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Abstract: One of the pillars on which food traceability systems are based is the unique identification
and recording of products and batches along the supply chain. Patterns of these identification codes
in time and place may provide useful information on emerging food frauds. The scanning of codes
on food packaging by users results in interesting spatial-temporal datasets. The analysis of these data
using artificial intelligence could advance current food fraud detection approaches. Spatial-temporal
patterns of the scanned codes could reveal emerging anomalies in supply chains as a result of food
fraud in the chain. These patterns have not been studied yet, but in other areas, such as biology,
medicine, credit card fraud, etc., parallel approaches have been developed, and are discussed in this
paper. This paper projects these approaches for transfer and implementation in food supply chains in
view of future applications for early warning of emerging food frauds.
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1. Introduction

Food fraud is an emerging international issue that is often defined as the deliberate
and intentional adulteration, substitution, dilution, simulation, tampering, counterfeiting
or imitation of food, food ingredients or food packaging; or false or misleading label claims
made about a product for economic gain [1,2]. Hence, food fraud is economically motivated
but does not necessarily involve a health hazard [3,4]. However, in some cases consumers
do pay for these practices with their health, and in the worst cases, even with their lives [5,6].
Food fraud is most likely to occur when a motivated offender and opportunity arises in the
absence of control measures [1,7]. Food fraud can be divided into various kinds, which are
outlined below [3,8–10]:

Adulteration. The food is added with one or some substances in a premeditated and
intentional manner to cover up some defects in nutrition, weight, color, etc.

Substitution The high-value ingredient or part of the food is replaced by that of lower
value to increase its perceived value or reduce the cost of its production.

Simulation. It consists of forming, ex novo, a food that may appear to be the original.
Counterfeiting. The faking of a higher quality product with one of lesser quality to

obtain an illicit economic benefit.
Theft. Dishonestly obtaining food, drink, or feed products to profit from their use

or sale.
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Misrepresentation/mislabeling. The food has not been properly labelled and does not
correctly cite the list of ingredients it contains or involves marketing which may wrongly
portray its quality, safety, origin, or freshness.

Product overrun. The product did not pass the standards either with factory defects
or was slightly damaged, or there is a product made in excess of production agreements.

Packaging recycling. The original product is replaced with a lower quality product.
This type of fraud is common in beverages, as with wine, for example.

Diversion. The sale or distribution of legitimate products outside of the intended markets.
Waste diversion. This involves the illegal diverting of food or drink meant for disposal

back into the supply chain. In this case, the label of the product can be counterfeited,
changing the expiration date of the food.

Document fraud. Making, using, or possessing dishonest documents with the objective
of selling or marketing a fraudulent or substandard food.

In this context, the involvement of all participants (primary/secondary/tertiary pro-
cessors; wholesalers; brokers etc.) in the supply chain is crucial, since it involves all of
the operations that are indispensable for a product to reach the final customer in optimal
conditions [11].

However, although there are three main segments in the supply chain, each involves
several stages and nodes that make the process complex and, therefore, transparency at
every stage is crucial to avoid any kind of food fraud. In other words, the supply chain is
the complete life cycle of a food product, involving each step from raw material to final
sale; therefore, it requires coordination among all the nodes/steps in the chain.

In this regard, the Global Food Safety Initiative (GFSI) is an important global collabo-
rative platform that is industry-driven and aims to provide leadership and guidance on
food safety management systems, such as the International Featured Standards (IFS), Food
Safety System Certification (FSSC 22000), and Brand Reputation through Compliance of
Global Standards (BRC standards) [12–14]. In 2014, GFSI [15] recognised the importance of
the fight against food fraud by recommending two fundamental steps to be taken to prevent
food fraud. The first was to carry out a ‘food fraud vulnerability assessment’ in which in-
formation from the supply chain (raw materials, packaging, etc.) was collected. The SSAFE
food fraud vulnerability self-assessment tool was developed by SSAFE in collaboration
with Wageningen University, the Free University of Amsterdam, PwC, and many stakehold-
ers, and was provided free of charge to the food industry (www.ssafe-food.org, accessed
on 16 October 2022). In the assessment, various technical and managerial control measures
are considered. Technical control measures include fraud monitoring systems based on
analytical testing, mass balance information systems, as well as track and trace systems.

In these traceability systems, interesting data of product identifiers in time and place
are collected. These spatial-temporal data may be an interesting source for the early
warning of emerging frauds, which is explored in the current paper. This commentary
paper is divided into four sections. Following this introduction, the second section presents
the common procedures of food traceability systems, the third section discusses spatial-
temporal analysis and its potential application in the food industry, and the last section is
devoted to future prospects, which includes a discussion of the challenges and limitations
of this approach.

2. Current Track and Trace Practices in the Food Industry

Food traceability allows for the tracing of all of the steps that a food has followed from
its origin, through its transformation process, and ending up in the hands of consumers.
Currently, within food traceability, it is possible to designate two approaches to ensure the
authenticity of a food: (i) the intrinsic approach, based on markers in the product, which
may change throughout the chain, with tracers added or naturally present, etc., and (ii) the
extrinsic or digital approach based on controlling product labelling using barcodes, smart
packaging, etc., since most goods are identified by labelling and contain a basic barcode
that must comply with international standards for food traceability [16].

www.ssafe-food.org
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Regarding digital information systems, there are many information and communi-
cation technology-based systems applied in the industry. Examples would be the use of
radio frequency tags (RFID) or near-field communication (NFC). Similarly, the use of labels
printed with bi-directional quick response codes (QR codes) provides consumers with
information on the origin of the product they are buying, giving them added value. This
provides an excellent link between the physical world and the internet, since consumers
could easily access the full history of a product by simply using their mobile devices.
Therefore, the use of QR codes is having an increasing impact on how brands present and
sell their products that they distribute at retail.

In fact, it would be possible to achieve the forward and backward traceability of
primary, secondary and tertiary industrial packaging of food after reading these codes,
as it would be possible to obtain real-time, certified, and geo-localised information on
the situation of the packaging at any given moment. The task of data and information
assignment to the products and the task of reading or accessing the information could be
automated by these tags. In this regard, there is one Spanish company which focuses its
business activity on the traceability of packaging by means of GPS coordinates (position
coordinates) obtained when scanning the QR codes on the packaging (https://qrtracing.
com/ accessed on 16 October 2022).

The spatial-temporal data generated in the current traceability systems may potentially
also serve as an early warning source to flag suspected anomalies in the chain.

3. Spatial-Temporal Data Analysis

In recent years, technological advances derived from Artificial Intelligence (AI), nan-
otechnology, robotics, the Internet of Things (IoT), i.e., the so-called fourth industrial
revolution (IR 4.0), are accentuating the possibilities of unprecedented processing, storage,
and access to knowledge [17,18]. Big Data and technologies are ever-present. Indeed, in the
last few years we have been living in the transition from the IoT to the so-called Internet
of Everything, applying the most innovative technologies that facilitate the digitisation of
processes and providing an innovative solution for the control and traceability of assets in
the supply chain. IoT is a collective network of connected devices and the technology that
facilitates communication between devices and the cloud, as well as between the devices
themselves. Data on food product identifiers can be collected along the chain by using these
technologies. AI can be used to make sense of the data. AI calculations can fuse the data of
different sources along the chain and provide input for decision support tools to enhance
food quality and safety. As a result of all of this, logistics and distribution companies are in-
vesting in technologies that enable real-time tracking of the product along the entire supply
chain, from the moment it leaves the supplier to the final consumer [19,20]. In this sense,
thanks to the advance of new technologies, it is possible to record the movement of goods
after scanning a product’s identification code, giving rise to real-time reading, leading to
"spatial-temporal" databases (a combination of spatial and temporal data). Blockchain
technology (BCT) allows the unmodifiable storage of the traceability along the chain [21,22].
BCT is a chronological data structure in which transactions are grouped into groups or
blocks which are then recorded identically in a computer network [23]. However, it is
important to note that it is only a means to ensure that data cannot be modified after it has
been entered into the system. It does not prevent the upload of incorrect or falsified infor-
mation. Moreover, it has a high degree of complexity, a significant verification mechanism
and cost of implementation, and the confidentiality and data protection are some of the
issues that need to be overcome to optimally implement BCT in the food chain.

At this point, however, a very important aspect must be taken into account: the
protection of the information collected. Data protection is focused on two important
aspects: security (protects data) and privacy (protects identity). For this reason, the use of
this type of data would imply implementing the necessary security measures to ensure that
the privacy of the information and data transferred is maintained throughout the entire life
cycle of the data.

https://qrtracing.com/
https://qrtracing.com/
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Temporal data are observations that refer to different moments in time, while spatial
data refer to different geographic locations. In other words, the main difference between
the two types of data is that they refer to different dimensions. The temporal dimension
is linear (past-present-future), while the spatial dimension is two-dimensional, i.e., the
geographic data refer to locations that are related to each other in several directions (north,
south, east, and west), which implies a greater complexity in the observations. Thus,
spatial-temporal databases host data collected across both space and time that describe
an event in a particular location and period of time. The information stored in spatial-
temporal databases depends on certain characteristics, namely: (i) the spatial domain,
(ii) the temporal domain, and (iii) movement and change. The latter characteristic refers,
on the one hand, to movement due to alterations in position in space over time; and on
the other hand, change deals with how the spatial object undergoes transformation in
its extension.

Note that the study of spatial-temporal data is a tool that has been applied for years in
different scientific fields (such as spatial data_ by using geographic information systems
(GIS) for different purposes, one of the most recent of which is for the respiratory syndrome
coronavirus 2 (SARS-CoV-2) pandemic [24,25]. However, its implementation as a tool to
control the traceability of goods has not been fully exploited, since it requires the application
of probabilistic and statistical models for the analysis of high-dimensional data that often
exhibit complex correlation structures in time and/or space (globalisation).

3.1. Examples of Spatial-Temporal Data Analysis Applications Outside the food Traceability Domain

The analysis of spatial-temporal data is commonly used with the aim of testing certain
hypotheses, models, or to study the behaviour of events in different areas. The following
involves examples of some areas in which this type of analysis is carried out.

Applications for spatial-temporal data analysis include the study of marine biology, in
this case the spatial-temporal analysis of a shoal of fish which allowed the determination of
the movement of the shoal, and to know in which season they migrate or even to determine
whether fishing should be avoided [26]. In another area, such as medicine, the spatial-
temporal analysis of a virus can be used to determine its level of evolution/mutation
and/or the degree of particular spread of an epidemic, as for example in the current
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic [27,28]. In the
cosmetics sector, Benatia et al. [29] described an approach to follow products along the
supply chain. They proposed the use of spatial-temporal data and the employment of
an enumeration tree algorithm that provides products with genuine trajectories based on
simulation data. Each transaction was represented by identification (ID), action, location,
timestamp, and duration. The goal was to evaluate if a product was delivered in time or
not and the genuine product trajectories were inferred using a frequent pattern mining
algorithm. Another example of spatial-temporal analysis of data is in the field of crime
investigation. Esquivel et al. [30] employed an artificial neural network to build models
in order to predict future crimes based on past patterns [31] through the development
of a genetic-fuzzy system which encompasses spatial-temporal patterns for predicting
future crimes.

3.2. Examples of Spatial-Temporal Data Analysis Applications in the Food Traceability Domain

In the framework of food quality control, spatial-temporal data analysis could repre-
sent an important advance for the assurance of product traceability.

In this sense, the analysis of spatial-temporal data could help to extend the use,
for example, of QR codes or RFID tags for food fraud detection since these identifiers
themselves are not that important; it is the information that is retrieved from them about
a certain product batch, and the time and location of the scan. When an identifier is
scanned, this is registered, together with the location and moment the code is scanned (if
not restricted by the user). In a real-life situation, the scanning logs would reveal if the
products sent to location A were indeed scanned in the location and/or surroundings in
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a given period in which it is expected to be sold (before its sell-by date). It would also
show if the number of scans reflect what is typically expected (e.g., 10–20% of all products
are scanned). Combining location and the number of scans in a given time period would
generate a certain pattern. Hence, when looking at the spatial dimension (where products
are scanned) and the temporal patterns (when products are scanned) it would be possible
to establish if everything is normal or not. These patterns can be described and generated
with algorithms to determine both situations.

For example, this approach could detect copied or reused product packaging, since the
packaging would likely still contain the identifiers, and when scanned, the locations and
time (dates) will be unusual. This may be after the sell-by dates of the products or scanned
in areas where the products were never sent to, or one may see an unusual high number of
identifiers being scanned (>>10–20%, for instance, that was expected to be scanned). This
will flag anomalies and be an indication (early warning) of counterfeited products.

In this way, it will allow the detection of reiterative, yet novel and useful behaviour,
through the evaluation of patterns to be able to assess whether the behaviour of the
product within the distribution chain is normal or not. A pattern can be defined as a
constant and recurrent characteristic or feature that helps to identify a phenomenon or
problem and serves as an indicator or model to predict its future behaviour. It should
be noted that the analysis of this type of data requires the application of a multivariate
approach using machine learning methods (ML), which are a combination of many different
methods, among which are two central concepts, artificial neural networks (ANN) and
deep learning (DL).

The spatial-temporal data analysis could be applied to scans taken along the chain in
traceability systems. However, the approach could also focus on consumers who scan QR
codes in retail outlets. Figure 1 depicts the general workflow of the latter variant.
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The key to making the most of this multivariate approach is to know the type of data
being collected, how to structure and organise it, and which type of multivariate technique
is most appropriate or has the greatest potential. For example, ML can help detect possible
anomalies since from a properly trained and validated multivariate model it would be
possible to assess whether a new spatial-temporal data vector of a food behaves according
to the built model or not.
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It is in this context which some authors have proposed the use of spatial-temporal data
analysis to control the traceability of some food products such as wine, Ziziphus jujuba
(Chinese red date) and meat in a digital way [32–34]. The most common frauds in the wine
sectors can be categorised as ′ counterfeiting′, ′packaging recycling′, and even ′product
overrun′. In this context, Popivić et al. [32] proposed the use of a mobile app in which every
time users scan a QR code (which uniquely identifies a product), they provide an update on
the status and location of that bottle. They carried out a pilot study with some companies
in the sector that export their wine bottles to different countries. To ensure the authenticity
of the wine bottles, the authors designed a smart label for each bottle, which consisted of
a QR code, and a letter stamped on the bottle using invisible photochromatic functional
ink. The mandatory requirement to receive authenticity confirmation is to successfully
match the QR code—letter code. Therefore, each bottle was individually tracked and traced
throughout the supply chain and the information updates were used to identify whether
there was a potential counterfeit issue with a wine bottle.

Sun et al. [33] designed an anti-counterfeit system for identifying the origin of Chinese
red dates based on GPS coordinates and encrypted Chinese-sensible codes per product.
They selected several product characteristics (i.e., product weight, GPS coordinates, origin,
and product code) and subsequently generated dedicated codes that were stamped on
the products. In this way, when the products moved from one place to another, the QR
codes were read, and the locations were evaluated using the GPS coordinates with the
goal of detecting any anomaly throughout the supply chain. The results showed that
6310 of the product labels that were generated were correctly identified and allowed for
the tracing of the origin of the products to the end consumer, resulting in a recognition rate
of approximately 98%. The other 2% of product labels were not identified, and according
to the authors, this was caused by the deterioration of the smart codes.

Similarly, Ren et al. [34] employed RFID technology to assess the traceability of meat
products through spatial-temporal data analysis. Specifically, they developed software
that tracked the information of the meat with the RFID tag in such a way that it could be
known in which shop the meat was purchased. Finally, they compared the application of
this promising approach with the traditional traceability system based on barcode reading,
demonstrating the potential of this system, since it has faster data acquisition, a higher
reorganisation rate and involves a more automated process.

3.3. Adaptation of Spatial-Temporal Data Analysis in Food Traceability Systems for Early Warning
of Food Authenticity Infringements

As far as the adaptation of this approach is concerned, it should be noted at this point
that the volume of available spatial-temporal information will be largely influenced by
consumer behaviour, since this is spontaneous and hardly controllable. However, it would
be possible to assume some hypothetical scenarios in which the scanning of a smart tag
could be concentrated. For example, the scanning locations may be more concentrated at
the locations of the retailer, the scanning time is more likely to appear in the peak shopping
time period of retailers, and the daily scanning number of a certain area may be within a
reasonable range. Thus, out of this hypothetical scenario it could be assumed that if there
are anomalies in the spatial-temporal patterns it could be due to food fraud, such as:

Counterfeiting: the smart tag (QR code, RFID tag etc.) is copied and pasted on
many counterfeit foods illegally, and the smart tag will be scanned many times in many
unexpected areas.

Theft and diversion may lead to the authentic food being sold by the expected retailers,
and the locations of scanning the smart tag do not occur in the retailers.

Packaging recycling: the smart tag is exposed to consumers again, and consumers
may scan the QR code at an unexpected time and location.

In this regard, some publications have suggested their use for following products
en route and in some cases in detecting one type of food fraud, such as counterfeiting,
e.g., for the fraud detection of champagne [35]. However, there has been limited use of the
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spatial-temporal information for the purpose of crime detection, with only a few studies
demonstrating its potential (Section 3.2). It is probable that the use of spatial-temporal data
analysis to detect food fraud has not expanded due to several challenges. Firstly, most food
companies have been not fully aware of the potential of the spatial-temporal information
about consumer scanning of the smart labels to detect food fraud. At present, there are few
articles or reports illustrating the feasibility of the spatial-temporal information in fraud
detection. Secondly, a system for capturing and storing the spatial-temporal data needs
to be generated. As smart tags are usually printed on food packaging and scanned by
different consumers at different times and places, it is necessary to have software available
that is capable of processing this data online to provide a quick response on the status of
the product for this complex situation [36]. Lastly, there is always a cost/benefit balance
aspect, and there is some question as to whether it is worth it to invest in these systems and
whether they will they result in sufficient benefits.

4. Future Implications and Perspectives

Currently, different information systems exist, such as smart tags and QR codes, which
aim to provide consumers with more information and to generate more transparency
regarding the food consumed, or to ensure that the data is not altered once it is generated
(as is the case of Blockchain technology). However, the analysis of spatial-temporal data
together with the application of artificial intelligence could lead to further advancements in
fighting food fraud, as it could be used as an early warning food fraud tool given that the
position, time and/or additional information of the product would be obtained when its
identification code is scanned. Conversely, it should be noted that to implement such a tool,
it is necessary to face several challenges: generating a system for capturing and storing the
time-space data and producing software capable of quickly processing the data in real time
to provide a rapid response on the status of the product, while another challenge involves
the availability, security and ownership of information throughout the supply chain.
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