).  

Thus, fuzzy mathematical programming was applied to solve the MOO 

design problem. The satisfaction degree of fuzzy, 𝜆 was introduced to both 

property functions that were to be optimised. The degree 𝜆 is a continuous 

variable that lies between the value 0 and 1, where 0 indicates unsatisfactory 

and 1 is complete satisfactory (Equation 5.6).  
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 0 ≤ 𝜆 ≤ 1 (5.6) 

The objective function of the fuzzy optimisation model was to maximise 

the overall satisfaction degree of fuzzy constraint 𝜆 as shown in Equation 5.7 . 

The max-min aggregation was applied to the fuzzy programming, where every 

fuzzy constraint should be satisfied partially at least to the degree 𝜆 .  

 𝑓𝑜𝑏𝑗 = max 𝜆 (5.7) 

Fuzzy goals for the HHV and profitability of the solvent-oil blend were 

expressed using a linear membership function, as shown in Equations 5.8 and 

5.9 (Khor et al., 2017).  

 𝜆𝑝(max) =   

{
 
 

 
 0, 𝑉𝑝 ≤ 𝑣𝑝𝐿

𝑉𝑝 − 𝑣𝑝𝐿

𝑣𝑝𝐿 − 𝑣𝑝𝐿
, 𝑣𝑝𝐿 ≤ 𝑉𝑝 ≤ 𝑣𝑝𝑈

1, 𝑉𝑝 ≥ 𝑣𝑝𝑈

    ∀𝑝 ∈ 𝑃 (5.8) 

 𝜆𝑝 ≥  𝜆 (5.9) 

Where 𝑉𝑝 is the target property values bounded by the lower and upper 

bounds, 𝑣𝑝𝐿 and 𝑣𝑝𝑈, respectively. The values for the lower and upper bound can 

be obtained by performing single objective optimisation for both objective 

functions.  

5.3.5. Phase Stability Analysis 

With the identification of optimal solvent-oil blend ratio from the 

previous step, phase stability analysis was carried out to ensure the miscibility 

of the designed solvent-oil blend at the targeted mixing ratio. In this chapter, 

the phase stability analysis via computation of the Gibbs tangent plane distance,  

as presented in Section 4.3.5 was conducted. The solvent-oil blend can be 
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concluded as stable if the tangent plane distance is non-negative. If otherwise, 

the previous steps are repeated by revising the property attributes and 

constraints.  

5.4. Case Study 

A case study on the solvent design for pyrolysis bio-oil application was 

conducted to illustrate the application of this proposed methodology. The fast 

pyrolysis process considered in this chapter is related to an application in 

Malaysia. All pricing in this study was converted to U.S. Dollar at the exchange 

rate of RM 1 = US$. 0.24, and was adjusted to 2021 values using appropriate 

indices.  

5.4.1. Identification of Feasible Solvent Candidates 

The promising solvent candidates identified from Chapter 4 were used 

to demonstrate the proposed methodology. In this case study, 2-octanol, 2-

heptanol, 2-hexanol and 2-pentanol were considered. The HHV value estimated 

in Chapter 4 for the abovementioned candidates were close to the actual HHV 

obtained from the NIST database, with less than 1% differences (NIST, 2018). 

The solvents were of analytical grade and the costs were obtained from chemical 

vendors as shown in Table 5-3.  

Table 5-3 Cost and HHV for solvent candidates generated from CAMD optimization model 

Compound Name Chemical Formula HHV(MJ/kg) 
Cost (US$/g 

solvent) 

2-Octanol C8H18O 40.89 0.0026 

2-Heptanol C7H16O 40.00 0.0030 

2-Hexanol C6H14O 38.92 0.3958 

2-Pentanol C5H12O 37.50 0.1010 
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5.4.2. Multi-Objective Optimisation Model 

Here, a MOO model was developed via fuzzy max-min aggregation 

approach to optimise the HHV and profitability of the solvent-oil blend, 

simultaneously. Two different case studies were presented to investigate the 

effect of different constrains on the outcome while optimising both objective 

functions.  

5.4.2.1. Estimation of Pyrolysis Bio-Oil Production Cost 

In this chapter, a pyrolysis plant was proposed to aid the estimation of 

pyrolysis bio-oil production cost. The pyrolysis plant was designed to produce 

120 tonne of pyrolysis bio-oil from 200 dry tonne of palm kernel shell biomass 

feedstock daily via fast pyrolysis. The typical value for pyrolysis bio-oil yield, 

which is 60 % was considered in this study (Barik, 2019). It is expected for the 

pyrolysis plant to operate on a continuous operation daily for 24 hours and 300 

days, with a plant lifetime of 30 years. The production costs of the pyrolysis 

plant include the raw biomass cost, capital cost, labour cost, electrical cost, and 

other operational cost. Assumption was made that the palm kernel shell biomass 

used in the pyrolysis plant were supplied by a palm oil mill at no cost.  

On the other hand, the capital cost of the pyrolysis plant was estimated 

based on the sizing curve developed by Rogers and Brammer (2012), which 

relates both the total plant cost and the plant capacity. In this case, the total plant 

cost allocated for the designed pyrolysis plant was estimated to be US$ 16 

million. In addition, the capital cost for the biomass pre-processing plant was 

included, with an estimated cost of US$ 2.98 million. As for the labour cost 
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estimation, the following scenario was assumed where the designed pyrolysis 

plant operates on a shift-work basis, with 5 operators and 1 supervisor per shift. 

Three 8-hour shifts pattern were implemented with 4 teams to provide 24/7 

coverage. An average annual salary of US$ 13 K was allocated for each 

employee, which covers the employers’ insurance cost, pension contribution, 

anti-social hours payments, training, and administration charges (Salary 

Explorer, 2021).  

A total electrical consumption of 240 kWh per dry tonne of biomass 

feedstock was estimated for both the biomass pre-processing plant and the 

pyrolysis plant (Rogers and Brammer, 2012). The electric tariff of E1 for 

general industry with medium voltage as defined by Malaysia’s energy provider 

(Tenaga Nasional Berhad) was considered in this study. The price of tariff E1, 

US$ 0.08 kWh was used to calculate the total cost of electricity (TNB, 2021). 

Lastly, an allowance of 4 % of the total plant cost (US$ 771.48 K per year) has 

been made to cover other miscellaneous cost such as repair, maintenance, 

insurance, and business costs (Rogers and Brammer, 2012). Thus, the total cost 

to produce 1 tonne of pyrolysis bio-oil were calculated to be US$ 80.37, as 

shown in Table 5-4.  

Table 5-4 Summarised pyrolysis bio-oil production cost. 

Production Cost Cost (US$/ton of bio-oil) 

Biomass Cost N/A 

Capital Cost 17.86 

Labour Cost 8.67 

Electrical Cost 32.35 

Other Operating Cost 21.43 
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Total Production Cost 80.37 

 

5.4.2.2. Fuzzy optimisation 

In case study 1, the constraint on solvent fraction added to the blend was 

relaxed to allow higher HHV value of the generated solvent-oil blend. Here, the 

consumer preference coefficient, 𝛽 was set to be lesser than 0.75 to achieve 

HHV of at least 35 MJ/kg. In case study 2, the constraint on parameter 𝛽 was 

relaxed, thus lowering the HHV requirement of solvent-oil blend to allow higher 

profitability. As mentioned above, the competitor’s product consisted of 50 wt.% 

solvent. Hence, solvent fraction was set to be lesser than 0.5. Table 5-5 

summarised the constraints defined in case study 1 and 2, respectively.  

Table 5-5 Comparison of constraints for case study 1 and 2. 

Case Consumer preference coefficient, 𝜷 Solvent Fraction 

Case 1 < 0.75 < 0.99 

Case 2 < 0.99 < 0.50 

  

Single objective optimisation was conducted to identify the upper and 

lower bounds for both the objective functions. The results from single objective 

optimisation can be found in Table 5-6.  

Table 5-6  Results from single objective optimisation of solvent-oil blend. 

Case Objective Function Max HHVblend 
Max 

Profitabilityblend 

Case 1 

HHVblend (MJ/kg) 40.67 36.73 

Profitabilityblend (US$/ton 

of blend) 
3303.66 4091.74 

Case 2 HHVblend (MJ/kg) 29.95 27.83 
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Profitabilityblend (US$/ton 

of blend) 
4626.73 5033.32 

 

Among the 4 solvents identified in Chapter 4, only 2 solvents, which are 

the 2-octanol and 2-heptanol demonstrated promising performance in terms of 

functionality, environment, and economics. Table 5-7 shows the results 

obtained from case study 1 and 2. As the constraints on the HHV of the solvent-

oil blend were relaxed in case study 1, higher HHV can be observed, ranging 

from 37.94 to 39.30 MJ/kg. However, a large amount of solvent was required 

to be blended with pyrolysis bio-oil, thus leading to the increased cost and low 

profitability. From Table 5-7, higher profit was obtained for case 2. Nonetheless, 

this was compensated with the lower HHV of solvent-oil blend ranging from 

28.49 to 29.20 MJ/kg.  

Table 5-7 Results for solvent blend candidates. 

Case 

Study 
Solvent 

HHVblend 

(MJ/kg) 

Profit 

(US$/tonne of blend) 

Solvent 

Ratio 
Miscible 

Case 1 
2-Octanol 39.30 3816.42 0.93 Yes 

2-Heptanol 37.94 3544.29 0.90 Yes 

Case 2 
2-Octanol 29.20 4890.19 0.47 Yes 

2-Heptanol 28.49 4754.33 0.45 Yes 

 

5.4.3. Phase Stability Analysis 

Apart from contributing to the HHV of the solvent-oil blend, the solvent 

candidates also play a major role in improving the miscibility of the final blend. 

Instead of dispersing in aqueous and organic phase, the strong intermolecular 

forces between the molecules in the crude pyrolysis bio-oil will attract each 
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other (Manara et al., 2018). However, the dispersion of pyrolysis bio-oil can be 

improved with addition of solvent candidates due to its amphiphilic properties, 

and thus improving the phase separation of pyrolysis bio-oil. In this work, the 

phase stability analysis was carried out by computing the tangent plant distance 

against the identified solvent candidates. All the solvent candidates identified in 

both case 1 and 2 were miscible with pyrolysis bio-oil at their respective mixing 

ratio. Figure 5-2 (a) and (b) demonstrated the Gibbs energy and tangent plot for 

2-octanol-oil blend and 2-heptanol-oil blend obtained from case 1, respectively. 

On the other hand, Figure 5-3 (a) and (b) demonstrated the Gibbs energy and 

tangent plot for 2-octanol-oil blend and 2-heptanol-oil blend obtained from case 

2, respectively. From Figure 5-2 (a), the blend is said to be stable and 

demonstrated homogenous single-phase as the tangent line was plotted below 

the Gibbs energy curve. This could be explained by the presence of alcohol (OH) 

group in the solvent’s molecular structure which aids in promoting miscibility 

of the blend. As the final solvent0oil blend was expected to be homogenous 

while demonstrating promising fuel properties, it can be concluded that the 

solvent-oil blend with 93 wt.% of 2-octanol solvent was chosen as the most 

promising blend with HHV of 39.30 MJ/kg and profit of US$ 3816.42 per tonne 

of solvent-oil blend.  
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(a) 

 

(b) 

Figure 5-2 Gibbs energy and tangent plot for (a) 2-Octanol and (b) 2-Heptanol of case 1 
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(b) 

Figure 5-3 Gibbs energy and tangent plot for (a) 2-Octanol and (b) 2-Heptanol of case 2 

5.4.4. Economic Study on the Solvent-Bio-oil-Diesel Blend 

By referring to the optimal solvent-oil blend identified from the previous 

section, an economic analysis was conducted to investigate the relationship 

between the ratio of solvent-bio-oil-diesel blend, the price and the HHV of the 

blend. The blend of pyrolysis bio-oil and petroleum diesel was commonly 

referred to as BX, where X refers to the volume percent of bio-oil in the blend. 

For example, B5, B10 and B100 consist of 5 %, 10 % and 100 % bio-oil, 

respectively. Generally, the bio-oil-diesel blend has a lower energy content and 

higher fuel consumption as compared to that of the conventional diesel. Despite 

the environmental benefits provided via the application of bio-oil-diesel blend, 

the price of this blend is costlier than the conventional diesel fuel. As of 

September 2021, the average price of diesel around the world is US$ 1.07 per 

litre  (Global Petrol Prices, 2021). Meanwhile, the energy content of the 

conventional diesel fuel generally ranged between 44 to 48 MJ/kg (World 

Nuclear Association, 2021). From the results obtained, the price of 2-octanol-
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HHV of 39.30 MJ/kg. Table 5-8 summarised the price and HHV of the solvent-

oil blend and diesel fuel used in this study. 

Table 5-8 Price and HHV for both solvent-oil blend and diesel fuel 

Properties Price (US$/tonne) HHV (MJ/kg) 

Solvent-oil blend 6269.56 39.30 

Diesel fuel 1258.82 46.00 

 

Figure 5-4 illustrated the effects of solvent-oil blend ratio on the price 

and HHV of the bio-oil-diesel blend. It was observed that as the ratio of solvent-

oil blend increases, the price of the bio-oil-diesel blend increases 

proportionately. However, the HHV of the bio-oil-diesel blend decreases as the 

amount of solvent-oil blend increases. In this study, biodiesel with HHV of 40 

MJ/kg was used as benchmark to determine the desired ratio of solvent-oil-

diesel blend. As shown in Figure 5-4, blending with at least 20 wt.% of diesel 

fuels, or 80 wt.% of solvent-oil blend was required to generate biodiesel with 

HHV of at least 40 MJ/kg. However, blending with 80 wt.% solvent-oil blend 

will cost approximately US$ 5.2 K per tonne bio-oil-diesel, which is equivalent 

to 4.2-fold increase as compared to pure diesel fuel. To be competitive with the 

conventional diesel fuel, substantial subsidies and tax incentives from 

government are crucial. In addition, the demand for bio-oil-diesel could be 

stimulated with the introduction of legislation mandating the blending of biofuel 

in conventional diesel fuel, thus making the bio-oil-diesel demand to be 

independent of the diesel fuel price (Chin, 2011).  
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Figure 5-4 Graph of the ratio of solvent-oil blend against the blend’s price and HHV. 

 

5.5. Summary 

In this chapter, a CAMD framework was developed to design solvent 

molecules that can upgrade the properties of pyrolysis bio-oil upon blending, 

while achieving low mixing ratio and maintaining a promising profitability. At 

the initial stage, the requirements of the solvent and solvent-oil blend were 

identified and translated into target properties. Suitable property prediction 

models were selected to estimate the targeted fuel and environmental properties. 

Here, molecular signature descriptors were applied as a common platform to 

accommodate all the indexes used in the CAMD problem. Consistency rules 

were applied to ensure only relevant and consistent signatures are generated and 

thus, reducing the size and complexity of the CAMD problem. In the second 

stage, a MOO model was developed via fuzzy max-min aggregation approach 

to study the trade-off between high HHV and high profitability of the solvent-

oil blend. In addition, a pricing model was introduced to evaluate the 
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profitability of the solvent-oil blend. Also, a pyrolysis plant was proposed in 

this chapter to aid the estimation of pyrolysis bio-oil production cost. Solvent-

oil blend with 2-octanol and 2-heptanol demonstrated positive performance in 

terms of functionality and economical. Among the identified solvent-oil blend, 

blends with 93 wt.% of 2-octanol was selected as the best performing solvent-

oil blend with HHV of 39.30 MJ/kg and profit of US$ 3816.42 per tonne of 

blend. To conclude, the proposed framework can be applied in the design of 

bio-oil solvents with different bio-oil type and composition. However, it is also 

crucial to obtain financial and legislative support from the government for the 

commercialisation of bio-oil-diesel blend. Other than the solvent addition, the 

source and characteristic of biomass feedstock also contributed  to the HHV of 

the pyrolysis bio-oil produced. Thus, the consideration of biomass 

characteristics and the pyrolysis operating condition in upgrading pyrolysis bio-

oil’s HHV will be presented in Chapter 6.  
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CHAPTER 6                                                                                              

ESTIMATION OF FAST PYROLYSIS BIO-OIL PROPERTIES FROM 

FEEDSTOCK CHARACTERISTICS USING ROUGH-SET BASED 

MACHINE LEARNING 

6.1. Introduction 

The production and characterisation of pyrolysis bio-oil are generally 

labour intensive, costly, time consuming and complicated. To produce pyrolysis 

bio-oil with desired fuel properties, trial-and-error process was required to 

select the most suitable feedstock composition and pyrolysis operating 

condition. In addition, rigorous mechanistic models to allow accurate prediction 

of product properties from feedstock characteristics are not available. To avoid 

such difficulties, empirical models have been proposed to estimate the pyrolysis 

bio-oil's properties based on its characterisation and pyrolysis condition. 

Nevertheless, most of the studies focused on estimating the pyrolysis bio-oil 

properties from its elemental composition. The studies to estimate pyrolysis bio-

oil from its feedstock properties and operating condition is still rare. Hence, a 

data-driven rough-set machine learning (RSML) model has been proposed in 

this chapter as a pre-processing and predictive modelling tool to predict the fast 

pyrolysis bio-oil’s properties based on pyrolysis temperature and the 

characterisation of biomass feedstock. A database consisting of biomass 

feedstocks’ proximate and ultimate analyses, pyrolysis temperature, fast 
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pyrolysis bio-oil’s pH value, and fast pyrolysis bio-oil’s higher heating value 

(HHV) was compiled and used to train the RSML model. To get a better range 

of parameters and to reduce sample bias, different types of feedstock such as 

rice straw, oil palm shell, sewage sludge, municipal solid waste, waste tyre, 

algae, etc. were included in the developed database. Four case studies with 

varied combination of attributes were solved in this study. The resulting rule-

based RSML model demonstrated promising strength, certainty, and coverage 

factor. Furthermore, the generated decision rules were analysed from a scientific 

standpoint to identify underlying trends or patterns, while ensuring the rules 

were logical and feasible to be applied in later stage. The generated rules 

illustrated reasonable predictive capability in estimating the HHV and pH value 

of pyrolysis bio-oil based on the feedstock characterisation and pyrolysis 

temperature. RSML model is thus demonstrated to be a simple and 

straightforward approach for feedstock composition and pyrolysis temperature 

selection in pyrolysis/co-pyrolysis bio-oil production.  

6.2. Problem Statement 

One of the most significant properties of fast pyrolysis bio-oil is the 

HHV, where it indicates its quality as a liquid fuel and is directly related to the 

elemental composition of pyrolysis bio-oil. However, the studies to estimate 

HHV of pyrolysis bio-oil from its biomass feedstock properties and operating 

conditions are not common. In addition, the low pH value of pyrolysis bio-oil 

often leads to corrosion issues impede its application as engine fuel. The bio-

oil’s pH is often related to the characterisation of biomass feedstock. 

Nevertheless, the estimations of bio-oil’s pH from feedstock and operating 
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conditions have yet to be explored. In the past, pyrolysis bio-oil’s quality was 

often linked with the feedstock characterisation such as the ultimate analysis 

(i.e., carbon C, hydrogen H, oxygen O, nitrogen N, and sulphur S content), 

proximate analysis (i.e., volatile matter VM, ash content AC, moisture content 

MC, and fixed carbon FC), and the pyrolysis temperature (Tang et al., 2021). 

However, the production and the characterisation of pyrolysis bio-oil could be 

labour intensive, costly, and complicated. In addition, rigorous mechanistic 

models to allow accurate prediction of product properties from feedstock 

characteristics are not available. To avoid such difficulties, empirical models 

have been proposed to estimate the pyrolysis bio-oil’s properties based on its 

characterisation and pyrolysis condition. It is notable that the empirical models 

developed in the past mainly focused on the prediction of bio-oil yield, while 

prediction models for other parameters such as HHV and pH of bio-oil are still 

limited. However, popular black-box machine learning (ML) techniques such 

as artificial neural network (ANN) and support vector machine (SVM) suffer 

from poor inherent interpretability (Yang et al., 2015). Other than ML 

techniques, statistical tools including response surface method (RSM) and 

multiple linear regression (MLR) approaches will lead to regression models that 

are also black-box in nature. To address this research gap, it is important to 

develop a predictive model that predicts these bio-oil properties from feedstock 

characteristics and pyrolysis temperature using RSML tools. With RSML 

approach, straightforward and transparent rules can be generated for further 

information extraction, thus addressing problems encountered in previous work. 

In addition to being inherently interpretable, ML techniques that use rule-based 

models allow fusion of expert knowledge with data embedded in information 
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during the training process. Domain knowledge can be introduced via user-

defined training parameters to ensure that the final rules are plausible from the 

perspective of physical mechanisms (Rudin and Ertekin, 2018). 

6.3. Methodology 

The main objective of this chapter is to predict the properties of fast 

pyrolysis bio-oil by deducing the underlying patterns and relationships between 

the characterisation of biomass feedstock and pyrolysis temperature, with the 

pH and HHV of fast pyrolysis bio-oil. An RSML model was used as a predictive 

modelling tool to generate decision rules for the prediction of fast pyrolysis bio-

oil properties. Figure 6-1 demonstrates the schematic diagram of the developed 

framework.  
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Figure 6-1 Framework for the development of rough set model for the optimization of 
pyrolysis bio-oil’s properties 
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6.3.1. Compilation of Database 

In this chapter, a fast pyrolysis bio-oil database consisting of 207 data 

points for bio-oil HHV and 128 data points for bio-oil pH value was developed 

based on the compiled data from various published literature. The complete 

database can be found at Table C-1 in Appendix C. In this study, 70 % of 

samples was randomly chosen from the established database as training subset, 

which was then used to train the RSML model. Meanwhile, the remaining (30 % 

of entire database) was set aside for validation. To get a better range of 

parameters and to reduce sample bias, different types of feedstock such as rice 

straw, oil palm shell, sewage sludge, municipal solid waste, waste tyre, algae, 

etc. were included in the developed database. Both the HHV and pH values of 

pyrolysis bio-oil were evaluated in the state of whole fast pyrolysis bio-oil to 

consider the influence from both aqueous and organic phases. Meanwhile, the 

ultimate analysis information (i.e., C-H-O-N-S content), proximate analysis 

information (i.e., VM-AC-MC-FC), HHV, and pyrolysis temperature served as 

the feedstock attributes for establishing the prediction models. The ultimate 

analysis (i.e., C-H-O-N-S content) of feedstock were in the range of 20.34 % to 

86.40 %, 3.39 % to 23.68 %, 0.80 % to 54.90 %, 0.01 % to 8.23 % and 0.01 % 

to 3.30 %, respectively. Meanwhile, the proximate analysis (i.e., VM-AC-MC-

FC) of feedstock ranged from 18.33 % to 96.88 %, 0.10 % to 57.78 %, 0.41 % 

to 77.52 %, and 0.28 % to 32.31 %, respectively. The pyrolysis temperature 

ranged from 300 ºC to 800 ºC. On the other hand, the HHV of feedstock and 

pyrolysis bio-oil ranged from 3.70 MJ/kg to 44.54 MJ/kg and 3.72 MJ/kg to 

45.71 MJ/kg, respectively, while the pH values of pyrolysis bio-oil ranged from 

1.50 to 8.50. It is worth noting that there were some uncertainties in the dataset, 
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for example, the measurement errors found in samples and the uncertainties of 

experimental environments. To minimise these uncertainties, the experimental 

environmental was strictly limited to only fast pyrolysis without any catalysts. 

In other words, the data collected in this work only include the bio-oil produced 

from fast pyrolysis without any catalysts. Here, the fast pyrolysis is defined as 

a process where the biomass is heated to the temperature ranging between 500 

ºC to 800 ºC, at a heating rate of 10 ºC/s to 200 ºC/s, and solid residence time 

of 0.5 s to 10 s.  

6.3.2. Development of Rough Set Model 

To develop the RSML model, the fast pyrolysis bio-oil database was 

represented as a tabular decision table. In the decision table, each row represents 

an object, while the columns represent the attributes corresponding to each 

object. Here, the decision table was represented as the decision system, 𝑆 =

(𝑈, 𝐴) , where  𝑈 = {𝑥1, 𝑥2, … , 𝑥𝑛}  is a non-empty finite set of objects, also 

known as the universe and 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚}  is a non-empty finite set of 

attributes, such that 𝑎: 𝑈 → 𝑉𝑎 and 𝑎 ∈ 𝐴 (Kalaivani et al., 2017). This set of 

attributes are further categorised as condition attributes which describe the 

object (i.e., pyrolysis temperature, ultimate and proximate analyses of feedstock 

samples) and decision attributes which indicate the classes of the object (i.e., 

HHV and pH value of pyrolysis bio-oil samples). In this study, classification of 

decision attributes was conducted based on the HHV and pH of pyrolysis bio-

oil. An example of a simplified decision table for pyrolysis bio-oil’s HHV is 

shown in Table 6-1. 
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Table 6-1 Simplified pyrolysis bio-oil’s HHV decision table  

Feedstock Condition Attributes Decision Attributes 
A1 A2 A3 HHV (MJ/kg) 

B1 19.73 2.41 19.73 1 
B2 38.12 1.94 38.12 3 
B3 24.55 1.94 24.55 2 
B4 19.73 2.41 19.73 1 
B5 19.73 2.41 19.73 1 
B6 38.12 1.94 38.12 3 
B7 19.73 3.09 19.73 1 

 

From Table 6-1, the objects in the model (biomass samples) were 

represented as B1 to B7 under the “Feedstock” column. Meanwhile, the column 

“A1”, “A2”, and “A3” represent the conditional attributes (i.e., pyrolysis 

temperature, ultimate and proximate analyses of feedstock samples) 

corresponding to each biomass sample. Lastly, the column “Decision Attributes” 

listed out the classification of HHV values of the pyrolysis bio-oil. Each bio-oil 

sample demonstrated different HHV values, ranging from 3.72 MJ/kg to 45.71 

MJ/kg. For ease of data handling, the HHV of bio-oil were classified into 3 class 

intervals as shown in Table 6-1. For example, Class 1 represents pyrolysis bio-

oil with HHV values between 10 MJ/kg to 19 MJ/kg; Class 2 represents 

pyrolysis bio-oil with HHV values between 20 MJ/kg to 29 MJ/kg; and Class 3 

represents pyrolysis bio-oil with HHV values between 30 MJ/kg to 39 MJ/kg.   

Once the decision table was established, reduction of condition 

attributes was performed. It is possible for a large dataset to contain two or more 

objects which perform similarly in the attributes or features, commonly known 

as the indiscernible objects. In rough set theory, reduct refers to a subset of 

indispensable attributes which can partition the database with the same level of 

discrimination as the original set of attributes (Pawlak, 1982). On the other hand, 
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the intersection of all reducts are known as the core. It may also be regarded as 

the essential attributes set which cannot be excluded from the decision system 

without losing the equivalence class structure. To reduce the redundancy of data 

while retaining its basic features, only one representative object was stored in 

the dataset for every set of indiscernible objects (Dutta, 2019). 

 For the decision system, 𝑆 with set of attributes 𝐵 ⊆ 𝐴 , the 

indiscernibility relation can be denoted as Equation 6.1.  

 𝐼𝑁𝐷𝐵(𝑈) = {(𝑥, 𝑦) ∈ 𝑈2|∀𝑎 ∈ 𝐵, 𝑎(𝑥) = 𝑎(𝑦)} (6.1) 

Taking Table 6-1 as an example and letting 𝐵 ∈ 𝑈, the indiscernibility 

relation of 𝑈 can be shown as Equation 6.2. Meanwhile, the indiscernibility of 

attributes set {𝐴2, 𝐴3}, attributes set {𝐴1, 𝐴3} and attributes set {𝐴1, 𝐴2} are 

shown in Equation 6.3, 6.4 and 6.5, respectively.  

 𝐼𝑁𝐷 (𝑈) = {𝐵1, 𝐵4, 𝐵5}, {𝐵2, 𝐵6}, {𝐵3}, {𝐵7} (6.2) 

 𝐼𝑁𝐷 (𝑈 − 𝐴1) = {𝐵1, 𝐵4, 𝐵5}, {𝐵2, 𝐵6}, {𝐵3}, {𝐵7} = 𝑰𝑵𝑫 (𝑼) (6.3) 

 𝐼𝑁𝐷 (𝑈 − 𝐴2) = {𝐵1, 𝐵4, 𝐵5, 𝐵7}, {𝐵2, 𝐵6}, {𝐵3} (6.4) 

 𝐼𝑁𝐷 (𝑈 − 𝐴3) = {𝐵1, 𝐵4, 𝐵5}, {𝐵2, 𝐵6}, {𝐵3}, {𝐵7} = 𝑰𝑵𝑫 (𝑼) (6.5) 

According to Equation 6.3 and 6.5, both indiscernibility of attributes set 

{𝐴2, 𝐴3}  and attributes set {𝐴1, 𝐴2}  were equivalent to the indiscernibility 

relation of 𝑈 , 𝑰𝑵𝑫 (𝑼) . This indicated that attributes 𝐴1  and 𝐴3  were 

dispensable as the removal of these attributes from relation 𝑈 does not affect 

the results. However, attribute 𝐴2  was indispensable as the removal of this 

attribute affected the result as shown in Equation 6.4. The classification defined 
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by 𝑈 was equivalent to the classification defined by attributes set of {𝐴1, 𝐴2} 

or attributes set of {𝐴2, 𝐴3} . Thus, the attribute sets {𝐴1, 𝐴2} and {𝐴2, 𝐴3} 

were also known as the reducts for the dataset 𝑅. In this case, attribute 𝐴2 was 

identified as the core for the decision system. The generated reduct sets were 

used to derive a set of decision rules, which were used to predict the HHV and 

pH value of pyrolysis bio-oil in a later stage. For the reduct set {𝐴1, 𝐴2}, the 

example of decision rules generated are shown in Table 6-2.  

Table 6-2 Example of rules generated for reduct set {A1, A2} 

No Rule Decision 
1 𝐴1 = 19.73; 𝐴2 ≥ 2.41 1 
2 𝐴1 = 24.55; 𝐴2 = 1.94 2 
3 𝐴1 = 38.12; 𝐴2 = 1.94 3 

 

In the current work, Rough Sets Data Explorer (ROSE2) software was 

used to generate the cores, reducts and decision rules, based on Learning from 

Examples Module, version 2 (LEM2) algorithms (Grzymala-Busse and 

Grzymala-Busse, 1995). ROSE2 is an interactive system running on 32-bit 

Microsoft Windows operating systems, developed at the Laboratory of 

Intelligent Decision Support systems of the Institute of Computing Science in 

Poznań, Poland (IDSS, 1999; Predki et al., 1998; Prędki and Wilk, 1999). The 

software consists of both basic and advanced data analysis methods based on 

the classical rough set theory and the variable precision rough set theory (Pięta 

et al., 2019).  Meanwhile, LEM2 algorithm is a rule induction algorithm based 

on rough set theory (Grzymala-Busse and Grzymala-Busse, 1995). In LEM2 

algorithm’s approach, decision rules in the form of “IF-THEN” are generated 

by considering the lower and upper approximations. In other words, the "IF-
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THEN” decision rules implied that “if the condition attribute is A, then the 

decision attribute is B”, where A and B are the hypotheses and conclusion, 

respectively (Anuradha et al., 2011; Qian et al., 2008). This algorithm is suitable 

for use in both increment and non-increment modes. In addition, the underlying 

trends in the generated rules were analysed and interpreted from a scientific 

standpoint. Generated rules are valid if it can be explained scientifically. If 

otherwise, the previous step was revisited and revised to modify the condition 

and decision attributes.  

6.3.3. Validation 

In the validation step, performance, and prediction accuracy of the 

reduct sets and generated decision rules were evaluated using the validation data 

set. Data in the validation set consisted 30 % of the overall data, with no 

overlaps with the training data set. The purpose of this step is to gauge the 

model’s performance on data it has not previously encountered. Promising 

validation set performance indicates that the model has learned the useful 

generalisable principles. Underlying patterns in the data should be converted 

into rules with a good balance of prediction accuracy and generalization power 

as indicated by the number of examples covered. However, if the generated 

rules exhibit low accuracy or coverage, it is due to the occurrences of coverage 

clusters in the dataset where each of the cluster demonstrates unique behaviour. 

Thus, the rough set model will be re-examined and revised to refine the 

prediction accuracy and coverage.  

In RSML, the strength, certainty, and coverage factors are normally 

employed to assess the performance of the rule-based models vis-à-vis the 
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training data. Strength and coverage measure the generalization power of a rule, 

while certainty measures its predictive reliability. Higher strength, certainty, 

and coverage factors are preferable.  

The strength of a decision rule can be referred to as the fraction of data 

points in a dataset that supports it and can be obtained by Equation 6.6. From 

Equation 6.6, 𝐶  and 𝐷  refer to the set of condition and decision attributes, 

respectively. Meanwhile, 𝑠𝑢𝑝𝑝𝑥(𝐶, 𝐷) = |𝐴(𝑥)| = |𝐶(𝑥) ∩ 𝐷(𝑥)| refers to the 

number of elements that supported the decision rule 𝐶 →𝑥 𝐷  and |𝑈| is the 

cardinality of 𝑈.  

 𝜎𝑥(𝐶, 𝐷) =
𝑠𝑢𝑝𝑝𝑥(𝐶, 𝐷)

|𝑈|
 (6.6) 

Since variations in training data quality generally prevents perfect 

classification, it is necessary to have a metric to quantify inconsistencies. For 

decision rule 𝐶 →𝑥 𝐷, the conditional probability of an element characterised 

as 𝐶(𝑥) being classified into the decision class 𝐷(𝑥) is known as the certainty 

factor. The certainty factor can be denoted as 𝑐𝑒𝑟𝑥(𝐶, 𝐷), and is defined by 

Equation 6.7 and 6.8, where as 𝜎𝑥(𝐶) = |𝐶(𝑥)|/|𝑈| . If a decision rule 𝐶 →𝑥 𝐷 

has a certainty factor of 𝑐𝑒𝑟𝑥(𝐶, 𝐷) = 1, then the rule will be known as a certain 

or deterministic decision rule. However, rules with certainty factor 0 <

𝑐𝑒𝑟𝑥(𝐶, 𝐷) < 1 is known as an uncertain or rough decision rule.  

 𝑐𝑒𝑟𝑥(𝐶, 𝐷) =
|𝐶(𝑥) ∩ 𝐷(𝑥)|

|𝐶(𝑥)|
=
𝑠𝑢𝑝𝑝𝑥(𝐶, 𝐷)
|𝐶(𝑥)|

=
𝜎𝑥(𝐶, 𝐷)
𝜎𝑥(𝐶)

 (6.7) 

 𝑐𝑒𝑟𝑥(𝐶, 𝐷) = 𝜋𝑥(𝐷|𝐶) (6.8) 
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On the other hand, coverage factor of a decision rule 𝐶 →𝑥 𝐷  is 

expressed as the percentage of elements belonging to 𝐷(𝑥) being classified 

under the given rule and can be denoted as 𝑐𝑜𝑣𝑥(𝐶, 𝐷) as shown in Equation 

6.9 and 6.10, where 𝜎𝑥(𝐷) = |𝐷(𝑥)|/|𝑈|. It quantifies the extent to which a 

given rule accounts for a particular decision outcome. 

 𝑐𝑜𝑣𝑥(𝐶, 𝐷) =
|𝐶(𝑥) ∩ 𝐷(𝑥)|

|𝐷(𝑥)|
=
𝑠𝑢𝑝𝑝𝑥(𝐶, 𝐷)
|𝐷(𝑥)|

=
𝜎𝑥(𝐶, 𝐷)
𝜎𝑥(𝐷)

 (6.9) 

 𝑐𝑜𝑣𝑥(𝐶, 𝐷) = 𝜋𝑥(𝐶|𝐷) (6.10) 

Other than the standard RSML metrics relative to the training data, the 

performance of the model can be empirically assessed using the validation data 

set. The Type I and Type II error rates were also included to further analyse the 

performance of the prediction model. The Type I error, also known as “false 

positive”, occurs when a true null hypothesis was mistakenly rejected. For 

example, Type I error occurred when a bio-oil with HHV of Class 1 was 

mistakenly classified as Class 3. On the other hand, the Type II error rate, also 

known as the “false negative” occurs when a false null hypothesis was 

mistakenly accepted. For example, Type II error occurred when a bio-oil with 

HHV of Class 1 was not classified under any rules for Class 1. However, in this 

study, only Type I error rate was reported as it carries much more consequences 

than the Type II error rate.  

 



Chapter 6 
 

 154 

6.4. Case Study 

6.4.1. Data Classification  

In this study, the pyrolysis temperature, feedstock’s ultimate and 

proximate analyses were identified as the condition attributes. Meanwhile, the 

HHV and pH values of pyrolysis bio-oil were selected as the decision attributes. 

Four rough set models with different combination of attributes were developed. 

Figure 6-2 illustrates the combinations of condition and decision attributes for 

Case Study 1, 2, 3 and 4, respectively. The data points considered in each Case 

Study differs as some information for certain data points were missing from the 

reported literature.  

The HHV and pH values of pyrolysis bio-oil were predicted separately 

to investigate the effect of different combination of biomass characteristics and 

pyrolysis temperature on these properties. These properties are treated as 

outputs that are predicted in parallel via the rule-based models with a common 

set of input variables and are hence already indirectly linked to each other.  

 
Figure 6-2 Attribute sets and decision sets along with the number of data points for each 

case study 

No. of Data PointsConditional AttributesDecision Attributes

Bio-Oil's HHV

Case 1: Ultimate Analysis + 
Pyrolysis Temperature

Training Data: 145 data

Validation Data: 62 data

Case 3: Proximate Analysis + 
Pyrolysis Temperature 

Training Data: 75 data

Validation Data: 32 data

Bio-Oil’s pH

Case 2: Ultimate Analysis + 
Pyrolysis Temperature

Training Data: 90 data

Validation Data: 37 data

Case 4: Proximate Analysis + 
Pyrolysis Temperature 

Training Data: 50 data

Validation Data: 22 data
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The rough set model was formulated by classifying the data for decision 

attributes (i.e., HHV and pH values of pyrolysis bio-oil) into 5 and 6 class 

intervals for bio-oil’s HHV and pH value, respectively, using continuous 

frequency distribution. Class categories were defined in increments of 10.00 

MJ/kg for the bio-oil’s HHV while increments of 1 was applied for bio-oil’s pH 

value, as shown in Table 6-3. For each case study, 70 % of the entire database 

were categorised as the training data set, which was used to train the rough set 

model. Tabular decision tables were established with these data as explained in 

Section 6.3.2.   

Table 6-3 Categorization of bio-oil's HHV and pH value for each case study 

Decision Attribute Value Category 

Bio-oil’s HHV 

0.00 – 9.00 MJ/kg Class 0 
10.00 – 19.00 MJ/kg Class 1 
20.00 – 29.00 MJ/kg Class 2 
30.00 – 39.00 MJ/kg Class 3 

40.00 MJ/kg and above Class 4 

Bio-oil’s pH 

1.00 – 1.90 Class 1 
2.00 – 2.90 Class 2 
3.00 – 3.90 Class 3 
4.00 – 4.90 Class 4 
5.00 – 5.90 Class 5 

6.00 and above Class 6 
 

6.4.2. Cores and Reducts 

With the established decision system in Case Study 1, 2, 3 and 4, the 

cores and reducts were identified and generated by the rough set model using 

ROSE2 software. The complete core and reduct sets for each case study are 

listed in the Table 6-4. For Case Study 1, 2 and 3, the pyrolysis temperature was 

identified as the core. Being the core, pyrolysis temperature was also known as 

the most decisive subset of attributes in the decision table. In other words, the 
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pyrolysis temperature attribute cannot be excluded from the decision system 

without influencing the classification power of the attributes. Meanwhile, no 

core was identified for Case Study 4. In other words, any single conditional 

attributes can be removed without altering the equivalence-class structure. In 

such cases, there is no essential or necessary attribute which is required for the 

class structure to be represented. A total of 30 reduct sets were generated for all 

the 4 case studies. These reduct sets were employed to develop decision rules 

by running the rough set models.  

Table 6-4 Cores and reducts generated for Case 1, 2, 3 and 4 

Case Cores Reducts 
Total No. 
of Rules 

Generated 

1 Temperature 

Reduct 1: Carbon, Hydrogen, Temperature 48 
Reduct 2: Carbon, Oxygen, Temperature 41 
Reduct 3: Hydrogen, Oxygen, Temperature 47 
Reduct 4: Carbon, Nitrogen, Temperature 43 
Reduct 5: Oxygen, Nitrogen, Temperature 45 

2 Temperature 

Reduct 1: Carbon, Oxygen, Temperature 37 
Reduct 2: Hydrogen, Oxygen, Temperature 35 
Reduct 3: Carbon, Hydrogen, Sulphur, Temperature 36 
Reduct 4: Oxygen, Nitrogen, Temperature 33 
Reduct 5: Carbon, Nitrogen, Temperature 34 
Reduct 6: Oxygen, Sulphur, Temperature 40 

3 Temperature 

Reduct 1: Volatile Matter, Ash, Temperature 23 
Reduct 2: Volatile Matter, HHV, Temperature 29 
Reduct 3: Ash, HHV, Temperature 26 
Reduct 4: Volatile Matter, Fixed Carbon, Temperature 26 
Reduct 5: Ash, Fixed Carbon, Temperature 24 
Reduct 6: Moisture Content, Temperature 31 
Reduct 7: Fixed Carbon, HHV, Temperature 24 

4 - 

Reduct 1: Volatile Matter, Moisture Content 15 
Reduct 2: Ash, Moisture Content 15 
Reduct 3: Volatile Matter, Fixed Carbon 18 
Reduct 4: Ash, HHV 18 
Reduct 5: Moisture Content, HHV 18 
Reduct 6: Moisture Content, Fixed Carbon 15 
Reduct 7: Fixed Carbon, HHV 22 
Reduct 8: Ash, Fixed Carbon 15 
Reduct 9: Volatile Matter, Temperature 26 
Reduct 10: Volatile Matter, HHV 21 
Reduct 11: Moisture Content, Temperature 21 
Reduct 12: HHV, Temperature 27 
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6.4.3. Rule-Based Model 

In this study, a total of 833 decision rules were generated from these 30 

reduct sets. Out of these 833 decision rules, 225 rules were generated in Case 

Study 1, 215 rules in Case Study 2, 183 rules in Case Study 3 and 232 rules in 

Case Study 4. All the generated rules along with the respective strength, 

certainty factor, and coverage factor are listed out in Table C-2 to Table C-31 

in Appendix. Decision rules of different decision classes generated from Case 

Study 1: Reduct 1 was listed in Table 6-5.  

Table 6-5 Generated rules from Case Study 1: Reduct 1 

No. Attributes Rule Decision Strength Coverage Certainty 

10 
Carbon 47.35 − 49.35 

1 7.59 % 15.07 % 100 % Hydrogen < 6.15 
Temperature ≥ 452.50 

25 
Carbon < 48.05 

2 6.90 % 22.22 % 100 % Hydrogen 5.95 − 6.05 
Temperature - 

47 
Carbon ≥ 80.25 

4 5.52 % 88.89 % 100 % Hydrogen - 
Temperature - 

 

Based on the details from Table 6-5, Rule 10 can be interpreted as the 

statement  “ If the feedstock sample possessed carbon content between the range 

of 47.35 to 49.35 %, hydrogen content of below 6.15 % and pyrolysis 

temperature of greater or equal to 452.50 ºC, then the pyrolysis bio-oil 

produced will have a HHV within the range of 10.00 to 19.00 MJ/kg. ” The 

strength of Rule 10 was 7.59 % as it was supported by 11 out of the 145 

feedstock samples from the training data set. On the other hand, the coverage 

factor for this rule was observed to be 15.07 % where 11 out of the 73 feedstock 

samples of Class 1 were classified by the rule into decision Class 1. Finally, 

Rule 10 can be known as a certain decision rule as the certainty factor obtained 
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for this rule was 100 %. In other words, all 11 feedstock samples that supported 

this rule were correctly classified as Class 1.  

On the other hand, Rule 25 and 47 can be interpreted as “ If the feedstock 

sample has a carbon content of below 48.05% and hydrogen content between 

the range of 5.95 to 6.05 %, then the produced bio-oil will be having a HHV 

values within the range of 20.00 to 29.00 MJ/kg.” and “ If the feedstock sample 

has a carbon content of greater or equal to 80.25 %, then the produced bio-oil 

will be having a HHV values of greater or equal to 40.00 MJ/kg. ”  respectively.  

By observing the decision rules generated (Table C-2 to Table C-31 in 

Appendix C), all the rules generated have a certainty factor of 100 %. This 

indicates that all the feedstock samples were correctly categorised under 

respective classes with the generated decision rules. In addition, further 

evaluation on the performance of the rules were conducted and will be discussed 

in Section 6.4.5. Thus, we can conclude that the rules generated by the RSML 

model still possess high potential in predicting the HHV and pH of the pyrolysis 

bio-oil.  

6.4.4. Mechanistic Plausibility of Rules 

In Case Study 1, five reduct sets were identified from the decision table 

for Case Study 1 and pyrolysis temperature was obtained as the core attribute. 

This indicated that the HHV of pyrolysis bio-oil is highly dependent on the 

pyrolysis temperature. From the decision rules generated, it was observed that 

pyrolysis bio-oil with HHV values of at least 10.00 MJ/kg can be obtained by 

conducting the pyrolysis process with temperature ranging between 400 ºC to 

600 ºC.  
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Among the reduct sets in Case Study 1, decision rules in Case Study 1: 

Reduct 2 showed the highest overall coverage and certainty factor. The 

condition attributes in this reduct included the pyrolysis temperature, carbon, 

and oxygen content. Furthermore, all the reduct sets in Case Study 1 consisted 

of either carbon content and/or oxygen content as the condition attributes. This 

may be explained by the domination of the carbon and oxygen content in the 

ultimate analysis of the feedstock samples, which make up to 80 to 90 % of the 

entire feedstock samples. In the past, various literature often correlates the 

carbon and oxygen content of feedstock samples with the energy content of the 

fuel. Higher carbon content was reported to improve the combustion properties 

of fuel and thus resulting in higher HHV of bio-oil (Ben et al., 2019). However, 

lower oxygen content was preferable in any fuel as it reduced the HHV of fuel 

(Kasar and Ahmaruzzaman, 2021). From the decision rules generated as shown 

in Table 6-6, we can conclude that to achieve HHV of at least Class 2, the carbon 

and oxygen content of the feedstock sample needs to be greater than 44 % and 

below 45 %, respectively. For example, Rule 27 from Case Study 1: Reduct 2 

stated that “ If the feedstock sample has a carbon content of greater or equal to 

48.5% and oxygen content of greater or equal to 43.45 %, then the produced 

bio-oil will be having a HHV values within the range of 20.00 to 29.00 MJ/kg.” 

Table 6-6 Rules involving the attributes: Carbon and Oxygen to generate bio-oil with HHV 
greater or equal to 20 MJ/kg.  

Reduct 
2 

Rule No. Carbon (%) Oxygen (%) Temperature (ºC) 
27 ≥ 48.5 ≥ 43.45 445.00 - 477.50 
32 46.15 - 47.70 - - 

Reduct 
4 

Rule No. Carbon (%) Nitrogen (%) Temperature (ºC) 
25 45.85 - 46.65 < 2.15 - 

Reduct 
5 

Rule No. Oxygen (%) Nitrogen (%) Temperature (ºC) 
26 21.60 - 38.55 ≥ 0.85 - 
30 ≥ 40.35 0.85 - 2.75 ≥ 502.50 
36 44.00 - 44.45 - - 
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On the other hand, the sulphur content was not included in any of the 

reduct sets as a condition attribute. This can be explained by the small amount 

of sulphur content where the sulphur content was the least elemental constituent 

of the feedstock samples, followed by nitrogen content. Thus, we can conclude 

that the effect of sulphur content in feedstock was negligible in determining the 

HHV of pyrolysis bio-oil. Lastly, no obvious trend can be observed between the 

hydrogen content of feedstock sample and the HHV of pyrolysis bio-oil. This 

can be supported by the literature which reported that no distinct relation can be 

observed between HHV and hydrogen content (Hasan et al., 2018) .  

In Case Study 2, the ultimate analysis of feedstock and pyrolysis 

temperature were employed to predict the pH value of pyrolysis bio-oil. Up to 

date, no study was done on correlating the ultimate analysis of feedstock with 

the pH value of pyrolysis bio-oil. From the results obtained from the rough set 

model, the rules generated in Case Study 2: Reduct 4, 5, and 6 showed higher 

certainty and coverage factor as compared to other reduct sets. The common 

attributes found in these three reducts were the nitrogen and sulphur content. 

Thus, we can deduce that the nitrogen and sulphur content affect the final pH 

value of pyrolysis bio-oil the most as compared to the remaining content such 

as carbon, oxygen, and hydrogen content. 

From the decision rules generated in Case Study 2: Reduct 4 and 5, it is 

observed that the pH values of pyrolysis bio-oil increases as the nitrogen content 

in the feedstock sample increases. This can be explained by the nitrogenous 

compound formed in the pyrolysis bio-oil such as amines, amides, etc. 

Commonly, more than 50.00 % of the nitrogen content in feedstock sample was 
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converted into the bio-oil in the form of organic or ammonium as nitrogen 

containing product (Leng and Zhou, 2018). Amines are the most found 

nitrogenous compounds in bio-oil, which contributes to the alkalinity of bio-oil 

(Leng et al., 2020). This can be further confirmed by the results of the rough set 

model where both Case Study 2: Reduct 4 and 5 have the highest overall 

performance. Based on Table 6-7, the decision rules generated from both 

reducts, nitrogen content of greater than 0.35 % was required to achieve pH 

value of greater than 3. In addition, to achieve pH values of greater than 8, the 

nitrogen content of feedstock sample needs to be greater than 6.45 %. On the 

other hand, the sulphur content of feedstock samples was observed to increase 

the pH value of bio-oil as well. However, the trend was not obvious as the 

amount of sulphur content in the feedstock sample was too little. 

Table 6-7 Rules involving the attribute: Nitrogen to generate bio-oil with pH greater or equal 
to 3.  

Reduct 
4 

Rule No.  Nitrogen (%) Oxygen (%) Temperature (ºC) 
15 0.35 - 0.65 - < 505.00 
16 ≥ 0.55 ≥ 44.25 - 
17 ≥ 0.35 43.65 - 43.95 - 

Reduct 
5 

Rule No. Nitrogen (%) Carbon (%) Temperature (ºC) 
13 0.35 - 0.95 < 49.20 - 

 

In Case Study 3, the relationship between the proximate analysis of 

feedstock and HHV of bio-oil were studied. In the past decades, many 

correlations were established in the literature to estimate the HHV of fuel using 

proximate analysis of feedstock. The proximate analysis is one of the main 

attributes which measures the fuel or feedstock’s energy content via ratio of 

combustibles (VM and FC) to non-combustibles (AC and MC) (Qureshi et al., 

2019). 
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The VM of feedstock samples can be referred to as the fuel fraction 

released when heated at high temperature (950 ºC). From the rules generated in 

Case study 3, higher VM in feedstock sample was correlated to higher HHV of 

pyrolysis bio-oil. To achieve HHV of at least Class 2, the VM of feedstock 

sample needs to be greater than 78.00 %, as shown in Table 6-8. Higher VM of 

fuel or feedstock implied higher reactivity and enriched combustion process 

which supported the liquid fuel production (Omar et al., 2011). On the other 

hand, feedstock with higher FC content will usually produce bio-oil with higher 

carbon content, and thus higher HHV (Abnisa et al., 2013a). However, no 

obvious trend was observed from the decision rules generated from the reduct 

sets with FC as attribute. FC was defined as the fraction of feedstock sample 

that remained after the VM was completely released, excluding AC and MC, 

forming the char (Obernberger and Thek, 2004). Thus, the FC content 

contributed more to the HHV of biochar rather than the bio-oil.  

Table 6-8 Rules involving the attribute: Volatile Matter to generate bio-oil with HHV greater 
or equal to 20 MJ/kg 

Reduct 
1 

Rule No.  Volatile Matter (%) Ash Content (%) Temperature (ºC) 
12 78.40 - 81.75 1.45 - 5.85 - 
13 78.40 - 84.60 1.45 - 2.85 - 
15 ≥ 68.00 0.85 – 2.00 - 

Reduct 
2 

Rule No. Volatile Matter (%) HHV (MJ/kg) Temperature (ºC) 
16 68.00 - 81.75 16.70 - 20.10 537.50 – 675.00 
20 80.60 - 84.60 - < 555.00 

 

Next, high amounts of MC in feedstock sample was undesirable as it 

reduced the HHV of the fuel. During the bio-oil production process, the water 

content in feedstock goes to the bio-oil, leading to an increment of water content 

in bio-oil and thus lowering the HHV of the bio-oil (Asadullah et al., 2013). 
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From the results generated in Case Study 3, the MC of feedstock was observed 

to have no effect to the final HHV of pyrolysis oil. This may be due to the low 

MC in the feedstock samples, which were typically below 10.00 %. Lastly, the 

AC is the inorganic waste that remained after FC combustion. According to the 

rules generated, the AC was found to be unrelated to the HHV of pyrolysis bio-

oil. AC was usually used to estimate and determine the yield percentage 

distribution of solid, liquid, and gaseous products (Abnisa et al., 2013b) .  

In Case Study 4, the relationship between the proximate analysis of 

feedstock and the pH value of pyrolysis bio-oil were investigated. However, no 

obvious trend can be concluded from the rules generated in this case study. As 

the proximate analyses contributed more to the calorific values and the yield 

percentage of product, it can be concluded that the proximate analyses of 

feedstock samples do not affect the pH value of pyrolysis bio-oil (Venderbosch 

and Prins, 2010). Nevertheless, high coverage and certainty factor can be 

obtained from the rules generated by the reduct sets in Case Study 4. This can 

be explained by the smaller size of training and validation data size where most 

of the data might be coming from the same source.  

6.4.5. Evaluation of Model Performance 

The resulting decision rules from the rough set models were verified 

against the validation set, which consisted 30 % of the entire data set. 

Considering the generated decision rules from Case Study 1: Reduct 2 

(Conditional Attributes: C, O, Pyrolysis Temperature; Decision Attributes: 

HHV), the decision rules were verified on 62 feedstock samples from the 

validation data set. By applying the decision rules generated, the pyrolysis bio-
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oil from validation set can be classified under one of the five classes. For 

instance, the pyrolysis bio-oil was predicted to have a HHV ranging from 10.00 

– 19.00 MJ/kg if the attributes from feedstock sample fit in one or more rules 

under Class 1. Error! Reference source not found. illustrates the validation 

result for the selected promising rules from Case Study 1: Reduct 2, where the 

certainty and coverage factor along with the respective number of molecules 

that supported a particular rule are shown.  Based on Error! Reference source 

not found., decision rules under Class 4 showed higher coverage factor 

compared to other classes (i.e., Class 1 and 2). This may be due to the smaller 

size of verification data set for Class 4 (Reduct 2: Case Study 1), which only 

consisted of 4 feedstock samples. 

From Figure 6-3, 11 decision rules (Rule 6, 7, 8, 12, 13, 14, 16, 17, 18, 

19 and 22) were classified under Class 1. However, not all the decision rules 

exhibited high coverage and certainty factor. Thus, the validation results were 

further analysed to select rules with highest confidence level for the application 

in further stages. Rule 17, 18, 19 and 21 displayed a prediction accuracy of 

100 %. However, Rules 18 and 21 may not hold a high power of generalisation 

as they were only supported by one feedstock sample each. In this case, Rule 7, 

8, 16 and 19 showed satisfactory prediction accuracy where each of the rules 

were supported by 3 or more feedstock samples with minimum accuracy of 

60 %. In other words, the HHV of pyrolysis bio-oil was predicted to fall within 

the range of 10.00 to 19.00 MJ/kg if the ultimate analysis of feedstock samples 

fulfils either one of these decision rules (Rule 7, 8, 16 and 19). The general 

coverage and certainty factor for Rule 7, 8, 16, and 19 was listed in Table 6-9.  
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Figure 6-3 Validation results on Case 1: Reduct 2 

On the other hand, Figure 6-4 demonstrated the validation result for 

Case Study 2: Reduct 4 (Conditional Attributes: O, N, Pyrolysis Temperature; 

Decision Attributes: pH). The generated decision rules were verified on 38 

feedstock samples from the validation data set. With the application of the 

generated decision rules, the pyrolysis bio-oil from validation set can be 

classified under one of the six classes. The pyrolysis bio-oil are expected to 

demonstrate pH value ranging from 1.00 – 1.90 if the attributes from the 

feedstock sample fit in one or more rules under Class 1. Based on Figure 6-4, 

the resulting decision rules possesses high certainty factor where decision rules 

generated under Class 1, 2, 5, and 6 demonstrated certainty factor of 100%. 

Thus, it can be concluded that the model has successfully learned the useful 

generalisable principles. Furthermore, the decision rules under Class 5 and 6 

also showed higher coverage factor compared to other classes (i.e., Class 1, 2 

and 3). This can be explained by the smaller size of verification data set for 

Class 5 and 6 which only consisted of 1 and 2 feedstock sample,  respectively.  
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From Figure 6-4, 6 decision rules (Rule 3, 4, 6, 8, 9 and 10) were 

classified under Class 2 with certainty factor of 100%. Despite the high 

prediction accuracy, Rule 6, 8, 9 and 10 were only supported by one feedstock 

sample, respectively. Meanwhile, Rule 3 and 4 were supported by 4 feedstock 

samples each, thus demonstrating promising validation performance. In other 

word, the pH of pyrolysis bio-oil was estimated to be within the range of 2.00 – 

2.90 if the ultimate analysis of feedstock samples fulfils either one of these 

decision rules (Rule 3 and 4).  

 

Figure 6-4 Validation results on Case 2: Reduct 4 

A similar approach was applied for the remaining decision rules 

generated. The validation results for the best performing generated rules from 

Case Study 3: Reduct 2 and Case Study 4: Reduct 7 can be seen in Figure 6-5 

and Figure 6-6, respectively. 
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Figure 6-5 Validation results on Case 3: Reduct 2 

 

 

Figure 6-6 Validation results on Case 4: Reduct 7 

The general validation results for decision rules for each class, from the 

best performing reduct sets of Case Study 1, 2, 3, and 4 were shown in Table 

6-9. The summary of analysed validation results for the remaining rules are 

shown in Table C-32 to Table C-61 in the Appendix C.   
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Table 6-9 Summarized validation results for the best performing reduct set from Case Study 
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Table 6-9 Summarized validation results for the best performing reduct set from Case Study 
1, 2, 3 and 4 (continued) 
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6.5. Conclusion 

In this chapter, rule-based models were developed using RSML 

algorithms for use as a predictive modelling tool to estimate pyrolysis bio-oil’s 

HHV and pH values based on the pyrolysis temperature and feedstock 

characteristics. Pyrolysis bio-oil’s HHV and pH were classified into different 

decision classes based on the corresponding property’s value. Decision rules 

from Case Study 1, 2 and 3 exhibit promising certainty and coverage factor 

while having logical sense from scientific standpoint. Based on the results, the 

carbon and oxygen content of the feedstock sample need to be greater than 44 % 

and lesser than 45 %, respectively, to produce pyrolysis bio-oil with HHV of at 

least 20 MJ/kg, Besides, nitrogen content of greater than 0.35 % was required 

to achieve bio-oil with pH value of greater than 3. Decision rules generated 

using this developed approached are capable to identify the required feedstock 

composition and pyrolysis temperature by applying the reverse engineering 

approach, which can then use to generate pyrolysis bio-oil with targeted range 

of HHV and pH via pyrolysis/co-pyrolysis process. A similar RSML approach 

can also be used to predict the properties of the other pyrolysis fractions. This 

current computational framework can be further extended to include the 

experimental studies to validate the results obtained from the CAMD and 

prediction model. Hence, the experimental methodology will be presented in 

the next chapter.  
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CHAPTER 7                                                                                              

ENHANCED FUEL PROPERTIES OF PYROLYSIS BIO-OIL AND 

DIESEL FUEL EMULSION VIA SOLVENT ADDITION AND 

ULTRASONIC EMULSIFICATION 

7.1. Introduction 

In the previous chapters, computational solvent design framework was 

developed to identify optimal bio-oil solvent for pyrolysis bio-oil upgradation. 

Nevertheless, further experimental verifications were still required to verify the 

applicability of the identified solvents in real-life application. Hence, in this 

chapter, an efficient emulsification strategy was developed to generate stable 

bio-oil/diesel emulsions through solvent addition and ultrasonic mixing. Fast 

pyrolysis of palm kernel shell (PKS) was conducted to produce PKS bio-oil at 

550 ºC in a fixed bed tubular reactor. The generated PKS bio-oil was then 

blended with solvents identified from the developed computational solvent 

design framework in Chapter 4 and 5. Three solvents, namely 2-Octanol, 2-

Heptanol and 2-Octanone were selected for their promising performance in 

terms of fuel functionality and economic. In addition, the PKS bio-oil was also 

blended with 5 wt. %, 10 wt. %, 15 wt. % and 20 wt. % of 2-Octanol, 

respectively to study on how different solvent mixing ratio affect the yield of 

solvent-extracted bio-oil. Next, the solvent-extracted bio-oil with 20 wt. % of 

2-Octanol was processed further for emulsification with diesel fuel. Two 

composite surfactants (Tween 80 and Span 80) with a hydrophilic-lipophilic 
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balance (HLB) value of 7 was used to aid the ultrasonic emulsification process. 

The stability of solvent-extracted bio-oil/diesel emulsion was investigated as 

well. Lastly, the 2-Octanol-, 2-Heptanol- and 2-Octanone-extracted bio-

oil/diesel emulsions were prepared, and their fuel properties were analysed, 

respectively.  

7.2. Problem Statement 

In recent years, bio-oil generated from fast pyrolysis of biomass 

feedstock has attracted increasing attention as a potential drop-in fuel. 

Nevertheless, the direct application of bio-oil is still limited due its poor fuel 

properties and instability. Therefore,  downstream upgradation is still required 

for the pyrolysis bio-oil in order to obtain desired specifications for final 

applications. In the view of this, the emulsification of pyrolysis bio-oil with the 

conventional diesel fuel is one of the popular approaches to utilise bio-oil. 

However, the blending of bio-oil and diesel could be challenging as bio-oil is a 

complex mixture consisting of both polar and non-polar compounds. Hence, it 

is important to develop an efficient emulsification strategies and determine the 

desired mixing ratio to generate a stable bio-oil/diesel emulsion.  

7.3. Materials and Methods 

7.3.1. Feedstock Preparation 

Euro 5 Diesel fuel was purchased from a Shell petrol station in 

Semenyih, Selangor, Malaysia. The PKS biomass feedstocks were supplied 

from Seri Ulu Langat Palm Oil Mill Sdn. Bhd., Dengkil, Selangor, Malaysia. 

The proximate analysis and higher heating value (HHV) of same PKS feedstock 

has been presented in previous work by Vasu et al. (2020). The collected PKS 
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was dried in an oven (Memmert, Germany) at 75 ºC for 16 hours. Then, the 

dried PKS was grounded into particle size of smaller than 0.2mm using an 

electric grinder (ormiSmart, China). The moisture content of PKS was 

determine by calculating the weight loss after oven drying for 16 hours at 103ºC.  

On the other hand, solvents with promising performance from previous 

work were also selected to upgrade the PKS bio-oil quality. In Chapter 5, the 

solvent-oil blend with 2-Octanol and 2-Heptanol demonstrated positive 

performance in terms of fuel functionality, environmental and economical 

aspect. In addition, 2-Octanone identified from Chong et al. (2021)’s work was 

considered in this chapter as well. The organic phase of the crude pyrolysis PKS 

bio-oil derived in Asadullah et al. (2013)’s work was used as the basis in both 

computational studies. Their PKS bio-oil was reported to have a HHV of 19.0 

MJ/kg with a moisture content of 16 wt.%.  

7.3.2. Fast Pyrolysis in Fixed Bed Reactor 

The fixed-bed fast pyrolysis of PKS was performed in a horizontally 

tubular stainless-steel reactor (Outer Diameter: 28.4mm; Length: 600mm), 

which was heated using a splitable mini tube furnace (BSO-1200 G, Malaysia). 

Figure 7.1 demonstrated the schematic diagram of the reactor configuration.  
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Figure 7-1 Schematic representation of pyrolysis setup 

 

Initially, a known amount of grounded PKS biomass (around 25 g) was 

loaded into the tubular reactor. Glass wool was inserted at the effluent end of 

the reactor to prevent the solid char particles from entering the vapours. In order 

to create an inert atmosphere in the reactor, nitrogen gas was purged through 

the reactor at a flowrate of 20 – 40 cm3/min. K-type thermocouple was used to 

measure the actual temperature in the reactor during the pyrolysis experiment. 

In order to achieve pyrolysis temperature of 550 ± 20 ºC, the tubular reactor was 

inserted into the furnace once it achieves the pre-set temperature at 575 ºC for 

sufficient heat transfer. The heating rate inside the reactor was obtained as 35.25 

± 1.7 ºC/min, indicating the occurrence of intermediate/fast pyrolysis reaction 

for PKS bio-oil production.  

White fumes were observed within 3 to 4 minutes of reactor insertion, 

with reactor temperature within the range of 200 ºC to 300 ºC. The temperature 

of the furnace and nitrogen gas flow were maintained until no white fumes were 
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observed any longer. Two condensers were placed in series and submerged in 

ice bath for the collection of condensed liquid product, which is also known as 

the PKS bio-oil. The non-condensable vapour product was then vented out. The 

resulting bio-oil and biochar yield were calculated by measuring the weight at 

the end of each pyrolysis experiment. On the other hand, the gas yield was 

determined by subtracting the total bio-oil and biochar yield from a mass basis 

of 100 wt. %.  

7.3.3. Preparation of Composite Surfactant 

In this chapter, the non-ionic surfactants, Tween 80 and Span 80 were 

used to aid the ultrasonic emulsification process. The physicochemical 

properties of the surfactants are shown in Table 7-1 (Farooq et al., 2019; Lin et 

al., 2016).  

Table 7-1 Properties of surfactant Tween 80 and Span 80. 

Surfactant Tween 80 Span 80 
Physical 

Appearance Amber liquid Brownish yellow liquid 

Chemical 
Structure 

  
Hydrophilic group Polyethylene glycol Sorbitan 
Lipophilic group Oleic acid Oleic acid 

HLB value 15 4.3 
Molecular weight 

(g/mol) 1310 429 

Density (g/cm3) 1.08 0.99 
 

The HLB value was first established by Griffin (1954) to classify non-

ionic surfactants. In most cases, the HLB value is an important criteria in 

choosing the ideal surfactant, depending on the chemical structure and 
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surfactant properties (Lin et al., 2016). Reports have shown that the optimal 

HLB value of the surfactants for the emulsification of solvent-extracted bio-oil 

and diesel ranged from 4 – 8, resulting in water-in-oil (W/O) emulsions (Farooq 

et al., 2019; Lin et al., 2016).  Hence, in this chapter, composite surfactants with 

HLB value of 7 were used to emulsify the solvent-extracted bio-oil/diesel 

emulsion, which can be obtained by mixing Tween 80 and Span 80. The specific 

weight percentages of Tween 80 and Span 80 can be calculated using Equation 

7.1 (Griffin, 1954):  

 𝐻𝐿𝐵𝑆𝑢𝑟𝑓𝑎𝑐𝑡𝑎𝑛𝑡 =
𝐻𝐿𝐵1 ×𝑊1 + 𝐻𝐿𝐵2 ×𝑊2

𝑊1 +𝑊2
 (7.1) 

where 𝐻𝐿𝐵1 and 𝐻𝐿𝐵2 represent the HLB of surfactant 1 and 2 while 𝑊1 and 

𝑊2 represent the weight percentage of surfactant 1 and 2, respectively.  

7.3.4. Ultrasonic Emulsification  

Initially, the PKS bio-oil was emulsified with 5, 10, 15 and 20 wt. % of 

2-Octanol, respectively using ultrasonic emulsification setup (Bandelin 

Sonopuls, Germany). The solvent-oil mixture was then sonicated for 5 minutes 

(30% amplitude, 200 W, pulse mode). As a result, a two-phase immiscible 

solvent-oil emulsion was obtained as shown in Figure 7-2. The upper layer of 

the blend is the oil phase while the bottom part is the aqueous phase. Then, the 

upper oil layer was extracted out using the separating funnel. In this chapter, 

only the upper oil layer was considered and will be referred to as the solvent-

extracted bio-oil in the rest of the chapter.  

The yield and HHV of the solvent-extracted bio-oils with 5, 10, 15, and 

20 wt. % of 2-Octanol were determined, respectively. In another experiment, 
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the solvent-oil emulsion of different solvents type (2-Octanol, 2-Heptanol and 

2-Octanone) at 20 wt. % were also prepared to study the effect of different 

solvent type on the yield and properties of solvent-extracted bio-oil.  

 
Figure 7-2 Emulsified solvent-oil blend with 20 wt. % 2-Octanol 

Then, the solvent-extracted bio-oil was emulsified with the composite 

surfactant and diesel fuel at a predetermined ratio using the sonotrode. Three 

diesel-to-surfactant-to-solvent-extracted bio-oil weight ratios of 90:5:5, 85:10:5 

and 80:15:5 were taken into account to test the emulsification behaviour. Lastly, 

the emulsions of diesel/surfactant/2-Heptanol-extracted bio-oil and 

diesel/surfactant/2-Octanone-extracted bio-oil were also prepared at weight 

ratios of 80:15:5, respectively. All the experiments were repeated twice to 

ascertain the reproducibility and consistency .   

7.3.5. Extracted Solvent-Oil/Diesel Emulsions Stability Analysis 

Accelerated aging test was conducted on all the generated solvent-

extracted bio-oil/diesel emulsions. The sample emulsions were immersed in a 

hot water bath at 80 ºC for 24 hours, which is equivalent to approximate 6 – 12 

months of storage at room temperature (Elliott et al., 2012). After the aging, the 

samples were cooled down in ice-cooled water to stop any further aging reaction. 

In addition, the solvent-extracted bio-oil/diesel emulsions were also place still 
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under room temperature for normal aging process. The phase separation of the 

emulsions was checked every 4 hours for the first 24 hours and every 24 hours 

for the remaining of the stability test. Phase separation was considered as an 

indication of instability of the solvent-extracted bio-oil/diesel emulsion. The 

functional groups in the aged emulsions were detected using FT-IR 

spectroscopy.  

7.3.6. Product Characterisation 

7.3.6.1. pH value 

The pH values of all samples were measured using a digital benchtop 

pH meter (Sartorius PB-10, Germany). The pH meter was pre-calibrated using 

buffer solution of pH 4.0, 7.0 and 10.0.  

7.3.6.2. Higher Heating Value 

The heating values of all the samples were determined using bomb 

calorimeter (IKA C 200, Germany).  

7.3.6.3. Fourier Transform Infrared (FT-IR) Spectroscopy  

All the liquid and solid samples were analysed using the FT-IR 

spectroscopy (PerkinElmer Frontier, USA). The FT-IR spectra were recorded 

at wavenumber ranging from 400 – 4000 cm-1, with 8 scans at a scanning 

resolution of 8 cm-1. 

7.3.6.4. Gas Chromatography-Mass Spectrometry (GC-MS) 

The volatile compounds present in liquid samples were analysed using 

the GC-MS (PerkinElmer 680 GC/SQ8S, USA). 0.75 g of each bio-oil and 

solvent-extracted bio-oil samples were diluted in 50 mL of methanol. 
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Meanwhile, 0.75 g of diesel and solvent-extracted bio-oil/diesel emulsion 

samples were diluted in 50 mL of dichloromethane (DCM). The diluted 

solutions were then gently shaken to ensure complete mixing. Then, 

approximately 2.5 mL of each diluted samples was withdrawn and filtered 

(syringe filter, Agilent PTFE 0.45 μm) into Agilent vials. The diluted bio-oil 

samples were injected into a DB 1701 column (Length: 30 m; Inner diameter: 

0.32 mm; Film thickness: 0.25 μm) while the diluted solvent-extracted bio-oil, 

diesel and solvent-extracted bio-oil/diesel emulsion samples were injected into 

an Elite-5MS capillary column (Length: 30 m; Inner diameter: 0.25 mm; Film 

thickness: 0.25 μm). The 1071 GC-column is reported to be more a more 

sensitive column for the analysis of alcohols, oxygenates and anhydrous sugar, 

which are commonly found in the crude bio-oil (Agilent, 2022). Therefore, DB-

1701 column was used for the chemical characterization of PKS bio-oil. 

However, later studies include diesel and diesel emulsion with bio-oil, Elite-

5MS capillary column is used for further GC-MS analysis (Perkin Elmer, 2022). 

The injector temperature was kept constant at 280 ºC with a split ratio of 50:1. 

The column’s initial temperature was set at 40 ºC and was held for 3 minutes. 

The column’s temperature was then increased at a constant ramping rate of 10 

ºC/min to reach 250 ºC, which was then held for another 3 minutes at the final 

temperature. The carrier gas (helium) was maintained at a flow rate of 1.35 

mL/min. In addition, the GC-MS interface was operated at 280 ºC. The 

compounds were identified by comparing the mass spectra with the National 

Institute of Standards and Technology (NIST) mass spectra library.  
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7.4. Results and discussion 

7.4.1. Biomass and Diesel Characterisation   

The physicochemical properties of the PKS biomass have great 

influences on the production yield and characteristic of the produced pyrolysis 

bio-oil. The moisture content of the biomass plays an important role in the 

production of pyrolysis bio-oil. High amount of moisture content ( > 10 wt. %) 

was undesirable as it reduced the yield and HHV of the pyrolysis bio-oil 

generated. During the pyrolysis of PKS, the water content in the feedstock goes 

to the generated bio-oil, leading to an increment of water content in bio-oil and 

thus lowering bio-oil’s HHV. In this chapter, the moisture content of the PKS 

biomass was identified to be 3.3 ± 0.1 wt. %. Hence, no additional actions were 

required to further reduce the moisture content of PKS of biomass to improve 

the heating rate during pyrolysis reaction. In addition, the HHV of PKS biomass 

was obtained as 19.4 MJ/kg, indicating its potential to be used as a feedstock 

for energy generation.  

On the other hand, the pH value of the diesel was measured to be 8.1 ± 

0.1, which is consistence with the typical values (5.5 – 8) reported by Craig 

Hartman (2020). Meanwhile, HHV value of 45.1 MJ/kg was obtained for the 

diesel. In addition, FT-IR and GC-MS analyses were also conducted to identify 

the functional groups and compounds present in the diesel. Forty-four 

compounds were identified via GC-MS, which mainly can be grouped as 

paraffinic hydrocarbons, naphthenic hydrocarbons, and fatty acid methyl esters. 

Table 7-2 shows the major compound groups along with their respective total 
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peak area percentage. The detailed lists of compounds and FT-IR spectra of 

diesel can be found in the Appendix D. 

Table 7-2 GC-MS results of main components from diesel 

Compound groups Total peak area (%) 
Paraffinic hydrocarbons 70.8 

Naphthenic hydrocarbons 5.6 
Fatty acid methyl esters 23.6 
 

7.4.2. Pyrolysis Product Yield and Properties 

The PKS bio-oil yield of 41.7 ± 3.4 wt. % on PKS weight basis was 

achieved in this chapter. Meanwhile, the gas and biochar yield were obtained as 

33.0 ± 2.4 wt. % and 25.3 ± 1.5 wt. % on PKS weight basis, respectively. This 

results were in line with the yields reported in Chong et al. (2017) and Vasu et 

al. (2020)’s work. On the other hand, the HHV value of PKS bio-oil and biochar 

was determined to be 15.6 MJ/kg and 27.89 MJ/kg, respectively. Nevertheless, 

lower HHV of PKS bio-oil in current work as compared to Asadullah et al. 

(2013)’s study was due to the difference in water content of bio-oil. In 

Asadullah et al. (2013)’s work, only the HHV of the crude bio-oil’s organic 

phase was considered. Meanwhile, whole bio-oil consisting of both aqueous and 

organic phase was  considered in the current study, and thus lower HHV of the 

PKS bio-oil. In addition, The pH value of PKS bio-oil was found to be 2.35, 

which is rather acidic in nature due to the presence of organic acids such as 

formic and acetic acid.  

A total of twenty-two compounds from PKS bio-oil were identified by 

GC-MS and those were grouped as carbonyl compounds, furan, nitrogen 

containing compounds as well as phenol and phenolic derivatives. Table 7-3 
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summarised the major compounds groups of PKS bio-oil along with their 

respective total peak area percentage. Based on Table 7-3, the total peak area of 

phenolic compounds was the highest where phenol alone contributed 38.2 % to 

the total peak area percentage of PKS bio-oil. The complete list of compounds 

present in the PKS bio-oil and their respective peak area percentage were 

included in the Appendix D. 

Table 7-3 Major compound groups of PKS bio-oil 

Compound group Total peak area (%) 
Carbonyl group 16.2 

N-containing group 22.1 
Furan group 0.5 
Phenol group 59.9 

 

7.4.3. Effect of solvent ratio on solvent-extracted bio-oil properties 

In order to study the effect of different solvent ratio on the properties of 

solvent-extracted bio-oil, four 2-Octanol to PKS bio-oil ratios were proposed in 

this work. The resulted yield, HHV and pH were analysed to characterise the 

solvent-extracted bio-oil obtained from different mixing ratio, as shown in 

Table 7-4.  

Table 7-4 Yields and properties of 2-Octanol-extracted bio-oil at different 2-Octanol : PKS 
bio-oil ratio 

Solvent : PKS bio-oil 5 : 95 10 : 90 15 : 85 20 : 80 
Yield (%) 21.0 ± 0.4 27.2 ± 0.2 32.4 ± 0.7 37.9 ± 1.3 

HHV (MJ/kg) 26.8 28.3 29.9 31.9 
pH 2.3 ± 0.1 2.6 ± 0.1 2.8 ± 0.1 2.9 ± 0.1 

 

 The 2-Octanol-extracted bio-oil’s yields obtained in Table 7-4 were 

calculated on 2-Octanol/PKS bio-oil blend’s weight basis . From Table 7-4 it 
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was observed that the yield of 2-Octanol-extracted bio-oil increases as the ratio 

of solvent increases in the 2-Octanol/PKS bio-oil blend. At 10 wt. % of 2-

Octanol addition, 2-Octanol-extracted bio-oil’s yield of 27.2 ± 0.2 % was 

observed, which is about 6.2 % increment as compared to the yield obtained 

from 5 wt.% of 2-Octanol addition. However, at 15 wt. % and 20 wt. % of 2-

Octanol addition, only 5.2 % and 5.4 % increment in the 2-Octanol-extracted 

bio-oil’s yields were observed, respectively. This value may be due to the 

increment of 2-Octanol in the solvent-oil blending, which was also 5 wt. % on 

2-Octanol/PKS bio-oil mixture weight basis. In other word, further increment 

on the solvent ratio in the blend would not increase the extraction of bio-oil 

content in the 2-Octanol-extracted bio-oil.  

As expected, as the ratio of 2-Octanol increases in the 2-Octanol/PKS 

bio-oil mixture, higher HHV of the resulted 2-Octanol-extracted bio-oil can be 

achieved. The generated 2-Octanol-extracted bio-oil at 20 wt. % of 2-Octanol 

had achieved a HHV value of 31.9 MJ/kg, which is approximately 100 % 

increase as compared to the HHV value of initial PKS bio-oil, which was only 

15.6 MJ/kg. This can be explained with the removal of water content from the 

PKS bio-oil as aqueous bio-oil, and thus increasing the HHV value of the 

organic-rich 2-Octanol-extracted bio-oil. Other than that, the addition of 2-

Octanol (40.7 MJ/kg) as solvent also contributed to the high HHV value of the 

2-Octanol-extracted bio-oil.  

Similar trends and FT-IR peaks were observed from the FT-IR spectra 

of 2-Octanol-extracted bio-oil with 5, 10, 15 and 20 wt. % of 2-Octanol addition. 

Hence, only the FT-IR spectra of 2-Octanol-extracted bio-oil with 5 and 20 wt. % 
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of 2-Octanol addition, along with the FT-IR spectra of PKS bio-oil were 

presented in Figure 7-3. The FT-IR results of PKS bio-oil were similar to those 

reported by Chong et al. (2019). The presence of a transmittance broad band in 

the range of 3200 – 3550 cm-1 was assigned to the stretching vibration of O-H 

bonds, indicating the presence of phenol, alcohol, and water in the samples 

(Hassan et al., 2009). Generally, increase in the peak intensity was often 

associated with increased amount (per unit volume) of the functional group 

correlated with the particular molecular bond.  Here, the broad band from PKS 

bio-oil demonstrated higher intensity as compared to the other two samples. 

This may be due to the high water content present in PKS bio-oil, which 

contribute to the high concentration of O-H bond. On the other hand, the peaks 

at 2960 cm-1, 2930 cm-1 and 2858 cm-1 can be accredited to the stretching 

vibration of the C-H bonds, signifying the presence of alkane groups in the 

samples. Peaks with higher intensity within this range was observed for the 20 

wt.% 2-Octanol-extracted bio-oil sample, followed by 5 wt.% 2-Octanol 

extracted bio-oil and lastly PKS bio-oil with the lowest intensity. This may be 

due to the presence of long carbon chain in 2-Octanol, which contributed to the 

high concentration of C-H bond in the sample. This can be further confirmed 

with the C-H bonds deformation vibrations at peaks 1366 cm-1 and 1464 cm-1.  

Furthermore, the peak at the 1704 cm-1 can be accounted for the presence 

of carbonyl group (C=O) in ketones, aldehydes, and carboxylic acids. Here, the 

PKS bio-oil was noticed to demonstrate peak with higher intensity as it 

contained higher amount of carboxylic acid such as acetic and formic acids. The 

presence of aromatics in samples was supported by the C=C stretching vibration 
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(in ring) at the peak 1594 cm-1. Various peaks between 970 cm-1 and 1250 cm-1 

can be ascribed to the stretching vibrations of C-O bond due to the presence of 

carboxylic acid, phenol and alcohol groups (Coates, 2006). The high 

concentration of acetic and formic acid in the PKS bio-oil contributed to the 

higher intensity peak at 1232 cm-1. Aside from that, the transmittance peaks in 

the 900 cm-1 to 700 cm-1 range indicate possibility of the presence of mono, 

polycyclic, and substituted aromatic groups (Chong et al., 2019). Similar peak 

intensity was observed for all three samples. This phenomenon indicated that 

most of the aromatic groups present in PKS bio-oil was extracted into the 

solvent-extracted bio-oil.    

 
Figure 7-3 FT-IR spectra of PKS bio-oil, 5wt.% and 20wt. % 2-Octanol-extracted bio-oil 

The compounds present in the solvent-extracted and aqueous bio-oils 

from different 2-Octanol mixing ratios were identified via GC-MS and grouped 

as phenols and phenolic derivatives, carbonyl compounds and furans. Table 7-

5 shows the total peak area percentages of these major compound groups and 2-

Octanol, respectively. The detailed lists of the compounds for these samples 

were provided in Appendix D.  
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Table 7-5 Major compound groups of solvent-extracted and aqueous bio-oil from different 
solvent addition ratios 

Samples 
Phenols 
(area %) 

Carbonyls 
(area %) 

Furans 
(area %) 

2-Octanol 
(area %) 

Aqueous bio-oil: 
5 wt. % 2-Octanol 19.2 64.3 11.5 5.0 

10 wt. % 2-Octanol 17.4 67.5 10.0 4.9 
15 wt. % 2-Octanol 13.7 71.4 10.7 4.2 
20 wt. % 2-Octanol 10.6 73.4 11.8 4.2 
2-Octanol-extracted bio-oil: 
5 wt. % 2-Octanol 32.9 7.7 5.5 50.4 

10 wt. % 2-Octanol 22.2 6.3 4.4 65.0 
15 wt. % 2-Octanol 15.8 4.9 3.8 74.5 
20 wt. % 2-Octanol 14.4 4.4 3.0 77.1 

 

Phenols and its derivatives such as creosol, catechol and isoeugenol 

were identified as the second largest compound groups in 2-Octanol-extracted 

bio-oils, where 2-Octanol is the dominant component. On the other hand, it is 

noticed that the carbonyl compounds like acetic acid, formic acid, butanone, 

and propanoic acid constituted the major proportions in aqueous bio-oil. The 

acetic acid was regarded as the main component in the carbonyl group as it 

possessed the highest peak area percentage as compared to other compounds. 

According to Table 7-5, the peak area percentage of carbonyl groups in aqueous 

bio-oil was the highest at 20 wt. % of 2-Octanol, followed by 15, 10 and 5 wt.% 

of 2-Octanol. Nevertheless, the carbonyl groups demonstrated smaller peak area 

percentage in 2-Octanol-extracted bio-oils, as compared to the aqueous bio-oil. 

This has proven that most of the carbonyl groups including the acetic and formic 

acid were left behind in the aqueous bio-oil during the solvent extraction, thus 

resulting in a less-acidic solvent-extracted bio-oil with higher HHV value.  
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7.4.4. Effect of Solvent Type on Properties of Bio-Oil  

Other than the solvent ratio, the effect of different solvent type on the 

properties of PKS bio-oil were also studied in this chapter. The resulting yield, 

HHV and pH of the solvent-extracted bio-oil were analysed to evaluate the 

performance of 2-Octanol, 2-Heptanol and 2-Octanone as solvent, respectively. 

Table 7-6 shows the yields and properties of solvent-extracted bio-oil with 

different type of solvent. All three 2-Octanol-, 2-Heptanol-, and 2-Octanone-

extracted bio-oils demonstrated similar performances in terms of pH values. 

However, it was noticed that the 2-Octanone-extracted bio-oil has the lowest 

solvent-extracted bio-oil yield, followed by 2-Heptanol-extracted bio-oil and 2-

Octanol-extracted bio-oil. The variation of extraction results was mainly caused 

by different solvent polarities and solubilities. The water solubility of 2-

Heptanol was the highest at 3.3 g/L, followed by 2-Octanol at 1.1 g/L. On the 

other hand, the 2-Octanone has the lowest water solubility which is at 0.09 g/L. 

The higher the solvent’s water solubility, the larger amount of solvent can be 

dissolved in the aqueous bio-oil, and thus resulting in lower yield of the solvent-

extracted bio-oil. Theoretically, 2-Octanone should have the highest yield as it 

is the least water-soluble solvent compared to 2-Octanol and 2-Heptanol. 

However, from Table 7-6, it is observed that 2-Octanone has the lowest solvent-

extracted bio-oil yield at 30.7 ± 0.3 %. This may be due to the absence of polar 

compounds such as acetic and formic acid in the 2-Octanone-extracted bio-oil, 

and thus resulting in a lower yield. Nevertheless, the HHV of the 2-Octanone-

extracted bio-oil was comparable to the 2-Octanol-extracted bio-oil. On the 

other hand, a small fraction of 2-Heptanol was dissolved in the aqueous phase 
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due to its higher water solubility, hence resulting in a lower solvent-extracted 

bio-oil yield and HHV.  

In addition, the performance of the solvent-extracted bio-oil was also 

compared with the results obtained from computational models reported in 

Chapter 5. In Chapter 5, the Gibbs energy and tangent plot for all the identified 

solvent-oil blend showed that the final blend should demonstrate single 

homogenous phase (Figure 5-2 and Figure 5-3). However, in this chapter, two 

distinct separated phase, which is the upper oil layer and bottom aqueous layer 

was obtained from the solvent-oil blend. This deviation from the computational 

modelling may be explained with the difference in solvent-oil blend mixing 

mechanism. In Chapter 5, the solvent-oil blend design problem was modelled 

under the assumption that the blend was mixed using mechanical agitation. 

Meanwhile, in this chapter, the solvent-oil blend was emulsified using the 

ultrasonic emulsification approach. Although this observation was unexpected, 

however the outcome is favourable. With the removal of water content as 

aqueous phase, the solvent-extracted bio-oil can now achieve higher HHV with 

lower solvent mixing ratio. Referring to Table 5-7 in Chapter 5, results from 

case study 2 shows that solvent-oil blend with HHV of 29.2 MJ/kg and 28.49 

MJ/kg can be obtained with the addition of 47 wt. % 2-Octanol and 45 wt. % of 

2-Heptanol, respectively. However, in this chapter, solvent-extracted bio-oil 

with HHV of 31.9 MJ/kg and 29.8 MJ/kg can be achieved with the addition of 

only 20 wt. % 2-Octanol and 2-Heptanol, which is around 55 % decrease in the 

amount of solvent required.  
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Table 7-6 Solvent-extracted bio-oil yields and their properties with different type of solvent 

Solvent 2-Octanol 2-Heptanol 2-Octanone 
Yield (%) 37.9 ± 1.3 35.4 ± 0.3 30.7 ± 0.3 

HHV (MJ/kg) 31.9 29.8 31.5 
pH 2.9 ± 0.1 2.8 ± 0.1 2.8 ± 0.1 

 

The FT-IR spectra of the 2-Octanol-, 2-Heptanol-, and 2-Octanone-

extracted bio-oils were shown in Figure 7-4. The transmittance peaks for 2-

Octanol- and 2-Heptanol-extracted bio-oil were alike to that of the peaks 

obtained from FT-IR of PKS bio-oil (Figure 7-3). However, the peaks for 2-

Octanone-extracted bio-oil demonstrated slight differences as compared to the 

other two solvent-extracted bio-oils. From Figure 7-4, less intense broad band 

within the range of 3200 cm-1 to 3550 cm-1 was observed for the 2-Octanone-

extracted bio-oil. The alcohol groups from 2-Octanol and 2-Heptanol 

contributed to the O-H bonds in the solvent-extracted bio-oil, and thus resulting 

in a higher intensity broad band within this range. On the other hand, peak with 

higher intensity at 1709 cm-1 was noticed for 2-Octanone-extracted bio-oil. This 

may be due to the presence of C=O bond in ketone groups, which can be 

dominantly found in the 2-Octanone solvent.  
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Figure 7-4 FT-IR spectra of solvent-extracted bio-oil with 20 wt. % of 2-Octanol, 2-Heptanol 

and 2-Octanone, respectively. 

7.4.5. Effect of Surfactant Ratio on the Stability of Solvent-

Extracted Bio-Oil/Diesel Emulsion 

Based on the results from Section 7.4.3 and 7.4.4, solvent-extracted bio-

oil with 20 wt. % of 2-Octanol demonstrated the most promising performance 

in terms of fuel functionality and extraction yield. Hence, the solvent-extracted 

bio-oil with 20 wt. % of 2-Octanol will be used for the emulsification with diesel 

fuel, with the aid of composite surfactant. Here, the diesel to surfactant ratio 

was varied to study how it affects the stability of the solvent-extracted bio-

oil/diesel emulsion. Table 7-7 shows the HHV and pH values of the generated 

solvent-extracted bio-oil/diesel emulsions at diesel to surfactant ratio of 90 : 5, 

85 : 10 and 80 : 15, respectively. The results of the emulsions’ HHV were in 

accordance with those reported by Chong et al. (2017) and Farooq et al. (2019). 

According to Table 7-7, slight increment in the HHV can be noticed with the 

increasing of diesel content. On the other hand, all three solvent-extracted bio-
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oil/diesel emulsions at different diesel to surfactant ratio demonstrated similar 

pH values.  

Table 7-7 The properties of solvent-extracted bio-oil/diesel emulsion at different diesel : 
surfactant ratio 

Diesel : Surfactant 80 : 15 85 : 10 90 : 5 
HHV (MJ/kg) 42.7 42.6 44.0 

pH 8.0 ± 0.1 8.0 ± 0.1 8.0 ± 0.1 
 

The compounds in the solvent-extracted bio-oil/diesel emulsions were 

analysed using the GC-MS. The identified compounds were grouped into 

paraffinic hydrocarbons, naphthenic hydrocarbons and fatty acid methyl esters. 

In addition, the peak area percentages of 2-Octanol and surfactant’s compounds 

were shown in Table 7-8 as well. The compounds identify under paraffinic 

hydrocarbons, naphthenic hydrocarbons and fatty acid methyl esters groups for 

all three samples were comparable to the diesel’s GC-MS result. Compounds 

related to the surfactant such as the methylene chloride and 2-chloro-2-methyl-

butane can be found in the solvent-extracted bio-oil/diesel emulsions with diesel 

to surfactant ratio of 80 : 15 and 85 : 10. However, these compounds were not 

detected in the emulsion with diesel to surfactant ratio of 90 : 5. This may be 

due to the lower amount of surfactant being added to the emulsions.  

Table 7-8 Major compound groups of solvent-extracted bio-oil/diesel emulsion with different 
diesel to surfactant ratios 

Compounds Diesel:Surfactant 
80:15 85:15 90:5 

Paraffinic Hydrocarbons (area %) 54.9 56.0 64.9 
Naphthenic Hydrocarbons (area %) 9.6 9.9 7.3 

Fatty acid methyl esters (area %) 20.6 19.2 22.1 
2-Octanol (area %) 5.0 5.1 4.8 
Surfactant (area %) 9.4 8.9 0.00 
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Accelerated aging was conducted on the emulsified fuel to assess their 

thermal stability at different diesel to surfactant ratio. Prior to the accelerated 

aging process, all the solvent-extracted bio-oil/diesel emulsions demonstrated 

homogenous single phase. Nevertheless, phase separation was observed for the 

fuel emulsions with diesel to surfactant ratio of 90 : 5 and 85 : 10 after heating 

in water bath at 80 ºC for 24 hours. In addition, the changes in the appearance 

of the fuel emulsions were observed as well. Solvent-extracted bio-oil/diesel 

emulsions with diesel to surfactant of 90 : 5 has the lighter yellowish appearance, 

indicating higher degree of solvent-extracted bio-oil’s settlement at the bottom 

of the bottle. At lower surfactant concentration, the emulsion is not stable due 

to the agglomeration of the oil droplet, thus resulting in phase separation (Jiang 

and Ellis, 2010). In contrast, the solvent-extracted bio-oil/diesel emulsions with 

diesel to surfactant of 85 : 15 were appeared to be in a darker brown, with no 

phase separation observed.  

Other than physical observations, the FT-IR spectroscopy was also used 

to examine the homogeneity and stability of solvent-extracted bio-oil diesel 

emulsions of different surfactant ratio after accelerated aging via hot water bath. 

Samples were collected from the middle fraction of aged-solvent-extracted bio-

oil diesel emulsions for FT-IR examination. Figure 7-5 illustrated the FT-IR 

spectra of the 2-Octanol-extracted bio-oil/diesel emulsions before and after 

accelerated aging, with diesel/surfactant/solvent-extracted bio-oil mixing ratio 

of 90:5:5, 85:10:5 and 80:15:5, respectively. As shown clearly in Figure 7-5, 

broad band was observed within the 3550 cm-1 to 3200 cm-1 range for all three 

of the emulsified fuels before aging. However, no broad band within the 
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abovementioned range was observed for the FT-IR spectra of the emulsified 

fuels with diesel to surfactant ratio of 90 : 5 and 85 : 10 after aging. This 

indicated the absence of alcohol groups (O-H bonds) in the middle fraction of 

the emulsified fuels, which was one of the major components of the 2-Octanol-

extracted bio-oil. The result from FT-IR further confirmed on the phase 

separation of the 2-Octanol-extracted bio-oil from the emulsified fuel. On the 

other hand, the spectra of the emulsified fuels at diesel to surfactant ratio of 80 : 

15 before and after accelerated aging overlapped with each other, indicating 

stable and homogenous 2-Octanol-extracted bio-oil/diesel emulsions with 

diesel to surfactant ratio of 80 : 15. Consequently, the diesel to surfactant ratio 

of 80 : 15 was selected as the optimum diesel to surfactant ratio in the 

emulsification process.  

 

 
Figure 7-5 FT-IR spectra of solvent-extracted bio-oil/diesel emulsion before and after 
accelerated aging at different diesel to surfactant ratio 

 

However, in this work, a higher amount of surfactants at 15 wt. % were 

required to generate a stable emulsion as compared to the other reported work. 
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For instance, a stable emulsion up to 40 days could be obtained with diesel, 

ether-extracted bio-oil and surfactant content of 90, 5, 5 wt. % respectively  

(Farooq et al., 2019). In addition, the diesel-bio-oil emulsion with 6 wt. % of 

surfactant (HLB of 7) and 4 % of co-surfactant are reported to stable up to 384 

hours with emulsifying time of 5 minutes and shear velocity of 15,000 rpm at 

40 ºC (Liu et al., 2021).  

A study by Jiang and Ellis, (2010) reported that the stability of bio-

oil/diesel emulsion depends greatly on the mixing temperature. The emulsion’s 

stability increases as the mixing temperature increases due to the decreases in 

viscosity and interfacial tension (Ostberg et al., 1995). Nevertheless, the 

stability decreases dramatically once the mixing temperature exceed 30 ºC. At 

temperature after 30 ºC, the droplets in the emulsion tend to coagulate and thus 

leads to the destabilisation of emulsion. In this study, the cavitation from the 

ultrasonication emulsification created energy which in turn created heat in the 

emulsion. Temperature up to 80 ºC was observed for the solvent-extracted bio-

oil/diesel emulsion during the ultrasonic emulsification. The high emulsion 

temperature degrades the interfacial adsorption of the surfactant, thereby 

increasing the tendency of collision and coalescences and resulted in 

deterioration in the stability of the emulsion (Chen and Tao, 2005). Thus, extra 

measurements are required to keep the emulsion at the optimal temperature 

during the ultrasonic emulsification process.  
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7.4.6. Emulsification of different solvent-extracted bio-oil with 

diesel fuel 

The fuel properties of 2-Octanol-, 2-Heptanol- and 2-Octanone-

extracted bio-oils were reported as well to verify the feasibility and applicability 

of these three solvents in upgrading the PKS bio-oil. Solvent-extracted bio-oils 

with 20 wt. % of 2-Octanol, 2-Heptanol and 2-Octanone were emulsified with 

diesel fuel at a diesel : surfactant : solvent-extracted bio-oil ratio of 80 : 15 : 5. 

The resulted HHV and pH of these emulsified fuel were shown in Table 7-9. 

Here, the compounds and its respective GC peak area percentage identified for 

different solvent-extracted bio-oil were comparable to the GC-MS results 

reported in Section 7.4.5. The complete lists of components identified can be 

found in Appendix D.  

Table 7-9 The properties of solvent-extracted bio-oil/diesel emulsion at with different solvents.  

Solvent-extracted 
bio-oil 2-Octanol 2-Heptanol 2-Octanone 

HHV (MJ/kg) 42.7 42.8 42.9 
pH 8.0 ± 0.1 8.0 ± 0.1 8.0 ± 0.1 

 

From Table 7-9, it is observed that the all three 2-Octanol-, 2-Heptanol- 

and 2-Octanone-extracted bio-oil/diesel emulsions demonstrated comparable 

HHV and pH values.  In addition, the stability and homogeneity of the fuel 

emulsions were studied as well by undergoing accelerated aging. A small 

amount of bio-oil sediments was noticed for 2-Heptanol-extracted bio-oil/diesel 

emulsions after the accelerated aging process. However, no phase separation or 

bio-oil sediment was noticed in both 2-Octanol- and 2-Octanone-extracted bio-

oil/diesel emulsion after accelerated aging process. 
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 Figure 7-6 (a), (b) and (c) demonstrated the FT-IR spectra obtained for 

2-Octanol-, 2-Heptanol-, and 2-Octanone-extracted bio-oil/diesel emulsion 

before and after the accelerated aging process. The FT-IR spectra of 2-Octanol-

extracted bio-oil/diesel emulsion before and after the accelerated aging from 

Figure 7-6 (a) overlap with each other, and hence indicating the emulsion is 

stable and demonstrated homogeneous single phase. Similar trend was also 

observed for the FT-IR spectra of 2-Octanone-extracted bio-oil/diesel emulsion 

as shown in Figure 7-6 (c). On the other hand, the FT-IR spectra of 2-Heptanol-

extracted bio-oil/diesel emulsions demonstrated slight differences before and 

after the accelerated aging process. From Figure 7-6 (b), a lower intensity of 

broad band correlated to the O-H bonds was observed for the emulsions after 

the accelerated aging process, indicating the absence of alcohol groups in the 

emulsions. This further proved that the separation and sedimentation of 2-

Heptanol-extracted bio-oil in the emulsions after accelerated aging.  

 

(a) 
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(b) 

 

(c) 

Figure 7-6 FT-IR spectra of (a) 2-Octanol- (b) 2-Heptanol- (c)2-Octanone-extracted bio-

oil/diesel emulsion before and after accelerated aging  

7.5. Conclusion 

In this chapter, ultrasonic emulsification of bio-oil and diesel, in the 

presence of solvents and composite surfactants (Tween 80 and Span 80) was 

conducted. Pyrolysis bio-oil was generated from the fast pyrolysis of palm 

kernel shell in a fixed bed tubular reactor at a temperature of 550 ºC. PKS bio-
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oil production yield of 41.7 ± 3.4 wt. % was achieved in this chapter. The HHV 

of the PKS bio-oil was obtained as 15.6 MJ/kg. Thus, further upgradation on 

the PKS bio-oil were required for downstream applications. In the view of this, 

promising solvents identified from the Chapter 4 and 5, which include the 2-

Octanol, 2-Heptanol and 2-Octanone were selected for bio-oil upgradation 

purposes. Initially, emulsification of PKS bio-oil and solvent were conducted 

with PKS bio-oil to 2-Octanol ratios at 5, 10, 15 and 20 wt. % solvent. In 

addition, the effect of different solvent type on the properties of solvent-

extracted bio-oil were also studied by emulsifying PKS bio-oil with 20 wt. % 

of 2-Octanol, 2-Heptanol and 2-Octanone. At 20 wt. % of 2-Octanol addition, 

the of solvent-extracted bio-oil’s yield of 37.9 ± 1.3 % and HHV of 31.9 MJ/kg 

was reported. Then, solvent-extracted bio-oil with 20 wt. % of 2-Octanol was 

emulsified with diesel. Two composite surfactants (Tween 80 and Span 80) with 

HLB value of 7 was used to aid the ultrasonic emulsification process. The 

emulsification of solvent-extracted bio-oil with diesel were conducted by 

varying the diesel to surfactant ratio. The optimum ratio was found to be 80 : 

15 : 5 (diesel : surfactant : solvent-extracted bio-oil). The optimised emulsion 

samples demonstrated promising quality with HHV of 44.0 and pH value of 8.0 

± 0.1. In addition, no phase separation was observed even after undergoing the 

accelerated aging process at 80 ºC for 24 hours. 
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CHAPTER 8                                                                                          

CONCLUSION  

This chapter summarises all the research works conducted for this thesis 

and provides an overview of some of the possible research directions for the 

future. Based on the identified research gaps, four research scopes were 

established in this work. The detailed discussion of the research scopes, research 

objectives and research methodology were presented in Chapter 3. The 

proposed research scopes had provided several significant contributions which 

aided in the upgradation of the pyrolysis bio-oil’s properties. Nonetheless, there 

are still a number of opportunities to extend and improve the developed 

methodology in this area of interest.   

8.1. Achievements 

The overall achievements of the research described in this thesis include 

the development of a combined computational and experimental approach in 

upgrading the properties of pyrolysis bio-oil. In this research work, pyrolysis 

bio-oil solvent which fulfils the pre-defined target properties can be designed 

using the computer-aided molecular design (CAMD) techniques. Later, the 

research work was further extended to simultaneously optimise the performance 

of solvent-oil blend in terms of economic and fuel properties using the multi-

objective optimisation (MOO) approach. Moreover, understanding that the 

pyrolysis operating condition and the characterisation of biomass feedstock are 

often related to the final properties of the pyrolysis bio-oil, hence, a rough-set 
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machine learning (RSML) approach was employed to study the correlations 

between these attributes. Lastly, an experimental work on the emulsification of 

pyrolysis bio-oil and diesel with the aid of surfactant and solvents identified 

from the previous research work was conducted. The major contributions of 

each research scope are summarised in the following paragraphs.  

In Chapter 4, a systematic multi-stage CAMD framework was 

developed to design bio-oil solvents that can fulfil multiple desired target 

properties while possessing low environmental impact. Signature-based 

molecular design techniques have been utilised to include property prediction 

models of various indexes in designing the bio-oil solvent. However, in most of 

the existing CAMD formulations, signatures with higher height had to be 

excluded from the formulation due to the combinatorial nature of molecular 

signature descriptors. Thus, the consistency rules developed in this research 

scope addressed this limitation by removing irrelevant molecular signature at a 

lower height from the building block sets. This was able to keep the CAMD 

problem in a manageable size by eliminating signatures that do not fulfil the 

consistency rule at different height. With the consistency rules, it is possible to 

consider all promising building blocks with higher-order contribution from 

group contribution (GC) and topological indexes (TI) based property prediction 

models. As a result, solvent candidate with optimum product functionality and 

environmental properties could be identified.  

Nevertheless, the research framework developed in first scope only 

guarantees that the identified solvent candidates possess optimal physical 

functionality. Other than the solvents’ physical functionality, there is also a need 
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for the designed solvent-oil blend to demonstrate promising economic 

performance to be competitive with the conventional diesel fuel. Therefore, a 

MOO approach for bio-oil solvent design has been presented in Chapter 5 to 

simultaneously consider and optimise the fuel functionality and profitability of 

the solvent-oil blend. However, in this case, the relative importance of each 

objective is fuzzy and contradict with each other in nature. Thus, an 

optimisation approach was developed by adapting the fuzzy optimisation 

algorithm into the signature based CAMD problem. Through this approach, 

optimal solvent candidates were identified by achieving near optimality for both 

objective functions without compromising on each other.  

The production and characterisation of pyrolysis bio-oil are usually 

complicated, time consuming and costly. In addition, trial-and-error processes 

were often required to select the most suitable biomass feedstock composition 

and operating condition to generate pyrolysis bio-oil of desired properties. Thus, 

a rule-based predictive model via RSML algorithms was developed in this 

Chapter 6 to estimate the pyrolysis bio-oil’s properties based on the pyrolysis 

operating condition and biomass feedstock characteristics. Being inherently 

interpretable, transparent and straightforward decision rules were generated 

from the developed RSML model. Based on the conducted case studies, the 

generated decision rules demonstrated logical sense from a scientific standpoint. 

With these decision rules, the ideal biomass feedstock compositions and 

pyrolysis operating conditions were identified via reverse engineering approach, 

to generate pyrolysis bio-oil within the targeted property range.  
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In the first three scopes, the upgradations of pyrolysis bio-oil’s 

properties were conducted via different computational approaches. However, 

the results obtained from computational studies might deviates from the 

experimental observations. Thus, an experimental methodology on pyrolysis 

bio-oil upgradation via solvent addition was presented in Chapter 7. In the 

proposed approach, the bio-oil solvents identified from Chapter 4 and 5 were 

blended into the pyrolysis bio-oil/diesel emulsion via ultrasonification 

technology. Thus, by utilising the proposed approach, stable pyrolysis bio-

oil/diesel emulsions were  generated with stability more than 15 days. To 

conclude, this thesis presented various novel computational and experimental 

approaches to upgrade the fuel and environmental characteristics of pyrolysis 

bio-oil while maximising its economic performance. 

8.2. Future works 

Other than the abovementioned achievements, some challenges and 

limitations were also encountered in the presented methodologies. The potential 

future works for further improvement and enhancement of the presented thesis  

can be summarised as below:   

8.2.1. Incorporation of sustainability aspects into CAMD solvent 

design framework  

Driven by the legislation and growing awareness towards sustainability 

issues, designing green solvents has become an increasingly important area of 

research. The incorporation of the sustainability idea into the solvent design, 

manufacturing, and value chain management to minimise the resource 

utilisation and unfavourable environmental impact is pivotal. Other than the 
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performance and economics evaluation, there is also a need to incorporate the 

environmental, health and safety hazard assessment and life cycle values into 

the CAMD design. A broadly accepted approach for the sustainability 

assessment is the life cycle assessment, where the emissions associated with all 

life cycle stages of the products was considered. The complete life cycle impact 

can be included into the CAMD framework as an index for sustainability of the 

designed solvent. Nevertheless, having a trade-off solution with high 

sustainability characteristics may come at a significant cost to the solvent’s 

profit and quality. In the view of this, there is the need to develop a systematic 

solvent design strategy to optimise the minimum deviation permitted from the 

best possible solvent’s quality and profit, while having a huge improvement in 

its’ sustainability characteristics.  

8.2.2. Development of CAMD framework that considers the 

reaction mechanisms between solvents and pyrolysis bio-oil 

Apart from the fuel functionality and environmental aspects, the reaction 

mechanisms between the solvents and bio-oil components should also be 

considered to avoid undesired side-reaction. When blending with alcohol 

solvents, several complex and simultaneous reaction equilibria occurred in the 

solvent-oil blend (Zhang et al., 2013). These potential reactions could be phenol 

alkylation, olefins hydration, esterification, isomerisation, cracking, 

oligomerisation, etc (Chin et al., 2021). For example, most of the reactions 

involving alcohol solvents produce water as by-product, which will reduce the 

heating value of the solvent-oil blend. However, blending with alkene solvents 

would result in higher viscosity due to the absence of reactions that generate 



Chapter 8 
 

 204 

water. Hence, the use of alkene-alcohol solvent mixture may be beneficial by 

compensating each other to meet the constraints on heating value and viscosity 

simultaneously. In addition, a detailed molecular dynamic simulation should be 

conducted to account for the changes of bond energies during the interaction of 

solvent candidates with constituents inside pyrolysis bio-oil.  

8.2.3. Consideration of pyrolysis process parameters for prediction 

of bio-oil properties via RSML approach 

Other than the biomass feedstock characterisation and pyrolysis 

operating temperature, the process parameters also strongly affect the yield and 

quality of the pyrolysis bio-oil due to the various chemical reactions that are 

favoured in each condition. These main parameters of pyrolysis process include 

the biomass particle size, pyrolysis heating rate, gas flow rate, holding time, 

type of catalyst used, operation mode etc. The performance and accuracy of the 

RSML prediction model can be further improved by including the above-

mentioned process parameters as attributes. In addition, the type of reactor used 

in the pyrolysis processes also affect the bio-oil production yield (Guedes et al., 

2018). Further research should also be carried out to predict other pyrolysis bio-

oil characteristics such as viscosity, oxygen content and bio-oil yield to optimise 

the pyrolysis bio-oil’s quality and product yield.  

8.2.4. Production of pyrolysis bio-oil via catalytic pyrolysis  

Aside from the non-catalytic fast pyrolysis bio-oil production route, 

catalytic fast pyrolysis is another option to generate high quality pyrolysis bio-

oil. The limitations faced in the thermal pyrolysis could be addressed via 

catalytic pyrolysis. With the addition of catalyst, the activation energy can be 
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lowered in order for the pyrolysis reaction to take place. This will also lower 

the requirement on pyrolysis operating temperature, therefore reducing energy 

consumption and process cost (Hafeez et al., 2019). Furthermore, the catalysed 

pyrolysis bio-oil often demonstrates lower oxygen content and increased 

hydrogen to carbon ratio. As a result, higher energy content can be observed in 

the pyrolysis bio-oil. The low oxygen content also reduced the acidic 

component present in pyrolysis bio-oil and thus a less corrosive nature as 

compared to non-catalytic pyrolysis oil (Dolah et al., 2021). From the techno-

economic perspective, however, there hasn’t been much research on low-cost 

catalyst with high efficiency and lifetime. The design of an optimal catalyst for 

the pyrolysis of bio-oil could be challenging, where both the lifetime and the 

selectivity of the designed catalyst towards a particular product become 

important in the design of the reaction set up (Fadillah et al., 2021). 

To conclude, these suggested future works are important in bringing a 

significant advancement in this area of research. The design of green solvent for 

pyrolysis bio-oil upgradation is possible by including the sustainability aspects 

into the solvent design framework. Furthermore, the incorporation of the 

potential reaction mechanisms between the designed solvent and bio-oil 

compounds in CAMD could avoid the occurrence of undesired side-reaction 

upon blending. In addition, the main pyrolysis process parameters should be 

taken into account in the development of the RSML prediction model to 

improve its performance and prediction accuracy. Last but not least, catalytic 

pyrolysis process could be performed to generate high quality pyrolysis bio-oil 

with lesser energy consumption and process cost.   
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APPENDIX A: CASE STUDY IN CHAPTER 4 

MATHEMATICAL FORMULATION FOR HEIGHT 1 

MODEL: 
!SGN1 = Signature at Height 1; 
!NoS = Number of Signature at Height 1; 
!MW = Molar Weight; 
!Tm = Melting Point; 
!Tb = Boiling Point; 
!Fp = Flash Point; 
!DelS = Total Solubility Parameter; 
!DelD, DelP, DelH = Hansen Solubility Parameter; 
!Tc = Critical Temperature; 
!Pc = Critical Pressure; 
!Acc = Accentric Factor; 
!CN = Cetane Number; 
!Tait1, Tait2 = Auto Ignition Temperature; 
!HHV = Higher Heating Value; 
!Val =Valency; 
!KOW = Octanol/Water Partition Coefficient; 
!NoDB = No. of Double Bond; 
!NoTB = No. of Triple Bond; 
!CI0 = 0TH Order Connectivity Index; 
 
!SGN1 = S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 
S17 S18 S19 S20 S21 S22 S23 S24; 
!SGN = C1(C) C1(O) C2(=C) C2(CC) C2(CO) C3(=CC) C3(=CO) C3(=OC) 
C3(=OO) C3(CCC) C3(CCO) C4(=C=C) C4(=C=O) C4(=CCC) C4(=CCO) 
C4(=OCC) C4(=OCO) C4(=-NC) C4(CCCC) C4(CCCO) N3(=-C) O1(C) 
O2(=C) O2(CC); 
 
SETS:  
SGN1: NoS, MW, Tm, Tb, Fp, DelS, DelD, DelP, DelH, Tc, Pc, Acc, 
CN, Tait1, Tait2, HHV, Val1, Val2, Val3, Val4, Carbon, Oxygen, 
Nitrogen, KOW, NoDB, NoTB, MMW, MV, DV, ORDER0; 
ENDSETS 
 
DATA: 
SGN1 = S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 
S17 S18 S19 S20 S21 S22 S23 S24; 
MW = 15 31 26 14 14 25 25 29 45 13 13 24 24 24 24 42 58 38 12 
12 38 17 45 29; 
Tm = 0.6953 1.3643 0.7662 0.2515 0.2515 0.1732 0.1732 3.0186 
2.0223 -0.373 -0.373 0.3928 0.3928 0.3928 0.3928 2.5232 1.6329 
3.3807 0.0256 0.0256 3.3807 2.7888 7.4042 -0.4446; 
Tb = 0.8491 1.7703 1.3621 0.7141 0.7141 1.2971 1.2971 2.5388 
2.5972 0.2924 0.2924 1.2739 1.2739 1.2739 1.2739 2.6761 2.9850 
2.8870 -0.0671 -0.0671 2.8870 2.5670 5.1108 0.8924; 
Fp = 33.0909 53.2444 6.0196 11.4107 11.4107 -15.4082 -15.4082 
72.5327 66.8687 -17.7415 -17.7416 -44.0014 -44.0014 -44.0014 -
44.0014 63.7628 46.4475 43.3055 -36.6949 -36.6949 43.3055 
87.6576 128.2650 -19.6811; 
DelS = -1.8029 -1.3922 -0.83 -0.1323 -0.1323 1.6192 1.6192 
1.4631 -0.1553 1.0139 1.0139 2.7550 2.7550 2Å.7550 2.7550 
0.7468 1.1235 4.0573 1.2449 1.2449 4.0573 3.0524 3.6819 0.5968; 
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DelD = 7.5982 7.6317 0.1956 -0.0023 -0.0023 -7.0086 -7.0086 
7.8411 7.9230 -7.5390 -7.5390 -14.6160 -14.6160 -14.6160 -
14.6160 0.5371 0.5148 -7.7575 -15.6455 -15.6455 -7.7575 8.0503 
8.4172 -7.6174; 
DelP = 2.3037 3.2154 2.3059 -0.1664 -0.1664 1.2790 1.2790 
7.8726 4.8158 -3.3851 -3.3851 -1.4590 -1.4590 -1.4590 -1.4590 
1.2706 0.2595 -0.8832 -5.1979 -5.1979 -0.8832 5.2379 3.1400 -
2.7093; 
DelH = 2.2105 3.3464 1.0623 -0.2150 -0.2150 -0.1204 -0.1204 
5.3761 6.8448 -2.6826 -2.6826 -2.9995 -2.9995 -2.9995 -2.9995 -
0.0788 2.7824 0.4757 -6.4821 -6.4821 0.4757 11.8005 7.5917 -
2.1534; 
Tc = 1.0898 5.6587 7.3554 3.4604 4.4604 10.0135 10.0135 11.2208 
11.5492 4.6659 4.6659 13.5316 13.5316 13.5316 13.5316 15.1201 
15.6198 13.0005 6.6169 6.6169 13.0005 10.1672 30.6307 5.4851; 
Pc = 0.0100 0.0133 0.0176 0.0101 0.0101 0.0170 0.0170 0.0045 
0.0083 0.0107 0.0107 0.0209 0.0209 0.0209 0.0209 0.0178 0.0223 
0.0291 0.0075 0.0075 0.0291 -0.0071 0.0060 0.0263; 
Acc = 0.0017 0.0055 0.0020 0.0019 0.0019 0.0036 0.0036 0.0079 
0.0086 0.0029 0.0029 0.0007 0.0007 0.0007 0.0007 0.008 0.0109 
0.0069 0.0008 0.0008 0.0069 0.018 0.0206 0.003; 
CN = 3.47 15.253 -2.623 4.879 4.879 -3.646 -3.646 20.867 -6.28 
-3.7 -3.7 0 0 0 0 -8.401 -12.851 0 -7.296 -7.296 0 -13.769 -
21.342 -2.696; 
Tait1 = -0.3516 -0.1637 0.0794 0.1009 0.1009 0.5499 0.5499 
0.4254 -0.3396 -0.5829 0.5829 0.8132 0.8132 0.8132 0.8132 
0.1214 0.1089 0.2795 0.6668 0.6668 0.2795 -0.1516 0.0375 
0.3381; 
Tait2 = -57.8605 -64.8653 -44.1695 2.6047 2.6047 -66.0852 -
66.0852 -30.4259 -62.1878 79.2115 79.2115 11.7928 11.7928 
11.7928 11.7928 94.507 110.1176 2.3359 95.9781 95.9781 2.3359 
32.3056 120.0741 82.8063; 
HHV = 775 643 1161 670 670 971 971 449 317 518 518 781 781 781 
781 777 782 548 431 431 548 -108 302 386; 
Val1 = 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0; 
Val2 = 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1; 
Val3 = 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0; 
Val4 = 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0; 
Carbon = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0; 
Oxygen = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1; 
Nitrogen= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0; 
KOW = 0.1152 -0.3882 0.3122 0.4594 0.4594 0.6 0.6026 -0.9687 -
0.9687 0.43 0.43 0.5563 0.5563 0.5563 0.5563 0.2663 -0.2896 -
0.0882 0.8143 0.8143 -0.0882 1.3365 -1.2021 0.1109; 
NoDB = 0 0 1 0 0 1 1 1 1 0 0 2 2 1 1 1 1 0 0 0 0 0 1 0; 
NoTB = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0; 
MMW = 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 
12 14 16 16 16; 
MV = 0.02614 0.03274 0.02697 0.01641 0.01641 0.0161 0.0161 
0.02002 0.02667 0.00711 0.00711 0.00296 0.00296 0.00296 0.00296 
0 0.03567 0 -0.0038 -0.0038 0 0.00551 0.02232 0.01799; 
DV = -1.0278 -0.6902 0.3612 0.2125 0.2125 1.4719 1.4719 -0.076 
-0.1208 1.318 1.318 0 0 0 0 2.2504 1.0292 -0.2253 2.8147 2.8147 
-0.2253 1.3057 1.143 3.6344; 
ORDER0 = 1 1 0.7071 0.7071 0.7071 0.5774 0.5774 0.5774 0.5774 
0.5774 0.5774 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4472 
0.4082 0.4082; 
ENDDATA 
 
GROUP = @SUM(SGN1:NoS); 
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!Structural Constraint 
!Handshaking Dilemma; 
!Valency of one; 
SUMVal1 = @SUM(SGN1:NoS*Val1); 
!Valency of two; 
SUMVal2 = @SUM(SGN1:NoS*Val2); 
!Valency of three; 
SUMVal3 = @SUM(SGN1:NoS*Val3); 
!Valency of four; 
SUMVal4 = @SUM(SGN1:NoS*Val4); 
!One double bond; 
DBond=@SUM(SGN1:NoS*NoDB); 
!One triple bond; 
TBond=@SUM(SGN1:NoS*NoTB); 
 
SUMVal1+2*SUMVal2+3*SUMVal3+4*SUMVal4=((GROUP+(0.5*(DBond))+TBo
nd)-1)*2; 
 
!Compliment Signature; 
!C-O = O-C; 
NoS(2)+NoS(5)+NoS(7)+NoS(9)+NoS(11)+NoS(15)+NoS(17)+NoS(20)=NoS
(22)+(2*NoS(24)); 
!C=O = O=C; 
NoS(8)+NoS(9)+NoS(13)+NoS(16)+NoS(17)=NoS(23); 
!C=N = N=C; 
NoS(18)=NoS(21); 
 
!Signature with same edges; 
!C-C; 
2*H1=(NoS(1)+(2*NoS(4))+NoS(5)+NoS(6)+NoS(8)+(3*NoS(10))+(2*NoS
(11))+(2*NoS(14))+NoS(15)+(2*NoS(16))+NoS(17)+NoS(18)+(4*NoS(19
))+(3*NoS(20))); 
 
!C=C; 
2*H2=(NoS(3)+NoS(6)+NoS(7)+(NoS(12))+NoS(13)+NoS(14)+NoS(15)); 
 
H1>0;@GIN(H1); 
H2>0;@GIN(H2); 
 
!Properties Constraint; 
!Normal Melting Point; 
!unit = K; 
SUMTm = @SUM(SGN1:NoS*Tm); 
Tmelt = @LOG(SUMTm)*147.450; 
Tmelt <= 298.15; 
 
!Normal Boiling Point; 
!unit = K; 
SUMTb = @SUM(SGN1:NoS*Tb); 
Tboil = @LOG(SUMTb)*222.543; 
Tboil >= 400; 
 
!Flash Point; 
!unit = K; 
SUMFp = @SUM(SGN1:NoS*Fp); 
Tflash = SUMFp+150.0218; 
!Total Solubility Parameter; 
!unit = MPa^0.5; 
SUMDelS = @SUM(SGN1:NoS*DelS); 
Sol = SUMDelS+20.7339; 
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!Hansen Solubility Parameter; 
!unit = MPa^0.5; 
SUMDelD = @SUM(SGN1:NoS*DelD); 
SUMDelP = @SUM(SGN1:NoS*DelP); 
SUMDelH = @SUM(SGN1:NoS*DelH); 
SUMD = @SQR(SUMDelD); 
SUMP = @SQR(SUMDelP); 
SUMH = @SQR(SUMDelH); 
Sp = @SQRT(SUMD+SUMP+SUMH); 
 
!Molar Volume; 
SUMMV = @SUM(SGN1:NoS*MV); 
MolarVolume = (SUMMV+0.01211);  
 
!Density; 
Density = (SUMMW/MolarVolume); 
Density > 750; 
Density < 1000; 
 
!Critical Temperature; 
!unit = K; 
SUMTc = @SUM(SGN1:NoS*Tc); 
Tcrit = @LOG(SUMTc)*181.6738; 
 
!Critical Pressure; 
!unit = bar; 
SUMPc = @SUM(SGN1:NoS*Pc); 
SUMPca = SUMPc+0.1155; 
SUMPcb = 1/SUMPca; 
Pcrit = ((SUMPcb^2)+0.0519); 
 
!Acentric Factor; 
SUMAcc = @SUM(SGN1:NoS*Acc); 
AccFac = ((@LOG(SUMAcc+1.0039))^(1/0.0447))*0.9132; 
 
!Vapour Pressure; 
!unit = atm; 
Tr = Tboil/Tcrit; 
@FREE(Z0);@FREE(Z1);@FREE(lnPr); 
Z0 = 5.92714-(6.09648/Tr)-
(1.28862*(@LOG(Tr)))+(0.169347*(Tr^6)); 
Z1 = 15.2518-(15.6875/Tr)-
(13.4721*(@LOG(Tr)))+(0.43577*(Tr^6)); 
lnPr = Z0+(AccFac*Z1); 
Psat = @EXP(lnPr)*Pcrit; 
Psat > 0.01; 
 
!Auto Ignition Temperature; 
!unit = K; 
SUMTait1 = @SUM(SGN1:NoS*Tait1); 
SUMTait2 = @SUM(SGN1:NoS*Tait2); 
Tauto = (71.2584*(10^-(SUMTait1)))+525.93+SUMTait2; 
Tauto >= 500; 
 
!Higher Heating Value; 
!unit = MJ/kg; 
MAX = HHVs; 
SUMHHV = @SUM(SGN1:NoS*HHV); 
SUMMW = @SUM(SGN1:NoS*MW); 
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HHVs = SUMHHV/SUMMW; 
HHVs > 30; 
 
!Dynamic Viscosity; 
SUMDV = @SUM(SGN1:NoS*DV); 
DynVis = @EXP(SUMDV); 
 
!Kinematics Viscosity; 
KV = DynVis/Density*1000; 
KV < 5; 
KV > 1; 
 
!Environmental Properties; 
!0th Order Connectivity Index; 
CI0=@SUM(SGN1:NoS*ORDER0); 
 
!Octanol/Water Partition Coefficient; 
SUMKOW = @SUM(SGN1:NoS*KOW); 
logKow = SUMKOW+0.7520; 
expkow = @exp(SUMKOW); 
 
!MMW; 
SUMMMW = @SUM(SGN1:NoS*MMW); 
 
!No of Atoms; 
NoC = @SUM(SGN1:NoS*Carbon); 
NoO = @SUM(SGN1:NoS*Oxygen); 
NoN = @SUM(SGN1:NoS*Nitrogen); 
 
!Acute Toxicity, LC50; 
LC50a = NoC*(0.246449); 
LC50b = NoO*(-0.21041); 
LC50c = NoN*(-0.02395); 
LC50d = LC50a+LC50b+LC50c; 
LC50e = 0.253883*CI0; 
LC50 = -LC50d-LC50e+2.9717; 
@FREE(LC50a);@FREE(LC50b);@FREE(LC50c);@FREE(LC50d);@FREE(LC50e
);@FREE(LC50); 
LC50 > 1.041; 
 
!Acute Toxicity, Aquatic, EC50; 
EC50a = 0.95*logKow; 
EC50 = EC50a+1.32; 
@FREE(EC50a);@FREE(EC50); 
EC50 > 1.041; 
 
!Acute Toxicity, Oral, LD50; 
LD50a = NoC*(0.052218); 
LD50b = NoO*(0.004962); 
LD50c = LD50a+LD50b; 
LD50d = 0.018103*CI0; 
LD50 = -1.9372-(0.0016*SUMMW)-LD50c-LD50d; 
@FREE(LD50a);@FREE(LD50b);@FREE(LD50c);@FREE(LD50d);@FREE(LD50)
; 
!LD50 > 3.7; 
 
!Ozone Depletion Potential; 
ODPa = NoC*(-1.59188); !-1.59188; 
ODPb = NoO*(-3.62951); !-3.62951; 
ODPc = ODPa+ODPb; 
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ODPd = 8.967731*CI0; 
ODP = ODPd+ODPc+3.298083; !logODP; 
@FREE(ODPa);@FREE(ODPb);@FREE(ODPc);@FREE(ODPd);@FREE(ODP); 
 
!Global Warming Potential; 
GWPa = NoO*(0.424024); 
GWPb = NoC*(-3.05993); 
GWPc = GWPa+GWPb; 
GWPd = (-0.01877)*CI0; 
GWP = GWPc+GWPd-0.52073; !logGWP; 
@FREE(GWPa);@FREE(GWPb);@FREE(GWPc);@FREE(GWPd);@FREE(GWP); 
 
!Photochemical Oxidation Potential; 
PCOa = NoO*(0.126631); 
PCOb = NoN*(0.09317); 
PCOc = NoC*(-0.03181); 
PCOd = PCOa+PCOb+PCOc; 
PCOe = -0.10486*CI0; 
PCO = -PCOd-PCOe+0.25708; !-logPCO; 
@FREE(PCOa);@FREE(PCOb);@FREE(PCOc);@FREE(PCOd);@FREE(PCOe);@FR
EE(PCO); 
 
!Relative Toxicity, IGC50; 
logIGCa = 0.723*0.14*logKow; 
logIGCb = 1.79*0.031; 
logIGC = logIGCa-logIGCb; 
@FREE(logIGCa);@FREE(logIGCb);@FREE(logIGC); 
 
!Bioconcentration Factor; 
logBCF = logKow-1.32; 
@FREE(logBCF); 
logBCF <= 3; 
 
!Soil/water Partition Coefficient, Koc; 
logKoca = 1.03*logKow; 
logKoc = logKoca-0.61; 
@FREE(logKoca);@FREE(logKoc); 
!logKoc < 4.5; 
logKoc > 3; 
 
@FOR(SGN1:@GIN(NoS)); 

 

 

MATHEMATICAL FORMULATION FOR HEIGHT 2 

MODEL: 
!SGN2 = Signature at height 2; 
!NoS = Number of Signature height 2; 
!MW = Molar Weight; 
!Tm = Melting Point; 
!Tb = Boiling Point; 
!Fp = Flash Point; 
!DelS = Total Solubility Parameter; 
!DelD, DelP, DelH = Hansen Solubility Parameter; 
!Tc = Critical Temperature; 
!Pc = Critical Pressure; 
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!Acc = Accentric Factor; 
!CN = Cetane Number; 
!Tait1, Tait2 = Auto Ignition Temperature; 
!HHV = Higher Heating Value; 
!Val =Valency; 
!KOW = Octanol/Water Partition Coefficient; 
!CI0 = 0TH Order Connectivity Index; 
!CI1 = 1ST Order Connectivity Index; 
 
 
SETS:  
SGN2: NoS, MW, Tm, Tb, Fp, DelS, DelD, DelP, DelH, Tc, Pc, Acc, 
CN, Tait1, Tait2, HHV, Carbon, Oxygen, Hydrogen, KOW, MMW, 
ORDER0, ORDER1, MV, DV, VAL1, VAL2, VAL3; 
ENDSETS 
 
 
DATA: 
SGN2 = M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 
M17; 
MW = 15 15 15 14 14 14 14 14 14 14 14 14 13 13 13 17 17; 
Tm = 0.6953 0.6953 0.6953 0.2515 0.2515 0.2515 0.2515 0.2515 
0.2515 0.2515 0.2515 0.2515 -0.373 -0.373 -0.373 2.7888 2.7888; 
Tb = 0.8491 0.8491 0.8491 0.7141 0.7141 0.7141 0.7141 0.7141 
0.7141 0.7141 0.7141 0.7141 0.2924 0.2924 0.2924 2.567 2.567; 
Fp = 33.0909 33.0909 33.0909 11.4107 11.4107 11.4107 11.4107 
11.4107 11.4107 11.4107 11.4107 11.4107 -17.7416 -17.7416 -
17.7416 87.6576 87.6576; 
DelS = -1.8029 -1.8029 -1.8029 -0.1323 -0.1323 -0.1323 -0.1323 
-0.1323 -0.1323 -0.1323 -0.1323 -0.1323 1.0139 1.0139 1.0139 
3.0524 3.0524; 
DelD = 7.5983 7.5983 7.5983 -0.0023 -0.0023 -0.0023 -0.0023 -
0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -7.539 -7.539 -7.539 
8.0503 8.0503; 
DelP = 2.3037 2.3037 2.3037 -0.1664 -0.1664 -0.1664 -0.1664 -
0.1664 -0.1664 -0.1664 -0.1664 -0.1664 -3.3851 -3.3851 -3.3851 
5.2379 5.2379; 
DelH = 2.2105 2.2105 2.2105 -0.215 -0.215 -0.215 -0.215 -0.215 
-0.215 -0.215 -0.215 -0.215 -2.6826 -2.6826 -2.6826 11.8005 
11.8005; 
Tc = 1.0898 1.0898 1.0898 3.4604 3.4604 3.4604 3.4604 3.4604 
3.4604 3.4604 3.4604 3.4604 4.6659 4.6659 4.6659 10.1672 
10.1672; 
Pc = 0.01 0.01 0.01 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 
0.0101 0.0101 0.0101 0.0107 0.0107 0.0107 -0.0071 -0.0071; 
Acc = 0.0017 0.0017 0.0017 0.0019 0.0019 0.0019 0.0019 0.0019 
0.0019 0.0019 0.0019 0.0019 0.0029 0.0029 0.0029 0.018 0.018; 
CN = 3.49 3.49 3.49 4.879 4.879 4.879 4.879 4.879 4.879 4.879 
4.879 4.879 -3.7 -3.7 -3.7 -13.769 -13.769; 
Tait1 = -0.3516 -0.3516 -0.3516 0.1009 0.1009 0.1009 0.1009 
0.1009 0.1009 0.1009 0.1009 0.1009 0.5829 0.5829 0.2859 -0.1516 
-0.1516; 
Tait2 = -57.8605 -57.8605 -57.8605 2.6047 2.6047 2.6047 2.6047 
2.6047 2.6047 2.6047 2.6047 2.6047 79.2115 79.2115 79.2115 
32.3056 32.3056; 
HHV = 775 775 775 670 670 670 670 670 670 670 670 670 518 518 
518 -108 -108; 
Carbon = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0; 
Oxygen = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1; 
Hydrogen = 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1; 
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KOW = 0.1152 0.1152 0.1152 0.4594 0.4594 0.4594 0.4594 0.4594 
0.4594 0.4594 0.4594 0.4594 0.43 0.43 0.43 -1.3365 -1.3365; 
ORDER0 = 1 1 1 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 
0.7071 0.7071 0.5774 0.5774 0.5774 0.4472 0.4471; 
ORDER1 = 0.5774 0.7071 0.7071 1.2071 1.2071 1.1154 1 1 0.9082 
0.9082 1.4142 1.2071 1.4129 1.2438 1.0747 0.3162 0.2582; 
MMW = 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 16 16; 
MV = 0.02614 0.02614 0.02614 0.01641 0.01641 0.01641 0.01641 
0.01641 0.01641 0.01641 0.01641 0.01641 0.00711 0.00711 0.00711 
0.00551 0.00551; 
DV = -1.0278 -1.0278 -1.0278 0.2125 0.2125 0.2125 0.2125 0.2125 
0.2125 0.2125 0.2125 0.2125 1.318 1.318 1.318 1.3057 1.3057; 
Val1 = 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1; 
Val2 = 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0; 
Val3 = 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0; 
 
ENDDATA 
 
GROUP = @SUM(SGN2:NoS); 
GROUP > 5; 
GROUP < 30; 
 
NoS(1)=NoS(13)*2+NoS(14); 
NoS(2)=NoS(4)+NoS(5)+NoS(6); 
NoS(3)=NoS(11); 
NoS(6)+NoS(9)+NoS(10)=NoS(14)+NoS(15)*2; 
NoS(12)=NoS(5)+NoS(8)+NoS(10); 
NoS(16)=NoS(11)+NoS(12); 
NoS(17)=NoS(13)+NoS(14)+NoS(15); 
 
2*NoS(7) < NoS(4)+NoS(7)+NoS(8)+NoS(9); 
 
NoS(4)+2*NoS(7)+NoS(8)+NoS(9)=2*H1; 
H1>0;@GIN(H1); 
 
!Structural Constraint 
!Handshaking Dilemma; 
!Valency of one; 
SUMVal1 = @SUM(SGN2:NoS*Val1); 
!Valency of two; 
SUMVal2 = @SUM(SGN2:NoS*Val2); 
!Valency of three; 
SUMVal3 = @SUM(SGN2:NoS*Val3); 
 
SUMVal1+2*SUMVal2+3*SUMVal3=(GROUP-1)*2; 
 
!Properties Constraint; 
!Normal Melting Point; 
!unit = K; 
SUMTm = @SUM(SGN2:NoS*Tm); 
Tmelt = @LOG(SUMTm)*147.450; 
Tmelt <= 298.15; 
 
!Normal Boiling Point; 
!unit = K; 
SUMTb = @SUM(SGN2:NoS*Tb); 
Tboil = @LOG(SUMTb)*222.543; 
Tboil >= 400; 
 
!Flash Point; 
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!unit = K; 
SUMFp = @SUM(SGN2:NoS*Fp); 
Tflash = SUMFp+150.0218; 
!Tflash >= 403.15; 
 
!Total Solubility Parameter; 
!unit = MPa^0.5; 
SUMDelS = @SUM(SGN2:NoS*DelS); 
Sol = SUMDelS+20.7339; 
 
!Hansen Solubility Parameter; 
!unit = MPa^0.5; 
SUMDelD = @SUM(SGN2:NoS*DelD); 
SUMDelP = @SUM(SGN2:NoS*DelP); 
SUMDelH = @SUM(SGN2:NoS*DelH); 
SUMD = @SQR(SUMDelD); 
SUMP = @SQR(SUMDelP); 
SUMH = @SQR(SUMDelH); 
Sp = @SQRT(SUMD+SUMP+SUMH); 
 
!Molar Volume; 
SUMMV = @SUM(SGN2:NoS*MV); 
MolarVolume = (SUMMV+0.01211);  
 
!Density; 
Density = (SUMMW/MolarVolume); 
Density > 750; 
Density < 1000; 
 
!Critical Temperature; 
!unit = K; 
SUMTc = @SUM(SGN2:NoS*Tc); 
Tcrit = @LOG(SUMTc)*181.6738; 
 
!Critical Pressure; 
!unit = bar; 
SUMPc = @SUM(SGN2:NoS*Pc); 
SUMPca = SUMPc+0.1155; 
SUMPcb = 1/SUMPca; 
Pcrit = ((SUMPcb^2)+0.0519); 
 
!Acentric Factor; 
SUMAcc = @SUM(SGN2:NoS*Acc); 
AccFac = ((@LOG(SUMAcc+1.0039))^(1/0.0447))*0.9132; 
 
!Vapour Pressure; 
!unit = atm; 
Tr = Tboil/Tcrit; 
@FREE(Z0);@FREE(Z1);@FREE(lnPr); 
Z0 = 5.92714-(6.09648/Tr)-
(1.28862*(@LOG(Tr)))+(0.169347*(Tr^6)); 
Z1 = 15.2518-(15.6875/Tr)-
(13.4721*(@LOG(Tr)))+(0.43577*(Tr^6)); 
lnPr = Z0+(AccFac*Z1); 
Psat = @EXP(lnPr)*Pcrit; 
Psat > 0.01; 
 
!Auto Ignition Temperature; 
!unit = K; 
SUMTait1 = @SUM(SGN2:NoS*Tait1); 
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SUMTait2 = @SUM(SGN2:NoS*Tait2); 
Tauto = (71.2584*(10^-(SUMTait1)))+525.93+SUMTait2; 
!Tauto >= 500; 
 
!Higher Heating Value; 
!unit = MJ/kg; 
MAX = HHVs; 
SUMHHV = @SUM(SGN2:NoS*HHV); 
SUMMW = @SUM(SGN2:NoS*MW); 
HHVs = SUMHHV/SUMMW; 
HHVs > 30; 
 
!Dynamic Viscosity; 
SUMDV = @SUM(SGN2:NoS*DV); 
DynVis = @EXP(SUMDV); 
 
!Kinematics Viscosity; 
KV = DynVis/Density*1000; 
KV < 5; 
KV > 1; 
 
!Environmental Properties; 
!0th Order Connectivity Index; 
CI0 = @SUM(SGN2:NoS*ORDER0); 
CI1 = @SUM(SGN2:NoS*ORDER1); 
 
!Octanol/Water Partition Coefficient; 
SUMKOW = @SUM(SGN2:NoS*KOW); 
logKow = SUMKOW+0.7520; 
expkow = @exp(SUMKOW); 
 
!MMW; 
SUMMMW = @SUM(SGN2:NoS*MMW); 
 
!No of Atoms; 
NoC = @SUM(SGN2:NoS*Carbon); 
NoO = @SUM(SGN2:NoS*Oxygen); 
NoH = @SUM(SGN2:NoS*Hydrogen); 
 
!Connectivity Index; 
CI0 = @SUM(SGN2:NoS*ORDER0); 
CI1 = @SUM(SGN2:NoS*ORDER1); 
 
!Acute Toxicity, LC50; 
LC50a = NoC*(0.246449); 
LC50b = NoO*(-0.21041); 
LC50c = NoH*(-0.01047); 
LC50d = LC50a+LC50b+LC50c; 
LC50e = 0.243883*(CI0); 
LC50f = 2*0.024195*(CI1); 
LC50 = -LC50d-LC50e-LC50f+2.9717; 
@FREE(LC50a);@FREE(LC50b);@FREE(LC50c);@FREE(LC50d);@FREE(LC50e
);@FREE(LC50f);@FREE(LC50); 
!LC50 > 1.041; 
 
!Acute Toxicity, Aquatic, EC50; 
EC50a = 0.95*logKow; 
EC50 = EC50a+1.32; 
@FREE(EC50a);@FREE(EC50); 
EC50 > 1.041; 
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!Acute Toxicity, Oral, LD50; 
LD50a = NoC*(-0.052218); 
LD50b = NoO*(0.004962); 
LD50c = NoH*(-0.01047); 
LD50d = LD50a+LD50b+LD50c; 
LD50e = 0.018103*CI0; 
LD50f = 2*(-0.02677)*CI1; 
LD50 = 1.9372+0.0016*SUMMW-LD50d-LD50e-LD50f; 
@FREE(LD50a);@FREE(LD50b);@FREE(LD50c);@FREE(LD50d);@FREE(LD50e
);@FREE(LD50f);@FREE(LD50); 
!LD50 > 3.7; 
 
!Ozone Depletion Potential; 
ODPa = NoC*(-1.59188); !-1.59188; 
ODPb = NoO*(-3.62951); !-3.62951; 
ODPc = NoH*(-3.37822); 
ODPd = ODPa+ODPb+ODPc; 
ODPe = 8.967731*CI0; 
ODPf = 2*0.22623*CI1; 
ODP = ODPd+ODPe+ODPf+3.298083; !logODP; 
@FREE(ODPa);@FREE(ODPb);@FREE(ODPc);@FREE(ODPd);@FREE(ODPe);@FR
EE(ODPf);@FREE(ODP); 
 
!Global Warming Potential; 
GWPa = NoO*(0.424024); 
GWPb = NoC*(-3.05993); 
GWPc = NoH*(1.67752); 
GWPd = GWPa+GWPb+GWPc; 
GWPe = (-0.01877)*CI0; 
GWPf = 2*(-1.52848)*CI1; 
GWP = GWPd+GWPe+GWPf-0.52073; !logGWP; 
@FREE(GWPa);@FREE(GWPb);@FREE(GWPc);@FREE(GWPd);@FREE(GWPe);@FR
EE(GWPf);@FREE(GWP); 
 
!Photochemical Oxidation Potential; 
PCOa = NoO*(0.126631); 
PCOb = NoH*(0.079188); 
PCOc = NoC*(-0.03181); 
PCOd = PCOa+PCOb+PCOc; 
PCOe = -0.10486*CI0; 
PCOf = 2*0.005087*CI1; 
PCO = -PCOd-PCOe-PCOf+0.25708; !logPCO; 
@FREE(PCOa);@FREE(PCOb);@FREE(PCOc);@FREE(PCOd);@FREE(PCOe);@FR
EE(PCOf);@FREE(PCO); 
 
!Relative Toxicity, IGC50; 
logIGCa = 0.723*0.14*logKow; 
logIGCb = 1.79*0.031; 
logIGC = logIGCa-logIGCb; 
@FREE(logIGCa);@FREE(logIGCb);@FREE(logIGC); 
 
!Bioconcentration Factor; 
logBCF = logKow-1.32; 
@FREE(logBCF); 
logBCF <= 3; 
 
!Soil/water Partition Coefficient, Koc; 
logKoca = 1.03*logKow; 
logKoc = logKoca-0.61; 
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@FREE(logKoca);@FREE(logKoc); 
!logKoc < 4.5; 
!LogKoc > 3; 
 
@FOR(SGN2:@GIN(NoS)); 
 
 

MATHEMATICAL FORMULATION FOR HEIGHT 3 

MODEL: 
!SGN3 = Signature at Height 3; 
!NoS = Number of Signature; 
!MW = Molar Weight; 
!Tm = Melting Point; 
!Tb = Boiling Point; 
!Fp = Flash Point; 
!DelS = Total Solubility Parameter; 
!DelD, DelP, DelH = Hansen Solubility Parameter; 
!Tc = Critical Temperature; 
!Pc = Critical Pressure; 
!Acc = Accentric Factor; 
!CN = Cetane Number; 
!Tait1, Tait2 = Auto Ignition Temperature; 
!HHV = Higher Heating Value; 
!Val =Valency; 
!KOW = Octanol/Water Partition Coefficient; 
!CI0 = 0TH Order Connectivity Index; 
!CI1 = 1ST Order Connectivity Index; 
!CI2 = 2ND Order Connectivity Index; 
!WI = WIENER INDEX; 
!DV = DYNAMIC VISCOSITY; 
!KV = KINEMATIC VISCOSITY; 
 
SETS:  
SGN3: NoS, MW1, MW2, Tm1, Tm2, Tb1, Tb2, Fp1, Fp2, DelS1, 
DelS2, DelD1, DelD2, DelP1, DelP2, DelH1, DelH2, Tc1, Tc2, Pc1, 
Pc2, Acc1, Acc2, CN1, CN2, Tait11, Tait12, Tait21, Tait22, 
KOW1, KOW2, HHV, Carbon, Oxygen, Hydrogen, MMW, ORDER0, ORDER1, 
ORDER2, ORDER3, Val1, Val2, Val3, WI, MV1, MV2, DV1, DV2, CH, 
CH2, CH3; 
ENDSETS 
 
DATA: 
SGN3 = T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14; 
MW1 = 15 15 14 14 14 14 14 14 14 14 14 14 13 17; 
MW2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 30; 
Tm1 = 0.6953 0.6953 0.2515 0.2515 0.2515 0.2515 0.2515 0.2515 
0.2515 0.2515 0.2515 0.2515 -0.373 2.7888; 
Tm2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.3489; 
Tb1 = 0.8491 0.8491 0.7141 0.7141 0.7141 0.7141 0.7141 0.7141 
0.7141 0.7141 0.7141 0.7141 0.2925 2.567; 
Tb2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2825; 
Fp1 = 33.0909 33.0909 11.4107 11.4107 11.4107 11.4107 11.4107 
11.4107 11.4107 11.4107 11.4107 11.4107 -17.7416 87.6576; 
Fp2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 3.2443; 
DelS1 = -1.8029 -1.8029 -0.1323 -0.1323 -0.1323 -0.1323 -0.1323 
-0.1323 -0.1323 -0.1323 -0.1323 -0.1323 1.0139 3.0524; 
DelS2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4165; 



Appendix A 
 

 272 

DelD1 = 7.5983 7.5983 -0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -
0.0023 -0.0023 -0.0023 -0.0023 -0.0023 -7.539 8.0503; 
DelD2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0394; 
DelP1 = 2.3037 2.3037 -0.1664 -0.1664 -0.1664 -0.1664 -0.1664 -
0.1664 -0.1664 -0.1664 -0.1664 -0.1664 -3.3851 5.2379; 
DelP2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1176; 
DelH1 = 2.2105 2.2105 -0.215 -0.215 -0.215 -0.215 -0.215 -0.215 
-0.215 -0.215 -0.215 -0.215 -2.6826 11.8005; 
DelH2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6216; 
Tc1 = 1.0898 1.0898 3.4604 3.4604 3.4604 3.4604 3.4604 3.4604 
3.4604 3.4604 3.4604 3.4604 4.6659 10.1672; 
Tc2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.5693; 
Pc1 = 0.01 0.01 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 
0.0101 0.0101 0.0101 0.0101 0.0107 -0.0071; 
Pc2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0.001; 
Acc1 = 0.0017 0.0017 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 
0.0019 0.0019 0.0019 0.0019 0.0029 0.018; 
Acc2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0004; 
CN1 = 3.49 3.49 4.879 4.879 4.879 4.879 4.879 4.879 4.879 4.879 
4.879 4.879 -3.7 -13.769; 
CN2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.507; 
Tait11 = -0.3516 -0.3516 0.1009 0.1009 0.1009 0.1009 0.1009 
0.1009 0.1009 0.1009 0.1009 0.1009 0.5829 -0.1516; 
Tait12 = 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2087; 
Tait21 = -57.8605 -57.8605 2.6047 2.6047 2.6047 2.6047 2.6047 
2.6047 2.6047 2.6047 2.6047 2.6047 79.2115 32.3056; 
Tait22 = 0 0 0 0 0 0 0 0 0 0 0 0 0 -46.5762; 
HHV = 775 775 670 670 670 670 670 670 670 670 670 670 518 -108; 
CARBON = 1 1 1 1 1 1 1 1 1 1 1 1 1 0; 
OXYGEN = 0 0 0 0 0 0 0 0 0 0 0 0 0 1; 
HYDROGEN= 3 3 2 2 2 2 2 2 2 2 2 2 1 1; 
ORDER0 = 1 1 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 0.7071 
0.7071 0.7071 0.7071 0.5774 0.4472; 
ORDER1 = 0.5774 0.7071 1.2071 1.2071 1 1 1 1 1 1 0.9082 0.9082 
1.2438 0.2582; 
ORDER2 = 1.2438 1.2071 0 1.2071 0 0 1.5607 0 1.4142 1.3493 0 
1.5866 1.0068 0.5562; 
ORDER3 = 1.0068 1.2071 0 1.9571 0 0 1.8536 0 2.0577 2.1219 0 
1.6660 1.9553 0.4502; 
MMW = 12 12 12 12 12 12 12 12 12 12 12 12 12 16; 
Val1 = 1 1 0 0 0 0 0 0 0 0 0 0 0 1; 
Val2 = 0 0 1 1 1 1 1 1 1 1 1 1 0 0; 
Val3 = 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 
MV1 = 0.0261 0.0261 0.0164 0.0164 0.0164 0.0164 0.0164 0.0164 
0.0164 0.0164 0.0164 0.0164 0.0071 0.0055; 
MV2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0009; 
DV1 = -1.0278 -1.0278 0.2125 0.2125 0.2125 0.2125 0.2125 0.2125 
0.2125 0.2125 0.2125 0.2125 1.3180 1.3057; 
DV2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2116; 
CH = 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 
CH2 = 0 0 1 1 1 1 1 1 1 1 1 1 0 0; 
CH3 = 1 1 0 0 0 0 0 0 0 0 0 0 0 0; 
ENDDATA 
 
NoCH = @SUM(SGN3:NoS*CH); 
NoCH2 = @SUM(SGN3:NoS*CH2); 
NoCH3 = @SUM(SGN3:NoS*CH3); 
SUMCgrp = NoCH2+NoCH3-NoCH; 
MAX = SUMCgrp; 
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GROUP = @SUM(SGN3:NoS); 
GROUP > 5; 
GROUP < 30; 
 
NoS(14) > 0; 
 
NoS(1) = NoS(13); 
NoS(2) = NoS(3)+NoS(4)+NoS(5); 
NoS(4) = 2*NoS(6)+NoS(7)+NoS(8); 
NoS(11) = NoS(5); 
NoS(12) = NoS(8)+NoS(10); 
NoS(13) = NoS(11)+NoS(12); 
NoS(14) = NoS(13); 
 
NoS(7)+2*NoS(9)+NoS(10)=2*H1; 
@GIN(H1); H1>0; 
 
2*NoS(9) < NoS(7)+NoS(9)+NoS(10); 
 
!Edges constraint: 
!Valency of one; 
SUMVal1 = @SUM(SGN3:NoS*Val1); 
!Valency of two; 
SUMVal2 = @SUM(SGN3:NoS*Val2); 
!Valency of three; 
SUMVal3 = @SUM(SGN3:NoS*Val3); 
SUMVal1+2*SUMVal2+3*SUMVal3=(GROUP-1)*2; 
 
!Properties Constraint; 
!Normal Melting Point; 
!unit = K; 
SUMTm1 = @SUM(SGN3:NoS*Tm1); 
SUMTm2 = @SUM(SGN3:NoS*Tm2); 
@FREE(SUMTm2); 
SUMTm = SUMTm1+SUMTm2; 
SUMTm <=7.55; 
 
!Normal Boiling Point; 
!unit = K; 
SUMTb1 = @SUM(SGN3:NoS*Tb1); 
SUMTb2 = @SUM(SGN3:NoS*Tb2); 
@FREE(SUMTb2); 
SUMTb = SUMTb1+SUMTb2; 
SUMTb >= 6.034; 
 
!Flash Point; 
!unit = K; 
SUMFp1 = @SUM(SGN3:NoS*Fp1); 
SUMFp2 = @SUM(SGN3:NoS*Fp2); 
@FREE(SUMFp2); 
SUMFp = SUMFp1+SUMFp2; 
Tflash = SUMFp+150.0218; 
 
!Molar Volume; 
SUMMV1 = @SUM(SGN3:NoS*MV1); 
SUMMV2 = @SUM(SGN3:NoS*MV2); 
@FREE(SUMMV2); 
SUMMV = SUMMV1+SUMMV2; 
MV = (SUMMV+0.01211);  
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!Density; 
Density = (SUMMW/MV); 
 
!Vapour Pressure; 
!unit = mmhg; 
Psata = (Tboil/298.15)^1.7; 
Psatb = 2.7*Psata; 
Psat = 5.58-Psatb; 
Psat < 76;  
 
!Higher Heating Value; 
!unit = MJ/kg; 
SUMHHV = @SUM(SGN3:NoS*HHV); 
SUMMW = @SUM(SGN3:NoS*MW1); 
HHVs = SUMHHV/SUMMW; 
 
!Dynamic Viscosity; 
SUMDV1 = @SUM(SGN3:NoS*DV1); 
SUMDV2 = @SUM(SGN3:NoS*DV2); 
@FREE(SUMDV2); 
DV = SUMDV1+SUMDV2; 
DV <=1.44; 
 
!MMW; 
SUMMMW = @SUM(SGN3:NoS*MMW); 
 
!No of Atoms; 
NoC = @SUM(SGN3:NoS*Carbon); 
NoO = @SUM(SGN3:NoS*Oxygen); 
NoH = @SUM(SGN3:NoS*Hydrogen); 
 
!Connectivity Index; 
CI0 = @SUM(SGN3:NoS*ORDER0); 
CI1 = @SUM(SGN3:NoS*ORDER1); 
CI2 = @SUM(SGN3:NoS*ORDER2); 
CI3 = @SUM(SGN3:NoS*ORDER3); 
 
!Octanol/Water Partition Coefficient; 
!logKow = 1.297+0.539*(CI1); 
logKow = 1.267*CI1+0.612*CI3-0.976*CI3-2.13; 
Kow = 10^logKow; 
 
!Acute Toxicity, LC50; 
LC50a=0.81*logKow+1.744; 
LC50b=1/LC50a; 
LC50=10^(LC50b)*SUMMW*1000; 
@FREE(LC50a);@FREE(LC50b);@FREE(LC50); 
LC50 > 11; 
 
!Acute Toxicity, Aquatic, EC50; 
EC50a = 0.95*logKow; 
EC50 = EC50a+1.32; 
@FREE(EC50a);@FREE(EC50); 
EC50 > 2; 
 
!Acute Toxicity, Oral, LD50; 
LD50a=0.805*logKow; 
LD50b=0.0807*Kow+1; 
LD50c=@LOG(LD50b); 
LD50d=0.971*LD50c; 
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LD50e=LD50a-LD50d+0.984; 
LD50f=1/LD50e; 
LD50=10^(LD50f)*SUMMW*1000; 
LD50>100; 
@FREE(LD50a);@FREE(LD50b);@FREE(LD50c);@FREE(LD50d);@FREE(LD50e
);@FREE(LD50f);@FREE(LD50); 
 
!Relative Toxicity, IGC50; 
logIGCa = 0.723*0.14*logKow; 
logIGCb = 1.79*0.031; 
logIGC = logIGCa-logIGCb; 
@FREE(logIGCa);@FREE(logIGCb);@FREE(logIGC); 
 
!Bioconcentration Factor; 
logBCF=0.032+0.636*logKow; 
logBCF <= 3; 
 
!Soil/water Partition Coefficient, Koc; 
logKoc=0.59*CI1-0.97; 
logKoc < 4; 
 
!Ozone Depletion Potential; 
ODPa = NoC*(-1.59188); 
ODPb = NoO*(-3.62951);  
ODPc = NoH*(-3.37822); 
ODPd = ODPa+ODPb+ODPc; 
ODPe = 8.967731*CI0; 
ODPf = 2*0.22623*CI1; 
ODP = ODPd+ODPe+ODPf+3.298083; !logODP; 
@FREE(ODPa);@FREE(ODPb);@FREE(ODPc);@FREE(ODPd);@FREE(ODPe);@FR
EE(ODPf);@FREE(ODP); 
ODP < 0; 
 
!Global Warming Potential; 
GWPa = NoO*(0.424024); 
GWPb = NoC*(-3.05993); 
GWPc = NoH*(1.67752); 
GWPd = GWPa+GWPb+GWPc; 
GWPe = (-0.01877)*CI0; 
GWPf = 2*(-1.52848)*CI1; 
GWP = GWPd+GWPe+GWPf-0.52073; !logGWP; 
@FREE(GWPa);@FREE(GWPb);@FREE(GWPc);@FREE(GWPd);@FREE(GWPe);@FR
EE(GWPf);@FREE(GWP); 
GWP < 0; 
 
!Photochemical Oxidation Potential; 
PCOa = NoO*(0.126631); 
PCOb = NoH*(0.079188); 
PCOc = NoC*(-0.03181); 
PCOd = PCOa+PCOb+PCOc; 
PCOe = -0.10486*CI0; 
PCOf = 2*0.005087*CI1; 
PCO = -PCOd-PCOe-PCOf+0.25708; !logPCO; 
@FREE(PCOa);@FREE(PCOb);@FREE(PCOc);@FREE(PCOd);@FREE(PCOe);@FR
EE(PCOf);@FREE(PCO); 
PCO < 0; 
 
@FOR(SGN3:@GIN(NoS)); 
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APPENDIX B: CASE STUDY IN CHAPTER 5 

MATHEMATICAL FORMULATION FOR MOO MODEL 

 
MODEL: 
!FUZZY MOO MODEL 
!SOLV = SOLVENT CANDIDATE 
!RATIO = RATIO OF SOLVENT:BIO-OIL 
!HHV = HIGHER HEATING VALUES 
!HHVC = HIGHER HEATING VALUES (CUSTOMER) 
!HHVS = HHV OF SOLVENTS 
!HHVB = HHV OF BIOOIL 
!AP = PRODUCT PRICE 
!AC = PRODUCT PRICE (CUSTOMER) 
!TP = ANNUAL PRODUCTION/DEMAND 
!TC = ANNUAL PRODUCTION/DEMAND (CUSTOMER) 
!P = ELASTICITY OF SUBSTITUTION 
!ALPHA = MARKETING BUDEGET 
!BETA = OPTIMISATION POINT 
!Y = TOTAL MARKET SIZE 
!PM = PRICING MODEL; 
 
SETS: 
SOLV: NoS, HHVS, SOLVCOST; 
ENDSETS 
 
DATA: 
SOLV = S1 S2 S3 S4; 
HHVS = 40.89 40 38.92 37.5; 
SOLVCOST= 2640 3000 395802.5 100985.2; 
ENDDATA 
 
NoSolv = @SUM(SOLV:NoS); 
NoSolv = 1; 
@FOR(SOLV:@GIN(NoS)); 
 
nos(1)=0; 
 
!PRICING MODEL; 
PM1 = ALPHA/BETA; 
PM2 = (Y-(AP*TP))/AC; 
PM3 = 1-P; 
 
AP*TP = AC*(TP^P)*(PM1^P)*(PM2^PM3); 
 
AC = 895.285; !USD/tonne blend; 
TP = 36000; !tonne/yr; 
TC = 27000; !tonne/yr; 
Y = 500000000; !$/yr; 
Y > AC*TC+AP*TP; 
ALPHA = 0.85; 
BETA = 27.55/HHV; 
!HHVC = 27.55 MJ/kg; 
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BETA < 0.99;  
P = 0.10; 
 
!PRODUCT PRICE; 
AP = PROFIT+PRODUCTION+RAWMATERIAL; 
RAWMATERIAL = @SUM(SOLV:NoS*SOLVCOST)*RATIO; 
PRODUCTION = 80.30706734*(1-RATIO); 
!BIOOILCOST = 70.67458694 USD/tonne bio-oil; 
!MAX = PROFIT; !USD/tonne bio-oil blend; 
 
RATIO < 0.5; 
 
!HHV OF BLEND; 
HHVSolv = RATIO*@SUM(SOLV:NoS*HHVS); 
HHV = HHVSolv+HHVB*(1-(RATIO)); 
HHVB = 19; !MJ/kg; 
!MAX = HHV; 
 
!FUZZY; 
LAMDA1 = (PROFIT-4626.725)/(5033.319-4626.725); 
LAMDA2 = (HHV-27.82828)/(29.945-27.82828); 
LAMDA <= LAMDA1; 
LAMDA <= LAMDA2; 
MAX = LAMDA; 
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APPENDIX C: CASE STUDY IN CHAPTER 6 

Table C-1 Pyrolysis bio-oil database 

No Biomass Type 
Carbon 
Content 

(%) 

Hydrogen 
Content 

(%) 

Oxygen 
Content 

(%) 

Nitrogen 
Content 

(%) 

Sulphur 
Content 

(%) 

Volatile 
Matter 

(%) 

Ash 
Content 

(%) 

Moisture 
Content 

(%) 

Fixed 
Carbon 

(%) 

HHV of 
Biomass 
(MJ/kg) 

Pyrolysis 
Temperature 

(ºC) 

HHV of Bio-Oil 
(MJ/kg) pH of Bio-Oil 

Ref 
Actual Decision Actual Decision 

1 EFB 49.10 5.80 41.10 0.50 - 65.00 1.50 15.20 18.30 16.40 500 13.20 1 - - 1 

2 Sawdust 43.20 7.90 45.10 1.00 0.60 70.00 5.90 9.60 14.50 17.60 500 15.90 1 - - 1 

3 Giant 
Miscanthus 51.30 6.20 42.20 0.40 - 67.50 1.50 11.20 19.80 19.20 500 17.00 1 - - 1 

4 Cherry Stones 51.08 6.49 42.03 0.38 0.02 73.90 0.20 - 25.90 22.50 600 13.90 1 2.6 2 2 

5 
Acacia 

cincinnata 
phyllodes 

49.90 6.04 41.79 2.13 0.14 70.16 2.48 7.45 19.91 19.72 500 30.65 3 3.1 3 3 

6 
Acacia 

cincinnata 
trunk 

46.44 5.98 47.35 0.23 
- 

74.40 1.13 8.12 16.35 18.74 500 24.36 2 2.5 2 3 

7 
Acacia 

holosericea 
phyllodes 

51.05 6.53 40.22 2.20 
- 

70.15 1.58 6.68 21.59 19.11 500 28.13 2 3.2 3 3 

8 
Acacia 

holosericea 
trunk 

44.03 5.67 50.05 0.25 
- 

68.98 1.31 9.75 19.96 17.67 500 23.46 2 2.8 2 3 

9 Coconut shell 64.23 6.89 27.61 0.77 0.50 75.50 3.20 10.10 11.20 20.15 575 19.75 1 - - 4 

10 Oil palm trunk 54.22 7.10 38.36 0.06 0.26 82.00 2.97 49.27 15.03 17.73 600 19.24 1 3.2 3 5 

11 Oil palm trunk 59.77 7.28 32.61 0.06 0.28 82.05 2.07 72.90 15.88 17.91 600 21.76 2 3.2 3 5 

12 Oil palm trunk 60.17 7.93 31.56 0.06 0.28 80.11 5.53 77.52 14.36 17.33 600 20.15 2 3.2 3 5 

13 Oil palm 
fronds 45.05 5.86 48.82 0.23 0.04 80.88 3.61 11.71 15.51 17.55 600 21.92 2 3.1 3 5 

14 Oil palm 
fronds 50.68 6.12 40.67 0.90 1.63 79.69 6.51 31.92 13.80 18.60 600 21.22 2 2.9 2 5 

15 Oil Palm EFB 45.26 5.13 47.29 1.82 0.50 75.01 4.76 8.44 20.23 16.07 600 21.61 2 3.2 3 5 

16 Sal seed 68.69 23.68 33.12 1.23 3.28 71.54 6.00 8.46 16.00 21.64 600 23.75 2 3.7 3 6 
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17 Napier grass 
stem 48.60 6.01 44.10 0.99 0.32 81.50 1.75 75.30 16.70 18.10 450 25.30 2 2.4 2 7 

18 Napier grass 
stem 48.60 6.01 44.10 0.99 0.32 81.50 1.75 75.30 16.70 18.10 550 25.40 2 3.0 2 7 

19 Napier grass 
stem 48.60 6.01 44.10 0.99 0.32 81.50 1.75 75.30 16.70 18.10 600 28.50 2 3.0 2 7 

20 Napier grass 
stem 48.60 6.01 44.10 0.99 0.32 81.50 1.75 75.30 16.70 18.10 650 28.90 2 2.8 2 7 

21 Bagasse 48.58 5.97 38.94 0.20 0.05 69.00 1.26 4.00 29.70 19.20 600 19.91 1 4.5 4 8 

22 Jatropha 
Curcas Cake 45.50 6.70 45.33 2.47 - 18.33 6.93 7.17 - 17.05 550 24.91 2 - - 9 

23 Corn stalk 48.72 5.64 34.68 0.91 0.09 73.46 4.49 5.47 16.58 17.50 450 21.38 2 3.3 3 10 

24 Linseed 64.99 9.94 21.26 3.58 0.23 84.90 4.10 6.90 4.10 22.06 550 33.83 3 3.1 3 11 

25 Sewage 
sludge 20.34 3.39 15.05 3.00 0.44 41.14 57.78 - 1.08 - 550 32.97 3 - - 12 

26 Pearl Millet 43.66 6.30 49.54 0.45 0.06 61.29 34.51 3.61 0.59 17.53 400 23.38 2 - - 13 

27 Sida 
cordifolia 41.38 6.44 50.89 1.15 0.14 65.15 10.31 6.22 18.32 16.38 400 17.15 1 - - 13 

28 Date tree 
mixture waste 51.88 6.56 41.56 - - 72.51 7.54 11.63 8.32 12.66 500 24.35 2 3.0 3 14 

29 Date seed 70.92 10.45 18.63 - - 81.13 5.29 6.02 7.55 20.27 500 29.06 2 3.0 3 14 

30 Eucalyptus 
bark 38.70 4.50 54.90 0.30 1.60 76.10 4.20 10.70 19.70 15.70 400 12.45 1 2.8 2 15 

31 Eucalyptus 
bark 38.70 4.50 54.90 0.30 1.60 76.10 4.20 10.70 19.70 15.70 450 13.89 1 2.8 2 15 

32 Eucalyptus 
bark 38.70 4.50 54.90 0.30 1.60 76.10 4.20 10.70 19.70 15.70 500 12.23 1 2.9 2 15 

33 Eucalyptus 
bark 38.70 4.50 54.90 0.30 1.60 76.10 4.20 10.70 19.70 15.70 550 12.77 1 2.4 2 15 

34 Pine Sawdust 47.21 6.25 44.40 0.05 0.21 73.52 1.88 7.84 16.76 19.41 500 23.83 2 3.6 3 16 

35 Pine wood 51.30 5.83 35.99 0.07 0.01 78.54 0.46 6.34 14.66 18.60 450 22.49 2 3.1 3 17 

36 Corrugated 
cardboard 43.24 5.80 - 0.12 - - 4.00 - 13.10 18.00 350 21.20 2 3.2 3 18 

37 Corrugated 
cardboard 43.24 5.80 - 0.12 - - 4.00 - 13.10 18.00 400 21.50 2 3.3 3 18 

38 Corrugated 
cardboard 43.24 5.80 - 0.12 - - 4.00 - 13.10 18.00 450 21.70 2 4.1 4 18 

39 Palm kernel 
shell 44.56 5.22 49.77 0.40 0.05 82.50 6.70 9.40 1.40 15.60 490 17.90 1 3.3 3 19 

40 Rice straw 46.17 6.29 43.55 3.99 - 72.91 16.81 - - - 470 17.07 1 3.8 3 20 
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41 Rice straw 46.17 6.29 43.55 3.99 - 72.91 16.81 - - - 480 17.01 1 3.8 3 20 

42 Rice straw 46.17 6.29 43.55 3.99 - 72.91 16.81 - - - 490 17.15 1 3.7 3 20 

43 Rice straw 46.17 6.29 43.55 3.99 - 72.91 16.81 - - - 500 17.37 1 2.9 2 20 

44 Rice straw 46.17 6.29 43.55 3.99 - 72.91 16.81 - - - 510 16.95 1 3.2 3 20 

45 Rice straw 46.17 6.29 43.55 3.99 - 72.91 16.81 - - - 515 16.76 1 3.6 3 20 

46 Rice husk 50.02 6.11 38.71 5.17 - 70.85 11.57 - - - 500 18.53 1 3.7 3 20 

47 Bagasse 48.40 5.96 41.30 4.34 - 83.90 2.09 - - - 500 18.99 1 3.4 3 20 

48 Corn cob 47.07 6.30 43.79 2.84 - 76.61 2.15 - - - 500 19.36 1 3.1 3 20 

49 Corn cob 39.76 5.15 43.68 0.30 - 71.80 2.41 8.64 17.15 16.19 550 18.80 1 2.8 2 21 

50 Tomato peel 55.00 7.90 34.00 2.80 0.30 78.32 4.87 4.67 12.34 22.50 600 33.04 3 - - 22 

51 Camellia 
oleifera shell 46.46 6.03 45.11 0.32 - 74.12 1.55 - 24.33 - 400 21.37 2 2.1 2 23 

52 Camellia 
oleifera shell 46.46 6.03 45.11 0.32 - 74.12 1.55 - 24.33 - 500 23.77 2 2.4 2 23 

53 Camellia 
oleifera shell 46.46 6.03 45.11 0.32 - 74.12 1.55 - 24.33 - 600 21.75 2 2.9 2 23 

54 Stillingia oil 77.49 7.37 12.57 0.94 - - - - - - 400 37.46 3 4.4 4 23 

55 Stillingia oil 77.49 7.37 12.57 0.94 - - - - - - 500 36.66 3 3.2 3 23 

56 Stillingia oil 77.49 7.37 12.57 0.94 - - - - - - 600 39.68 3 4.7 4 23 

57 Blue-green 
algae blooms 42.26 6.27 43.07 7.88 0.52 70.13 6.15 9.29 14.14 16.20 500 31.90 3 - - 24 

58 Chlorella 
vulgaris 42.51 6.77 27.95 6.64 - 66.56 15.64 6.18 11.62 16.80 500 24.57 2 - - 25 

59 Arecanut stalk 47.12 5.95 43.54 3.39 - 68.70 5.90 9.80 15.60 - 450 22.75 2 - - 26 

60 Cotton stalk 46.77 5.76 41.71 5.75 - 62.07 8.20 10.20 19.53 - 450 19.45 1 - - 26 

61 Redgram stalk 44.11 5.69 41.97 8.23 - 72.09 10.62 5.91 11.38 - 450 24.26 2 - - 26 

62 Soybean stalk 43.61 5.45 44.66 6.28 - 58.43 13.59 11.84 16.14 - 450 16.87 1 - - 26 

63 Paddy straw 41.62 5.39 45.12 7.87 - 65.47 15.50 8.66 10.37 - 450 19.37 1 - - 26 

64 Arecanut husk 47.89 5.93 43.10 3.08 - 62.97 5.60 12.50 18.93 - 450 24.75 2 - - 26 

65 Jatropha husk 42.82 5.43 46.34 5.41 - 60.70 14.30 11.30 13.70 - 450 22.70 2 - - 26 

66 Rice husk 47.79 6.04 44.16 2.02 - 73.80 4.57 5.83 15.80 - 450 24.44 2 - - 26 

67 Wheat husk 48.29 6.22 44.87 0.62 - 68.10 1.60 13.90 16.40 - 450 32.34 3 - - 26 
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68 Cashew nut 
shells 46.02 5.83 42.71 5.44 - 70.44 7.90 6.93 14.73 - 450 28.90 2 - - 26 

69 Coconut shell 48.88 6.05 43.82 1.25 - 71.99 3.82 4.40 19.79 - 450 20.45 2 - - 26 

70 Tamarind 
shell 45.00 5.73 44.13 5.14 - 68.56 9.56 8.44 13.44 - 450 19.79 1 - - 26 

71 Maize cob 48.54 6.11 44.62 0.73 - 64.80 3.31 15.20 16.69 - 450 30.79 3 - - 26 

72 Sugarcane 
bagasse 45.72 5.84 42.88 5.56 - 70.04 8.02 8.50 13.44 - 450 21.02 2 - - 26 

73 Coir pith 47.25 5.97 43.74 3.04 - 69.35 5.56 9.65 15.44 - 450 24.95 2 - - 26 

74 Sawdust 46.81 5.96 43.79 3.44 - 73.00 5.95 7.01 14.04 - 450 24.32 2 - - 26 

75 Cumbu 
Napier grass 49.00 6.11 44.44 0.45 - 71.43 3.03 7.07 18.47 - 450 24.95 2 - - 26 

76 Blue buffel 
grass 43.92 5.71 42.30 8.07 - 69.47 10.46 10.14 9.93 - 450 33.58 3 - - 26 

77 Polyalthia 
longifolia 47.12 5.95 43.54 3.39 - 61.64 13.11 8.86 16.39 - 450 20.19 2 - - 26 

78 Melia dubia 
wood 46.77 5.76 41.71 5.75 - 65.82 7.61 9.80 16.77 - 450 32.15 3 - - 26 

79 Prosopis 
wood 44.11 5.69 41.97 8.23 - 71.25 5.87 7.77 15.11 - 450 20.78 2 - - 26 

80 Samanea 
saman fruit 43.61 5.45 44.66 6.28 - 75.27 4.30 3.47 16.96 - 450 28.24 2 - - 26 

81 Chlorella 41.62 5.39 45.12 7.87 - 62.20 12.56 9.05 16.19 - 450 25.97 2 - - 26 

82 Parthenium 
hysterophorus 47.89 5.93 43.10 3.08 - 69.14 14.47 6.08 10.31 - 450 32.43 3 - - 26 

83 
Pinfed 

computer 
paper 

42.82 5.43 46.34 5.41 
- 

79.14 5.36 8.26 7.24 
- 

450 29.39 2 
- - 

26 

84 Washed rice 
straw 40.90 8.50 49.40 0.01 0.13 70.22 10.28 8.18 11.33 20.00 412 17.30 1 4.2 4 27 

85 Algae from 
lake blooms 50.78 7.30 38.48 3.45 - 68.52 4.35 7.52 19.61 19.95 300 19.19 1 - - 28 

86 Algae from 
lake blooms 50.78 7.30 38.48 3.45 - 68.52 4.35 7.52 19.61 19.95 400 20.26 2 - - 28 

87 Algae from 
lake blooms 50.78 7.30 38.48 3.45 - 68.52 4.35 7.52 19.61 19.95 500 21.25 2 - - 28 

88 Algae from 
lake blooms 50.78 7.30 38.48 3.45 - 68.52 4.35 7.52 19.61 19.95 600 21.42 2 - - 28 

89 Algae from 
lake blooms 50.78 7.30 38.48 3.45 - 68.52 4.35 7.52 19.61 19.95 700 21.57 2 - - 28 

90 Pine Sawdust 55.02 6.08 38.81 0.09 - 75.38 1.10 7.80 15.72 20.17 500 18.10 1 - - 28 
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91 Woods 51.30 5.70 40.50 0.21 - 84.30 2.70 9.10 13.00 19.00 550 24.00 2 3.2 3 29 

92 Straw 45.70 6.00 40.90 1.40 - 75.80 5.80 7.90 18.50 18.40 550 23.70 2 3.8 3 29 

93 Lignin 57.80 5.70 23.60 1.20 - 61.20 12.10 4.70 26.70 22.80 550 29.70 2 3.9 3 29 

94 Ulva lactuca 33.60 5.10 28.20 3.30 - 67.10 29.10 8.90 6.50 12.90 550 25.70 2 4.3 4 29 

95 Almond shell 50.50 6.58 42.65 0.21 0.01 80.28 0.55 3.30 15.87 18.20 300 13.70 1 5.5 5 30 

96 Almond shell 50.50 6.58 42.65 0.21 0.01 80.28 0.55 3.30 15.87 18.20 400 14.10 1 5.5 5 30 

97 Almond shell 50.50 6.58 42.65 0.21 0.01 80.28 0.55 3.30 15.87 18.20 500 12.40 1 5.5 5 30 

98 Almond shell 50.50 6.58 42.65 0.21 0.01 80.28 0.55 3.30 15.87 18.20 600 12.00 1 5.5 5 30 

99 Almond shell 50.50 6.58 42.65 0.21 0.01 80.28 0.55 3.30 15.87 18.20 700 11.60 1 5.5 5 30 

100 Almond shell 50.50 6.58 42.65 0.21 0.01 80.28 0.55 3.30 15.87 18.20 800 11.30 1 5.5 5 30 

101 Cassava 
rhizome 51.40 7.30 40.20 1.00 0.10 81.50 3.60 1.80 14.90 20.30 475 24.80 2 3.3 3 31 

102 Cassava stalk 55.80 8.10 34.70 1.30 0.10 81.20 5.20 2.40 13.80 21.50 469 24.30 2 3.4 3 31 

103 Forest residue 51.40 6.00 40.00 0.50 - 76.70 2.10 9.00 8.10 20.80 520 15.50 1 2.6 2 32 

104 Rice husk 48.59 8.27 40.47 2.67 - 71.47 7.45 2.69 18.39 17.21 550 24.74 2 4.2 4 33 

105 Palm kernel 
shell 45.10 5.10 49.20 0.56 0.04 74.00 3.00 12.00 23.00 - 550 23.48 2 2.5 2 34 

106 Palm shell 49.74 5.32 44.86 0.08 0.16 67.20 2.10 11.00 19.70 - 500 6.58 0 2.5 2 35 

107 Motorcycle 
tire 75.50 6.75 15.50 0.81 1.44 57.50 20.12 1.53 20.85 29.18 475 42.00 4 4.4 4 36 

108 Jute stick 49.79 6.02 41.37 0.19 0.05 77.00 0.62 3.00 22.00 19.70 500 18.25 1 4.0 4 37 

109 Maize stalk 49.10 6.10 43.70 0.70 0.11 71.95 8.33 7.67 12.05 15.07 500 19.60 1 3.2 3 38 

110 Rice Straw 50.93 6.04 41.61 0.83 0.23 76.85 9.54 13.61 - 16.35 400 18.43 1 2.9 2 39 

111 Rice Straw 50.93 6.04 41.61 0.83 0.23 76.85 9.54 13.61 - 16.35 500 20.40 2 2.8 2 39 

112 Rice Straw 50.93 6.04 41.61 0.83 0.23 76.85 9.54 13.61 - 16.35 700 5.06 0 3.3 3 39 

113 Sugarcane 
bagasse 58.14 6.05 34.57 0.69 0.19 79.59 4.34 16.07 - 18.61 400 3.79 0 2.1 2 39 

114 Sugarcane 
bagasse 58.14 6.05 34.57 0.69 0.19 79.59 4.34 16.07 - 18.61 500 4.43 0 2.3 2 39 

115 Sugarcane 
bagasse 58.14 6.05 34.57 0.69 0.19 79.59 4.34 16.07 - 18.61 700 3.72 0 2.0 2 39 

116 Coconut shell 63.45 6.73 28.27 0.43 0.17 85.36 3.38 11.26 - 22.83 400 7.75 0 3.2 3 39 
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117 Coconut shell 63.45 6.73 28.27 0.43 0.17 85.36 3.38 11.26 - 22.83 500 8.09 0 3.1 3 39 

118 Coconut shell 63.45 6.73 28.27 0.43 0.17 85.36 3.38 11.26 - 22.83 700 10.32 1 3.3 3 39 

119 Paddy husk 42.78 5.77 51.18 0.34 - 74.53 11.98 1.37 12.11 15.75 350 8.24 0 2.1 2 40 

120 Paddy husk 42.78 5.77 51.18 0.34 - 74.53 11.98 1.37 12.11 15.75 400 8.76 0 2.2 2 40 

121 Paddy husk 42.78 5.77 51.18 0.34 - 74.53 11.98 1.37 12.11 15.75 450 10.15 1 2.7 2 40 

122 Paddy husk 42.78 5.77 51.18 0.34 - 74.53 11.98 1.37 12.11 15.75 500 9.14 0 2.5 2 40 

123 Paddy husk 42.78 5.77 51.18 0.34 - 74.53 11.98 1.37 12.11 15.75 550 8.56 0 2.3 2 40 

124 Paddy husk 42.78 5.77 51.18 0.34 - 74.53 11.98 1.37 12.11 15.75 600 8.05 0 2.2 2 40 

125 Pine Sawdust 50.50 6.40 43.00 0.10 - 84.00 0.10 9.50 - 20.40 500 16.90 1 2.7 2 41 

126 Brown forest 
residue 51.10 5.90 43.00 0.50 - 73.20 3.80 4.90 - 20.50 500 16.90 1 3.2 3 41 

127 Green forest 
residue 51.40 6.00 42.00 0.50 - 76.70 2.10 8.10 - 20.80 500 16.70 1 - - 41 

128 Eucalyptus 
crandis 50.10 6.00 44.00 0.10 - 82.70 0.40 7.60 - 19.90 500 17.30 1 2.2 2 41 

129 Barley straw 48.80 5.90 45.00 0.80 - 73.90 5.80 8.80 - 18.50 500 11.10 1 3.7 3 41 

130 Timothy hay 47.60 6.10 46.00 0.70 - 76.60 3.20 3.90 - 19.10 500 13.30 1 3.4 3 41 

131 RCG 45.70 5.60 48.00 0.90 - 81.30 1.10 10.90 - 19.70 500 16.00 1 3.6 3 41 

132 Sewage 
sludge 40.60 7.10 41.20 7.70 3.30 54.20 37.20 5.60 8.60 11.10 450 18.40 1 8.5 6 42 

133 Sewage 
sludge 40.60 7.10 41.20 7.70 3.30 54.20 37.20 5.60 8.60 11.10 500 18.80 1 8.5 6 42 

134 Sewage 
sludge 40.60 7.10 41.20 7.70 3.30 54.20 37.20 5.60 8.60 11.10 600 17.60 1 8.5 6 42 

135 Waste tyre 86.40 8.00 3.40 0.50 1.70 62.20 7.10 1.30 29.40 40.00 450 42.60 4 - - 43 

136 Waste tyre 86.40 8.00 3.40 0.50 1.70 62.20 7.10 1.30 29.40 40.00 475 42.90 4 - - 43 

137 Waste tyre 86.40 8.00 3.40 0.50 1.70 62.20 7.10 1.30 29.40 40.00 500 42.10 4 - - 43 

138 Waste tyre 86.40 8.00 3.40 0.50 1.70 62.20 7.10 1.30 29.40 40.00 525 42.40 4 - - 43 

139 Waste tyre 86.40 8.00 3.40 0.50 1.70 62.20 7.10 1.30 29.40 40.00 560 42.10 4 - - 43 

140 Waste tyre 86.40 8.00 3.40 0.50 1.70 62.20 7.10 1.30 29.40 40.00 600 41.20 4 - - 43 

141 Waste tyre 86.39 6.91 1.42 0.46 0.12 64.91 4.70 0.85 29.54 16.60 440 43.20 4 - - 44 

142 Plastic 83.93 12.84 0.80 - - 96.88 2.43 0.41 0.28 37.00 550 43.50 4 5.5 5 45 
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143 Scrap tyre 80.30 5.18 10.33 - - 62.70 4.17 0.82 32.31 33.30 450 41.50 4 4.3 4 45 

144 Wastepaper 39.71 7.14 53.15 - - 76.31 6.03 6.51 11.15 17.10 450 13.19 1 1.5 1 45 

145 Sewage 
sludge 27.70 4.40 21.90 3.90 0.80 46.10 41.30 6.60 6.00 11.90 530 22.80 2 7.9 6 46 

146 Willow 47.78 5.90 46.01 0.31 - - 1.30 7.80 - 18.90 500 18.40 1 2.7 2 47 

147 Switchgrass 44.77 5.79 49.13 0.31 - - 4.30 8.30 - 17.30 500 16.40 1 2.9 2 47 

148 Washed 
switchgrass 47.14 6.08 46.71 0.07 - - 3.40 46.10 - 18.70 500 16.00 1 2.8 2 47 

149 Reed canary 
grass 45.36 5.81 48.59 0.34 - - 5.10 7.90 - 17.60 500 17.10 1 3.0 3 47 

150 Straw 44.94 5.75 48.84 0.47 - - 6.30 9.10 - 17.30 500 13.60 1 3.5 3 47 

151 Dactylis 
glomerata 42.96 5.70 49.44 1.90 - - 7.50 49.30 - 16.80 500 17.60 1 3.1 3 47 

152 Festuca 
arundinacea 42.22 5.64 50.65 1.50 - - 7.30 50.30 - 16.40 500 16.70 1 3.2 3 47 

153 
Washed 
festuca 

arundinacea 
45.20 5.98 47.95 0.87 

- - 
4.40 47.90 

- 
17.80 500 21.70 2 3.0 3 47 

154 Lolium 
perenne 43.12 5.80 49.80 1.28 - - 6.20 49.40 - 17.00 500 15.80 1 3.2 3 47 

155 Sugarcane 
leaves 48.90 6.50 44.40 0.20 - 79.00 5.70 6.70 8.60 18.40 450 26.70 2 3.3 3 48 

156 Sugarcane 
tops 49.00 6.60 43.80 0.60 - 74.90 6.00 6.60 12.50 18.30 450 29.30 2 3.2 3 48 

157 Cassava stalk 48.80 6.70 43.40 1.10 - 69.70 7.10 8.50 14.70 18.10 450 19.00 1 3.3 3 48 

158 Cassava 
rhizome 49.50 6.50 42.90 1.10 - 65.00 11.20 8.80 15.00 17.10 450 26.70 2 3.5 3 48 

159 
beetle-killed 

lodgepole 
pine 

49.62 6.37 43.29 0.33 
- 

82.29 0.26 7.30 10.15 20.34 600 16.86 1 
- - 

49 

160 Poplar 44.20 6.30 48.80 0.70 - 75.40 0.50 9.30 14.80 17.40 425 16.30 1 - - 50 

161 Poplar 44.20 6.30 48.80 0.70 - 75.40 0.50 9.30 14.80 17.40 435 16.10 1 - - 50 

162 Poplar 44.20 6.30 48.80 0.70 - 75.40 0.50 9.30 14.80 17.40 455 17.40 1 - - 50 

163 Poplar 44.20 6.30 48.80 0.70 - 75.40 0.50 9.30 14.80 17.40 485 17.20 1 - - 50 

164 Poplar 44.20 6.30 48.80 0.70 - 75.40 0.50 9.30 14.80 17.40 505 18.20 1 - - 50 

165 Poplar 44.20 6.30 48.80 0.70 - 75.40 0.50 9.30 14.80 17.40 525 18.40 1 - - 50 
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166 
Forest 

pinewood 
waste 

49.33 6.06 44.57 0.04 
- 

73.40 0.50 9.40 16.70 19.80 500 14.60 1 2.8 2 51 

167 Wheat straw 43.40 5.40 50.10 1.10 - 74.40 7.70 1.50 16.40 - 400 11.70 1 - - 52 

168 Acid treated 
wheat straw 44.40 5.60 44.60 5.40 - 80.50 6.90 2.00 10.60 - 400 17.00 1 - - 52 

169 Maize stalk 40.72 5.68 47.51 0.92 0.12 62.94 4.20 1.14 30.24 15.87 490 17.80 1 - - 53 

170 Palm shell 49.74 5.32 44.86 0.08 0.16 67.20 2.10 11.00 19.70 18.86 600 11.94 1 2.5 2 54 

171 Hybrid poplar 49.40 6.00 43.10 0.23 0.05 - - - - 19.74 500 24.30 2 - - 55 

172 Hybrid poplar 49.80 5.90 42.50 0.26 0.06 - - - - 19.96 500 23.30 2 - - 55 

173 Switchgrass 46.90 5.80 42.00 0.58 0.11 - - - - 19.53 500 23.80 2 - - 55 

174 Switchgrass 47.30 5.90 41.10 0.44 0.09 - - - - 19.50 500 24.00 2 - - 55 

175 Corn stover 46.00 5.90 41.40 0.88 0.12 - - - - 18.62 500 24.70 2 - - 55 

176 Corn stover 46.00 5.40 39.20 0.64 0.07 - - - - 18.23 500 23.50 2 - - 55 

177 Corn stover 46.50 6.10 40.10 0.73 0.09 - - - - 17.90 500 22.50 2 - - 55 

178 Yellow poplar 
wood 48.80 6.50 44.50 0.20 - - - - - 17.90 400 15.10 1 1.9 1 56 

179 Wastepaper 39.71 7.14 53.15 - - 76.31 6.03 6.51 11.15 - 450 13.10 1 1.5 1 57 

180 Cassava stalk 51.10 6.90 41.30 0.70 0.10 79.90 6.00 15.50 14.10 17.60 500 12.70 1 2.7 2 58 

181 Cassava 
rhizome 51.60 6.70 40.50 1.30 0.10 77.70 4.10 8.30 18.20 3.70 500 15.80 1 2.5 2 58 

182 Oil palm shell 55.35 6.43 38.01 0.37 - 68.80 2.30 8.40 20.30 - 500 22.10 2 2.7 2 59 

183 Corn cob 47.35 5.90 38.07 0.69 0.18 - - - - 17.80 500 19.50 1 - - 60 

184 Corn stover 46.60 4.99 40.05 0.79 0.22 - - - - 18.30 500 22.10 2 - - 60 

185 Rice husk 53.50 7.00 38.10 1.40 - 78.80 11.90 9.30 - - 450 24.80 2 - - 61 

186 Rice husk 40.00 5.03 29.75 0.53 0.13 60.98 12.26 12.30 14.46 14.57 510 13.36 1 3.4 3 62 

187 Radiata pine 44.80 5.90 46.20 0.10 - - - - - 18.00 502 23.00 2 2.5 2 63 

188 Douglas fir 48.07 6.91 44.86 0.06 0.10 76.63 0.24 12.03 11.10 18.12 480 18.30 1 1.9 1 64 

189 Oil tea shell 52.10 7.61 38.63 0.69 0.25 69.25 1.11 11.09 18.55 18.16 460 18.69 1 2.7 2 64 

190 Rice Straw 48.75 5.98 43.28 1.99 - 60.84 22.55 7.30 16.61 13.45 300 10.10 1 - - 65 

191 Rice Straw 48.75 5.98 43.28 1.99 - 60.84 22.55 7.30 16.61 13.45 400 12.00 1 - - 65 
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192 Rice Straw  5.98 43.28 1.99 - 60.84 22.55 7.30 16.61 13.45 500 12.30 1 - - 65 

193 Rice Straw 48.75 5.98 43.28 1.99 - 60.84 22.55 7.30 16.61 13.45 600 11.80 1 - - 65 

194 Rice Straw 48.75 5.98 43.28 1.99 - 60.84 22.55 7.30 16.61 13.45 700 11.90 1 - - 65 

195 Miscanthus 48.00 6.00 45.90 0.10 - 74.90 1.40 8.00 15.70 17.50 450 22.50 2 - - 66 

196 Sugarcane 
bagasse 48.67 6.70 44.10 0.45 0.08 75.85 4.14 - 20.01 16.80 475 23.50 2 3.9 3 67 

197 Sawdust 49.30 6.39 44.19 0.12 - - - - - 19.05 500 10.93 1 1.9 1 68 

198 Waste 
machinery oil 83.00 13.00 2.80 0.11 0.80 - - - - 44.54 400 45.70 4 - - 69 

199 Waste 
machinery oil 83.00 13.00 2.80 0.11 0.80 - - - - 44.54 600 45.70 4 - - 69 

200 Waste 
machinery oil 83.00 13.00 2.80 0.11 0.80 - - - - 44.54 800 45.71 4 - - 69 

201 
Oil palm 
mesocarp 

fibre 
45.38 10.59 42.04 1.32 0.67 66.84 1.40 4.75 27.01 17.00 550 23.00 2 3.0 3 70 

202 Palm frond 41.00 6.74 51.24 0.67 0.35 70.33 5.87 4.83 18.97 16.00 550 21.00 2 3.0 3 70 

203 Poplar wood 48.36 5.93 43.94 0.52 0.12 78.26 1.13 - 20.61 18.23 400 11.85 1 3.1 3 71 

204 Poplar wood 48.36 5.93 43.94 0.52 0.12 78.26 1.13 - 20.61 18.23 450 12.73 1 3.3 3 71 

205 Poplar wood 48.36 5.93 43.94 0.52 0.12 78.26 1.13 - 20.61 18.23 500 14.10 1 3.7 3 71 

206 Poplar wood 48.36 5.93 43.94 0.52 0.12 78.26 1.13 - 20.61 18.23 550 13.96 1 3.8 3 71 

207 Poplar wood 48.36 5.93 43.94 0.52 0.12 78.26 1.13 - 20.61 18.23 600 13.98 1 3.8 3 71 

 

Table C-1 Pyrolysis bio-oil database (continued) 
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Table C-2 Decision rules generated for Case 1: Reduct 1 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon (%) Hydrogen 

(%) 
Temperature 

(ºC) 
1 ≥ 56.55 < 6.75 < 502.5 0 1.38 20.00 100 
2 < 42.90 5.75 - 6.15 ≥ 495.0 0 2.07 30.00 100 
3 49.65 - 49.75 - < 502.5 0 0.69 10.00 100 
4 - < 6.15 ≥ 650.0 0 1.38 20.00 100 
5 42.65 - 42.90 - < 412.5 0 1.38 20.00 100 
6 ≥ 44.1 6.25 - 6.45 - 1 8.28 16.44 100 
7 49.5 - 51.75 - 502.5 - 650 1 3.45 6.85 100 
8 ≥ 61.85 < 7.2 ≥ 502.5 1 1.38 2.74 100 
9 47.35 - 51.75 6.55 - 7 - 1 6.21 12.33 100 

10 47.35 - 49.35 < 6.15 ≥ 452.5 1 7.59 15.07 100 
11 44.1 - 45.85 - 477.5 - 502.5 1 3.45 6.85 100 
12 ≥ 49.5 6.05 - 6.25 < 502.5 1 2.07 4.11 100 
13 48.05 - 48.5 < 5.95 - 1 3.45 6.85 100 
14 < 43.3 ≥ 6.85 - 1 3.45 6.85 100 
15 < 43.1 5.45 - 5.75 - 1 1.38 2.74 100 
16 49.5 - 49.85 ≥ 5.75 - 1 1.38 2.74 100 
17 46.65 - 51 - < 412.5 1 4.14 8.22 100 
18 46.1 - 46.95 < 5.85 - 1 0.69 1.37 100 
19 ≥ 51.35 < 6.05 - 1 1.38 2.74 100 
20 33.2 - 41.1 - - 1 6.90 13.70 100 
21 43.3 - 43.5 - - 1 0.69 1.37 100 
22 52 - 56.55 - - 1 2.07 4.11 100 
23 44.1 - 45 - - 1 5.52 10.96 100 
24 < 42.9 ≥ 5.45 412.5 - 452.5 1 2.07 4.11 100 
25 < 48.05 5.95 - 6.05 - 2 6.90 22.22 100 
26 45 - 46.1 - ≥ 502.5 2 4.14 13.33 100 
27 ≥ 48.5 < 6.15 445 - 452.5 2 3.45 11.11 100 
28 43.1 - 43.3 < 7.2 - 2 0.69 2.22 100 
29 43.65 - 44.1 - - 2 1.38 4.44 100 
30 45.85 - 46.1 - - 2 2.07 6.67 100 
31 50.65 - 51.2 < 6.65 452.5 - 540 2 1.38 4.44 100 
32 43.3 - 61.85 ≥ 7.2 ≥ 472.5 2 4.83 15.56 100 
33 ≥ 50.65 6.45 - 6.65 < 540 2 1.38 4.44 100 
34 46.95 - 48.05 - < 452.5 2 4.14 13.33 100 
35 45 - 45.85 - < 452.5 2 0.69 2.22 100 
36 42.65 - 42.9 < 5.45 - 2 0.69 2.22 100 
37 49.35 - 49.5 - - 2 0.69 2.22 100 
38 < 73.2 ≥ 10.2 - 2 2.07 6.67 100 
39 42.4 - 42.65 - - 2 0.69 2.22 100 
40 24 - 33.2 - - 2 0.69 2.22 100 
41 76.5 - 80.25 - - 3 2.07 37.50 100 
42 49.85 - 66.85 - 540 - 562.5 3 0.69 12.50 100 
43 49.85 - 49.95 - - 3 0.69 12.50 100 
44 48.2 - 48.35 - - 3 0.69 12.50 100 
45 42.25 - 42.4 - - 3 0.69 12.50 100 
46 < 24 - - 3 0.69 12.50 100 
47 ≥ 80.25 - - 4 5.52 88.89 100 
48 73.2 - 76.5 - - 4 0.69 11.11 100 
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Table C -3 Decision rules generated for Case 1: Reduct 2 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon (%) Oxygen (%) Temperature 

(ºC) 
1 ≥ 42.65 ≥ 50.95 ≥ 495 0 2.07 30.00 100 
2 58.95 - 63.85 - < 502.5 0 1.38 20.00 100 
3 ≥ 42.65 ≥ 50.95 < 412.5 0 1.38 20.00 100 
4 - 50.85 - 58.95 ≥ 650 0 1.38 20.00 100 
5 ≥ 49.65 ≥ 44.8 < 502.5 0 0.69 10.00 100 
6 48.35 - 49.35 ≥ 41.9 ≥ 452.5 1 4.83 9.59 100 
7 42.9 - 46.3 41.9 - 49.95 452.5 - 522.5 1 8.97 17.81 100 
8 ≥ 49.75 ≥ 41.9 - 1 6.21 12.33 100 
9 ≥ 48.2 38.55 - 40.1 - 1 3.45 6.85 100 

10 51.2 - 56.55 < 40.7 ≥ 477.5 1 2.76 5.48 100 
11 49.5 - 49.85 < 43.45 - 1 1.38 2.74 100 
12 46.65 - 48.5 - ≥ 452.5 1 5.52 10.96 100 
13 ≥ 48.35 ≥ 41.75 ≥ 502.5 1 5.52 10.96 100 
14 < 51 < 44.65 < 437.5 1 4.83 9.59 100 
15 61.85 - 64.6 - ≥ 502.5 1 1.38 2.74 100 
16 33.2 - 41.1 - - 1 6.90 13.70 100 
17 < 43.5 47.7 - 50.95 - 1 2.07 4.11 100 
18 - ≥ 47.7 412 - 452.5 1 4.14 8.22 100 
19 48.05 - 48.85 41.75 - 44 - 1 5.52 10.96 100 
20 - 41.65 - 41.75 - 1 0.69 1.37 100 
21 51 - 51.2 ≥ 40.35 - 1 1.38 2.74 100 
22 45 - 48.05 ≥ 41.9 < 452.5 2 6.90 22.22 100 
23 ≥ 50.85 41.35 - 41.65 452.5 - 502.5 2 1.38 4.44 100 
24 47.7 - 51.5 < 38.55 ≥ 375 2 2.76 8.89 100 
25 42.4 - 46.65 < 50.4 ≥ 527.5 2 4.83 15.56 100 
26 42.4 - 48.65 39.05 - 41.5 - 2 2.76 8.89 100 
27 ≥ 48.5 ≥ 43.45 445 - 477.5 2 2.07 6.67 100 
28 42.4 - 61.85 < 33.85  2 2.76 8.89 100 
29 43.65 - 44.1 - - 2 1.38 4.44 100 
30 40.1 - 40.35 - - 2 1.38 4.44 100 
31 66.85 - 73.2 - - 2 1.38 4.44 100 
32 46.15 - 47.7 - - 2 2.07 6.67 100 
33 49.35 - 49.5 - - 2 0.69 2.22 100 
34 24 - 33.2 - - 2 0.69 2.22 100 
35 - 8 - 15.3 - 3 2.76 50.00 100 
36 49.85 - 49.95 - - 3 0.69 12.50 100 
37 64.6 - 66.85 - - 3 0.69 12.50 100 
38 48.2 - 48.35 - - 3 0.69 12.50 100 
39 42.25 - 42.4 - - 3 0.69 12.50 100 
40 ≥ 80.25 - - 4 5.52 88.89 100 
41 73.2 - 76.5 - - 4 0.69 11.11 100 
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Table C-4 Decision rules generated for Case 1: Reduct 3 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Hydrogen 

(%) Oxygen (%) Temperature 
(ºC) 

1 - 50.95 - 52.2 ≥ 495 0 2.07 30.00 100 
2 < 6.15 - ≥ 650 0 1.38 20.00 100 
3 ≥ 5.25 ≥ 50.95 < 412.5 0 1.38 20.00 100 
4 - 28.15 - 29.05 < 502.5 0 1.38 20.00 100 
5 5.25 - 5.35 - < 502.5 0 0.69 10.00 100 
6 - 47.7 - 49.95 452.5 - 522.5 1 5.52 10.96 100 
7 6.05 - 7.95 41.65 - 43.05 - 1 5.52 10.96 100 
8 6.05 - 6.45 ≥ 43.2 ≥ 452.5 1 8.28 16.44 100 
9 5.95 - 7.2 37.05 - 40.1 - 1 3.45 6.85 100 

10 6.55 - 6.75 29.05 - 41.05 - 1 0.69 1.37 100 
11 5.35 - 5.95 43.2 - 46.15 ≥ 452.5 1 3.45 6.85 100 
12 5.95 - 6.05 < 41.5 - 1 0.69 1.37 100 
13 - ≥ 50.4 437.5 - 452.5 1 2.76 5.48 100 
14 6.85 - 7.2 ≥ 24.75 - 1 5.52 10.96 100 
15 < 7.35 41.9 - 42.1 - 1 1.38 2.74 100 
16 5.55 - 5.65 ≥44 - 1 2.07 4.11 100 
17 ≥ 6.65 42.1 - 45.2 - 1 2.07 4.11 100 
18 < 6.75 37.05 - 39.05 - 1 2.76 5.48 100 
19 - 43.2 - 44 ≥ 452.5 1 8.28 16.44 100 
20 - 29.05 - 44.65 < 437.5 1 4.83 9.59 100 
21 5.65 - 5.95 43.2 - 44.95 - 1 3.45 6.85 100 
22 - 37.05 - 41.75 < 472.5 1 2.76 5.48 100 
23 4.45 - 5.35 < 44.95 ≥ 502.5 1 2.07 4.11 100 
24 - 47.7 - 49 < 437.5 1 1.38 2.74 100 
25 < 6.75 < 29.05 ≥ 650 1 0.69 1.37 100 
26 < 5.45 ≥ 49.65 - 1 4.14 8.22 100 
27 5.95 - 6.05 - 412.5 - 452.5 2 4.83 15.56 100 
28 - 41.5 - 41.65 412.5 - 562.5 2 1.38 4.44 100 
29 < 5.95 41.9 - 43.2 - 2 2.07 6.67 100 
30 - 45.05 - 50.4 ≥ 527.5 2 3.45 11.11 100 
31 5.95 - 6.15 ≥ 43.75 < 452.5 2 4.83 15.56 100 
32 ≥ 7.2 21.6 - 41.5 ≥ 472.5 2 4.83 15.56 100 
33 6.75 - 6.85 ≥ 17.05 - 2 0.69 2.22 100 
34 < 5.95 38.45 - 42.1 ≥ 495 2 1.38 4.44 100 
35 ≥ 5.45 49.45 - 50.4 - 2 1.38 4.44 100 
36 - 21.6 - 43.2 527.5 - 562.5 2 2.76 8.89 100 
37 < 6.05 43.05 - 43.2 - 2 1.38 4.44 100 
38 - 46.15 - 47.7 - 2 2.07 6.67 100 
39 - 40.1 - 40.35 - 2 1.38 4.44 100 
40 10.2 - 11.7 - - 2 1.38 4.40 100 
41 - 8 - 15.2 - 3 2.76 50.00 100 
42 9.1 - 10.2 - - 3 0.69 12.50 100 
43 6.25 - 6.35 < 43.2 - 3 0.69 12.50 100 
44 6.15 - 6.25 ≥ 43.05 - 3 0.69 12.50 100 
45 - 41.74 - 41.9 - 3 0.69 12.50 100 
46 ≥ 6.74 < 8  - 4 5.52 88.89 100 
47 - 15.3 - 17.05 - 4 0.69 11.11 100 
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Table C-5 Decision rules generated for Case 1: Reduct 4 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon (%) Nitrogen 

(%) 
Temperature 

(ºC) 
1 56.55 - 63.85 - < 502.5 0 1.38 20.00 100 
2 42.65 - 42.9 - ≥ 495 0 2.07 30.00 100 
3 42.65 - 42.9 - < 412.5 0 1.38 20.00 100 
4 ≥ 50.85 ≥ 0.45 ≥ 650 0 1.38 20.00 100 
5 49.65 - 49.75 - < 502.5 0 0.69 10.00 100 
6 49.75 - 56.55 0.05 - 0.75 ≥ 477.5 1 8.97 17.81 100 
7 < 45.85 0.35 - 6.05 452.5 - 522.5 1 6.90 13.70 100 
8 46.65 - 49.35 < 2.05 ≥ 452.5 1 8.28 16.44 100 
9 51.5 - 56.55 ≥ 0.15 - 1 1.38 2.74 100 

10 - 1.05 - 1.15 - 1 1.38 2.74 100 
11 46.1 - 64.6 ≥ 3.55 - 1 4.14 8.22 100 
12 44.1 - 51 ≥ 0.35 < 437.5 1 4.83 9.59 100 
13 61.85 - 64.6 - ≥ 502.5 1 1.38 2.74 100 
14 33.2 - 41.1 - - 1 6.90 13.70 100 
15 49.5 - 50.65 0.15 - 0.55 - 1 4.83 9.59 100 
16 48.05 - 48.85 < 0.55 - 1 5.52 10.96 100 
17 44.1 - 45.45 0.25 - 0.35 - 1 0.69 1.37 100 
18 - 2.75 - 2.9 - 1 0.69 1.37 100 
19 49.5 - 49.75 - ≥ 502.5 1 1.38 2.74 100 
20 < 42.9 < 0.35 412.5 - 452.5 1 2.76 5.48 100 
21 45 - 48.75 0.85 - 3.55 < 452.5 2 5.52 17.78 100 
22 45 - 46.65 - ≥ 527.5 2 4.83 15.56 100 
23 49.05 - 66.85 0.75 - 1.05 412.5 - 502.5 2 1.38 4.44 100 
24 45 - 46.1 ≥ 2.15 - 2 2.07 6.67 100 
25 45.85 - 46.65 < 2.15 - 2 3.45 11.11 100 
26 50.65 - 51.2 ≥ 1.15 ≥ 375 2 2.07 6.67 100 
27 - 1.15 - 2.75 ≥ 527.5 2 4.14 13.33 100 
28 < 43.65 3.05 - 5.5 - 2 1.38 4.44 100 
29 42.4 - 58.95 < 0.15 < 452.5 2 2.07 6.67 100 
30 48.85 - 49.05 - - 2 1.38 4.44 100 
31 58.95 - 73.2 < 0.25 - 2 2.07 6.67 100 
32 43.65 - 44.1 - - 2 1.38 4.44 100 
33 ≥ 49.5 < 0.05 < 502.5 2 1.38 4.44 100 
34 ≥ 42.4 ≥ 6.45 - 2 0.69 2.22 100 
35 49.35 - 49.5 - - 2 0.69 2.22 100 
36 ≥ 42.25 ≥ 7.8 - 3 0.69 12.50 100 
37 ≥ 76.5 ≥ 0.85 - 3 2.07 37.50 100 
38 ≥ 64.6 ≥ 2.05 - 3 0.69 12.50 100 
39 - 2.05 - 2.15 - 3 0.69 12.50 100 
40 48.2 - 48.35 - - 3 0.69 12.50 100 
41 < 24 - - 3 0.69 12.50 100 
42 ≥ 80.25 - - 4 5.52 88.89 100 
43 73.2 - 76.5 - - 4 0.69 11.11 100 
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Table C-6 Decision rules generated for Case 1: Reduct 5 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Oxygen (%) Nitrogen 

(%) 
Temperature 

(ºC) 
1 50.95 - 52.2 - ≥ 495 0 2.07 30.00 100 
2 - 0.45 - 0.85 ≥ 650 0 1.38 20.00 100 
3 50.95 - 52.2 - < 412.5 0 1.38 20.00 100 
4 < 29.05 0.35 - 0.45 < 502.5 0 1.38 20.00 100 
5 ≥ 44.8 < 0.15 495 - 502.5 0 0.69 10.00 100 
6 39.6 - 44 0.25 - 0.75 - 1 8.97 17.81 100 
7 ≥ 43.2 ≥ 0.35 452.5 - 522.5 1 13.10 26.03 100 
8 24.75 - 30.7 - ≥ 502.5 1 2.07 4.11 100 
9 37.05 - 41.35 ≥ 3.55 - 1 2.07 4.11 100 

10 41.65 - 43.05 < 1.15 - 1 6.21 12.33 100 
11 41.5 - 44.95 < 0.35 ≥ 502.5 1 4.14 8.22 100 
12 < 48.7 0.25 - 0.35 437.5 - 502.5 1 1.38 2.74 100 
13 ≥ 45.95 < 1.05 437.5 - 495 1 4.83 9.59 100 
14 39.05 - 41.75 ≥ 5.7 - 1 2.07 4.11 100 
15 41.5 - 44.95 < 0.25 < 495 1 2.07 4.11 100 
16 - 1.05 - 1.15 - 1 1.38 2.74 100 
17 ≥ 37.05 ≥ 0.55 < 437.5 1 4.83 9.59 100 
18 37.05 - 39.05 < 0.75 - 1 3.45 6.85 100 
19 ≥ 52.2 - - 1 4.14 8.22 100 
20 40.7 - 41.5 < 0.25 - 1 0.69 1.37 100 
21 < 40.7 1.25 - 1.35 - 1 0.69 1.37 100 
22 ≥ 41.65 < 0.05 - 1 2.07 4.11 100 
23 ≥ 43.45 0.85 - 3.95 412.5 - 477.5 2 4.83 15.56 100 
24 45.05 - 50.4 < 0.55 < 452.5 2 2.07 6.67 100 
25 39.05 - 41.5 1.35 - 7.15 - 2 2.07 6.67 100 
26 21.6 - 38.55 ≥ 0.85 - 2 4.14 13.33 100 
27 45.2 - 50.4 < 0.25 - 2 2.07 6.67 100 
28 41.5 - 41.65 - 452 - 502.5 2 1.38 4.44 100 
29 45.05 - 45.2 < 0.35 - 2 1.38 4.44 100 
30 ≥ 40.35 0.85 - 2.75 ≥ 502.5 2 3.45 11.11 100 
31 41.9 - 43.2 - 445 - 477.5 2 2.07 6.67 100 
32 45.2 - 49 - 445 - 452.5 2 1.38 4.44 100 
33 49 - 50.4 < 1.05 ≥ 495 2 1.38 4.44 100 
34 39.05 - 44.45 0.75 - 1.05 445 - 502.5 2 2.76 8.89 100 
35 43.05 - 44 < 0.25 - 2 0.69 2.22 100 
36 44 - 44.45 - - 2 2.07 6.67 100 
37 39.05 - 39.6 - - 2 0.69 2.22 100 
38 17.05 - 37.05 < 0.15 - 2 2.76 8.89 100 
39 < 0.4 - - 2 0.69 2.22 100 
40 < 21.6 ≥ 0.85 - 3 3.45 62.50 100 
41 41.75 - 41.9 - - 3 0.69 12.50 100 
42 < 43.2 ≥ 7.8 - 3 0.69 12.50 100 
43 44.8 - 44.95 ≥ 0.55 - 3 0.69 12.50 100 
44 0.4 - 8 - - 4 5.52 88.89 100 
45 15.3 - 17.05 - - 4 0.69 11.11 199 
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Table C-7 Decision rules generated for Case 2: Reduct 1 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon (%) Oxygen (%) Temperature 

(ºC) 
1 ≥ 47.85 ≥ 44.45 < 485 1 2.22 66.67 100 
2 ≥ 39.2 ≥ 52.2 - 1 1.11 33.33 100 
3 ≥ 41.9 ≥ 50.5 - 2 5.56 17.86 100 
4 45.95 - 47.15 ≥ 44.25 - 2 4.44 14.29 100 
5 50.6 - 51.2 < 42.35 < 625 2 3.33 10.71 100 
6 ≥ 48.5 43.95 - 44.95 ≥ 495 2 6.67 21.43 100 
7 ≥ 57.95 ≥ 33.85 - 2 2.22 7.14 100 
8 45.95 - 46.3 - 495 - 505 2 1.11 3.57 100 
9 44 - 44.95 - - 2 1.11 3.57 100 

10 51.35 - 51.75 - ≥ 495 2 2.22 7.14 100 
11 - ≥ 54.05 - 2 2.22 7.14 100 
12 < 48.65 43.95 - 44.25 - 2 4.44 14.29 100 
13 39.75 - 40.2 - - 2 1.11 3.57 100 
14 49.9 = 51.35 < 40.6 - 3 3.33 6.82 100 
15 46.3 - 73.2 < 33.85 - 3 8.89 18.18 100 
16 46.3 - 49.6 < 43.95 < 575 3 10.00 20.45 100 
17 44 - 46.3 - < 495 3 2.22 4.55 100 
18 ≥ 76.5 - 460 - 505 3 1.11 2.27 100 
19 42.9 - 46.3 - ≥ 505 3 5.56 11.36 100 
20 48.65 - 51.75 - 406 - 477.5 3 8.89 18.18 100 
21 51.75 - 57.95 - - 3 3.33 6.82 100 
22 42.9 = 43.15 - - 3 2.22 4.55 100 
23 47.15 - 47.85 - - 3 2.22 4.55 100 
24 44.95 - 45.95 - - 3 5.56 11.36 100 
25 ≥ 50.8 ≥ 42.8 - 3 1.11 2.27 100 
26 ≥ 47.15 ≥ 44.95 - 3 2.22 4.45 100 
27 40.95 - 41.9 - - 3 1.11 2.27 100 
28 41.5 - 41.8 - ≥ 505 3 1.11 2.27 100 
29 - < 0.4 < 375 3 1.11 2.27 100 
30 - < 28.25 406 - 477.5 4 3.33 37.05 100 
31 ≥ 73.2 - ≥ 575 4 1.11 12.50 100 
32 < 40.95 - <431 4 1.11 12.50 100 
33 48.5 - 49.9 38.8 - 41.5 - 4 2.22 25.00 100 
34 < 36.15 - - 4 1.11 12.50 100 
35 50.3 - 50.6 - - 5 5.56 83.33 100 
36 ≥ 82.1 - - 5 1.11 16.67 100 
37 40.2 - 40.75 - - 8 1.11 100.00 100 

 
Table C-8 Decision rules generated for Case 2: Reduct 2 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Hydrogen 

(%) Oxygen (%) Temperature 
(ºC) 

1 6.4 - 7.2 ≥ 44.45 < 485 1 3.33 100.00 100 
2 5.95 - 6.05 ≥ 43.75 - 2 8.89 28.57 100 
3 5.95 - 6.4 41.5 - 43.65 495 - 505 2 2.22 7.14 100 
4 ≥ 5.95 46.35 - 50.5 ≥ 495 2 2.22 7.14 100 
5 - 48.95 - 49.25 - 2 1.11 3.57 100 
6 6.05 - 6.55 39.45 - 42.35 - 2 2.22 7.14 100 
7 < 5.85 ≥ 50.5 - 2 7.78 25.00 100 
8 ≥ 5.75 39.45 - 40.6 ≥ 495 2 2.22 7.14 100 
9 6.05 - 6.2 < 34.65 - 2 2.22 7.14 100 

10 5.15 - 5.45 ≥ 33.85 - 2 2.22 7.14 100 
11 - 44.55 - 44.75 - 2 1.11 3.57 100 
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12 ≥ 6.2 42.8 - 44.45 < 495 3 7.78 15.91 100 
13 ≥ 6.05 41.35 - 41.8 - 3 1.11 2.27 100 
14 ≥ 6.05 43.65 - 44.45 - 3 6.67 13.64 100 
15 5.45 - 5.95 38.8 - 48.95 - 3 8.89 18.18 100 
16 ≥ 6.2 17.05 - 38.8 - 3 8.89 18.18 100 
17 - 40.8 - 41.8 ≥ 505 3 2.22 4.55 100 
18 < 6.2 49.25 - 50.5 - 3 2.22 4.55 100 
19 - 34.65 - 40.35 < 505 3 4.44 9.09 100 
20 ≥ 6.05 ≥ 42.8 ≥ 505 3 3.33 6.82 100 
21 - 45.55 - 46.35 - 3 1.11 2.27 100 
22 ≥ 7 < 25.9 < 505 3 2.22 4.55 100 
23 5.85 - 6.05 < 41.35 < 505 3 1.11 2.27 100 
24 - < 44.95 < 375 3 1.11 2.27 100 
25 5.45 - 5.75 - - 3 5.56 11.36 100 
26 < 5.15 - ≥ 575 3 1.11 2.27 100 
27 5.75 - 6.85 < 28.25 ≥ 406 4 2.22 25.00 100 
28 - 41.35 - 41.5 - 4 1.11 12.50 100 
29 < 5.25 < 28.25 - 4 2.22 25.00 100 
30 7.95 - 9.2 - - 4 1.11 12.50 100 
31 - 38.8 - 39.45 - 4 1.11 12.50 100 
32 - < 14.05 ≥ 575 4 1.11 12.50 100 
33 - 42.35 - 42.8 - 5 5.56 83.33 100 
34 11.54 - 18.25 - - 5 1.11 16.67 100 
35 - 41.05 - 41.25 - 8 1.11 100.00 100 

 
 
Table C-9 Decision rules generated for Case 2: Reduct 3 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon 

(%) 
Hydrogen 

(%) 
Sulphur 

(%) 
Temperature 

(ºC) 
1 - - - 477.5 - 485 1 1.11 33.33 100 

2 47.85 - 
48.85 - - < 406 1 1.11 33.33 100 

3 39.2 - 
39.75 - - - 1 1.11 33.33 100 

4 45.95 - 
47.15 < 6.2 - - 2 4.44 14.29 100 

5 - < 6.2 ≥ 0.15 < 575 2 6.67 21.43 100 

6 - 6.05 - 
6.55 - ≥ 575 2 3.33 10.71 100 

7 ≥ 50.05 5.95 - 6.2 < 0.15 - 2 2.22 7.14 100 

8 45.95 - 
46.3 - - 495 - 505 2 1.11 3.57 100 

9 36.15 - 
42.9 < 6.2 - - 2 8.89 28.57 100 

10 48.5 - 
49.75 - ≥ 0.15 - 2 5.56 17.86 100 

11 49.2 - 
49.4 - - - 2 1.11 3.57 100 

12 44.95 - 
51.75 ≥ 6.65 - ≥ 495 2 1.11 3.57 100 

13 44 - 44.95 - - - 2 1.11 3.57 100 
14 ≥ 42.9 ≥ 6.2 < 0.15 406 - 477.5 3 7.78 15.91 100 

15 51.75 - 
73.2 ≥ 6.2 - - 3 10.00 20.45 100 

16 ≥ 44.95 5.45 - 
5.95 - - 3 12.22 25.00 100 

17 43.15 - 
47.15 - - ≥ 505 3 5.56 11.36 100 

18 46.3 - 
47.85 ≥ 6.2 - - 3 2.22 4.55 100 

Table C-8 Decision rules generated for Case 2: Reduct 2 (continued) 
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19 42.9 - 
43.15 - - - 3 2.22 4.55 100 

20 47.15 - 
49.2 - - 485 - 505 3 6.67 13.64 100 

21 ≥ 51.75 ≥ 6.65 - 495 - 505 3 3.33 6.82 100 
22 ≥ 50.05 < 6.05 - ≥ 535 3 3.33 6.82 100 

23 41.9 - 
46.3 ≥ 5.85 - > 495 3 2.22 4.55 100 

24 49.4 - 
50.05 ≥ 6.05 - - 3 2.22 4.55 100 

25 ≥ 42.9 - - < 375 3 1.11 2.27 100 

26 - - 0.35 - 
0.95 - 3 2.22 4.55 100 

27 ≥ 48.5 < 6.05 < 0.15 ≥ 575 4 1.11 12.50 100 
28 < 44 ≥ 7.35 - - 4 1.11 12.50 100 
29 ≥ 73.2 < 6.85 - - 4 2.22 25.00 100 

30 49.75 - 
49.9 - - - 4 1.11 12.50 100 

31 ≥ 73.2 - - ≥ 575 4 1.11 12.50 100 
32 43.15 - 44 - - ≥ 406 4 1.11 12.50 100 
33 < 36.15 - - - 4 1.11 12.50 100 

34 50.3 - 
50.6 - - - 5 5.56 83.33 100 

35 ≥ 82.1 - - - 5 1.11 16.67 100 
36 < 40.75 - ≥ 2.45 - 8 1.11 100.00 100 

 
Table C-10 Decision rules generated for Case 2: Reduct 4 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Oxygen (%) Nitrogen 

(%) 
Temperature 

(ºC) 
1 44.45 - 44.95 - < 485 1 2.22 66.67 100 
2 52.2 - 54.05 - - 1 1.11 33.33 100 
3 ≥ 48.95 0.23 - 0.35 - 2 8.89 28.57 100 
4 44.55 - 47.7 < 0.35 ≥ 495 2 5.56 17.86 100 
5 33.85 - 44.25 0.25 - 1.05 517.5 - 675 2 7.78 25.00 100 
6 40.6 - 44.25 0.75 - 1.05 < 505 2 2.22 7.14 100 
7 34.65 - 43.65 0.85 - 4.15 495 - 505 2 2.22 7.14 100 
8 < 34.65 0.65 - 0.75 - 2 2.22 7.14 100 
9 ≥ 44.55 - < 406 2 3.33 10.71 100 

10 41.8 - 44.05 < 0.15 - 2 1.11 3.57 100 
11 - - 505 - 517.5 3 2.22 4.55 100 
12 41.25 - 43.95 ≥ 0.85 < 495 3 4.44 9.09 100 
13 28.25 - 40.35 ≥ 0.75 - 3 4.44 9.09 100 
14 40.8 - 41.35 - ≥ 477.5 3 2.22 4.55 100 
15 - 0.35 - 0.65 < 505 3 7.78 15.91 100 
16 ≥ 44.25 ≥ 0.55 - 3 7.78 15.91 100 
17 43.65 - 43.95 ≥ 0.35 - 3 5.56 11.36 100 
18 11.45 - 38.8 < 0.45 - 3 7.78 15.91 100 
19 11.45 - 25.9 - 477.5 - 575 3 4.44 9.09 100 
20 40.1 - 41.8 < 0.85 ≥ 505 3 2.22 4.55 100 
21 44.05 - 44.45 < 0.35 - 3 2.22 4.55 100 
22 47.7 - 48.95 - - 3 3.33 6.82 100 
23 11.45 - 41.8 < 0.15 - 3 5.56 11.36 100 
24 - < 0.4 < 375 3 1.11 2.27 100 
25 < 28.25 - 406 - 477.5 4 3.33 37.50 100 
26 25.9 - 28.25 - - 4 1.11 12.50 100 
27 41.35 - 41.5 - - 4 1.11 12.50 100 
28 38.8 - 39.45 - - 4 1.11 12.50 100 
29 - < 0.05 < 431 4 1.11 12.50 100 

Table C-9 Decision rules generated for Case 2: Reduct 3 (continued) 
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30 < 14.05 - ≥ 575 4 1.11 12.50 100 
31 42.35 - 42.8 - - 5 5.56 83.33 100 
32 0.4 - 5.55 - - 5 1.11 16.67 100 
33 - ≥ 6.45 - 8 1.11 100.00 100 

 
Table C-11 Decision rules generated for Case 2: Reduct 5 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon (%) Nitrogen 

(%) 
Temperature 

(ºC) 
1 47.85 - 48.85 < 0.25 < 485 1 2.22 66.67 100 
2 39.2 - 39.75 - - 1 1.11 33.33 100 
3 < 44.95 0.25 - 0.45 - 2 10.00 32.14 100 
4 47.15 - 51.75 ≥ 0.25 505 - 675 2 6.67 21.43 100 
5 ≥ 48.65 1.25 - 1.35 - 2 1.11 3.57 100 
6 48.5 - 50.3 < 0.15 - 2 3.33 10.71 100 
7 45.95 - 47.15 < 0.35 - 2 4.44 14.29 100 
8 51.5 - 58.95 0.65 - 1.05 - 2 2.22 7.14 100 
9 48.5 - 48.65 ≥ 0.75 - 2 4.44 14.29 100 

10 50.05 - 51 ≥ 0.75 < 505 2 1.11 3.57 100 
11 - 3.8 - 4.15 495 - 505 2 1.11 3.57 100 
12 40.95 - 48.5 ≥ 0.65 ≥ 505 3 5.56 11.36 100 
13 < 49.2 0.35 - 0.95 - 3 11.11 22.73 100 
14 58.95 - 73.2 - - 3 7.78 15.91 100 
15 50.8 - 57.95 < 0.25 - 3 4.44 9.09 100 
16 46.3 - 50.05 ≥ 1.05 - 3 5.56 11.36 100 
17 50.8 - 57.95 ≥ 0.45 ≥ 535 3 2.22 4.55 100 
18 45.95 - 46.3 - < 495 3 2.22 4.55 100 
19 51 - 51.5 - < 505 3 3.33 6.82 100 
20 44.95 - 45.95 - - 3 5.56 11.36 100 
21 76.5 - 78.0 - < 505 3 1.11 2.27 100 
22 47.15 - 47.85 - - 3 2.22 4.55 100 
23 42.9 - 43.15 - - 3 2.22 4.55 100 
24 48.85 - 49.2 - - 3 3.33 6.82 100 
25 ≥ 42.9 - < 375 3 1.11 2.27 100 
26 40.75 - 44 < 0.25 ≥ 406 4 2.22 25.00 100 
27 ≥ 73.2 - < 477.5 4 2.22 25.00 100 
28 49.75 - 49.9 - - 4 1.11 12.50 100 
29 ≥ 73.2 - ≥ 575 4 1.11 12.50 100 
30 48.5 - 48.65 < 0.25 - 4 1.11 12.50 100 
31 < 36.15 - - 4 1.11 12.50 100 
32 50.3 - 50.6 - - 5 5.56 83.33 100 
33 ≥ 82.1 - - 5 1.11 16.67 100 
34 - ≥ 6.45 - 8 1.11 100.00 100 

 
 

 

 

 

 

Table C-10 Decision rules generated for Case 2: Reduct 4 (continued) 
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Table C-12 Decision rules generated for Case 2: Reduct 6 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Oxygen (%) Sulphur 

(%) 
Temperature 

(ºC) 
1 44.45 - 44.95 - < 485 1 2.22 66.67 100 
2 52.2 - 54.05 - - 1 1.11 33.33 100 
3 45.05 - 45.55 - - 2 2.22 7.14 100 
4 43.95 - 44.75 < 0.05 ≥ 495 2 2.22 7.14 100 
5 43.5 - 46.35 - ≥ 517.5 2 5.56 17.86 100 
6 46.35 - 47.7 - < 517.5 2 2.22 7.14 100 
7 39.45 - 40.8 ≥ 0.05 ≥495 2 2.22 7.14 100 
8 48.95 - 49.25 - - 2 1.11 3.57 100 
9 50.5 - 52.2 < 0.05 - 2 5.56 17.86 100 

10 43.5 - 43.65 - 495 - 505 2 1.11 3.57 100 
11 ≥ 52.2 ≥ 0.15 - 2 2.22 7.14 100 
12 41.5 - 44.25 ≥ 0.15 < 505 2 2.22 7.14 100 
13 41.8 - 42.35 - - 2 1.11 3.57 100 
14 33.85 - 34.65 - - 2 2.22 7.14 100 
15 - - 517.5 - 535 2 1.11 3.57 100 
16 42.8 - 44.45 < 0.25 < 495 3 8.89 18.18 100 
17 44.95 - 45.05 - - 3 1.11 2.27 100 
18 43.65 - 43.95 - - 3 5.56 11.36 100 
19 40.1 - 41.8 < 0.05 - 3 4.44 9.09 100 
20 47.7 - 48.95 - - 3 3.33 6.82 100 
21 17.05 - 33.85 ≥ 0.05 - 3 6.67 13.64 100 
22 49.25 - 50.5 < 0.05 - 3 2.22 4.55 100 
23 11.45 - 40.35 < 0.15 < 505 3 6.67 13.64 100 
24 42.8 - 43.65 - ≥ 505 3 2.22 4.55 100 
25 41.8 - 44.45 0.15 - 0.25 - 3 1.11 2.27 100 
26 40.1 - 41.8 < 0.25 ≥ 535 3 3.33 6.82 100 
27 - 0.35 - 0.95 - 3 2.22 4.55 100 
28 17.05 - 25.9 - - 3 3.33 6.82 100 
29 42.8 - 43.5 - - 3 3.33 6.82 100 
30 34.65 - 38.8 - - 3 4.44 9.09 100 
31 45.55 - 46.35 - - 3 1.11 2.27 100 
32 < 0.4 - < 375 3 1.11 2.28 100 
33 < 28.25 - 406 - 477.5 4 3.33 37.50 100 
34 < 41.35 < 0.15 ≥ 575 4 2.22 25.00 100 
35 ≥ 49.25 0.05 - 0.15 - 4 1.11 12.50 100 
36 41.35 - 41.5 - - 4 1.11 12.50 100 
37 25.9 - 28.25 - - 4 1.11 12.50 100 
38 42.35 - 42.8 - - 5 5.56 83.33 100 
39 0.4 - 5.55 - - 5 1.11 16.67 100 
40 ≥ 41.05 ≥ 2.45 - 8 1.11 100.00 100 
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Table C-13 Decision rules generated for Case 3: Reduct 1 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile 

Matter (%) 
Ash Content 

(%) 
Temperature 

(ºC) 
1 ≥ 74.45 ≥ 11.6 ≥ 537.5 0 1.33 50.00 100 
2 74.45 - 74.7 - < 412.5 0 1.33 50.00 100 
3 64.95 - 70.1 1.45 - 10.75 < 502.5 1 8.00 17.14 100 
4 < 82.05 2 - 3.4 ≥ 502.5 1 6.67 14.29 100 
5 - < 0.85 ≥ 452.5 1 13.33 28.57 100 
6 75.2 - 78 - < 502.5 1 12.00 25.71 100 
7 79.8 - 80.6 - < 555 1 4.00 8.57 100 
8 < 61 - - 1 5.33 11.43 100 
9 75.95 - 78 - - 1 10.67 22.86 100 

10 - ≥ 11.6 412.5 - 452.5 1 1.33 2.86 100 
11 70.1 - 75.95 3.4 - 8.9 - 2 9.33 24.14 100 
12 78.4 - 81.75 1.45 - 5.85 - 2 8.00 20.69 100 
13 78.4 - 84.6 1.45 - 2.85 - 2 4.00 10.34 100 
14 61 - 68.75 ≥ 10.75 - 2 6.67 17.24 100 
15 ≥ 68 0.85 - 2 - 2 8.00 20.69 100 
16 78.4 - 79.8 - - 2 4.00 10.34 100 
17 68 - 68.75 - ≥ 502.5 2 1.33 3.45 100 
18 65.9 - 67.15 - - 2 4.00 10.34 100 
19 - 4.85 - 5.05 - 3 1.33 33.33 100 
20 84.6 - 90.9 - - 3 1.33 33.33 100 
21 70.1 - 70.25 ≥ 2.45 - 3 1.33 33.33 100 
22 61.75 - 64.95 - - 4 6.67 83.33 100 
23 ≥ 90.0 - - 4 1.33 16.67 100 

 
Table C-14 Decision rules generated for Case 3: Reduct 2 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile 

Matter (%) HHV (MJ/kg) Temperature 
(ºC) 

1 - 15.75 - 15.9 ≥ 537.5 0 1.33 50.00 100 
2 74.45 - 74.7 - < 412.5 0 1.33 50.00 100 
3 75.2 - 78 - < 537.5 1 16.00 34.29 100 
4 75.2 = 80 < 18.15 - 1 16.00 34.29 100 
5 < 70.1 17.8 - 19.75 - 1 4.00 8.57 100 
6 - 16.15 - 16.5 - 1 4.00 8.57 100 
7 81.75 - 82.05 - - 1 1.33 2.86 100 
8 70.1 - 75.65 19.75 - 20.55 - 1 2.67 5.71 100 
9 ≥ 75.2 < 18.25 < 502.5 1 14.67 31.43 100 

10 82.2 - 83.3 - - 1 1.33 2.86 100 
11 - 17.55 - 17.65 < 502.5 1 2.67 5.71 100 
12 - - ≥ 675 1 4.00 8.57 100 
13 < 61 - - 1 5.33 11.43 100 
14 - < 15.9 412.5 - 452.5 1 2.67 5.71 100 
15 - - < 350 1 4.00 8.57 100 
16 68 - 81.75 16.7 - 20.1 537.5 - 675 2 9.33 24.14 100 
17 70.1 - 74.45 16.7 - 19.15 - 2 4.00 10.34 100 
18 < 67.15 16.7 - 28.05 - 2 6.67 17.24 100 
19 73.45 - 75.2 ≥ 16.7 - 2 5.33 13.79 100 
20 80.6 - 84.6 - < 555 2 4.00 10.34 100 
21 65.9 - 72.95 < 16.15 - 2 4.00 10.34 100 
22 69.35 - 75.2 - ≥ 587.5 2 2.67 6.90 100 
23 - 18.25 - 18.8 - 2 8.00 20.69 100 
24 ≥ 82.05 < 18 - 2 1.33 3.45 100 
25 68.75 - 69.35 - - 2 1.33 3.45 100 
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26 70.1 - 90.9 ≥ 21.85 - 3 2.67 66.67 100 
27 < 70.25 19.55 - 19.75 - 3 1.33 33.33 100 
28 - ≥ 28.05 - 4 6.67 83.33 100 
29 61.75 - 64.95 - - 4 6.67 83.33 100 

 
Table C-15 Decision rules generated for Case 3: Reduct 3 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Ash Content 

(%) HHV (MJ/kg) Temperature 
(ºC) 

1 11.6 - 12.05 - ≥ 537.5 0 1.33 50.00 100 
2 < 12.05 < 15.9 < 412.5 0 1.33 50.00 100 
3 12.05 - 25.85 < 16.5 - 1 2.67 5.71 100 
4 1.55 - 4.55 18.15 - 18.95 - 1 1.33 2.86 100 
5 < 4.55 20.1 - 21.15 - 1 4.00 8.57 100 
6 < 4.3 < 16.5 - 1 8.00 17.14 100 
7 < 0.85 < 18.25 - 1 13.33 28.57 100 
8 5.85 - 7.3 < 18.15 < 502.5 1 5.33 11.43 100 
9 - < 16.5 412.5 - 452.5 1 2.67 5.71 100 

10 2.85 - 3.4 - - 1 2.67 5.71 100 
11 < 1.55 - - 1 5.33 11.43 100 
12 ≥ 35.85 - - 1 2.67 5.71 100 
13 < 10.75 - < 412.5 1 4.00 8.57 100 
14 ≥ 3.4 16.7 - 21.85 ≥ 537.5 2 9.33 24.14 100 
15 0.85 - 6.25 17.8 - 18.8 - 2 8.00 20.69 100 
16 ≥ 10.75 ≥ 15.9 - 2 5.33 13.79 100 
17 ≥ 1.55 18.95 - 19.55 - 2 4.00 10.34 100 
18 4.3 - 8.9 < 16.15 - 2 4.00 10.34 100 
19 0.85 - 1.45 - - 2 5.33 13.79 100 
20 5.05 - 5.85 - - 2 6.67 17.24 100 
21 25.85 - 35.85 - - 2 2.67 6.90 100 
22 < 0.55 18.15 - 18.8 - 2 1.33 3.45 100 
23 2.45 - 5.05 ≥ 21.85 ≥ 490 3 2.67 66.67 100 
24 ≥ 2.45 19.55 - 19.75 - 3 1.33 33.33 100 
25 - ≥ 28.05 - 4 6.67 83.33 100 
26 - - 437.5 - 445 4 1.33 16.67 100 

 
Table C-16 Decision rules generated for Case 3: Reduct 4 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile 

Matter (%) 
Fixed Carbon 

(%) 
Temperature 

(ºC) 
1 - 11.85 - 12.2 ≥ 537.5 0 1.33 50.00 100 
2 74.45 - 74.7 - < 412.5 0 1.33 50.00 100 
3 75.2 - 78 < 17 - 1 12.00 25.71 100 
4 ≥ 80.6 14.25 - 15.25 - 1 1.33 2.86 100 
5 75.95 - 80.6 ≥ 14.75 - 1 12.00 25.71 100 
6 65.1 - 73.45 11.85 - 19.85 < 502.5 1 8.00 17.14 100 
7 - 17 - 18.35 - 1 5.33 11.43 100 
8 ≥ 74.7 9.4 - 12.2 - 1 5.33 11.43 100 
9 < 61 - - 1 5.33 11.43 100 

10 - 13.95 - 14.25 - 1 1.33 2.86 100 
11 68 - 74.7 - 412.5 - 452.5 1 2.67 5.71 100 
12 64.95 - 68 - ≥ 567.5 1 1.33 2.86 100 
13 - 15.25 - 17 502.5 - 675 2 5.33 13.79 100 
14 73.45 - 75.2 ≥ 12.4 - 2 6.67 17.24 100 
15 78.4 - 81.75 < 13.95 - 2 5.33 13.79 100 
16 - 18.35 - 19.65 ≥ 412.5 2 5.33 13.79 100 

Table C-14 Decision rules generated for Case 3: Reduct 2 (continued) 
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17 < 72.95 19.95 - 28.2 - 2 5.33 13.79 100 
18 ≥ 80 11.4 - 14.75 - 2 4.00 10.34 100 
19 < 72.95 < 8.45 - 2 4.00 10.34 100 
20 61 - 67.15 < 15.25 - 2 5.33 13.79 100 
21 78.4 - 79.8 - - 2 4.00 10.34 100 
22 12.2 - 12.4 - - 3 1.33 33.33 100 
23 84.6 - 90.9 - - 3 1.33 33.33 100 
24 - 19.85 - 19.95 - 3 1.33 33.33 100 
25 - ≥ 28.2 - 4 6.67 83.33 100 
26 ≥ 90.9 - - 4 1.33 16.67 100 

 
Table C-17 Decision rules generated for Case 3: Reduct 5 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Ash Content 

(%) 
Fixed Carbon 

(%) 
Temperature 

(ºC) 
1 11.6 - 12.05 - ≥ 537.5 0 1.33 50.00 100 
2 < 12.05 < 12.2 < 412.5 0 1.33 50.00 100 
3 ≥ 0.85 13.95 - 14.75 < 537.5 1 4.00 8.75 100 
4 ≥ 11.6 - 412.5 - 452.5 1 1.33 2.86 100 
5 < 4.55 17 - 19.85 < 555 1 10.67 22.86 100 
6 < 0.85 ≥ 14.75 - 1 14.67 31.43 100 
7 < 3.4 7.85 - 11.4 - 1 5.33 11.43 100 
8 ≥ 19.1 ≥ 7.85 - 1 5.33 11.43 100 
9 - 15.8 - 19.85 < 452.5 1 6.67 14.29 100 

10 2.25 - 3.4 - ≥ 555 1 2.67 5.71 100 
11 5.95 - 6.25 < 11.4 - 1 1.33 2.86 100 
12 2 - 2.25 ≥ 15.95 - 1 1.33 2.86 100 
13 7.3 - 11.6 < 15.25 - 2 2.67 6.90 100 
14 0.85 - 6.8 15.25 - 17 - 2 9.33 24.14 100 
15 - 12.4 - 13.95 - 2 5.33 13.79 100 
16 4.3 - 5.95 ≥ 14.6 ≥ 445 2 5.33 13.79 100 
17 ≥ 7.3 ≥ 18.35 - 2 2.67 6.90 100 
18 < 5.85 14.25 - 14.75 - 2 2.67 6.90 100 
19 0.85 - 2 ≥ 19.95 - 2 4.00 10.34 100 
20 4.3 - 35.85 < 9.4 - 2 6.67 17.24 100 
21 12.05 - 19.1 - - 2 2.67 6.90 100 
22 3.85 - 5.05 < 12.4 - 3 2.67 66.67 100 
23 - ≥ 28.2 - 4 6.67 83.33 100 
24 - < 0.45 - 4 1.33 16.67 100 

 
Table C-18 Decision rules generated for Case 3: Reduct 6 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Moisture Content (%) Temperature (ºC) 

1 1.35 - 1.9 ≥ 537.5 0 1.33 50.00 100 
2 < 1.9  < 412.5 0 1.33 50.00 100 
3 9.95 - 11.4 - 1 8.00 17.14 100 
4 8.95 - 9.7 < 537.5 1 10.67 22.86 100 
5 ≥ 5.8 < 412.5 1 4.00 8.57 100 
6 < 5.8 477.5 - 502.5 1 4.00 8.57 100 
7 5.2 - 7.4 ≥ 555 1 4.00 8.57 100 
8 ≥ 11.85 < 502.5 1 4.00 8.57 100 
9 8.2 - 8.7 < 555 1 4.00 8.57 100 

10 6.4 - 6.55 - 1 1.33 2.86 100 
11 40.6 - 61.1 - 1 1.33 2.86 100 
12 - ≥ 675 1 4.00 8.57 100 
13 1.35 - 1.9 412.5 - 452.5 1 1.33 2.86 100 

Table C-16 Decision rules generated for Case 3: Reduct 4 (continued) 
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14 - < 350 1 4.00 8.57 100 
15 7.4 - 8.55 ≥ 502.5 2 5.33 13.79 100 
16 8.7 - 8.95 - 2 2.67 6.90 100 
17 5.8 - 6.4 ≥ 412.5 2 4.00 10.34 100 
18 7.65 - 8.2 - 2 5.33 13.79 100 
19 6.55 - 6.8 - 2 4.00 10.34 100 
20 1.9 - 5.2 537.5 - 555 2 5.33 13.79 100 
21 ≥ 61.1 - 2 4.00 10.34 100 
22 8.7 - 9.7 ≥ 537.5 2 2.67 6.90 100 
23 11.4 - 11.85 - 2 2.67 6.90 100 
24 3.45 - 4.15 - 2 1.33 3.45 100 
25 9.7 - 9.95 - 2 1.33 3.45 100 
26 23.7 - 40.6 - 2 1.33 3.45 100 
27 1.9 - 2.85 - 2 2.67 6.90 100 
28 7.4 - 7.65 490 - 502.5 3 1.33 33.33 100 
29 6.8 - 7.1 - 3 1.33 33.33 100 
30 4.15 - 4.75 ≥ 587.5 3 1.33 33.33 100 
31 < 1.35 - 4 8.00 100.00 100 

 
Table C-19 Decision rules generated for Case 3: Reduct 7 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Fixed Carbon 

(%) HHV (MJ/kg) Temperature 
(ºC) 

1 - 15.75 - 15.9 ≥ 537.5 0 1.33 50.00 100 
2 11.85 - 12.2 - < 412.5 0 1.33 50.00 100 
3 7.85 - 14.9 17.35 - 18.15 - 1 12.00 25.71 100 
4 < 15.25 17.55 - 18.15 - 1 6.67 14.29 100 
5 15.8 - 19.85 < 18.25 < 502.5 1 10.67 22.86 100 
6 7.85 - 16.75 19.15 - 21.15 - 1 5.33 11.43 100 
7 19.65 - 19.85 - - 1 6.67 14.29 100 
8 < 12.2 < 17.15 412.5 - 452.5 1 2.67 5.71 100 
9 21.8 - 24.35 - - 1 1.33 2.86 100 

10 - 16.15 - 16.5 - 1 4.00 8.57 100 
11 - - ≥ 675 1 4.00 8.57 100 
12 - < 11.9 - 1 4.00 8.57 100 
13 - - < 350 1 4.00 8.57 100 
14 < 19.65 18.25 - 19.55 - 2 10.67 27.59 100 
15 ≥ 15.25 16.7 - 18.15 - 2 9.33 24.14 100 
16 12.4 - 28.2 ≥ 19.9 ≥ 445 2 5.33 13.79 100 
17 11.4 - 15.25 16.15 - 17.35 - 2 4.00 10.34 100 
18 < 8.45 < 20.55 - 2 5.33 13.79 100 
19 - 15.9 - 16.15 - 2 2.67 6.90 100 
20 19.95 - 21.8 - - 2 4.00 10.34 100 
21 2.34 - 19.95 ≥ 21.85 - 3 2.67 66.67 100 
22 19.85 - 19.95 - - 3 1.33 33.33 100 
23 ≥ 28.2 - - 4 6.67 83.33 100 
24 < 0.45 - - 4 1.33 16.67 100 

 
 

 

 

Table C-18 Decision rules generated for Case 3: Reduct 6 (continued) 
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Table C-20 Decision rules generated for Case 4: Reduct 1 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile Matter (%) Moisture Content (%) 

1 < 76.67 ≥ 11.85 1 2.00 100.00 100 
2 71.65 - 81.35 8 - 11.4 2 14.00 38.89 100 
3 81.35 - 81.75 ≥ 9.6 2 8.00 22.22 100 
4 - 1.1 - 1.45 2 10.00 27.78 100 
5 < 69.75 ≥ 9.6 2 4.00 11.11 100 
6 ≥ 59.35 4.35 - 8 3 18.00 50.00 100 
7 80.6 - 90.0 < 62.3 3 16.00 44.44 100 
8 < 71.65 5.8 - 8.85 3 6.00 16.67 100 
9 - ≥ 76.4 3 2.00 5.56 100 

10 < 71.65 < 4.35 4 8.00 66.67 100 
11 76.86 - 77.35 - 4 2.00 16.67 100 
12 66.05 - 68.05 - 4 2.00 16.67 100 
13 - 3.15 - 3.65 5 8.00 80.00 100 
14 ≥ 90.0 - 5 2.00 20.00 100 
15 < 55.85 - 8 4.00 100.00 100 

 
Table C-21 Decision rules generated for Case 4: Reduct 2 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Ash Content (%) Moisture Content (%) 

1 < 0.35 - 1 2.00 100.00 100 
2 0.35 - 2.55 ≥ 8 2 20.00 55.56 100 
3 ≥ 4.35 < 1.45 2 10.00 27.78 100 
4 3.85 - 4.35 ≥ 8 2 6.00 16.67 100 
5 4.35 - 16.1 ≥ 4.35 3 20.00 55.56 100 
6 2.55 - 3.85 - 3 8.00 22.22 100 
7 - 5.8 - 8 3 12.00 33.33 100 
8 - 1.65 - 2.55 3 4.00 11.11 100 
9 4.15 - 4.35 < 3.15 4 2.00 16.67 100 

10 ≥ 7.1 1.45 - 4.35 4 4.00 33.33 100 
11 16.1 - 33.15 - 4 4.00 33.33 100 
12 < 0.85 < 3.15 4 2.00 16.67 100 
13 - 3.15 - 3.65 5 8.00 80.00 100 
14 - < 0.6 5 2.00 20.00 100 
15 ≥ 33.15 - 8 4.00 100.00 100 

 
Table C-22 Decision rules generated for Case 4: Reduct 3 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile Matter (%) Fixed Carbon (%) 

1 - 9.85 - 11.6 1 2.00 100.00 100 
2 73.95 - 75.15 - 2 12.00 33.33 100 
3 ≥ 75.95 16.65 - 20.45 2 14.00 38.89 100 
4 71.65 - 73.45 - 2 4.00 11.11 100 
5 < 69.75 18.55 - 20.45 2 4.00 11.11 100 
6 - 7.85 - 8.35 2 2.00 5.56 100 
7 78.1 - 90.9 < 15.7 3 22.00 61.11 100 
8 < 75.15 21.25 - 28.2 3 4.00 11.11 100 
9 69.75 - 75.95 ≥ 18.45 3 6.00 16.67 100 

10 < 73.95 9.85 - 16.65 3 6.00 16.67 100 
11 - ≥ 28.2 4 4.00 33.33 100 
12 ≥ 70.9 ≥ 20.45 4 2.00 16.67 100 
13 70.9 - 71.65 ≥ 18.3 4 2.00 16.67 100 
14 66.05 - 68.05 - 4 2.00 16.67 100 
15 55.85 - 59.35 - 4 2.00 16.67 100 
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16 80.2 - 80.6 - 5 8.00 80.00 100 
17 ≥ 90.9 - 5 2.00 20.00 100 
18 < 55.85 - 8 4.00 100.00 100 

 
Table C-23 Decision rules generated for Case 4: Reduct 4 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile Matter (%) Temperature (ºC) 

1 - 477.5 - 485 1 2.00 100.00 100 
2 73.95 - 75.15 - 2 12.00 33.33 100 
3 71.65 - 76.85 495 - 535 2 10.00 27.78 100 
4 68.05 - 69.75 < 510 2 4.00 11.11 100 
5 81.35 - 81.75 ≥ 495 2 6.00 16.67 100 
6 77.35 - 78.1 - 2 2.00 5.56 100 
7 75.95 - 76.35 - 2 4.00 11.11 100 
8 ≥ 81.35 < 455 2 2.00 5.56 100 
9 71.65 - 73.45 - 2 4.00 11.11 100 

10 81.75 - 90.9 - 3 8.00 22.22 100 
11 80.6 - 81.35 - 3 6.00 16.67 100 
12 69.75 - 70.9 - 3 4.00 11.11 100 
13 75.15 - 80.2 425 - 477.5 3 4.00 11.11 100 
14 75.15 - 80.2 ≥ 535 3 4.00 11.11 100 
15 63.85 - 66.05 - 3 2.00 5.56 100 
16 69.75 - 73.45 ≥ 575 3 2.00 5.56 100 
17 ≥ 73.95 455 - 477.5 3 4.00 11.11 100 
18 73.45 - 73.95 - 3 2.00 5.56 100 
19 59.35 - 61.95 - 3 2.00 5.56 100 
20 61.95 - 69.15 ≥ 510 4 4.00 33.33 100 
21 70.9 - 71.65 < 575 4 2.00 16.67 100 
22 55.85 - 63.85 < 477.5 4 4.00 33.33 100 
23 76.85 - 77.35 - 4 2.00 16.67 100 
24 80.2 - 80.6 - 5 8.00 80.00 100 
25 ≥ 90.9 - 5 2.00 20.00 100 
26 < 55.85 - 8 4.00 100.00 100 

 
Table C-24 Decision rules generated for Case 4: Reduct 5 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile Matter (%) HHV (MJ/kg) 

1 76.35 - 76.65 - 1 2.00 100.00 100 
2 68.05 - 78.1 < 15.9 2 16.00 44.44 100 
3 71.65 - 73.45 - 2 4.00 11.00 100 
4 76.65 - 81.75 17.65 - 18.15 2 8.00 22.22 100 
5 < 75.15 17.65 - 18.85 2 6.00 16.67 100 
6 20.55 - 21.15 - 2 2.00 5.56 100 
7 ≥ 78.1 18.3 - 26 3 14.00 38.89 100 
8 ≥ 73.45 15.9 - 17.9 3 8.00 22.22 100 
9 69.75 - 70.9 - 3 4.00 11.11 100 

10 75.15 - 75.95 - 3 2.00 5.56 100 
11 - 21.15 - 26 3 8.00 22.22 100 
12 ≥ 78.1 < 17.15 3 2.00 5.56 100 
13 63.85 - 66.05 - 3 2.00 5.56 100 
14 68.05 - 69.15 ≥ 19.15 4 2.00 16.67 100 
15 < 71.65 ≥ 26 4 2.00 16.67 100 
16 70.9 - 71.65 < 17.25 4 2.00 16.67 100 
17 76.85 - 77.35 - 4 2.00 16.67 100 
18 - 12 - 14.25 4 2.00 16.67 100 
19 80.2 - 80.6 - 5 8.00 80.00 100 

Table C-22 Decision rules generated for Case 4: Reduct 3 (continued) 
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20 ≥ 90.9 - 5 2.00 20.00 100 
21 < 55.85 - 8 4.00 100.00 100 

 
Table C-25 Decision rules generated for Case 4: Reduct 6 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Ash Content (%) HHV (MJ/kg) 

1 < 0.35 - 1 2.00 100.00 100 
2 0.35 - 2.55 < 18.15 2 12.00 33.33 100 
3 - 15.65 - 15.9 2 14.00 38.89 100 
4 < 2.25 >- 19.75 2 4.00 11.11 100 
5 0.85 - 1.2 - 2 4.00 11.11 100 
6 - < 7.4 2 2.00 5.56 100 
7 2.55 - 7.1 15.9 - 26 3 26.00 72.22 100 
8 ≥ 1.45 18.3 - 19.15 3 8.00 22.22 100 
9 4.35 - 11.6 < 17.15 3 6.00 16.67 100 

10 4.35 - 16.1 ≥ 18.3 3 12.00 33.33 100 
11 0.35 - 0.55 < 18.65 3 2.00 5.56 100 
12 - 19.15 - 19.75 4 4.00 33.33 100 
13 ≥ 4.15 ≥ 26 4 4.00 33.33 100 
14 16.1 - 33.15 - 4 4.00 33.33 100 
15 7.1 - 9.35 - 4 2.00 16.67 100 
16 0.55 - 0.85 < 18.3 5 8.00 80.00 100 
17 - ≥ 35.15 5 2.00 20.00 100 
18 ≥ 33.15 - 8 4.00 100.00 100 

 
Table C-26 Decision rules generated for Case 4: Reduct 7 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Moisture Content (%) HHV (MJ/kg) 

1 11.85 - 30.65 - 1 2.00 100.00 100 
2 ≥ 62.3 ≥ 17.65 2 8.00 22.22 100 
3 - 15.65 - 15.9 2 14.00 38.89 100 
4 ≥ 8.55 ≥ 19.75 2 4.00 11.11 100 
5 9.6 - 11.4 - 2 8.00 22.22 100 
6 8 - 8.7 < 18.85 2 6.00 16.67 100 
7 4.35 - 8 ≥ 14.25 3 18.00 50.00 100 
8 ≥ 11.4 < 17.9 3 6.00 16.67 100 
9 ≥ 1.65 ≥ 21.15 3 8.00 22.22 100 

10 8.7 - 9.6 14.25 - 19.15 3 6.00 16.67 100 
11 - 20.05 - 20.55 3 4.00 11.11 100 
12 2.55 - 4.35 ≥ 19.15 4 4.00 33.33 100 
13 ≥ 0.6 ≥ 26 4 4.00 33.33 100 
14 - 17.15 - 17.25 4 2.00 16.67 100 
15 ≥ 8.85 < 14.25 4 2.00 16.67 100 
16 3.15 - 3.65 - 5 8.00 80.00 100 
17 < 0.6 - 5 2.00 20.00 100 
18 < 5.8 < 12 8 4.00 100.00 100 

 
Table C-27 Decision rules generated for Case 4: Reduct 8 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Moisture Content (%) Fixed Carbon (%) 

1 11.85 - 30.65 - 1 2.00 100.00 100 
2 ≥ 8 ≥ 16.2 2 24.00 66.67 100 
3 1.1 -1.45 - 2 10.00 27.78 100 
4 - 7.85 - 8.35 2 2.00 5.56 100 
5 - 12.55 - 15.7 3 16.00 44.44 100 
6 5.8 - 8 - 3 12.00 33.33 100 

Table C-24 Decision rules generated for Case 4: Reduct 5 (continued) 
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7 4.35 - 5.55 - 3 6.00 16.67 100 
8 8.4 - 8.55 - 3 2.00 5.56 100 
9 ≥ 1.65 < 5.3 3 4.00 11.11 100 

10 < 4.35 ≥ 20.45 4 8.00 66.67 199 
11 2.55 - 3.15 - 4 4.00 33.33 100 
12 - 5.3 - 7.05 4 2.00 16.67 100 
13 3.15 - 3.65 - 5 8.00 80.00 100 
14 < 0.6 - 5 2.00 20.00 100 
15 5.55 - 5.85 - 8 4.00 100.00 100 

 
Table C-28 Decision rules generated for Case 4: Reduct 9 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Fixed Carbon (%) HHV (MJ/kg) 

1 9.85 - 11.6 - 1 2.00 100.00 100 
2 ≥ 11.6 < 15.9 2 16.00 44.44 100 
3 16.2 - 18.3 ≥ 17.65 2 12.00 33.33 100 
4 ≥ 16.65 17.65 - 18.3 2 12.00 33.33 100 
5 16.65 - 18.3 - 2 14.00 38.89 100 
6 7.85 - 8.35 - 2 2.00 5.56 100 
7 8.35 - 16.2 ≥ 18.3 3 12.00 33.33 100 
8 12.55 - 15.7 - 3 16.00 44.44 100 
9 21.25 - 21.8 - 3 2.00 5.56 100 

10 18.8 - 19.35 - 3 2.00 5.56 100 
11 24.35 - 28.2 - 3 2.00 5.56 100 
12 0.85 - 7.85 ≥ 14.25 3 6.00 16.67 100 
13 - 18.3 - 18.65 3 6.00 16.67 100 
14 - 17.25 - 17.65 3 6.00 16.67 100 
15 ≥ 28.2 - 4 4.00 33.33 100 
16 21.8 - 24.35 - 4 2.00 16.67 100 
17 - 17.15 - 17.25 4 2.00 16.67 100 
18 ≥ 5.3 ≥ 26 4 4.00 33.33 100 
19 5.3 - 7.05 - 4 2.00 16.67 100 
20 < 15.95 18.15 - 18.3 5 8.00 80.00 100 
21 < 0.85 - 5 2.00 20.00 100 
22 < 9.85 < 12 8 4.00 100.00 100 

 
Table C-29 Decision rules generated for Case 4: Reduct 10 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Ash Content (%) Fixed Carbon (%) 

1 < 0.35 - 1 2.00 100.00 100 
2 < 4.35 16.2 - 20.45 2 24.00 66.67 24.00 
3 - 11.6 - 12.55 2 10.00 27.78 10.00 
4 < 2.25 < 8.35 2 2.00 5.56 2.00 
5 2.55 - 11.6 < 16.65 3 26.00 72.22 100 
6 4.35 - 16.1 ≥ 18.45 3 6.00 16.67 100 
7 1.45 - 1.7 - 3 2.00 5.56 100 
8 0.35 - 0.55 < 15.7 3 2.00 5.56 100 
9 ≥ 16.1 ≥ 20.45 4 2.00 16.67 100 

10 < 4.35 ≥ 21.8 4 6.00 50.00 100 
11 ≥ 9.35 < 7.05 4 2.00 16.67 100 
12 18.3 - 18.45 - 4 2.00 16.67 100 
13 0.55 - 0.85 < 15.95 5 8.00 80.00 100 
14 < 0.85 - 5 2.00 20.00 100 
15 ≥ 33.15 - 8 4.00 100.00 100 

 

Table C-27 Decision rules generated for Case 4: Reduct 8 (continued) 
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Table C-30 Decision rules generated for Case 4: Reduct 11 
No Rules Decision Strength 

(%) 
Coverage 

(%) 
Certainty 

(%) Moist Content (%) Temperature (ºC) 
1 11.85 - 30.65 - 1 2.00 100.00 100 
2 ≥ 8  495 - 535 2 12.00 33.33 100 
3 62.3 - 76.4 - 2 8.00 22.22 100 
4 1.1 - 1.45 - 2 10.00 27.78 100 
5 9.6 - 11.4 - 2 8.00 22.22 100 
6 8.55 - 8.7 - 2 2.00 5.56 100 
7 5.8 - 8 - 3 12.00 33.33 100 
8 5.8 - 62.3 ≥ 575 3 6.00 16.67 100 
9 8.7 - 9.6 < 495 3 4.00 11.11 100 

10 4.35 - 5.55 - 3 6.00 16.67 100 
11 1.65 - 9.05 455 - 477.5 3 4.00 11.11 100 
12 ≥ 76.4 - 3 2.00 5.56 100 
13 9.05 - 9.25 - 3 2.00 5.56 100 
14 2.55 - 3.15 - 4 4.00 33.33 100 
15 1.45 - 1.65 - 4 2.00 16.67 100 
16 8.85 - 8.95 - 4 2.00 16.67 100 
17 3.65 - 4.35 - 4 2.00 16.67 100 
18 0.6 - 1.1 - 4 2.00 16.67 100 
19 3.15 - 3.65 - 5 8.00 80.00 100 
20 < 0.6 - 5 2.00 20.00 100 
21 5.55 - 5.8 - 8 4.00 100.00 100 

 
Table C-31 Decision rules generated for Case 4: Reduct 12 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) HHV (MJ/kg) Temperature (ºC) 

1 - 477.5 - 485 1 2.00 100.00 100 
2 15.65 - 15.9 - 2 14.00 38.89 100 
3 17.9 - 18.15 ≥ 495 2 6.00 16.67 100 
4 19.75 - 20.05 - 2 2.00 5.56 100 
5 - 455 - 464.5 2 2.00 5.56 100 
6 17.65 - 17.9 < 510 2 2.00 5.56 100 
7 17.9 - 18.15 < 455 2 2.00 5.56 100 
8 18.65 - 18.85 - 2 2.00 5.56 100 
9 16.1 - 16.65 - 2 2.00 5.56 100 

10 20.55 - 21.15 - 2 2.00 5.56 100 
11 < 7.4 - 2 2.00 5.56 100 
12 18.85 - 19.15 - 3 4.00 11.11 100 
13 15.9 - 17.9 ≥ 575 3 6.00 16.67 100 
14 18.3 - 18.65 - 3 6.00 16.67 100 
15 21.15 - 26 - 3 8.00 22.22 100 
16 15.9 - 17.65 < 455 3 4.00 11.11 100 
17 20.05 - 20.55 - 3 4.00 11.11 100 
18 15.9 - 16.1 - 3 2.00 5.56 100 
19 14.25 - 15.65 - 3 2.00 5.56 100 
20 19.15 - 19.75 - 4 4.00 33.33 100 
21 26 - 35.15 - 4 4.00 33.33 100 
22 17.15 - 17.25 - 4 2.00 16.67 100 
23 12 - 14.25 - 4 2.00 16.67 100 
24 18.15 - 18.3 ≥ 495 5 4.00 40.00 100 
25 ≥ 18.15 < 425 5 4.00 40.00 100 
26 ≥ 35.15 - 5 2.00 20.00 100 
27 7.4 - 12 - 8 4.00 100.00 100 
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Table C-32 Summary of analysed validation results for Case 1: Reduct 1 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon (%) Hydrogen 

(%) 
Temperature 

(ºC) 
1 ≥ 56.55 < 6.75 < 502.5 0 3.23 100.00 66.67 
6 ≥ 44.1 6.25 - 6.45 - 

1 17.74 55.00 61.11 10 47.35 - 49.35 < 6.15 ≥ 452.5 
20 33.2 - 41.1 - - 
25 < 48.05 5.95 - 6.05 - 2 3.23 6.56 100.00 
47 ≥ 80.25 - - 4 4.84 75.00 100.00 

 
Table C-33 Summary of analysed validation results for Case 1: Reduct 2 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon (%) Oxygen (%) Temperature 

(ºC) 
7 42.9 - 46.3 41.9 - 49.95 452.5 - 522.5 

1 20.97 65.00 72.22 
8 ≥ 49.75 ≥ 41.9 - 

16 33.2 - 41.1 - - 
19 48.05 - 48.85 41.75 - 44 - 
27 ≥ 48.5 ≥ 43.45 445 - 477.5 

2 14.52 29.03 64.29 
32 46.15 - 47.7 - - 
40 ≥ 80.25 - - 4 4.84 75.00 100.00 

 
Table C-34 Summary of analysed validation results for Case 1: Reduct 3 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Hydrogen 

(%) Oxygen (%) Temperature 
(ºC) 

6 - 47.7 - 49.95 452.5 - 522.5 
1 16.13 50.00 83.33 8 6.05 - 6.45 ≥ 43.2 ≥ 452.5 

19 - 43.2 - 44 ≥ 452.5 
30 - 45.05 - 50.4 ≥ 527.5 

2 14.52 29.03 69.23 35 ≥ 5.45 49.45 - 50.4 - 

37 < 6.05 43.05 - 43.2 - 

47 - 15.3 - 17.05 - 4 4.84 75.00 100.00 

 
Table C-35 Summary of analysed validation results for Case 1: Reduct 4 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon (%) Nitrogen 

(%) 
Temperature 

(ºC) 
1 56.55 - 63.85 - < 502.5 0 3.23 100.00 100.00 
8 46.65 - 49.35 < 2.05 ≥ 452.5 

1 17.74 55.00 52.38 11 46.1 - 64.6 ≥ 3.55 - 
14 33.2 - 41.1 - - 

25 45.85 - 46.65 < 2.15 - 2 4.84 9.68 100.00 
36 ≥ 42.25 ≥ 7.8 - 3 1.61 20.00 33.33 
42 ≥ 80.25 - - 4 4.84 75.00 100.00 

 
Table C-36 Summary of analysed validation results for Case 1: Reduct 5 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Oxygen (%) Nitrogen 

(%) 
Temperature 

(ºC) 
7 ≥ 43.2 ≥ 0.35 452.5 - 522.5 

1 12.90 40.00 72.73 9 37.05 - 41.35 ≥ 3.55 - 
17 ≥ 37.05 ≥ 0.55 < 437.5 
26 21.6 - 38.55 ≥ 0.85 - 

2 20.97 41.94 68.42 30 ≥ 40.35 0.85 - 2.75 ≥ 502.5 
36 44 - 44.45 - - 
44 0.4 - 8 - - 4 4.84 75.00 100.00 
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Table C-37 Summary of analysed validation results for Case 2: Reduct 1 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon (%) Oxygen (%) Temperature 

(ºC) 
2 ≥ 39.2 ≥ 52.2 - 1 2.70 50.00 100.00 
5 50.6 - 51.2 < 42.35 < 625 

2 13.51 33.33 71.43 6 ≥ 48.5 43.95 - 44.95 ≥ 495 
11 - ≥ 54.05 - 
16 46.3 - 49.6 < 43.95 < 575 

3 16.22 40.00 75.00 17 44 - 46.3 - < 495 
24 44.95 - 45.95 - - 

33 48.5 - 49.9 38.8 - 41.5 - 4 2.70 50.00 100.00 
35 50.3 - 50.6 - - 5 2.70 100.00 50.00 
37 40.2 - 40.75 - - 8 5.41 100.00 100.00 

 
Table C-38 Summary of analysed validation results for Case 2: Reduct 2 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Hydrogen 

(%) Oxygen (%) Temperature 
(ºC) 

1 6.4 - 7.2 ≥ 44.45 < 485 1 2.70 50.00 100.00 
7 < 5.85 ≥ 50.5 - 2 8.11 20.00 75.00 

15 5.45 - 5.95 38.8 - 48.95 - 
3 18.92 46.67 58.33 16 ≥ 6.2 17.05 - 38.8 - 

25 5.45 - 5.75 - - 

30 7.95 - 9.2 - - 4 2.70 50.00 50.00 
33 - 42.35 - 42.8 - 5 2.70 100.00 100.00 
35 - 41.05 - 41.25 - 8 5.41 100.00 100.00 

 
Table C-39 Summary of analysed validation results for Case 2: Reduct 3 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon 

(%) 
Hydrogen 

(%) 
Sulphur 

(%) 
Temperature 

(ºC) 

3 39.2 - 
39.75 - - - 1 2.70 50.00 100.00 

5  < 6.2 ≥ 0.15 < 575 
2 16.22 40.00 66.67 

9 36.15 - 
42.9 < 6.2 - - 

15 51.75 - 
73.2 ≥ 6.2 - - 

3 13.51 33.33 62.50 
16 ≥ 44.95 5.45 - 5.95 - - 

34 50.3 - 
50.6 - - - 5 2.70 100.00 50.00 

36 < 40.75 - ≥ 2.45 - 8 5.41 100.00 100.00 

 
Table C-40 Summary of analysed validation results for Case 2: Reduct 4 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Oxygen (%) Nitrogen 

(%) 
Temperature 

(ºC) 
2 52.2 - 54.05 - - 1 2.70 50.00 100.00 
3 ≥ 48.95 0.23 - 0.35 - 

2 21.62 53.33 100.00 
4 44.55 - 47.7 < 0.35 ≥ 495 

15 - 0.35 - 0.65 < 505 
3 18.92 46.67 77.78 16 ≥ 44.25 ≥ 0.55 - 

17 43.65 - 43.95 ≥ 0.35 - 
31 42.35 - 42.8 - - 5 2.70 100.00 100.00 
33 - ≥ 6.45 - 8 5.41 100.00 100.00 
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Table C-41 Summary of analysed validation results for Case 2: Reduct 5 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Carbon (%) Nitrogen 

(%) 
Temperature 

(ºC) 
2 39.2 - 39.75 - - 1 2.70 50.00 100.00 
3 < 44.95 0.25 - 0.45 - 

2 16.22 40.00 85.71 
8 51.5 - 58.95 0.65 - 1.05 - 

13 < 49.2 0.35 - 0.95 - 
3 21.62 53.33 88.89 

20 44.95 - 45.95 - - 
27 ≥ 73.2 - < 477.5 4 2.70 50.00 100.00 
32 50.3 - 50.6 - - 5 2.70 100.00 50.00 
34 - ≥ 6.45 - 8 5.41 100.00 100.00 

 
Table C-42 Summary of analysed validation results for Case 2: Reduct 6 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Oxygen (%) Sulphur 

(%) 
Temperature 

(ºC) 
2 52.2 - 54.05 - - 1 2.70 50.00 100.00 
9 50.5 - 52.2 < 0.05 - 

2 8.11 20.00 75.00 
11 ≥ 52.2 ≥ 0.15 - 
16 42.8 - 44.45 < 0.25 < 495 

3 16.22 40.00 85.71 18 43.65 - 43.95 - - 
21 17.05 - 33.85 ≥ 0.05 - 
38 42.35 - 42.8 - - 5 2.70 100.00 100.00 
40 ≥ 41.05 ≥ 2.45 - 8 5.41 100.00 100.00 

 
 
Table C-43 Summary of analysed validation results for Case 3: Reduct 1 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile 

Matter (%) 
Ash Content 

(%) 
Temperature 

(ºC) 
1 ≥ 74.45 ≥ 11.6 ≥ 537.5 

0 6.25 66.67 100.00 
2 74.45 - 74.7 - < 412.5 
5 - < 0.85 ≥ 452.5 

1 28.13 60.00 81.82 6 75.2 - 78 - < 502.5 
8 < 61 - - 

12 78.4 - 81.75 1.45 - 5.85 - 
2 12.50 44.44 57.14 13 78.4 - 84.6 1.45 - 2.85 - 

15 ≥ 68 0.85 - 2 - 
21 70.1 - 70.25 ≥ 2.45 - 3 3.13 100.00 50.00 
22 61.75 - 64.95 - - 4 9.38 75.00 75.00 

 
Table C-44 Summary of analysed validation results for Case 3: Reduct 2 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile 

Matter (%) HHV (MJ/kg) Temperature 
(ºC) 

1 - 15.75 - 15.9 ≥ 537.5 
0 6.25 66.67 100.00 

2 74.45 - 74.7 - < 412.5 
3 75.2 - 78 - < 537.5 

1 34.38 73.33 78.57 
4 75.2 = 80 < 18.15 - 
9 ≥ 75.2 < 18.25 < 502.5 

13 < 61 - - 

16 68 - 81.75 16.7 - 20.1 537.5 - 675 
2 12.50 44.44 66.67 

20 80.6 - 84.6 - < 555 
28 - ≥ 28.05 - 4 12.50 100.00 100.00 
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Table C-45 Summary of analysed validation results for Case 3: Reduct 3 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Ash Content 

(%) HHV (MJ/kg) Temperature 
(ºC) 

1 11.6 - 12.05 - ≥ 537.5 0 3.13 33.33 100.00 
3 12.05 - 25.85 < 16.5 - 

1 40.63 86.67 92.86 
7 < 0.85 < 18.25 - 

11 < 1.55 - - 

13 < 10.75 - < 412.5 
15 0.85 - 6.25 17.8 - 18.8 - 2 9.38 33.33 75.00 
25 - ≥ 28.05 - 4 12.50 100.00 100.00 

 
Table C-46 Summary of analysed validation results for Case 3: Reduct 4 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile 

Matter (%) 
Fixed Carbon 

(%) 
Temperature 

(ºC) 
1 - 11.85 - 12.2 ≥ 537.5 

0 6.25 66.67 100.00 
2 74.45 - 74.7 - < 412.5 
3 75.2 - 78 < 17 - 

1 31.25 66.67 83.33 5 75.95 - 80.6 ≥ 14.75 - 

9 < 61 - - 

13 - 15.25 - 17 502.5 - 675 
2 12.50 44.44 57.14 

16 - 18.35 - 19.65 ≥ 412.5 
25 - ≥ 28.2 - 4 9.38 75.00 60.00 

 
Table C-47 Summary of analysed validation results for Case 3: Reduct 5 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Ash Content 

(%) 
Fixed Carbon 

(%) 
Temperature 

(ºC) 
1 11.6 - 12.05 - ≥ 537.5 0 3.13 33.33 100.00 
5 < 4.55 17 - 19.85 < 555 

1 28.13 60.00 75.00 6 < 0.85 ≥ 14.75 - 

8 ≥ 19.1 ≥ 7.85 - 

14 0.85 - 6.8 15.25 - 17 - 
2 18.75 66.67 85.71 

16 4.3 - 5.95 ≥ 14.6 ≥ 445 
23 - ≥ 28.2 - 4 9.38 75.00 60.00 

 
Table C-48 Summary of analysed validation results for Case 3: Reduct 6 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Moisture Content (%) Temperature (ºC) 

1 1.35 - 1.9 ≥ 537.5 
0 6.25 66.67 100.00 

2 < 1.9 < 412.5 
3 9.95 - 11.4 - 

1 12.50 26.67 80.00 
5 ≥ 5.8 < 412.5 

15 7.4 - 8.55 ≥ 502.5 
2 12.50 44.44 100.00 

21 ≥ 61.1 - 
31 < 1.35 - 4 9.38 75.00 75.00 
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Table C-49 Summary of analysed validation results for Case 3: Reduct 7 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Fixed Carbon 

(%) HHV (MJ/kg) Temperature 
(ºC) 

1 - 15.75 - 15.9 ≥ 537.5 
0 6.25 66.67 100.00 

2 11.85 - 12.2 - < 412.5 
5 15.8 - 19.85 < 18.25 < 502.5 

1 21.88 46.67 70.00 
6 7.85 - 16.75 19.15 - 21.15 - 

15 ≥ 15.25 16.7 - 18.15 - 
2 21.88 77.78 77.78 16 12.4 - 28.2 ≥ 19.9 ≥ 445 

17 11.4 - 15.25 16.15 - 17.35 - 
23 ≥ 28.2 - - 4 9.38 75.00 60.00 

 
Table C-50 Summary of analysed validation results for Case 4: Reduct 1 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile Matter (%) Moisture Content (%) 

2 71.65 - 81.35 8 - 11.4 
2 13.64 50.00 60.00 

5 < 69.75 ≥ 9.6 
6 ≥ 59.35 4.35 - 8 

3 27.27 60.00 66.67 
8 < 71.65 5.8 - 8.85 

13 - 3.15 - 3.65 5 9.09 100.00 100.00 
15 < 55.85 - 8 9.09 100.00 100.00 

 
Table C-51 Summary of analysed validation results for Case 4: Reduct 2 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Ash Content (%) Moisture Content (%) 

2 0.35 - 2.55 ≥ 8 
2 18.18 66.67 80.00 3 ≥ 4.35 < 1.45 

4 3.85 - 4.35 ≥ 8 
5 4.35 - 16.1 ≥ 4.35 

3 36.36 80.00 61.54 
7 - 5.8 - 8 

14 - < 0.6 5 9.09 100.00 100.00 
15 ≥ 33.15 - 8 9.09 100.00 100.00 

 
Table C-52 Summary of analysed validation results for Case 4: Reduct 3 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile Matter (%) Fixed Carbon (%) 

1 - 9.85 - 11.6 1 4.55 100.00 50.00 
2 73.95 - 75.15 - 

2 18.18 66.67 66.67 3 ≥ 75.95 16.65 - 20.45 
5 < 69.75 18.55 - 20.45 
8 < 75.15 21.25 - 28.2 

3 27.27 60.00 85.71 9 69.75 - 75.95 ≥ 18.45 
10 < 73.95 9.85 - 16.65 
16 80.2 - 80.6 - 5 9.09 100.00 100.00 
18 < 55.85 - 8 9.09 100.00 100.00 

Table C-53 Summary of analysed validation results for Case 4: Reduct 4 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile Matter (%) Temperature (ºC) 

2 73.95 - 75.15 - 
2 13.64 50.00 50.00 

7 75.95 - 76.35 - 
10 81.75 - 90.9 - 

3 13.64 30.00 100.00 18 73.45 - 73.95 - 
19 59.35 - 61.95 - 
24 80.2 - 80.6 - 5 9..09 100.00 100.00 
26 < 55.85 - 8 9..09 100.00 100.00 
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Table C-54 Summary of analysed validation results for Case 4: Reduct 5 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Volatile Matter (%) HHV (MJ/kg) 

2 68.05 - 78.1 < 15.9 2 13.63 50.00 60.00 
8 ≥ 73.45 15.9 - 17.9 

3 9.09 20.00 40.00 
9 69.75 - 70.9 - 

19 80.2 - 80.6 - 5 9..09 100.00 100.00 
21 < 55.85 - 8 9..09 100.00 100.00 

 
Table C-55 Summary of analysed validation results for Case 4: Reduct 6 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Ash Content (%) HHV (MJ/kg) 

3 - 15.65 - 15.9 2 13.64 50.00 100.00 
7 2.55 - 7.1 15.9 - 26 

3 22.72 50.00 62.50 
9 4.35 - 11.6 < 17.15 

16 0.55 - 0.85 < 18.3 5 9..09 100.00 100.00 
18 ≥ 33.15 - 8 9..09 100.00 100.00 

 
Table C-56 Summary of analysed validation results for Case 4: Reduct 7 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Moisture Content (%) HHV (MJ/kg) 

3 - 15.65 - 15.9 
2 18.18 66.67 100.00 

5 9.6 - 11.4 - 
7 4.35 - 8 ≥ 14.25 

3 31.82 70.00 77.78 
8 ≥ 11.4 < 17.9 

16 3.15 - 3.65 - 5 9.09 100.00 100.00 
18 < 5.8 < 12 8 4.55 50.00 100.00 

 
Table C-57 Summary of analysed validation results for Case 4: Reduct 8 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Moisture Content (%) Fixed Carbon (%) 

2 ≥ 8 ≥ 16.2 
2 18.18 66.67 80.00 

3 1.1 -1.45 - 
5 - 12.55 - 15.7 

3 27.27 60.00 60.00 
6 5.8 - 8 - 

13 3.15 - 3.65 - 5 9.09 100.00 100.00 
15 5.55 - 5.85 - 8 4.55 50.00 100.00 

 
Table C-58 Summary of analysed validation results for Case 4: Reduct 9 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Fixed Carbon (%) HHV (MJ/kg) 

1 9.85 - 11.6 - 1 4.55 100.00 50.00 
2 ≥ 11.6 < 15.9 2 13.64 50.00 60.00 
7 8.35 - 16.2 ≥ 18.3 

3 13.64 30.00 50.00 
8 12.55 - 15.7 - 

20 < 15.95 18.15 - 18.3 5 9.09 100.00 66.67 
22 < 9.85 < 12 8 9.09 100.00 100.00 
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Table C-59 Summary of analysed validation results for Case 4: Reduct 10 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Ash Content (%) Fixed Carbon (%) 

2 < 4.35 16.2 - 20.45 
2 18.18 66.67 50.00 

3 - 11.6 - 12.55 
5 2.55 - 11.6 < 16.65 

3 22.73 50.00 55.56 
6 4.35 - 16.1 ≥ 18.45 

13 0.55 - 0.85 < 15.95 
5 9.09 100.00 100.00 

14 < 0.85 - 

15 ≥ 33.15 - 8 9.09 100.00 100.00 

 
 
Table C-60 Summary of analysed validation results for Case 4: Reduct 11 

No Rules Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) Moist Content (%) Temperature (ºC) 

2 ≥ 8 495 - 535 
2 22.72 83.33 71.43 4 1.1 - 1.45 - 

5 9.6 - 11.4 - 

7 5.8 - 8 - 
3 27.27 60.00 60.00 8 5.8 - 62.3 ≥ 575 

10 4.35 - 5.55 - 

19 3.15 - 3.65 - 5 9.09 100.00 100.00 
21 5.55 - 5.8 - 8 4.55 100.00 100.00 

 
Table C-61 Summary of analysed validation results for Case 4: Reduct 12 

No 
Rules 

Decision Strength 
(%) 

Coverage 
(%) 

Certainty 
(%) HHV (MJ/kg) Temperature (ºC) 

2 15.65 - 15.9 - 2 13.64 50.00 100.00 
13 15.9 - 17.9 ≥ 575 

3 18.18 40.00 80.00 14 18.3 - 18.65 - 
19 14.25 - 15.65 - 

24 18.15 - 18.3 ≥ 495 5 9.09 100.00 100.00 
27 7.4 - 12 - 8 9.09 100.00 100.00 

 
 
 



Appendix D 

 314 

APPENDIX D: CASE STUDY IN CHAPTER 7 

GC-MS Results: 

Table D-1 GC-MS result for diesel 
RT Area Area % Match R. Match Compound Name 
6.66 4764726 0.83 727 891 Decane 
8.63 3377294 0.59 913 929 Benzene, 1,2,4-trimethyl- 
8.74 6088798 1.05 902 909 Decane 
9.62 7907015 1.37 854 892 Undecane 
10.46 10066590 1.74 909 923 Dodecane 
11.66 8871268 1.54 824 881 Dodecane 
12.03 11981998 2.08 890 920 Dodecane 
12.79 3657356 0.63 758 807 Naphthalene, 1,2,3,4-tetrahydro-6-methyl- 
12.87 3376610 0.58 814 877 Octane, 2,3,6-trimethyl- 
13.07 7251438 1.26 661 695 Naphthalene, 1,2,3,4-tetrahydro-6-methyl- 
13.31 11016673 1.91 896 918 Tridecane 
13.48 15309139 2.65 886 899 Tridecane 
13.65 3701805 0.64 852 874 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
13.84 4828131 0.84 882 893 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.16 6140765 1.06 721 747 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.24 3446818 0.60 697 824 Tridecane, 2-methyl- 
14.35 3321366 0.58 750 894 Tridecane, 2-methyl- 
14.50 4292493 0.74 886 908 Dodecane, 2,6,10-trimethyl- 
14.83 21484084 3.72 904 905 Tetradecane 
15.50 3537746 0.61 728 811 Cyclohexane, octyl- 
15.56 6629260 1.15 790 869 Heptadecane, 2,6,10,14-tetramethyl- 
15.60 9352007 1.62 904 910 Heptadecane, 2,6,10,14-tetramethyl- 
15.78 3109651 0.54 687 906 Decahydro-8a-ethyl-1,1,4a,6-tetramethylnaphthalene 
16.07 14535260 2.52 883 887 Heptadecane, 2,6,10,14-tetramethyl- 
16.11 24649662 4.27 911 925 Pentadecane 
16.87 4386367 0.76 837 868 Pentadecane, 2,6,10-trimethyl- 
17.30 34462092 5.97 907 910 Hexadecane 
17.84 10888193 1.89 913 925 Pentadecane, 2,6,10-trimethyl- 
18.02 3866066 0.67 704 749 Octadecane, 6-methyl- 
18.45 32954976 5.71 890 890 Heptadecane 
18.48 31911574 5.53 875 875 Pentadecane, 2,6,10,14-tetramethyl- 
19.53 25991256 4.50 905 907 Eicosane 
19.60 6671488 1.16 892 904 Hexadecane, 2,6,10,14-tetramethyl- 
20.56 24322290 4.21 920 922 Eicosane 
20.81 60354504 10.46 932 932 Hexadecanoic acid, methyl ester 
21.54 20945470 3.63 921 921 Eicosane 
22.41 5606499 0.97 869 876 9,12-Octadecadienoic acid (Z,Z)-, methyl ester 
22.48 64651952 11.20 871 871 10-Octadecenoic acid, methyl ester 
22.71 5711366 0.99 868 871 Methyl stearate 
23.37 14354714 2.49 901 902 Eicosane 
24.24 11442078 1.98 892 895 Eicosane 
25.20 7828885 1.36 887 925 Octadecane, 2-methyl- 
26.38 5132010 0.89 866 902 Octadecane, 2-methyl- 
27.85 3066197 0.53 847 892 Nonadecane, 2-methyl- 
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Table D-2 GC-MS result for bio-oil 
RT Area Area % Match R. Match Compound Name 
3.78 23,610,478 6.66 895 904 Acetic acid 
3.81 53,489,560 15.10 682 798 Formic acid hydrazide 
3.98 19,378,148 5.47 572 876 Formamide 
4.32 5,279,309 1.49 523 879 Hydrogen azide 
4.37 10,380,873 2.93 453 758 Formamide 
4.49 2,257,410 0.64 447 778 Dimethylamine 
4.52 2,848,451 0.80 497 900 Silane, methyl- 
4.55 1,676,396 0.47 415 729 Threo-3-bromo-2-pentanol 
4.58 1,520,537 0.43 470 849 Formic acid hydrazide 
4.69 1,819,441 0.51 447 865 Methane, nitroso- 
7.82 13,879,391 3.92 707 781 2-Aminopyrimidine-1-oxide 
7.97 4,149,613 1.17 598 818 2-Thiophenecarboxylic acid, 4-cyanophenyl ester 
8.10 1,655,791 0.47 472 797 3,4-Furandiol, tetrahydro-, trans- 
8.13 1,560,378 0.44 463 763 1H-Imidazole-4-carboxaldehyde 
8.20 1,664,658 0.47 440 735 Pyrazole, 1,4-dimethyl- 

10.54 135,165,856 38.15 916 929 Phenol 
10.84 50,939,704 14.38 786 827 Phenol, 2-methoxy- 
11.08 10,704,461 3.02 420 742 Pyrrole, 4-ethyl-2-methyl- 
11.25 2,395,276 0.68 420 753 Benzene, (1,1-dimethylethoxy)- 
14.97 2,901,670 0.82 791 855 Phenol, 2,6-dimethoxy- 
16.02 5,338,457 1.51 572 704 1,2,4-Trimethoxybenzene 
16.04 1,672,589 0.47 366 741 Hexyl methyl ethylphosphonate 

 
Table D-3 GC-MS result for solvent-extracted bio-oil at 20 wt.% 2-Heptanol 

RT Area Area % Match R. Match Compound Name 
2.20 6494234 1.20 520 719 2-Chloroethyl methyl sulfoxide 
2.36 2783374 0.51 888 893 Acetone 
3.56 11026101 2.03 923 924 Acetic acid 
3.68 4486446 0.83 841 841 Propane, 2,2-dimethoxy- 
7.17 4308301 0.79 899 935 Furfural 
8.67 325703456 60.04 913 913 2-Heptanol 
9.16 4160975 0.77 632 747 6-Oxa-bicyclo[3.1.0]hexan-3-one 
9.56 3929289 0.72 723 779 3-Aminopyrazine 1-oxide` 
10.39 32933824 6.07 936 951 Phenol 
12.00 6435717 1.19 862 880 Phenol, 2-methoxy- 
13.64 4077414 0.75 904 913 Creosol 
14.91 3158687 0.58 833 895 Phenol, 4-ethyl-2-methoxy- 
15.94 5803105 1.07 855 874 Phenol, 2,6-dimethoxy- 
17.20 1948840 0.36 710 799 1,2,4-Trimethoxybenzene 
17.31 2785705 0.51 550 785 Phenol, 2-methoxy-4-(1-propenyl)- 
18.16 2693023 0.50 675 738 5-tert-Butylpyrogallol 
22.96 119719952 22.07 744 801 n-Hexadecanoic acid 

 
Table D-4 GC-MS result for solvent-extracted bio-oil at 20 wt.% 2-Octanol 

RT Area Area % Match R. Match Compound Name 
2.08 7682798 2.98 731 804 12-Methyl-E,E-2,13-octadecadien-1-ol 
2.36 3869319 1.50 916 935 Acetone 
2.51 2258961 0.88 892 921 Acetic acid, methyl ester 
2.67 2592088 1.01 463 837 Dimethyl ether 
3.39 7338069 2.85 879 881 Acetic acid 
3.66 5649017 2.19 869 869 Propane, 2,2-dimethoxy- 
4.82 280943 0.11 726 864 Propanoic acid 
7.13 1876945 0.73 881 924 Furfural 
7.66 379382 0.15 752 831 2-Furanmethanol 
9.53 1961175 0.76 733 765 2-Furanethanol, á-methoxy-(S)- 
10.30 8926521 3.47 915 929 Phenol 
10.50 200574848 77.86 935 935 2-Octanol 
11.50 391092 0.15 858 895 Phenol, 3-methyl- 
11.87 338471 0.13 848 890 p-Cresol 
11.95 2688778 1.04 922 927 Phenol, 2-methoxy- 
13.60 1477343 0.57 915 917 Creosol 
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14.86 1086927 0.42 885 904 Phenol, 4-ethyl-2-methoxy- 
15.41 293199 0.11 714 825 2-Methoxy-4-vinylphenol 
15.88 1754060 0.68 902 904 Phenol, 2,6-dimethoxy- 
17.13 759555 0.29 759 786 1,2,4-Trimethoxybenzene 
17.26 343745 0.13 767 856 Phenol, 2-methoxy-4-(1-propenyl)- 
18.10 622398 0.24 741 761 5-tert-Butylpyrogallol 
20.23 521853 0.20 701 807 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 
22.89 3932021 1.53 783 830 n-Hexadecanoic acid 

 
Table D-5 GC-MS result for solvent-extracted bio-oil at 20 wt.% 2-Octanone 

RT Area Area % Match R. Match Compound Name 
2.36 2273250 0.44 905 913 Acetone 
3.43 7810739 1.52 874 877 Acetic acid 
3.69 4892537 0.95 826 826 Propane, 2,2-dimethoxy- 
7.16 4853063 0.94 917 948 Furfural 
9.54 3967056 0.77 730 762 2-Furanethanol, á-methoxy-(S)- 
10.25 395568512 77.01 886 888 2-Octanone 
10.96 5622837 1.09 697 740 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- 
11.53 40842140 7.95 629 830 1-Octene, 2-methoxy- 
11.98 23471146 4.57 908 918 Phenol, 2-methoxy- 
12.55 1696148 0.33 779 893 1-Octene, 2-methoxy- 
13.63 3062003 0.60 879 884 Creosol 
14.88 2823767 0.55 883 901 Phenol, 4-ethyl-2-methoxy- 
15.91 4078483 0.79 894 900 Phenol, 2,6-dimethoxy- 
17.17 1584365 0.31 752 794 1,2,4-Trimethoxybenzene 
18.13 1648356 0.32 684 744 5-tert-Butylpyrogallol 
22.92 9488370 1.85 761 809 n-Hexadecanoic acid 

 
Table D-6 GC-MS result for aqueous bio-oil at 20 wt.% 2-Heptanol 

RT Area Area % Match R. Match Compound Name 
2.36 2151111 5.64 866 878 Acetone 
2.74 650889 1.71 922 951 Formic acid 
3.54 15783130 41.36 912 912 Acetic acid 
3.68 796959 2.09 844 848 Propane, 2,2-dimethoxy- 
3.97 2175034 5.70 817 828 Acetic acid, methyl ester 
7.16 1401427 3.67 848 912 Furfural 
8.58 3153796 8.27 926 926 2-Heptanol 
9.55 811863 2.13 727 769 2-Furanethanol, á-methoxy-(S)- 
10.35 1752068 4.59 859 899 Phenol 
15.91 700685 1.84 720 832 Formic acid, 2,6-dimethoxyphenyl ester 
22.93 8781275 23.01 762 823 n-Hexadecanoic acid 

 
 
Table D-7 GC-MS result for aqueous bio-oil at 20 wt.% 2-Octanol 

RT Area Area % Match R. Match Compound Name 
2.37 986154 5.53 889 891 Acetone 
2.52 288513 1.62 864 884 Acetic acid, methyl ester 
3.38 8365044 46.93 925 926 Acetic acid 
3.68 533389 2.99 851 854 Propane, 2,2-dimethoxy- 
3.92 908668 5.10 918 920 2-Propanone, 1-hydroxy- 
7.13 496223 2.78 840 918 Furfural 
9.54 582499 3.27 717 746 2-Furanethanol, á-methoxy-(S)- 
10.25 682635 3.83 910 931 Phenol 
10.43 670346 3.76 866 874 2-Octanol 
22.89 4310376 24.18 755 803 n-Hexadecanoic acid 

 
 
 
 

Table D-4 GC-MS result for solvent-extracted bio-oil at 20 wt.% 2-Octanol (continued) 
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Table D-8 GC-MS result for aqueous bio-oil at 20 wt.% 2-Octanone 
RT Area Area % Match R. Match Compound Name 
2.34 2195318 8.65 910 918 Acetone 
2.49 1419559 5.59 929 938 Acetic acid, methyl ester 
2.64 1637866 6.45 905 948 Formic acid 
3.14 322614 1.27 755 847 Ethyl Acetate 
3.43 9961028 39.24 914 915 Acetic acid 
3.63 668861 2.63 888 900 Propane, 2,2-dimethoxy- 
3.88 1011279 3.98 817 837 Acetic acid, methyl ester 
7.10 513504 2.02 787 899 Furfural 
9.50 296345 1.17 660 739 2-Furanethanol, á-methoxy-(S)- 
10.16 569885 2.25 841 861 2-Octanone 
22.87 2398099 9.45 834 864 n-Hexadecanoic acid 
22.93 4390097 17.29 761 907 n-Hexadecanoic acid 

 
Table D-9 GC-MS result for solvent-extracted bio-oil at 5 wt.% 2-Octanol 

RT Area Area % Match R. Match Compound Name 
2.51 1700201 0.47 951 951 Acetic acid, methyl ester 
3.33 18413408 5.14 898 899 Acetic acid 
3.95 1602364 0.45 896 896 2-Propanone, 1-hydroxy- 
4.58 687629 0.19 840 857 Propanoic acid 
5.56 665373 0.19 828 836 2,2-Dimethoxybutane 
7.11 7834933 2.19 895 944 Furfural 
7.60 1819761 0.51 824 833 2-Furanmethanol 
7.79 1537144 0.43 867 870 2-Propanone, 1-(acetyloxy)- 
8.58 1256356 0.35 869 871 2-Cyclopenten-1-one, 2-methyl- 
8.99 682256 0.19 803 821 1,2-Cyclopentanedione 
9.52 8912101 2.49 739 767 2-Furanethanol, á-methoxy-(S)- 
10.17 60152964 16.79 940 949 Phenol 
10.44 182750944 51.01 929 929 2-Octanol 
10.86 1103643 0.31 813 827 1,2-Cyclopentanedione, 3-methyl- 
11.40 3171448 0.89 769 871 Phenol, 2-methyl- 
11.77 2546675 0.71 885 900 Phenol, 3-methyl- 
11.91 11090160 3.10 937 940 Phenol, 2-methoxy- 
12.31 1506373 0.42 854 903 Benzofuran, 2-methyl- 
12.74 676405 0.19 770 830 Phenol, 2-ethyl 
12.93 1252031 0.35 842 886 Phenol, 2,4-dimethyl- 
13.22 1144328 0.32 799 819 Phenol, 3-ethyl- 
13.36 620527 0.17 846 869 2-Methoxy-6-methylphenol 
13.57 7611967 2.12 913 913 Creosol 
14.64 889453 0.25 787 847 1,2-Benzenediol, 3-methoxy- 
14.82 5973841 1.67 916 927 Phenol, 4-ethyl-2-methoxy- 
15.36 1871105 0.52 856 892 2-Methoxy-4-vinylphenol 
15.83 9749076 2.72 923 925 Phenol, 2,6-dimethoxy- 
15.93 827850 0.23 792 824 Eugenol 
16.06 995897 0.28 854 891 Phenol, 2-methoxy-4-propyl- 
17.08 5804166 1.62 813 831 1,2,4-Trimethoxybenzene 
17.20 2880618 0.80 903 932 Phenol, 2-methoxy-4-(1-propenyl)- 
17.34 1934736 0.54 869 898 Methylparaben 
18.06 3912643 1.09 779 781 5-tert-Butylpyrogallol 
18.48 855655 0.24 809 858 Dodecanoic acid 
18.98 630579 0.18 894 910 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 
19.57 610053 0.17 826 841 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 
20.17 2595604 0.72 896 902 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 
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Table D-10 GC-MS result for solvent-extracted bio-oil at 10 wt.% 2-Octanol 
RT Area Area % Match R. Match Compound Name 
2.38 5575829 1.32 944 947 Acetone 
2.53 1151977 0.27 885 885 Acetic acid, methyl ester 
3.25 17971238 4.25 926 926 Acetic acid 
3.68 20727876 4.90 898 898 Propane, 2,2-dimethoxy- 
3.91 807865 0.19 887 887 2-Propanone, 1-hydroxy- 
4.53 710359 0.17 818 837 Propanoic acid 
5.55 665636 0.16 855 860 2,2-Dimethoxybutane 
5.77 547283 0.13 860 868 1-Hydroxy-2-butanone 
7.10 7066023 1.67 914 952 Furfural 
7.59 1695218 0.40 867 872 2-Furanmethanol 
7.78 1136185 0.27 843 850 2-Propanone, 1-(acetyloxy)- 
8.01 502757 0.12 867 878 Furan, tetrahydro-2,5-dimethoxy- 
8.35 505688 0.12 716 759 Furan, tetrahydro-2,5-dimethoxy- 
8.57 937406 0.22 800 836 2-Cyclopenten-1-one, 2-methyl- 
8.98 533716 0.13 853 869 1,2-Cyclopentanedione 
9.51 6776889 1.60 735 762 2-Furanethanol, á-methoxy-(S)- 
10.16 44337096 10.49 945 952 Phenol 
10.44 257655696 60.94 921 921 2-Octanol 
10.85 993134 0.23 852 866 1,2-Cyclopentanedione, 3-methyl- 
11.39 2371494 0.56 742 854 Phenol, 2-methyl- 
11.76 1952138 0.46 902 917 Phenol, 3-methyl- 
11.91 8120913 1.92 950 953 Phenol, 2-methoxy- 
12.31 1022119 0.24 794 867 Benzofuran, 2-methyl- 
12.74 538752 0.13 733 825 Phenol, 2-ethyl- 
12.94 985232 0.23 838 886 Phenol, 2,4-dimethyl- 
13.21 1183984 0.28 786 816 Phenol, 4-ethyl- 
13.56 6336124 1.50 928 928 Creosol 
13.85 1458602 0.35 705 895 Catechol 
14.82 4458922 1.05 919 929 Phenol, 4-ethyl-2-methoxy- 
15.36 1279827 0.30 866 898 2-Methoxy-4-vinylphenol 
15.82 7276674 1.72 935 937 Phenol, 2,6-dimethoxy- 
15.92 582689 0.14 809 827 Eugenol 
16.06 918910 0.22 786 838 Phenol, 2-methoxy-4-propyl- 
17.08 4348289 1.03 795 811 1,2,4-Trimethoxybenzene 
17.20 2156547 0.51 896 927 Phenol, 2-methoxy-4-(1-propenyl)- 
17.35 1395405 0.33 847 891 Methylparaben 
18.05 2906264 0.69 788 790 5-tert-Butylpyrogallol 
18.97 527894 0.12 858 877 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 
19.57 525810 0.12 832 850 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 
20.17 2138779 0.51 895 899 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 

 
Table D-11 GC-MS result for solvent-extracted bio-oil at 15 wt.% 2-Octanol 

RT Area Area % Match R. Match Compound Name 
2.36 831144 0.17 861 903 Acetone 
2.51 1086555 0.22 965 965 Acetic acid, methyl ester 
3.30 17585224 3.59 910 910 Acetic acid 
3.69 2281176 0.47 866 866 Propane, 2,2-dimethoxy- 
3.95 1019051 0.21 880 892 2-Propanone, 1-hydroxy- 
4.56 669664 0.14 841 860 Propanoic acid 
5.56 578042 0.12 827 836 2,2-Dimethoxybutane 
5.78 461978 0.09 819 849 1-Hydroxy-2-butanone 
7.10 4118189 0.84 860 925 Furfural 
7.58 1415417 0.29 860 866 Phenol Decreasing. 
7.78 825180 0.17 877 892 2-Propanone, 1-(acetyloxy)- 
8.01 636122 0.13 857 865 Furan, tetrahydro-2,5-dimethoxy- 
8.33 631739 0.13 768 808 Furan, tetrahydro-2,5-dimethoxy- 
8.57 459352 0.09 873 890 2-Cyclopenten-1-one, 2-methyl- 
8.98 479529 0.10 817 839 1,2-Cyclopentanedione 
9.50 10792296 2.20 729 758 2-Furanethanol, á-methoxy-(S)- 
10.16 41015516 8.37 941 948 Phenol 
10.44 362932224 74.06 923 923 2-Octanol 
10.84 782826 0.16 843 857 1,2-Cyclopentanedione, 3-methyl- 
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11.37 2224289 0.45 784 877 Phenol, 2-methyl- 
11.75 1681502 0.34 905 913 Phenol, 3-methyl- 
11.90 7064702 1.44 934 937 Phenol, 2-methoxy- 
12.30 960275 0.20 801 862 Benzofuran, 2-methyl- 
12.74 408683 0.08 707 797 Phenol, 2-ethyl- 
12.92 754697 0.15 832 881 Phenol, 2,4-dimethyl- 
13.22 861695 0.18 775 797 Phenol, 4-ethyl- 
13.55 5431032 1.11 933 933 Creosol 
14.64 885633 0.18 801 879 1,2-Benzenediol, 3-methoxy- 
14.81 3582011 0.73 899 909 Phenol, 4-ethyl-2-methoxy- 
15.35 1058732 0.22 831 871 2-Methoxy-4-vinylphenol 
15.82 6122154 1.25 922 923 Phenol, 2,6-dimethoxy- 
15.92 438710 0.09 682 747 Eugenol 
16.06 627269 0.13 777 828 Phenol, 2-methoxy-4-propyl- 
17.07 3216597 0.66 803 821 1,2,4-Trimethoxybenzene 
17.20 1423097 0.29 895 925 Phenol, 2-methoxy-4-(1-propenyl)- 
17.33 1030020 0.21 877 908 Methylparaben 
18.05 1980700 0.40 759 761 5-tert-Butylpyrogallol 
18.47 395873 0.08 763 835 Dodecanoic acid 
20.17 1333962 0.27 873 879 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 

 
Table D-12 GC-MS result for solvent-extracted bio-oil at 20 wt.% 2-Octanol 

RT Area Area % Match R. Match Compound Name 
2.36 1036868 0.17 924 939 Acetone 
2.51 1181150 0.20 932 932 Acetic acid, methyl ester 
3.05 593224 0.10 888 940 2-Butanone 
3.31 18833852 3.11 906 907 Acetic acid 
3.68 2565026 0.42 873 873 Propane, 2,2-dimethoxy- 
3.95 1214705 0.20 925 932 2-Propanone, 1-hydroxy- 
4.56 759806 0.13 807 827 Propanoic acid 
5.56 711035 0.12 855 863 2,2-Dimethoxybutane 
7.11 6866566 1.13 895 942 Furfural 
7.60 1558394 0.26 887 891 2-Furanmethanol 
7.79 1079251 0.18 882 890 2-Propanone, 1-(acetyloxy)- 
8.03 606308 0.10 848 864 Furan, tetrahydro-2,5-dimethoxy- 
8.36 610574 0.10 720 753 Furan, tetrahydro-2,5-dimethoxy- 
8.59 581021 0.10 830 839 2-Cyclopenten-1-one, 2-methyl- 
8.99 641527 0.11 836 854 1,2-Cyclopentanedione 
9.52 7541849 1.25 727 756 2-Furanethanol, á-methoxy-(S)- 
10.20 42741452 7.06 949 958 Phenol 
10.46 463974464 76.62 905 905 2-Octanol 
10.86 983210 0.16 852 863 1,2-Cyclopentanedione, 3-methyl- 
11.39 2389709 0.39 781 892 Phenol, 2-methyl- 
11.77 1800304 0.30 877 891 Phenol, 3-methyl- 
11.91 8127146 1.34 942 945 Phenol, 2-methoxy- 
12.32 960121 0.16 757 838 Benzofuran, 2-methyl- 
12.93 851368 0.14 828 871 Phenol, 2,4-dimethyl- 
13.22 715484 0.12 765 797 Phenol, 4-ethyl- 
13.56 5985779 0.99 926 926 Creosol 
13.84 1566947 0.26 746 882 Catechol 
14.64 1391343 0.23 869 906 1,2-Benzenediol, 3-methoxy- 
14.82 3882634 0.64 892 904 Phenol, 4-ethyl-2-methoxy- 
15.36 1233866 0.20 859 892 2-Methoxy-4-vinylphenol 
15.83 7135183 1.18 923 924 Phenol, 2,6-dimethoxy- 
15.92 543176 0.09 804 825 Eugenol 
16.06 880941 0.15 771 823 Phenol, 2-methoxy-4-propyl- 
17.08 4269336 0.71 800 816 1,2,4-Trimethoxybenzene 
17.20 2040526 0.34 905 930 Phenol, 2-methoxy-4-(1-propenyl)- 
17.34 1499281 0.25 898 926 Methylparaben 
18.05 2782874 0.46 769 770 5-tert-Butylpyrogallol 
18.48 930041 0.15 817 856 Dodecanoic acid 
18.98 540463 0.09 836 836 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 
20.17 1939874 0.32 888 894 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 

Table D-11 GC-MS result for solvent-extracted bio-oil at 15 wt.% 2-Octanol (continued) 
 



Appendix D 

 320 

 
Table D-13 GC-MS result for aqueous bio-oil at 5 wt.% 2-Octanol 

RT Area Area % Match R. Match Compound Name 
2.36 2180242 3.91 926 932 Acetone 
2.51 1243155 2.23 914 916 Acetic acid, methyl ester 
2.63 903785 1.62 849 863 Formic acid 
3.05 426105 0.76 782 899 2-Butanone 
3.37 26271484 47.08 911 914 Acetic acid 
3.68 1625069 2.91 885 886 Propane, 2,2-dimethoxy- 
3.94 2119883 3.80 921 925 2-Propanone, 1-hydroxy- 
4.56 359425 0.64 768 835 Propanoic acid 
5.80 570014 1.02 820 856 1-Hydroxy-2-butanone 
7.11 1783035 3.20 838 910 Furfural 
7.60 671422 1.20 754 777 2-Furanmethanol 
7.80 507379 0.91 857 867 2-Propanone, 1-(acetyloxy)- 
8.02 273108 0.49 803 831 Furan, tetrahydro-2,5-dimethoxy- 
8.35 237657 0.43 773 806 Furan, tetrahydro-2,5-dimethoxy- 
8.58 216433 0.39 715 786 2-Cyclopenten-1-one, 2-methyl- 
8.69 541990 0.97 690 789 2(5H)-Furanone 
8.98 370146 0.66 786 832 1,2-Cyclopentanedione 
9.52 2460609 4.41 709 737 2-Furanethanol, á-methoxy-(S)- 
10.12 7178304 12.86 940 949 Phenol 
10.39 2589869 4.64 795 802 2-Octanol 
10.84 289683 0.52 742 796 1,2-Cyclopentanedione, 3-methyl- 
11.39 235797 0.42 728 819 Phenol, 2-methyl- 
11.76 156172 0.28 733 802 Phenol, 3-methyl- 
11.91 927109 1.66 933 936 Phenol, 2-methoxy- 
13.56 558932 1.00 851 861 Creosol 
14.81 136056 0.24 767 824 Phenol, 4-ethyl-2-methoxy- 
15.82 757290 1.36 874 878 Phenol, 2,6-dimethoxy- 
17.08 215954 0.39 765 800 1,2,4-Trimethoxybenzene 

 
Table D-14 GC-MS result for aqueous bio-oil at 10 wt.% 2-Octanol 

RT Area Area % Match R. Match Compound Name 
2.36 2736490 3.50 936 940 Acetone 
2.51 1049966 1.34 936 937 Acetic acid, methyl ester 
2.63 1365091 1.75 851 861 Formic acid 
3.05 233719 0.30 873 970 2-Butanone 
3.39 37695752 48.26 912 915 Acetic acid 
3.68 3119368 3.99 889 889 Propane, 2,2-dimethoxy- 
3.94 3737610 4.79 935 937 2-Propanone, 1-hydroxy- 
4.56 654318 0.84 791 827 Propanoic acid 
4.70 163099 0.21 712 823 Acetoin 
5.80 988818 1.27 869 879 1-Hydroxy-2-butanone 
6.22 212220 0.27 816 957 Hydrogen azide 
7.12 3061843 3.92 856 918 Furfural 
7.45 477918 0.61 702 771 Ethane, 1,1,1-trimethoxy- 
7.60 662617 0.85 767 773 2-Furanmethanol 
7.80 651507 0.83 932 938 2-Propanone, 1-(acetyloxy)- 
8.03 294185 0.38 819 841 Furan, tetrahydro-2,5-dimethoxy- 
8.36 287434 0.37 810 833 Furan, tetrahydro-2,5-dimethoxy- 
8.58 308056 0.39 633 697 2-Cyclopenten-1-one, 2-methyl- 
8.99 652547 0.84 833 848 1,2-Cyclopentanedione 
9.52 2796574 3.58 725 755 2-Furanethanol, á-methoxy-(S)- 
10.12 7819134 10.01 941 949 Phenol 
10.39 3457680 4.43 898 914 2-Octanol 
10.84 568829 0.73 849 862 1,2-Cyclopentanedione, 3-methyl- 
11.39 319510 0.41 744 847 Phenol, 2-methyl- 
11.77 174000 0.22 756 826 Phenol, 3-methyl- 
11.91 1297648 1.66 930 935 Phenol, 2-methoxy- 
13.56 537979 0.69 847 856 Creosol 
13.84 323131 0.41 742 847 Catechol 
14.63 346307 0.44 827 871 1,2-Benzenediol, 3-methoxy- 
14.82 173785 0.22 768 825 Phenol, 4-ethyl-2-methoxy- 
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15.83 1358244 1.74 891 891 Phenol, 2,6-dimethoxy- 
17.08 408722 0.52 745 765 1,2,4-Trimethoxybenzene 
18.05 175539 0.22 728 765 5-tert-Butylpyrogallol 

 
Table D-15 GC-MS result for aqueous bio-oil at 15 wt.% 2-Octanol 

RT Area Area % Match R. Match Compound Name 
2.35 1221293 1.81 927 936 Acetone 
2.51 903794 1.34 901 902 Acetic acid, methyl ester 
2.63 1329733 1.97 877 881 Formic acid 
2.96 937629 1.39 854 888 n-Hexane 
3.05 209496 0.31 860 905 2-Butanone 
3.37 36172740 53.52 904 906 Acetic acid 
3.68 1022357 1.51 871 873 Propane, 2,2-dimethoxy- 
3.94 3638652 5.38 909 909 2-Propanone, 1-hydroxy- 
4.53 565807 0.84 786 848 Propanoic acid 
5.79 943089 1.40 841 853 1-Hydroxy-2-butanone 
6.21 177390 0.26 725 794 Propanoic acid, 2-oxo-, methyl ester 
7.11 2856701 4.23 846 905 Furfural 
7.60 655089 0.97 748 755 2-Furanmethanol 
7.79 631183 0.93 882 885 2-Propanone, 1-(acetyloxy)- 
8.03 258415 0.38 808 837 Furan, tetrahydro-2,5-dimethoxy- 
8.36 224952 0.33 787 812 Furan, tetrahydro-2,5-dimethoxy- 
8.69 739669 1.09 725 781 2(5H)-Furanone 
8.97 584485 0.86 836 850 1,2-Cyclopentanedione 
9.51 2118057 3.13 745 774 2-Furanethanol, á-methoxy-(S)- 
10.12 5193435 7.68 925 933 Phenol 
10.38 2682123 3.97 875 891 2-Octanol 
10.83 461158 0.68 814 834 1,2-Cyclopentanedione, 3-methyl- 
11.38 181931 0.27 676 797 Phenol, 2-methyl- 
11.75 144494 0.21 678 786 Phenol, 3-methyl- 
11.90 926825 1.37 888 894 Phenol, 2-methoxy- 
13.56 386937 0.57 842 859 Creosol 
13.84 359089 0.53 725 846 Catechol 
14.63 192151 0.28 794 836 1,2-Benzenediol, 3-methoxy- 
15.82 1011242 1.50 898 899 Phenol, 2,6-dimethoxy- 
17.08 312018 0.46 746 776 1,2,4-Trimethoxybenzene 
17.89 411027 0.61 700 756 Phenol, 2,4-bis(1,1-dimethylethyl)- 
18.16 129194 0.19 712 827 2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- 

 
Table D-16 GC-MS result for aqueous bio-oil at 20 wt.% 2-Octanol 

RT Area Area % Match R. Match Compound Name 
2.36 1175764 2.76 938 949 Acetone 
2.51 823804 1.93 944 945 Acetic acid, methyl ester 
2.64 896617 2.10 887 896 Formic acid 
3.05 294719 0.69 799 908 2-Butanone 
3.36 23273764 54.63 906 907 Acetic acid 
3.68 649008 1.52 874 875 Propane, 2,2-dimethoxy- 
3.94 2449434 5.75 908 908 2-Propanone, 1-hydroxy- 
4.53 354868 0.83 745 813 Propanoic acid 
5.80 505238 1.19 867 882 1-Hydroxy-2-butanone 
7.12 1426440 3.35 838 921 Furfural 
7.60 285356 0.67 737 749 2-Furanmethanol 
7.79 462643 1.09 898 902 2-Propanone, 1-(acetyloxy)- 
8.03 213358 0.50 812 842 Furan, tetrahydro-2,5-dimethoxy- 
8.35 191333 0.45 816 849 Furan, tetrahydro-2,5-dimethoxy- 
8.69 483874 1.14 696 812 2(5H)-Furanone 
8.98 386911 0.91 798 820 1,2-Cyclopentanedione 
9.51 2164956 5.08 747 776 2-Furanethanol, á-methoxy-(S)- 
10.12 2502129 5.87 917 925 Phenol 
10.39 1713722 4.02 895 904 2-Octanol 
10.84 303466 0.71 866 900 1,2-Cyclopentanedione, 3-methyl- 
11.90 519645 1.22 890 900 Phenol, 2-methoxy- 
13.56 197807 0.46 762 795 Creosol 

Table D-14 GC-MS result for aqueous bio-oil at 10 wt.% 2-Octanol (continued) 
(continued) 
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14.64 131088 0.31 720 812 1,2-Benzenediol, 3-methoxy- 
15.83 603780 1.42 894 896 Phenol, 2,6-dimethoxy- 
17.07 165009 0.39 739 788 1,2,4-Trimethoxybenzene 
17.89 346601 0.81 665 718 Phenol, 2,4-bis(1,1-dimethylethyl)- 
18.05 82641 0.19 674 688 5-tert-Butylpyrogallol 

 
Table D-17 GC-MS result for 2-Octanol-extracted bio-oil/diesel emulsion with 5 wt.% 
surfactant 

RT Area Area % Match R. Match Compound Name 
6.84 2377735 0.49 913 914 Nonane 
8.75 4762455 0.98 898 917 Nonane 
8.81 23301776 4.81 881 881 2-Octanol 
9.14 2292709 0.47 672 785 Benzene, 1-ethyl-3-methyl- 
10.47 10266583 2.12 907 915 Dodecane 

10.76 2327237 0.48 815 842 
Bicyclo[4.1.0]heptan-3-one, 4,7,7-trimethyl-, [1R-

(1à,4á,6à)]- 
12.03 13319191 2.75 879 905 Dodecane 
12.22 3099370 0.64 823 914 Undecane, 2,6-dimethyl- 
12.67 3083208 0.64 837 877 Cyclohexane, hexyl- 
13.44 2656870 0.55 812 871 Cyclohexane, hexyl- 
13.48 18079244 3.74 891 902 Tridecane 
13.84 5584727 1.15 878 887 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.16 7552321 1.56 729 757 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.35 3689285 0.76 760 895 Tridecane, 2-methyl- 
14.51 5832992 1.21 888 909 Dodecane, 2,6,10-trimethyl- 
14.60 2488609 0.51 848 930 Decahydro-4,4,8,9,10-pentamethylnaphthalene 
14.84 27486169 5.68 899 906 Tetradecane 
15.19 2864039 0.59 731 759 Benzene, 1-cyclohexyl-3-methyl- 

15.25 3047349 0.63 850 880 
Naphthalene, decahydro-1,6-dimethyl-4-(1-

methylethyl)- 
15.31 2420731 0.50 795 886 Decahydro-4,4,8,9,10-pentamethylnaphthalene 
15.61 11782807 2.43 921 925 Heptadecane, 2,6,10,14-tetramethyl- 
15.65 3891676 0.80 791 850 Tetradecane, 2-methyl- 
15.79 2791581 0.58 737 902 Decahydro-8a-ethyl-1,1,4a,6-tetramethylnaphthalene 
16.11 27990230 5.78 912 916 Pentadecane 
16.80 2632423 0.54 685 797 Tridecane, 5-cyclohexyl- 
16.88 3392498 0.70 833 874 Nonadecane, 2-methyl- 
16.97 2230648 0.46 707 845 Pentadecane, 3-methyl- 
17.31 25173290 5.20 907 908 Hexadecane 
17.84 8470381 1.75 903 918 Pentadecane, 2,6,10-trimethyl- 
18.03 2806627 0.58 722 723 Dodecane, 5,8-diethyl- 
18.45 23601046 4.88 900 901 Heptadecane 
18.49 24140940 4.99 900 902 Pentadecane, 2,6,10,14-tetramethyl- 
19.53 19512562 4.03 904 906 Eicosane 
19.60 4962631 1.03 874 888 Hexadecane, 2,6,10,14-tetramethyl- 
20.56 18650692 3.85 924 925 Eicosane 
20.80 46524908 9.61 933 934 Hexadecanoic acid, methyl ester 
21.54 16316416 3.37 929 929 Eicosane 
22.41 4981332 1.03 886 904 Methyl 9-cis,11-trans-octadecadienoate 
22.48 50934064 10.52 864 864 10-Octadecenoic acid, methyl ester 
22.71 4328913 0.89 867 868 Methyl stearate 
23.37 11129382 2.30 904 904 Eicosane 
24.24 8705618 1.80 892 919 Octadecane, 2-methyl- 
25.20 6117803 1.26 882 915 Octadecane, 2-methyl- 
26.38 3842216 0.79 857 890 Octadecane, 2-methyl- 
27.85 2533328 0.52 839 870 Eicosane, 2-methyl- 

 
 
 
 

Table D-16 GC-MS result for aqueous bio-oil at 20 wt.% 2-Octanol (continued) 
(continued) 
 



Appendix D 

 323 

Table D-18 GC-MS result for 2-Octanol-extracted bio-oil/diesel emulsion with 10 wt.% 
surfactant 

RT Area Area % Match R. Match Compound Name 
2.02 52440952 6.27 919 936 Methylene chloride 
2.37 3973076 0.48 861 873 2-Butanone, 3-methyl- 
2.44 22296304 2.67 865 875 Butane, 2-chloro-2-methyl- 
6.84 4292034 0.51 910 911 Nonane 
8.64 3879391 0.46 922 936 Benzene, 1,2,4-trimethyl- 
8.75 8288107 0.99 890 892 Decane 
8.81 42239568 5.05 915 915 2-Octanol 
10.46 17197392 2.06 900 909 Dodecane 
12.03 21527342 2.57 870 894 Dodecane 
12.22 4942757 0.59 842 927 Undecane, 2,6-dimethyl- 
12.66 4847549 0.58 786 827 Cyclohexane, hexyl- 
13.07 13492168 1.61 668 703 Naphthalene, 1,2,3,4-tetrahydro-6-methyl- 
13.43 4892415 0.59 818 888 Naphthalene, 1,2,3,4-tetrahydro-6-methyl- 
13.48 29412920 3.52 900 909 Tridecane 
13.84 8863481 1.06 867 880 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.16 11603838 1.39 729 752 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.35 5798440 0.69 755 891 Tridecane, 2-methyl- 
14.50 11181634 1.34 894 915 Dodecane, 2,6,10-trimethyl- 
14.60 3934859 0.47 859 928 Decahydro-4,4,8,9,10-pentamethylnaphthalene 
14.84 40820144 4.88 895 903 Tetradecane 
15.19 4269697 0.51 691 736 Benzene, 1-cyclohexyl-3-methyl- 

15.25 4929519 0.59 846 889 
Naphthalene, decahydro-1,6-dimethyl-4-(1-

methylethyl)- 
15.31 3864995 0.46 793 863 Decahydro-4,4,8,9,10-pentamethylnaphthalene 
15.47 7706275 0.92 765 785 Naphthalene, 1,2,3,4-tetrahydro-1,4,6-trimethyl- 
15.51 5987878 0.72 705 800 Dodecane, 2-cyclohexyl- 
15.61 18481376 2.21 898 901 Heptadecane, 2,6,10,14-tetramethyl- 
15.65 5741210 0.69 814 863 Tetradecane, 2-methyl- 
15.79 4317461 0.52 741 923 Decahydro-8a-ethyl-1,1,4a,6-tetramethylnaphthalene 
16.11 43466488 5.20 907 912 Pentadecane 
16.80 3946869 0.47 687 797 Tridecane, 5-cyclohexyl- 
16.87 5133339 0.61 837 882 Nonadecane, 2-methyl- 
17.31 37812332 4.52 905 906 Hexadecane 
17.84 12078066 1.44 897 911 Pentadecane, 2,6,10-trimethyl- 
18.03 4003182 0.48 733 734 Dodecane, 5,8-diethyl- 
18.45 35853680 4.29 898 899 Heptadecane 
18.49 35222980 4.21 900 901 Pentadecane, 2,6,10,14-tetramethyl- 
19.53 28785568 3.44 905 908 Eicosane 
19.60 7135223 0.85 874 887 Hexadecane, 2,6,10,14-tetramethyl- 
20.56 27272448 3.26 914 916 Eicosane 
20.80 68693848 8.21 924 924 Hexadecanoic acid, methyl ester 
21.54 22794510 2.73 914 914 Eicosane 
22.41 10334490 1.24 917 918 9,12-Octadecadienoic acid (Z,Z)-, methyl ester 
22.48 75578016 9.04 873 873 10-Octadecenoic acid, methyl ester 
22.70 6298197 0.75 885 886 Methyl stearate 
23.37 15333134 1.83 898 900 Eicosane 
24.23 11885138 1.42 897 901 Eicosane 
25.20 8283170 0.99 892 899 Eicosane 
26.38 5136400 0.61 864 901 Octadecane, 2-methyl- 
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Table D-19 GC-MS result for 2-Octanol-extracted bio-oil/diesel emulsion with 15 wt.% 
surfactant 

RT Area Area % Match R. Match Compound Name 
2.02 44263856 6.65 937 950 Methylene chloride 
2.37 3997591 0.60 765 847 4-Penten-2-one 
2.44 18030432 2.71 865 870 Butane, 2-chloro-2-methyl- 
6.85 2931974 0.44 903 904 Nonane 
8.76 5713589 0.86 898 900 Decane 
8.82 33220936 4.99 930 931 2-Octanol 
10.48 12615753 1.89 900 909 Dodecane 
12.04 16649342 2.50 875 901 Dodecane 
12.23 3820683 0.57 830 923 Undecane, 2,6-dimethyl- 
12.67 3262975 0.49 770 841 Cyclohexane, hexyl- 
13.09 10405504 1.56 670 705 Naphthalene, 1,2,3,4-tetrahydro-6-methyl- 
13.45 3884430 0.58 833 888 Naphthalene, 1,2,3,4-tetrahydro-6-methyl- 
13.49 22667078 3.40 896 905 Tridecane 
13.85 6790051 1.02 885 898 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.17 9239339 1.39 722 751 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.36 4467436 0.67 730 895 Tridecane, 2-methyl- 
14.52 6937604 1.04 896 919 Dodecane, 2,6,10-trimethyl- 
14.61 2922195 0.44 835 930 Decahydro-4,4,8,9,10-pentamethylnaphthalene 
14.85 18522552 2.78 903 909 Tetradecane 
15.20 3335119 0.50 703 737 Benzene, 1-cyclohexyl-3-methyl- 

15.26 3795771 0.57 805 877 
Naphthalene, decahydro-1,6-dimethyl-4-(1-

methylethyl)- 
15.32 2816059 0.42 800 882 Decahydro-4,4,8,9,10-pentamethylnaphthalene 
15.49 5647624 0.85 753 776 Naphthalene, 1,2,3,4-tetrahydro-1,4,6-trimethyl- 
15.52 5072962 0.76 682 787 Dodecane, 2-cyclohexyl- 
15.62 14309189 2.15 909 914 Heptadecane, 2,6,10,14-tetramethyl- 
15.66 4760264 0.72 801 870 Tetradecane, 2-methyl- 
15.80 3344756 0.50 739 920 Decahydro-8a-ethyl-1,1,4a,6-tetramethylnaphthalene 
16.12 34228256 5.14 912 918 Pentadecane 
16.81 3146227 0.47 698 811 Tridecane, 5-cyclohexyl- 
16.89 4247777 0.64 837 887 Nonadecane, 2-methyl- 
16.98 2920350 0.44 708 839 Pentadecane, 3-methyl- 
17.32 30786396 4.62 908 908 Hexadecane 
17.86 10566637 1.59 913 926 Pentadecane, 2,6,10-trimethyl- 
18.04 3286197 0.49 701 702 Dodecane, 5,8-diethyl- 
18.46 28611286 4.30 906 906 Heptadecane 
18.50 29776462 4.47 898 899 Pentadecane, 2,6,10,14-tetramethyl- 
19.54 23777910 3.57 913 915 Eicosane 
19.61 6058795 0.91 890 902 Hexadecane, 2,6,10,14-tetramethyl- 
20.57 22790984 3.42 921 923 Eicosane 
20.81 57413524 8.62 928 929 Hexadecanoic acid, methyl ester 
21.55 19575840 2.94 923 923 Eicosane 
22.42 9137961 1.37 922 923 9,12-Octadecadienoic acid (Z,Z)-, methyl ester 
22.49 64838108 9.74 876 876 10-Octadecenoic acid, methyl ester 
22.72 5700727 0.86 899 900 Methyl stearate 
23.38 13170710 1.98 904 906 Eicosane 
24.24 10352500 1.56 895 901 Eicosane 
25.21 7212878 1.08 889 910 Eicosane 
26.39 4716700 0.71 883 916 Octadecane, 2-methyl- 
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Table D-20 GC-MS result for 2-Heptanol-extracted bio-oil/diesel emulsion with 15 wt.% 
surfactant 

RT Area Area % Match R. Match Compound Name 
2.02 51496436 6.23 937 944 Methylene chloride 
2.37 4257518 0.52 742 754 2-Butanone, 3-methyl- 
2.45 20179920 2.44 880 886 Butane, 2-chloro-2-methyl- 
2.87 4137444 0.50 782 823 Heptane 
6.84 3936807 0.48 916 918 Nonane 
6.92 45229180 5.48 931 931 2-Heptanol 
8.64 3666900 0.44 923 930 Benzene, 1,2,4-trimethyl- 
8.75 8845418 1.07 893 895 Decane 
10.47 16930434 2.05 914 924 Dodecane 

10.76 3626360 0.44 804 931 
Bicyclo[4.1.0]heptan-3-one, 4,7,7-trimethyl-, [1R-

(1à,4á,6à)]- 
12.03 21743066 2.63 883 912 Dodecane 
12.22 4933774 0.60 842 928 Undecane, 2,6-dimethyl- 
12.66 4947015 0.60 846 887 Cyclohexane, hexyl- 
13.08 13570991 1.64 665 702 Naphthalene, 1,2,3,4-tetrahydro-6-methyl- 
13.43 4923951 0.60 818 883 Naphthalene, 1,2,3,4-tetrahydro-6-methyl- 
13.48 29384058 3.56 894 905 Tridecane 
13.84 8742345 1.06 879 891 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.17 11708993 1.42 757 784 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.35 5770080 0.70 763 891 Tridecane, 2-methyl- 
14.51 8873529 1.07 902 924 Dodecane, 2,6,10-trimethyl- 
14.60 3667294 0.44 850 934 Decahydro-4,4,8,9,10-pentamethylnaphthalene 
14.84 42248232 5.11 902 909 Tetradecane 
15.19 4244397 0.51 718 748 Benzene, 1-cyclohexyl-3-methyl- 

15.25 4757321 0.58 833 889 
Naphthalene, decahydro-1,6-dimethyl-4-(1-

methylethyl)- 
15.61 18056284 2.19 892 894 Heptadecane, 2,6,10,14-tetramethyl- 
15.65 6102686 0.74 813 865 Tetradecane, 2-methyl- 
15.79 4142459 0.50 743 920 Decahydro-8a-ethyl-1,1,4a,6-tetramethylnaphthalene 
16.11 42384308 5.13 905 910 Pentadecane 
16.80 3908476 0.47 700 806 Tridecane, 5-cyclohexyl- 
16.88 5144111 0.62 840 882 Nonadecane, 2-methyl- 
17.31 37650092 4.56 892 892 Hexadecane 
17.85 12718891 1.54 911 928 Pentadecane, 2,6,10-trimethyl- 
18.03 3903135 0.47 714 714 Dodecane, 5,8-diethyl- 
18.45 34065692 4.12 897 898 Heptadecane 
18.49 36602956 4.43 906 908 Pentadecane, 2,6,10,14-tetramethyl- 
19.53 28584220 3.46 897 900 Eicosane 
19.60 7318629 0.89 866 876 Hexadecane, 2,6,10,14-tetramethyl- 
20.56 27080978 3.28 929 931 Eicosane 
20.81 69407128 8.40 925 925 Hexadecanoic acid, methyl ester 
21.54 23133574 2.80 915 915 Eicosane 
22.41 11265037 1.36 900 901 9,12-Octadecadienoic acid (Z,Z)-, methyl ester 
22.48 75782896 9.17 867 867 10-Octadecenoic acid, methyl ester 
22.71 6737016 0.82 886 888 Methyl stearate 
23.37 15109996 1.83 902 904 Eicosane 
24.24 11694040 1.42 894 896 Eicosane 
25.20 8337055 1.01 885 891 Eicosane 
26.38 5130198 0.62 883 916 Octadecane, 2-methyl- 
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Table D-21 GC-MS result for 2-Octanone-extracted bio-oil/diesel emulsion with 15 wt.% 
surfactant 

RT Area Area % Match R. Match Compound Name 
2.02 43778416 6.90 928 938 Methylene chloride 
2.44 16355701 2.58 824 843 Butane, 2-chloro-2-methyl- 
6.85 2586800 0.41 899 901 Nonane 
8.57 37653492 5.94 884 890 2-Octanone 
8.76 5842040 0.92 920 923 Decane 
10.47 11703097 1.84 889 897 Dodecane 

10.77 2559587 0.40 806 834 
Bicyclo[4.1.0]heptan-3-one, 4,7,7-trimethyl-, [1R-

(1à,4á,6à)]- 
12.04 15515375 2.45 893 925 Dodecane 
12.23 3592275 0.57 829 927 Undecane, 2,6-dimethyl- 
13.08 9693642 1.53 666 703 Naphthalene, 1,2,3,4-tetrahydro-6-methyl- 
13.44 3477058 0.55 819 886 Naphthalene, 1,2,3,4-tetrahydro-6-methyl- 
13.49 21557338 3.40 891 901 Tridecane 
13.85 6459849 1.02 872 884 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.17 8663058 1.37 735 762 Naphthalene, 1,2,3,4-tetrahydro-2,6-dimethyl- 
14.36 4136242 0.65 746 898 Tridecane, 2-methyl- 
14.51 6564826 1.03 882 902 Dodecane, 2,6,10-trimethyl- 
14.60 2801287 0.44 858 940 Decahydro-4,4,8,9,10-pentamethylnaphthalene 
14.84 30939102 4.88 898 905 Tetradecane 
15.19 3149452 0.50 741 770 Benzene, 1-cyclohexyl-3-methyl- 

15.25 3539538 0.56 853 885 
Naphthalene, decahydro-1,6-dimethyl-4-(1-

methylethyl)- 
15.31 2777331 0.44 793 865 Decahydro-4,4,8,9,10-pentamethylnaphthalene 
15.61 13696896 2.16 903 905 Heptadecane, 2,6,10,14-tetramethyl- 
15.65 4475668 0.71 824 873 Tetradecane, 2-methyl- 
15.79 3226932 0.51 709 901 Decahydro-8a-ethyl-1,1,4a,6-tetramethylnaphthalene 
16.11 31942096 5.04 909 914 Pentadecane 
16.81 3071849 0.48 699 802 Tridecane, 5-cyclohexyl- 
16.88 3991231 0.63 842 888 Nonadecane, 2-methyl- 
16.97 2694827 0.42 670 813 Pentadecane, 3-methyl- 
17.32 28460650 4.49 922 922 Hexadecane 
17.85 9847972 1.55 909 922 Pentadecane, 2,6,10-trimethyl- 
18.04 3101111 0.49 723 724 Dodecane, 5,8-diethyl- 
18.46 27257290 4.30 895 896 Heptadecane 
18.49 27319780 4.31 898 899 Pentadecane, 2,6,10,14-tetramethyl- 
19.54 22080012 3.48 907 910 Eicosane 
19.61 5636411 0.89 861 872 Hexadecane, 2,6,10,14-tetramethyl- 
20.56 21033532 3.32 911 913 Eicosane 
20.81 54182156 8.54 923 923 Hexadecanoic acid, methyl ester 
21.54 17900946 2.82 918 918 Eicosane 
22.42 9036623 1.42 922 923 9,12-Octadecadienoic acid (Z,Z)-, methyl ester 
22.48 60843740 9.59 869 869 10-Octadecenoic acid, methyl ester 
22.71 5423941 0.86 882 884 Methyl stearate 
23.38 12211397 1.93 905 907 Eicosane 
24.24 9636901 1.52 894 898 Eicosane 
25.21 6791801 1.07 885 890 Eicosane 
26.39 4310198 0.68 874 911 Octadecane, 2-methyl- 
27.85 2837216 0.45 830 881 Nonadecane, 2-methyl- 
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Figure D-7 Schematic representation of ultrasonic emulsification setup 

 
FT-IR Spectra: 

 
Figure D-8 FT-IR spectra of PKS bio-oil 
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Figure D-9 FT-IR spectra of biochar 

 
Figure D-10 FT-IR spectra of Diesel 

 
Figure D-11 FT-IR spectra of 2-Octanol-extracted bio-oil at different 2-Octanol mixing ratio 
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Figure D-12 FT-IR spectra of 2-Octanol-extracted bio-oil/diesel emulsion at diesel to 
surfactant ratio of 90:5, before and after accelerated aging 
 

 
Figure D-13 FT-IR spectra of 2-Octanol-extracted bio-oil/diesel emulsion at diesel to 
surfactant ratio of 85:10, before and after accelerated aging 
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Figure D-14 FT-IR spectra of 2-Octanol-extracted bio-oil/diesel emulsion at diesel to 
surfactant ratio of 80:15, before and after accelerated aging 
 
 

              
(a)                                                                 (b) 

Figure D-15 Solvent-extracted bio-oil/diesel emulsion (a) before and; (b) after  accelerated 
aging at different diesel to surfactant ratio, from left: 90:5(A); 90:5(B); 85:10(A); 85:10(B); 

80:15(A); 80:15(B) 
 
 

                
(a)                                                 (b) 

Figure D-16 2-Octanol-extracted bio-oil/diesel emulsion (a) before accelerated aging; (b) 
after accelerated aging 
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(a)                                     (b)                                       (c) 

Figure D-17 2-Heptanol-extracted bio-oil/diesel emulsion (a) before accelerated aging; (b) 
after accelerated aging; (c) bio-oil sediment after accelerated aging 
 

                          
(a)                                                 (b) 

Figure D-18 2-Octanone-extracted bio-oil/diesel emulsion (a) before accelerated aging; (b) 
after accelerated aging 


