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1. Introduction

Aim of the work The study of convergence to equilibrium of continuous or discrete semi-
groups which preserve mass and positivity is central in the theory of Markov processes 
and partial differential equations (PDEs). Several results ensuring geometric (i.e. ex-
ponential) or subgeometric (for instance, polynomial) convergence to equilibrium in 
weighted total variation norms for a broad family of processes are known as Harris-type 
theorems (or also sometimes as Meyn-Tweedie-type theorems). They have been widely 
developed during the last three decades and have seen a broad range of applications to 
probability and PDEs problems.

Harris-type theorems concern the trajectories of this kind of semigroups. In both the 
geometric and subgeometric cases, they establish the existence of an equilibrium (often 
called stationary state or invariant measure depending on the context) and a speed of 
convergence of trajectories to it. The main assumptions of this type of theorems are

(i) a strong positivity, irreducibility or coupling condition,

as well as

(ii) a confinement or Foster-Lyapunov condition.

The latter condition determines whether the speed of convergence is geometric or sub-
geometric.

Our purpose in this paper is to establish some theorems of this type in both the geo-
metric and the subgeometric situations using elementary semigroup tools, and avoiding 
some usual probabilistic arguments such as estimates of the return time of a process to 
a given set.

Let us describe our results a bit more precisely by considering the typical case of 
a discrete stochastic process associated to an operator S, which must be positive and 
mass-preserving, defined on a space of measures with a weighted total variation norm. 
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Under both conditions (i) and (ii), we will be able to exhibit two convenient norms | | | · | | |, 
‖ · ‖∗ and a scalar α > 0 such that

|||Sν||| ≤ |||ν||| − α‖ν‖∗, (1.1)

for any measure ν with vanishing mass. The strict contraction estimate (1.1), or a variant 
of it, is then used in order to prove the existence of a positive equilibrium μ∗ with unit 
mass associated to the operator S such that ‖μ∗‖∗ < ∞. The same estimate can also 
be used in order to prove the uniqueness of this equilibrium under slightly stronger 
assumptions, for example that S is of Feller-type. When ‖ ·‖∗ is equivalent to | | | · | | |, which 
holds true when the confinement condition (ii) is strong enough, then one easily deduces 
from (1.1) a geometric convergence of the sequence (Snν) to 0 for any ν with vanishing 
mass. Under weaker confinement conditions, the norm ‖ · ‖∗ is strictly dominated by | | | · | | |
and only a subgeometric convergence of the sequence (Snν) to 0 is established. A version 
of these ideas for continuous semigroups will be also deduced from the analysis of the 
discrete case.

Our approach is inspired by the proof of Harris’ result in the geometric case by Hairer 
and Mattingly [22], which uses mass transportation metrics. Our proof is a simplifica-
tion of these ideas which avoids the use of mass transportation arguments, and can be 
adapted to the subgeometric case as well. Our result gives an alternative proof to the 
geometric decay estimate of Hairer and Mattingly [22] and can be adapted to give sub-
geometric decay rates for discrete semigroups under weaker confinement conditions. In 
the continuous-time case we can recover similar subgeometric decay rates as in Douc 
et al. [15], Hairer [20]. We emphasize that the statements apply to mass-preserving semi-
groups and give explicit versions for them, since this is a common setting in PDE.

Previous contributions The ergodicity and stability theory of Markov processes has 
been widely developed since the pioneering works of Doblin [13] and Harris [23], the last 
one giving name to these results, though it considers only the existence of equilibrium 
and does not mention speed of convergence towards it. A good exposition of this type 
of results is given in Meyn and Tweedie [31], and a nice introduction in the setting of 
Markov chains can be found in Stroock [32, Chapter 2].

An important development of the theory is due to Meyn and Tweedie [27,28,29,30]. 
A simplified statement and a proof using mass transportation distances was given by 
Hairer and Mattingly [22], motivated by the application to stochastic PDEs [21]. Recent 
related results for non-conservative semigroups have been reported by Bansaye et al. [2], 
and applications to models for the electrical activity of groups of neurons can be found in 
Dumont and Gabriel [16], Cañizo and Yoldaş [8]. Recent works dealing with applications 
to Fokker-Planck equations and related models are due to Hu and Wang [24], Eberle 
et al. [17], Cao [11] and Lafleche [26]. We also mention applications to the study of 
hypocoercivity for kinetic equations and fragmentation-type equations (Cañizo et al. [10,
9]).
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On the other hand, this type of theorems has been extended in several works to 
the case of semigroups with no spectral gap, for which the speed of convergence to 
equilibrium is subgeometric (slower than exponential). Probabilistic results of this kind 
can be found in Tuominen and Tweedie [33], Douc et al. [14]. We highlight Douc et al. [15], 
which deals with the continuous-time case and serves as a model for the type of results 
we wish to obtain in the present paper. An exposition of this same result which also 
uses probabilistic arguments can be found in unpublished notes by Hairer [20], see also 
Bernou [4]. Subgeometric convergence rates have also been studied for classical models 
as the Fokker-Planck equation, and the Boltzmann equation and its relatives; for this we 
refer to Kavian et al. [25], Carrapatoso and Mischler [12] and the references therein, and 
the classical papers by Caflisch [7,6]. We also mention the recent works by Bernou and 
Fournier [5] and Bernou [3], where convergence to equilibrium for a collisionless model 
of a gas is investigated, the last one using techniques related to the present paper.

Definitions and notation We fix a measurable space (Ω, E) throughout. We denote by 
M the set of finite signed measures on Ω, and by P the set of probability measures on 
Ω. We also call N the linear subspace of M consisting of zero mean measures (that is, 
ν ∈ N if ν ∈ M and ν(Ω) = 0).

We usually denote by 
∫
fμ the integral of a function f with respect to a measure 

μ ∈ M, omitting the domain of integration Ω, and preferring this notation to the also 
common 

∫
f dμ. The positive and negative parts of a measure μ ∈ M (with the usual 

Hahn-Jordan decomposition) are denoted respectively by μ+, μ−, so that μ = μ+ − μ−
and |μ| := μ+ + μ−. The total variation norm of a measure μ ∈ M is denoted by 
‖μ‖ :=

∫
|μ|.

A stochastic operator is a linear operator S : M → M which leaves P invariant 
(that is, a linear operator which preserves mass and positivity). A stochastic semigroup
is a family (St)t∈[0,+∞) of stochastic operators St : M → M such that S0 = I and 
St ◦ Ss = St+s for all s, t ≥ 0. It is worth emphasizing that we do not impose here any 
continuity assumption on the trajectory t 	→ Stμ for a given μ ∈ M, so this definition 
of stochastic semigroup is quite weak. Our results on the Harris theorem for geometric 
decay require no further regularity conditions on the semigroup; see Section 3.

These objects are dual to the more classical definition of Markov-Feller operators and 
semigroups. Whenever we need to consider Markov-Feller semigroups we will always 
assume that Ω is a locally compact and separable metric space, and call C0(Ω) the space 
of continuous functions which converge to 0 at infinity (the completion in the supremum 
norm of Cc(Ω), the set of continuous compactly supported functions on Ω). The space 
C0(Ω) is a Banach space when endowed with the supremum norm, and its dual is M
(with the total variation norm) by the Markov-Riesz representation theorem.1 In this 

1 For any locally compact Hausdorff topological space Ω, the dual of C0(Ω) is the set of finite Radon 
measures on Ω; in our setting in which Ω is additionally a separable metric space, the set of Radon measures 
is just the set of finite measures—see for example Folland [18, Theorem 7.8].
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setting, a Markov-Feller operator P is a linear and continuous operator on C0(Ω) which 
is positive (Pϕ ≥ 0 if ϕ ≥ 0) and preserves constants (Pϕn ↗ 1 if ϕn ↗ 1, with 
convergence understood in a pointwise sense). A Markov-Feller semigroup (Pt)t≥0 is a 
strongly continuous semigroup of Markov-Feller operators on C0(Ω). If P is a Markov-
Feller operator then its dual S := P ∗ is a stochastic operator, and in that case we will 
say that S is of Feller type. Similarly, if (Pt)t≥0 is a Markov-Feller semigroup then the 
semigroup (St)t≥0 defined by St := P ∗

t is a stochastic semigroup. In that case, we say 
that (St)t≥0 is of Feller type and we denote by L the generator of (Pt) in the sense of 
semigroups. We note that for a Feller type stochastic semigroup (St)t≥0 the trajectory 
t 	→ Stμ is weakly-∗ continuous for any given μ ∈ M (that is, the trajectory is continuous 
in the weak-∗ topology of M, viewed as the dual of C0(Ω)), but it does not need to be 
continuous in the total variation norm. Let us emphasize that definitions of “Feller” for 
an operator or a semigroup vary slightly in the literature; in some references a Markov-
Feller operator is defined as an operator on Cb(Ω), the set of continuous and bounded 
functions [20, Definition 1.9], defined through an integral formula involving a transition 
kernel. We will not consider this latter case here, but rather we will use the concept 
of Feller-type stochastic operators and semigroups defined by duality from C0(Ω), for 
which some simplifications occur. However, many of the results we state work with the 
minimal assumption of a stochastic operator or semigroup.

For a measurable (weight) function V : Ω → [1, +∞), we denote by MV the subspace 
of finite signed measures μ on Ω such that

‖μ‖V :=
∫
Ω

V |μ| < ∞,

and write PV := MV ∩P for the set of probability measures for which ‖μ‖V < +∞, and 
similarly NV := MV ∩N is the set zero-mean measures with ‖μ‖V < +∞. We say that 
S is a stochastic operator on MV if it is a stochastic operator on M, one can restrict 
S : MV → MV , and this restriction is bounded in the ‖ · ‖V norm. Similarly, we say 
that (St)t≥0 is a stochastic semigroup on MV if it is a stochastic semigroup on M and 
satisfies a growth estimate

‖Stμ‖V ≤ CV e
ωV t‖μ‖V , (1.2)

for all μ ∈ MV and all t ≥ 0, and for some constants CV ≥ 1, ωV ≥ 0.

Plan of the paper The paper is organized as follows. We first prove in Section 2 a 
simple statement, sometimes known as Doeblin’s theorem. The statement and proof of 
the geometric version of Harris’ theorem is next given in Section 3. Sections 4 and 5 are 
then devoted to our versions of Harris’ theorem is the case of subgeometric operators 
and semigroups respectively. In the final section 6, the proof of the existence of an 
equilibrium (but not its uniqueness nor its stability) is established only assuming a 
Lyapunov condition (but without any irreducibility assumption).
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2. Doeblin’s theorem

In this section, we present a basic and well-known result in the theory of Markov 
processes sometimes known as Doeblin’s theorem, which is a particular case of the Harris 
theorem presented in the next section. We include it since the proof is extremely simple 
and contains ideas that are used in later proofs. The argument is widely known, and we 
were made aware of it through Gabriel [19].

It is well known that stochastic operators are non-expansive mappings (or contractions 
in the non-strict sense) in the measure space M, namely

‖Sμ‖ ≤ ‖μ‖, (2.1)

for all measures μ ∈ M. The proof of this fact is simple and instructive. We introduce the 
Hahn-Jordan decomposition μ = μ+ − μ−, 0 ≤ μ± ∈ M, which ensures |μ| = μ+ + μ−, 
and we write

|Sμ| = |Sμ+ − Sμ−| ≤ Sμ+ + Sμ− = S|μ|,

by using the linearity and the positivity of S. We then immediately deduce (2.1) by 
integrating the last inequality and by using that S is mass preserving.

Doeblin’s Theorem states that under some very strong positivity or irreducibility 
condition the above non-expansive property becomes a (strict) contraction property on 
the set N of zero mean measures:

Theorem 2.1 (Doeblin’s theorem). Let S : M → M be a stochastic operator satisfying 
that there exist 0 < α < 1 and η ∈ P such that

Sμ ≥ αη, for all μ ∈ P. (2.2)

Then S has a unique stationary state μ∗ ∈ P, which is exponentially stable. More gen-
erally

‖Snν‖ ≤ γn‖ν‖ for all ν ∈ N and n ∈ N, (2.3)

with γ := 1 − α ∈ (0, 1).

We point out that for any μ ∈ P, we deduce from (2.3) that

‖Snμ− μ∗‖ ≤ γn‖μ− μ∗‖, for all n ∈ N,

and thus the exponential asymptotic stability of the equilibrium μ∗.
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Proof of Theorem 2.1. The proof is based on an improvement of (2.1) which writes

‖Sν‖ ≤ γ‖ν‖ for all ν ∈ N , (2.4)

with γ := 1 −α. In order to prove (2.4), we observe that because of the Doeblin condition 
(2.2) applied to S

(
ν±/‖ν±‖

)
and the fact that the integrals of ν+ and ν− are equal for 

ν ∈ N , it holds

Sν± ≥ αη

∫
ν± = r η, r := α‖ν‖/2.

Similarly as in the proof of (2.1), we may deduce

|Sν| = |Sν+ − rη − Sν− + rη|
≤ |Sν+ − rη| + |Sν− − rη|
= Sν+ − rη + Sν− − rη = S|ν| − 2rη,

and integrating this, we get

‖Sν‖ ≤ ‖S|ν|‖ − 2r‖η‖ = ‖ν‖ − 2r = (1 − α)‖ν‖.

That is exactly inequality (2.4), from which (2.3) immediately follows.
In order to prove the existence and uniqueness of an equilibrium, we fix μ0 ∈ P, and 

we define recursively μk := Sμk−1 for any k ≥ 1. Thanks to (2.4), we get

∞∑
k=1

‖μk − μk−1‖ ≤
∞∑
k=0

γk‖μ1 − μ0‖ < ∞,

so that (μk) is a Cauchy sequence in P. We set μ∗ := limμk ∈ P which is a stationary 
state, as seen by passing to the limit in the equation μk = Sμk−1, and which is unique 
in P thanks to (2.4). �
3. Harris’s theorem

We extend Doeblin’s results presented in the previous section to the case when only 
a weaker version of Doeblin’s positivity condition (2.2) holds, together with a Lyapunov 
condition. An important motivation is that the Doeblin condition (2.2) is indeed too 
restrictive and somehow limited to compact spaces. As a matter of fact, when Ω = Rd

for instance and S is a stochastic operator of Feller type, there exists a sequence (μ0n)
in P such that μ0n ⇀ 0 (in the weak-∗ sense of measures; take for example μ0n := δxn

with |xn| → +∞). Since S is continuous in the weak-∗ topology due to S being of Feller 
type, also Sμn0 ⇀ 0 and the Doeblin condition (2.2) cannot hold. However, the condition 
(2.2) may still hold if the semigroup is not of Feller type in our sense; an example on 
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Ω = [0, +∞) is the renewal equation found in Gabriel [19]. For many applications, one 
must thus weaken the positivity condition (2.2). This forces us to add a localization or 
confinement condition and work in a weighted space.

The following assumptions will be used in Harris’s theorem below. In all of this section, 
V : Ω → [1, +∞) denotes a measurable function, that we will call in the sequel a Lyapunov 
or weight function.

Hypothesis 1 (Operator Lyapunov condition). An operator S satisfies an operator Lya-
punov condition with Lyapunov function V if there exist 0 < γL < 1 and K ≥ 0 such 
that

‖Sμ‖V ≤ γL‖μ‖V + K‖μ‖, for μ ∈ MV . (3.1)

Hypothesis 2 (Harris condition). An operator S satisfies a Harris condition on a set 
C ⊆ Ω if there exist 0 < α < 1 and η ∈ P such that

Sμ ≥ αη

∫
C

μ, for all 0 ≤ μ ∈ M. (3.2)

In other words, Hypothesis 2 states that the Doeblin condition (2.2) holds, but only 
for measures μ supported on the set C.

Hypothesis 3 (Local coupling condition). An operator S satisfies a local coupling condition
with Lyapunov function V if there exist 0 < γH < 1 and A > 0 such that(

ν ∈ NV , ‖ν‖V ≤ A‖ν‖
)

implies ‖Sν‖ ≤ γH‖ν‖. (3.3)

The term local coupling condition comes from the fact that it implies that (and is in 
fact equivalent to)(

x, y ∈ Ω, V (x) + V (y) ≤ A
)

implies ‖S(δx − δy)‖ ≤ 2γH ,

so that the distance between Sδx and Sδy is strictly less than the distance between 
δx and δy under a localisation condition on x and y. The following lemma shows that, 
roughly speaking, the Harris Hypothesis 2 implies the Local coupling Hypothesis 3.

Lemma 3.1 (Harris implies local coupling). If S satisfies the Harris condition (Hypoth-
esis 2) on the set C = {x ∈ Ω | V (x) ≤ R} for some R > 0 and 0 < α < 1
then it satisfies the local coupling condition (Hypothesis 3) with any A ∈ (0, R/2) and 
γH := 1 − α(1 − 2A/R) ∈ (0, 1).

Proof of Lemma 3.1. Under the Harris condition (3.2) and when ν satisfies the LHS 
hypotheses of condition (3.3), a sizeable part of the mass of ν+ and ν− is in C := {x ∈
Ω | V (x) ≤ R}, as can be seen from the bound
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∫
Ω\C

ν± ≤ 1
R

∫
V |ν| ≤ A

R

∫
|ν| = 2A

R

∫
ν±,

where we have used in a fundamental way that the masses of ν+ and ν− are equal in the 
last line. That implies ∫

C

ν± ≥
(

1 − 2A
R

)∫
ν±.

Because of the Harris condition (3.2) and the fact that the mass of ν+ and ν− are equal, 
it holds

Sν± ≥ αη

(
1 − 2A

R

)∫
ν± =: r η,

with

r := α

(
1 − 2A

R

)∫
ν± = 1 − γH

2 ‖ν‖.

Repeating the proof of Theorem 2.1, it holds then

‖Sν‖ ≤ ‖ν‖ − 2r = γH‖ν‖.

That is exactly inequality (3.3) with γH := 1 − α(1 − 2A/R). �
Theorem 3.2 (Harris’s Theorem). Consider S : MV → MV a stochastic operator which 
satisfies the operator Lyapunov condition (Hypothesis 1) and the local coupling condition 
(Hypothesis 3) with K/A < 1 − γL, both with the same weight function V . Then S has 
a unique stationary state μ∗ ∈ PV , which is exponentially stable. More generally, there 
exist γ ∈ (0, 1) and C ∈ [1, ∞) such that

‖Snν‖V ≤ C γn‖ν‖V , for all ν ∈ NV and n ∈ N. (3.4)

Due to Lemma 3.1, the conclusion of Theorem 3.2 applies also if S satisfies the Lya-
punov condition (3.1) and the Harris condition (3.2) with 2K/R ≤ 1 − γL. With this 
result, we recover the main result of Hairer and Mattingly [22] with a similar approach, 
except that we work on the stochastic operator side rather than on the dual Markov 
operator side. In particular, and as in Doeblin’s framework of Section 2, we deduce the 
exponential asymptotic stability of the equilibrium ν∗ in MV , namely

‖Snμ− μ∗‖V ≤ Cγn‖μ− μ∗‖V , for all μ ∈ PV and n ∈ N.

The theorem doesn’t exclude the existence of other equilibria with infinite V-moment.
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Proof of Theorem 3.2. We introduce a new norm | | | · | | |V on MV defined by

|||μ|||V := ‖μ‖ + β‖μ‖V , (3.5)

for some β > 0 to be chosen later. Note that | | | · | | |V and ‖ · ‖V are equivalent norms, with

(1 + β)−1|||μ|||V ≤ ‖μ‖V ≤ β−1|||μ|||V .

We claim that there exist β > 0 small enough and γ ∈ (0, 1) such that

|||Sν|||V ≤ γ|||ν|||V , for all ν ∈ NV . (3.6)

Using (3.6), we may then straightforwardly adapt the proof of Theorem 2.1 in order to 
conclude to the existence and uniqueness of a stationary state μ∗ ∈ PV of S and to the 
geometrical decay (3.4) with C := (1 + β)/β.

We may then focus on the proof of the contraction estimate (3.6). For that purpose, 
we take any ν ∈ N and estimate the norm | | |Sν| | |V in two alternative cases:

First case. Contractivity for small V -moment. When

‖ν‖V < A‖ν‖, (3.7)

the local coupling condition (3.3) implies

‖Sν‖ ≤ γH‖ν‖.

Together with the Lyapunov condition (3.1), we have

|||Sν|||V = ‖Sν‖ + β‖Sν‖V
≤ (γH + βK)‖ν‖ + βγL‖ν‖V ≤ γ1|||ν|||V ,

with

γ1 := max{γH + βK, γL}.

Choosing β > 0 small enough such that βK < 1 − γH , we get γ1 < 1 and that gives the 
contractivity property (3.6) in this case.

Second case. Contractivity for large V -moment. Assume on the contrary that

‖ν‖V ≥ A‖ν‖. (3.8)

From (3.1) we deduce then

‖Sν‖V ≤ γL‖ν‖V + K‖ν‖ ≤ (γL + K/A)‖ν‖V ,
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with γL + K/A < 1 by assumption. Together with (2.1), we deduce

|||Sν|||V = ‖Sν‖ + β‖Sν‖V
≤ ‖ν‖ + β(γL + K/A)‖ν‖V
≤ (1 − βδ0)‖ν‖ + β(γL + K/A + δ0)‖ν‖V ,

for any δ0 ≥ 0, by using that V ≥ 1 in the last inequality above. We thus get

|||Sν|||V ≤ γ2|||ν|||V ,

with γ2 := max(1 − βδ0, γL + K/A + δ0). We get the contractivity property (3.6) in 
this case by choosing δ0 > 0 small enough (and keeping the choice of β > 0 made 
in the previous case) so that γ2 ∈ (0, 1). The proof of (3.6) is completed by setting 
γ := max{γ1, γ2}. �
Remark 3.3. By following the above proof one can give an explicit expression of the 
constants. Because

γL < γ1 := 1 − β

1 + β
(1 − γL −K/A),

we have

γ = max
{
γH + βK, 1 − β

1 + β
(1 − γL −K/A)

}
.

We see then that the best choice of β is the (uniquely defined) positive zero of the 
following second order polynomial equation

Kβ2 + (K + b− a)β − a = 0,

with a := 1 − γH > 0, b := 1 − γL −K/A > 0.

We end the section by presenting a different proof of Theorem 3.2. The outcome is 
essentially the same, but we do not obtain as part of the argument the contractivity of a 
modified weighted total variation norm as in the previous proof. On the other hand, the 
result has an extremely short proof which makes the role of the assumptions very clear!

Alternative proof of Theorem 3.2. Given ν ∈ NV , we call

vn := ‖Snν‖V , mn := ‖Snν‖,

for integer n ≥ 0. The Lyapunov condition (3.1) shows that

vn+1 ≤ γLvn + Kmn. (3.9)
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The local coupling condition (3.3) and the non-expansive mapping property (2.1) to-
gether imply

‖Sν‖ ≤
{
γH‖ν‖ whenever ‖ν‖V ≤ A‖ν‖,
‖ν‖ always.

In particular,

‖Sν‖ ≤ γH‖ν‖ + 1 − γH
A

‖ν‖V always,

since the inequality can be checked to be true in the two cases ‖ν‖V ≤ A‖ν‖ and 
‖ν‖V > A‖ν‖. Applying this to Snν we get mn+1 ≤ γHmn + 1−γH

A vn. Together with 
(3.9), this gives the system

vn+1 ≤ γLvn + Kmn,

mn+1 ≤ 1 − γH
A

vn + γHmn,

whose associated matrix is

M :=
(

γL K
1−γH

A γH

)
.

One can easily see that the condition for the eigenvalues of this matrix to be both strictly 
less than 1 is that 1 − γL > K/A, so that both vn and mn decay exponentially in n. 
Existence and uniqueness of an equilibrium in PV follow as before. �
4. Subgeometric convergence for discrete-time semigroups

We now extend Harris’s Theorem to cases in which a weaker form of Lyapunov con-
dition (3.1) holds true, with a slowing of the speed of decay as a drawback.

In all of this section, V : Ω → [1, +∞) is a measurable weight function, still referred to 
as a Lyapunov or just weight function and ϕ : [1, +∞) → [1, +∞) a concave function with 
ϕ(1) = 1 and limv→+∞ ϕ(v)/v = 0. The following assumption generalizes the Lyapunov 
condition from Hypothesis 1 and will be used in the subgeometric version of Harris’s 
theorem below.

Hypothesis 4 (Weak operator Lyapunov condition). A stochastic operator S satisfies a 
weak Lyapunov condition for V and ϕ if there exist K > 0 and 0 < ς < 1 such that

‖Sμ‖V + ς‖μ‖ϕ(V ) ≤ ‖μ‖V + K‖μ‖, for all μ ∈ MV . (4.1)

Let us make some observations.
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Remark 4.1. Because ϕ : [1, +∞) → [1, +∞) is a concave function, then ϕ must be 
continuous and nondecreasing. The continuity of ϕ ensures ϕ(V ) ≡ ϕ ◦ V is measurable. 
The asymptotic condition limv→+∞ ϕ(v)/v = 0 ensures that we are not in the framework 
of Section 3 since Hypothesis 1 does not need to hold.

Remark 4.2. If S is a Feller-type stochastic operator and P is the associated Markov-
Feller operator on C0(Ω) such that P ∗ = S then, by duality, Hypothesis 4 is equivalent 
to the property

PV + ςϕ(V ) ≤ V + K,

which is perhaps more often found in the literature (see for instance, Douc et al. [15, 
Theorem 3.3 (i)]). We remark that a possible definition of the function PV is PV :=
limP (V ϕn) ∈ [0, ∞], where (ϕn) is a nonnegative sequence of C0(Ω) such that ϕn ↗ 1, 
which belongs to L∞

loc(Ω) because of the above Lyapunov property.

4.1. Existence of an equilibrium

We now show that under weak Lyapunov and coupling conditions one can build a 
norm | | | · | | |V equivalent to ‖ · ‖V for which our stochastic operator S is a contraction, in a 
quantitative sense. This will be used for existence and uniqueness results, and later for 
obtaining decay rates.

Lemma 4.3. Consider a stochastic operator S such that

1. S satisfies a weak Lyapunov condition (Hypothesis 4) associated to functions V , ϕ
and constants K, ς.

2. For some integer N ≥ 1, the operator SN satisfies a local coupling condition (Hy-
pothesis 3) for ϕ(V ), with constant A > K/ς.

Then for any ν ∈ NV , there exists an integer n with N ≤ n ≤ 2N − 1 such that

|||Snν|||V + α

n−1∑
k=0

‖Skν‖ϕ(V ) ≤ |||ν|||V , for all ν ∈ NV , (4.2)

where

|||μ|||V := ‖μ‖ + β‖μ‖V , for μ ∈ MV ,

and with

β := (1 − γH)/(KN), α := β(ς −K/A) > 0. (4.3)
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Proof of Lemma 4.3. We fix ν ∈ NV and denote νk := Skν for all integer k ≥ 0 and we 
set V0 := ϕ(V ). We observe that if for a given k, we have

‖νk‖V0 ≥ A‖νk‖, (4.4)

then this inequality and the weak Lyapunov condition in Hypothesis 4 imply

‖νk+1‖V ≤ ‖νk‖V −
(
ς − K

A

)
‖νk‖V0 ,

where the quantity ς−K/A > 0 by hypothesis, which allows us to carry out the argument. 
Multiplying by β, using that α = β(ς −K/A), and the contractivity ‖νk+1‖ ≤ ‖νk‖, we 
have

β‖νk+1‖V + ‖νk+1‖ ≤ β‖νk‖V − α‖νk‖V0 + ‖νk‖,

that is

|||νk+1|||V ≤ |||νk|||V − α‖νk‖V0 . (4.5)

Now we have two cases:
Case 1. If (4.4) holds for all integer k with 0 ≤ k ≤ n − 1, then we directly obtain (4.2)
by iterating the difference inequality (4.5).
Case 2. If (4.4) fails for some k in {0, . . . , n − 1}, then take k∗ the smallest integer in 
this range in which the condition fails. Then we may use (4.5) for 0 ≤ k < k∗ and obtain

|||νk∗ |||V ≤ |||ν|||V − α
k∗−1∑
k=0

‖νk‖V0 . (4.6)

Define now n := N + k∗ in this case. Using that SN satisfies the coupling condition, we 
have

‖νn‖ ≤ γH‖νk∗‖. (4.7)

On the other hand, we may use the weak Lyapunov condition and the fact that k 	→ ‖νk‖
is nonincreasing to get

‖νk+1‖V ≤ ‖νk‖V − ς‖νk‖V0 + K‖νk∗‖,

for all k = k∗, . . . , n − 1. Summing the inequality in this range, we get

‖νn‖V ≤ ‖νk∗‖V − ς
n−1∑

‖νk‖V0 + NK‖νk∗‖.

k=k∗
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Multiplying by β and adding ‖νn‖ to complete | | |νn| | | on the left hand side, we deduce

β‖νn‖V + ‖νn‖ ≤ β‖νk∗‖V − βς
n−1∑
k=k∗

‖νk‖V0 + βNK‖νk∗‖ + ‖νn‖.

Using (4.7) and reorganising terms, we conclude with

|||νn|||V + α

n−1∑
k=k∗

‖νk‖V0 ≤ β‖νk∗‖V + (βNK + γH)‖νk∗‖

= β‖νk∗‖V + ‖νk∗‖ = |||νk∗ |||V ≤ |||ν|||V − α
k∗−1∑
k=0

‖νk‖V0 ,

where in the last inequality we have used (4.6). This shows the result. �
Theorem 4.4 (Existence of equilibrium). Consider a stochastic operator S satisfying the 
same conditions as in Lemma 4.3. Then there exists an equilibrium μ∗ ∈ Pϕ(V ).

Proof of Theorem 4.4. Take any μ0 ∈ PV and define

ν0 := Sμ0 − μ0, νk := Skν0, k ≥ 1.

From Lemma 4.3, we can find an increasing sequence (ni)i≥0 with n0 = 0, N ≤ ni+1 −
ni ≤ 2N − 1 and

|||νni+1 |||V + α

ni+1−1∑
k=ni

‖νk‖ϕ(V ) ≤ |||ν0|||V , i ≥ 0.

Summing this for all i, we get

α
∞∑
k=0

‖νk‖ϕ(V ) ≤ |||ν0|||V , i ≥ 0.

This shows that the sequence of probability measures (Skμ0)k≥0 is a Cauchy sequence 
in the norm ‖ · ‖ϕ(V ), and hence converges to a certain probability measure μ∗ ∈ Pϕ(V )
which must satisfy Sμ∗ = μ∗ by construction. �
4.2. Uniqueness of equilibrium

Another consequence of Hypotheses 3 and 4 is the uniqueness of equilibrium, that we 
present in two different frameworks.
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Corollary 4.5 (Uniqueness of equilibrium). Let S be a stochastic operator which satisfies 
the Lyapunov condition (Hypothesis 4) and the local coupling condition (Hypothesis 3) 
of the existence Theorem 4.4 for two couples of weight and sublinear functions (V1, ϕ1)
and (V2, ϕ2) such that ϕ2(V2) ≥ V1. Then S has at most one equilibrium in Pϕ2(V2).

Proof of Corollary 4.5. Let us consider two equilibria μ∗
1, μ

∗
2 ∈ Pϕ2(V2) and let us set 

ν := μ∗
2 − μ∗

1 ∈ Nϕ2(V2) ⊂ NV1 . From Lemma 4.3 applied to (V1, ϕ1) and because 
Skν = ν for any k ≥ 0, we get

|||ν|||V1 + α
n−1∑
k=0

‖ν‖ϕ1(V1) ≤ |||ν|||V1 ,

for some equivalent norm | | | · | | |V1 , some integer n ≥ 1 and some constant α > 0. That 
implies ‖ν‖ϕ1(V1) = 0, and thus μ∗

2 = μ∗
1. �

We now consider the case when S is a Feller-type stochastic operator.

Corollary 4.6 (Uniqueness of equilibrium). Let S be a Feller-type stochastic operator 
which satisfies the hypotheses of the existence Theorem 4.4. Then S has a unique equi-
librium μ ∈ Pϕ(V ).

Before we prove that uniqueness result we will show that the weak Lyapunov Hypoth-
esis 4 implies similar inequalities for ψ(V ), where ψ is a concave function:

Lemma 4.7. Let S be a Feller-type stochastic operator which satisfies the weak Lyapunov 
Hypothesis 4 for V . From Remark 4.2, that is, S = P ∗ and

PV ≤ V − ςϕ(V ) + K. (4.8)

Then for any concave function ψ : [1, +∞) → [1, +∞), we have

Pψ(V ) ≤ ψ(V ) − ςψ′(V )ϕ(V ) + Kψ′(V ).

Proof of Lemma 4.7. Notice that because ψ is a concave function, there holds

ψ(v) = inf
�∈Uψ


(v), ∀ v ∈ R,

where Uψ := {
 : R → R, 
(v) := av + b, a, b ∈ R, 
 ≤ ψ}. Using that P is a positive 
operator, we deduce that

Pψ(V ) ≤ P
(V ) = 
(PV ), ∀ 
 ∈ Uψ,

and then the Jensen’s inequality
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Pψ(V ) ≤ ψ(PV ). (4.9)

Using (4.9), the nondecreasing property of ψ (as emphasized in Remark 4.1), (4.8) and 
the fact that ψ is concave again, we get

Pψ(V ) ≤ ψ(V − ςϕ(V ) + K) ≤ ψ(V ) − ψ′(V )(ςϕ(V ) −K),

which gives the inequality in the statement. �
Proof of Corollary 4.6. The existence of an equilibrium is given by Theorem 4.4. Assume 
there are two equilibria μ∗

1, μ
∗
2 ∈ Pϕ(V ), and call ν := μ∗

1 − μ∗
2, so that in particular 

ν ∈ Nϕ(V ) and Sν = ν. Similarly as in the proof of Corollary 4.5, we would like to use 
the weak Lyapunov condition from Hypothesis 4 in order to get

ς‖ν‖ϕ(V ) ≤ K‖ν‖, (4.10)

but this is not allowed because ν is not necessarily in NV and we cannot justify cancelling 
the term ‖μ‖V on both sides. Hence we carry out an approximation procedure in order 
to deduce (4.10). Since S is of Feller-type, S = P ∗ for a Markov-Feller operator P . Take 
ψ : [1, +∞) → [1, +∞) a bounded concave function such that ψ′(v) ≤ 1 for all v ≥ 1, so 
that

Pψ(V ) ≤ ψ(V ) − ςψ′(V )ϕ(V ) + K,

from Lemma 4.7. After integration and by duality, for any 0 ≤ μ ∈ Mϕ(V ), we have∫
ψ(V )Sμ ≤

∫
ψ(V )μ− ς

∫
ψ′(V )ϕ(V )μ + K

∫
μ.

Applying this to μ := |ν| = |μ∗
1 − μ∗

2| ∈ Mϕ(V ), we get∫
ψ(V )|Sν| ≤

∫
ψ(V )S|ν| ≤

∫
ψ(V )|ν| − ς

∫
ψ′(V )ϕ(V )|ν| + K

∫
|ν|,

and since Sν = ν, we deduce

ς

∫
ψ′(V )ϕ(V )|ν| ≤ K

∫
|ν|. (4.11)

Taking for example ψn(v) := n arctan
(
π
2 + v/n

)
, so that ψ′

n(v) ↗ 1 as n → ∞, and 
passing to the limit as n → +∞ in (4.11), the dominated convergence theorem shows 
that (4.10) holds true. Since (4.10) holds, the iterated coupling condition (Hypothesis 2 
in Lemma 4.3) gives that

‖ν‖ = ‖SNν‖ ≤ γH‖ν‖,

which implies ‖ν‖ = 0 and hence μ∗
1 = μ∗

2. �
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4.3. Subgeometric decay rates

For a nonempty interval I ⊆ R+ and a function ξ : I → R, we recall that the associated 
Legendre transform ξ∗ : R → R ∪ {+∞} defined by

ξ∗(u) := sup
λ∈I

(λu− ξ(λ)),

is an increasing and convex function, and in particular it is continuous on the interior of 
the interval D(ξ∗) := {u ∈ R; ξ∗(u) < +∞}. We also define the closely related transform

ξ∗(u) := sup
λ∈I

(ξ(λ) − λu) = (−ξ)∗(−u),

also defined (and possibly +∞) at all u ∈ R.
Our main theorem in the subgeometric case is the following, which involves two dif-

ferent weight functions V1 and V2:

Theorem 4.8 (Subgeometric Harris, interpolated version). Consider a stochastic operator 
S such that:

1. S satisfies a weak Lyapunov condition (Hypothesis 4) for two couples of weight and 
sublinear functions (V1, ϕ1), (V2, ϕ2) and constants K1, ς1, K2, ς2, respectively, and 
such that V1 ≤ V2.

2. There exists an integer N ≥ 1 such that SN satisfies a local coupling condition 
(Hypothesis 3) for both ϕ1(V1) and ϕ2(V2), with constants A1 > K1/ς1, A2 > K2/ς2
and same constant γH .

3. The following interpolation condition holds: there is a function ξ : R+ → R+ which 
is increasing and satisfies ξ(λ)/λ → 0 as λ → 0 and such that

λV1 ≤ ϕ1(V1) + ξ(λ)V2, for all λ > 0. (4.12)

Then there exist constructive constants C > 0 and 0 < r < 1 (depending only on ξ, Ki, 
ςi, Ai for i = 1, 2, and on γH) such that

‖Snν‖V1 ≤ CΘ (rn) ‖ν‖V2 , for all n ≥ 1, (4.13)

and

‖Snν‖ ≤ C

n
Θ (rn) ‖ν‖V2 , for all n ≥ 1, (4.14)

for any ν ∈ NV2 , where for t > 0

Θ(t) := F−1(t), F (λ) :=
1∫ 1
ξ∗(s) ds.
λ
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Remark 4.9. (1) Under the assumptions of Theorem 4.8 and when V1 ≤ ϕ2(V2) or S
is of Feller-type, we get the existence of an equilibrium (Theorem 4.4), its uniqueness 
(Corollary 4.5 or Corollary 4.6) and a decay rate of convergence to zero (Theorem 4.8).

(2) Let us emphasize that, in contrast with Theorem 2.1 and Theorem 3.2, here in 
principle there is no reason that μ∗ belongs to PV , and thus, we cannot apply Theorem 4.8
to μ − μ∗ and deduce Snμ → μ∗ as n → ∞ (with or even without rate!). We will come 
back on that issue in Remark 4.14 below.

In the rest of this section we prove Theorem 4.8. We start with a finite difference 
inequality which is at the basis of the estimates we carry out in the proof:

Lemma 4.10. Let (un)n≥0 be a nonnegative sequence which satisfies

un+1 − un ≤ −g(un) for all integers n ≥ 0, (4.15)

for some continuous, increasing function g : (0, u0] → (0, +∞) such that v 	→ 1/g(v) is 
not integrable on (0, u0). Then

un ≤ H−1(n) for all integers n ≥ 0,

where

H(u) :=
u0∫
u

1
g(v) dv for u ∈ (0, u0].

Proof of Lemma 4.10. Let u = u(t) be the solution for t ≥ 0 to the ordinary differential 
equation

u′(t) = −g(u(t)), u(0) = u0,

which is precisely u(t) = H−1(t). We prove by induction that un ≤ u(n) for all n ≥ 0. It 
is indeed true for n = 0. If we assume u(n) ≥ un for some n ≥ 0, then

u(n + 1) ≥ ũ(n + 1),

where ũ is the solution to

ũ′ = −g(ũ), ũ(n) = un.

Since ũ is decreasing and g is increasing, we then have

ũ(n + 1) = ũ(n) −
n+1∫

g(ũ(t)) dt ≥ ũ(n) − g(ũ(n)) = un − g(un) ≥ un+1,
n
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which shows un+1 ≤ u(n + 1). �
Lemma 4.11 (Difference inequality). Take M > 0, 0 < δ ≤ +∞, and ζ : (0, δ) → (0, +∞)
a nonnegative function satisfying limλ→0 ζ(λ)/λ = 0. If a sequence (un)n≥0 of nonnega-
tive numbers satisfies u0 ≤ M and

un+1 ≤ (1 − λ)un + Mζ(λ) for all n ≥ 0 and all λ ∈ (0, δ), (4.16)

then

un ≤ MF−1(n) for all integers n ≥ 0,

where

F (u) :=
1∫

u

1
ζ∗(v) dv for u ∈ (0, 1],

and ζ∗ denotes the Legendre transform of ζ.

Proof of Lemma 4.11. Call vn := un/M for n ≥ 0. Minimising (4.16) in λ we obtain

vn+1 − vn ≤ −ζ∗(vn) for n ≥ 0.

In particular ζ∗(vn) must always be finite on (0, v0], since the sequence (vn) is assumed 
to be a sequence of nonnegative numbers, and ζ∗ is a nondecreasing function. Notice 
also that ζ∗ is continuous since it is convex, and that the condition limλ→0 ζ(λ)/λ = 0
ensures ζ∗(v) > 0 for all v ∈ (0, v0]. Then Lemma 4.10 with g ≡ ζ∗ gives

vn ≤ F̃−1(n), (4.17)

where

F̃ (v) :=
v0∫
v

1
ζ∗(s) ds for v ∈ (0, v0].

Since v0 = u0/M ≤ 1 by assumption, this shows

F̃ (v) ≤
1∫

v

1
ζ∗(s) ds =: F (v) for v ∈ (0, v0],

where we understand 1/ζ∗(s) = 0 is ζ∗(s) = +∞. Hence (4.17) gives
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un ≤ MF−1(n)

for all n ≥ 0, as required. �
We also need a technical lemma which will be used to simplify the bounds in our main 

results.

Lemma 4.12. Let g : (0, +∞) → (0, +∞) be a positive, nondecreasing function with 
lims→0 g(s)/s = 0, and define

F (λ) :=
1∫

λ

1
g(s) ds for 0 < λ ≤ 1.

(We notice that F−1 : [0, +∞) → (0, 1] is well defined, continuous and strictly decreasing, 
since F is strictly decreasing and limλ→0 F (λ) = +∞.) Then for any k > 0, there exists 
a constant C > 1 which depends only on k and g, such that

F−1(t− k) ≤ CF−1(t) for all t ≥ k.

Proof of Lemma 4.12. We first notice that for any C > 1 and 0 < λ < 1/C,

F (Cλ) =
1∫

Cλ

1
g(s) ds = F (λ) −

Cλ∫
λ

1
g(s) ds ≤ F (λ) − (C − 1) λ

g(Cλ) .

Using that limλ→0 λ/g(Cλ) = +∞, we may take λ0 < 1/C small enough so that

(C − 1) λ

g(Cλ) ≥ k for all 0 < λ < λ0,

so

F (Cλ) ≤ F (λ) − k for all 0 < λ < λ0,

so setting λ := F−1(t) for some t > F (λ0) we get

F (CF−1(t)) ≤ t− k for all t > F (λ0),

which after applying F−1 gives the inequality in the lemma whenever t > F (λ0). The 
inequality is also clearly true, with some other constant C, for all t ∈ [k, F (λ0)], since 
this is a compact interval. �

We are now ready to give the proof of Theorem 4.8:
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Proof of Theorem 4.8. Let | | | · | | |V1 and | | | · | | |V2 denote the norms from Lemma 4.3, equiv-
alent to ‖ · ‖V1 and ‖ · ‖V2 respectively, defined by

|||μ|||V1 := ‖μ‖ + β1‖μ‖V1 , ∀μ ∈ MV1 ,

|||μ|||V2 := ‖μ‖ + β2‖μ‖V2 , ∀μ ∈ MV2 ,

with

β1 := (1 − γH)/(K1N), β2 := (1 − γH)/(K2N).

We also take

α := min{β1(ς1 −K1/A1), β2(ς2 −K2/A2)} > 0.

Take ν ∈ NV2 , and denote νk := Skν for integer k ≥ 0.
Step 1. Uniform bound on the V2 norm. Using Lemma 4.3 for V2, we can recursively define 
an increasing sequence of integers (ni)i≥0 such that n0 = 0, N ≤ ni+1 −ni ≤ 2N − 1 for 
all i and which satisfy

|||νni+1 |||V2 ≤ |||νni
|||V2 , i ≥ 1. (4.18)

On the other hand, using the weak Lyapunov condition (Hypothesis 4) and the total 
variation non-expansive property (2.1), we have

|||νk+1|||V2 ≤ |||νk|||V2 + β2K2‖νk‖ ≤ (1 + β2K2)|||νk|||V2 ,

and thus

|||νk|||V2 ≤ C2|||ν|||V2 , for all k ≥ 0, (4.19)

with C2 := (1 + β2K2)N .
Step 2. Decay along a subsequence. Using again Lemma 4.3, now for V1, we can recursively 
define a (possibly different) increasing sequence of integers (ni)i≥0 such that n0 = 0, 
N ≤ ni+1 − ni ≤ 2N − 1 for all i and which satisfy

|||νni+1 |||V1 + α

ni+1−1∑
k=ni

‖νk‖ϕ1(V1) ≤ |||νni
|||V1 , i ≥ 1, (4.20)

and in particular

|||νni+1 |||V1 + α‖νni
‖ϕ1(V1) ≤ |||νni

|||V1 , i ≥ 1, (4.21)
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where we have ignored all terms in the sum except for the first one. From (4.21) and the 
interpolation condition (4.12) we deduce, for any λ > 0,

|||νni+1 |||V1 + λα‖νni
‖V1 ≤ |||νni

|||V1 + ξ(λ)α‖νni
‖V2 .

We now use that the norms ‖ · ‖V1 and ‖ · ‖V2 are equivalent, respectively, to | | | · | | |V1 and 
| | | · | | |V2 : from the definition of | | | · | | |V1 ,

λα‖νni
‖V1 ≥ λκ|||νni

|||V1 with κ := α

1 + β1
,

for any λ > 0. Also, from the definition of the | | | · | | |V2 norm and (4.19),

‖νni
‖V2 ≤ 1

β2
|||νni

|||V2 ≤ C2

β2
|||ν|||V2 .

The three previous estimates together imply

|||νni+1 |||V1 ≤ (1 − λκ)|||νni
|||V1 + ξ(λ)C2α

β2
|||ν|||V2 ,

for any i ≥ 0 and for any λ > 0. Using that V1 ≤ V2, so | | |ν| | |V1 ≤ | | |ν| | |V2 , Lemma 4.11
with ζ(λ) := ξ(λ/κ) and M := | | |ν| | |V2 max{1, C2α/β2} then implies

|||νni
|||V1 ≤ m

κ
|||ν|||V2Θ(κi) for all i ≥ 1, (4.22)

where m := max{1, C2α/β2} and Θ is the decay rate function defined in the statement. 
Notice that we have used that ζ∗(s) = ξ∗(κs) for all s ∈ R, and that

1∫
λ

1
ζ∗(s) ds =

1∫
λ

1
ξ∗(κs) ds = 1

κ

κ∫
κλ

1
ξ∗(s) ds ≤ 1

κ
F (κλ),

so the decay rate in Lemma 4.11 is bounded by the one given in (4.22).
Step 3. Decay along the full sequence. Now we have proved this decay rate along the 
sequence (ni)i≥0. In order to extend this to all indices k, we observe that proceeding 
exactly as in the proof of (4.19), we get

|||Siνk|||V1 ≤ Ci
1|||νk|||V1 , for all k, i ≥ 0, (4.23)

with C1 := 1 + β1K1. For any k ≥ 0, choose j ≥ 0 such that nj ≤ k < nj+1. Due to the 
spacing of the terms ni, it must hold that

�k/(2N − 1)� ≤ j ≤ �k/N�. (4.24)
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Writing k = nj + i for some 0 ≤ i ≤ 2N − 2, we have, using (4.22), (4.23) and (4.24),

|||νk|||V1 = |||Siνnj
|||V1 ≤ Ci

1|||νnj
|||V1

≤ C2N−2
1

m

κ
Θ(κj)|||ν|||V2 ≤ CΘ

(
κ

⌊
k

2N − 1

⌋)
|||ν|||V2 ,

where the constant C is given by

C := C2N−2
1

m

κ
= C2N−2

1
1
κ

max{1, Cα/β2}.

Step 4. Simplification of the decay rate. We notice that⌊
k

2N − 1

⌋
≥ k

2N − 1 − 1 for all k ≥ 0,

so we may use Lemma 4.12 to obtain

Θ
(
κ

⌊
k

2N − 1

⌋)
≤ Θ

(
κk

2N − 1 − κ

)
≤ CΘ

(
κk

2N − 1

)
for all k ≥ 2N − 1 and some constant C > 0. Since the inequality

Θ
(
κ

⌊
k

2N − 1

⌋)
≤ CΘ

(
κk

2N − 1

)
is clearly also true for some (other) C ≥ 1 and the finite set of integers 0 ≤ k ≤ 2N − 1, 
we obtain the form of the decay rate given in the statement.
Step 5. Decay in total variation norm. In order to deduce the second estimate (4.14), we 
come back to the first inequality in (4.20) that we iterate and sum up in order to obtain, 
for any 0 ≤ j < i,

|||νni
|||V1 + α

ni−1∑
k=nj

‖νk‖ϕ1(V1) ≤ |||νnj
|||V1 .

Together with the non expansion inequality

‖νni
‖ ≤ ‖νk‖ ≤ ‖νk‖ϕ1(V1), ∀ k ≤ ni,

and the decay proved in (4.22), we deduce(
ni − nj

)
α‖νni

‖ ≤ M |||ν|||V2Θ(j).

Choosing j = �i/2� and using that ni − nj ≥ N(j − i),
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‖νni
‖ ≤ 2M

αi
|||ν|||V2Θ(�i/2�).

Carrying out a similar argument as above to extend this to all indices k, we obtain

‖νk‖ ≤ C3

k
Θ
(⌊ k

4N − 2

⌋)
|||ν|||V2 ,

for all k ≥ 1, for some other constant C3 > 0. A similar reasoning as in the previous step 
gives the simpler form of the decay rate given in the statement. �
4.4. Subgeometric decay rates for Feller type stochastic operator

As a consequence of Theorem 4.8, we can prove the following theorem adapted to 
Feller type stochastic operator and which is closer to the continuous-time framework 
developed in Douc et al. [15], see also Hairer [20].

Theorem 4.13 (Discrete subgeometric Harris theorem for Feller type stochastic operator). 
Consider a stochastic operator S of Feller type such that

1. S satisfies a weak Lyapunov condition (Hypothesis 4) with functions V , ϕ and con-
stants ς, K.

2. For some N ≥ 1, SN satisfies a Harris condition (Hypothesis 2) on the set C :=
{ϕ(V ) ≤ 2R} for some R > 2K/ς.

Then there exists a unique equilibrium μ∗ ∈ Pϕ(V ). Moreover, for any strictly concave 
function ψ : [1, +∞) → [1, +∞) with ψ(1) = ψ′(1) = 1, limv→+∞ ψ(v) = +∞, and such 
that v 	→ ψ′(v)ϕ(v) is nondecreasing and satisfies ψ′(v)ϕ(v) > R whenever ϕ(v) > 2R, 
we have

‖Snν‖ ≤ C

n
Θψ(rn)‖ν‖V for all n ≥ 1, (4.25)

for any ν ∈ NV . Here C ≥ 1 and 0 < r < 1 are constructive constants and the decay 
rate Θψ is given by

Θψ(n) := F−1
ψ (n),

where

Fψ(v) :=
1∫

v

1
h(u) du, h(u) := g ◦ f−1(u),

f(v) := ψ(v)
, g(v) := ψ′(v)ϕ(v)

.

v v
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Remark 4.14. Provided that ϕ′(v)ϕ(v) ≥ Φ(ϕ(v)) for any v ≥ 1 for some concave function 
Φ : [1, ∞) → [1, ∞) and SN satisfies a Harris condition (Hypothesis 2) on the set 
{ϕ(V ) ≤ 2R} for any R > 2K/ς, the techniques developed here make possible to establish 
that μ∗ is asymptotically stable: there exists a decay rate function Θ̃ such that for any 
μ ∈ Pϕ(V ) there holds

‖Snμ− μ∗‖ ≤ Θ̃(n)‖μ− μ∗‖ϕ(V ), ∀n ≥ 1. (4.26)

Defining indeed the weight function W := ϕ(V ), Lemma 4.7 implies that

PW + ςΦ(W ) ≤ W + K,

which is nothing but saying that S satisfies a weak Lyapunov condition (Hypothesis 4
and Remark 4.2) with functions W , Φ and constants ς, K. Because of the above strong 
Harris condition, Theorem 4.13 holds with W for a family of rate functions Θ̃. For any 
on them, we may apply Theorem 4.13 with ν := μ − μ∗ ∈ PW and deduce (4.26).

Proof of Theorem 4.13. First, we notice that f is invertible since v 	→ ψ(v)/v is strictly 
decreasing, as can be seen from

d
dv

ψ(v)
v

= vψ′(v) − ψ(v)
v2 < 0 for v > 1,

since vψ′(v) < ψ(v) for v > 1 due to the strict concavity of ψ and the fact that ψ′(1) = 1.
In order to show the result we use Theorem 4.8 with

V2 := V, V1 := ψ(V ).

Let us check the assumptions of Theorem 4.8. First, the weak Lyapunov conditions 
(4.1) and (4.8) are satisfied for V2 = V by assumption. In order to see that a weak 
Lyapunov condition holds also for V1 = ψ(V ), use that ψ is concave to write, with 
Jensen’s inequality (4.9) and (4.8),

Pψ(V ) ≤ ψ(V − ςϕ(V ) + K) ≤ ψ(V ) − ςψ′(V )ϕ(V ) + ψ′(V )K

≤ ψ(V ) − ςψ′(V )ϕ(V ) + K = ψ(V ) − ςϕ1(ψ(V )) + K,

where we make the choice

ϕ1(ψ(v)) := ψ′(v)ϕ(v).

Notice that ϕ1 is a nondecreasing function with ϕ1(w) ≥ ϕ1(1) = 1. Observing that

Pψ(V ∧ n) ≤ Pψ(V ) ≤ ψ(V ) − ςϕ1(ψ(V )) + K,
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by duality for any 0 ≤ μ ∈ Mψ(V ), we have

‖Sμ‖ψ(V ∧n) =
∫

μP (V ∧ n) ≤
∫

μ(ψ(V ) − ςϕ1(ψ(V )) + K).

By Beppo Levi theorem, we may pass to the limit in the above inequality and we obtain 
that the weak Lyapunov condition (4.1) also holds for V1 = V . Notice that both weak 
Lyapunov conditions for V1 and V2 hold with the same constants ς and K.

The Harris condition for SN is satisfied on the set

C̃ = {x ∈ Ω | ϕ1(ψ(v)) ≤ R},

since by hypothesis the condition ϕ1(ψ(v)) = ψ′(v)ϕ(v) ≤ R implies ϕ(v) ≤ 2R, so 
C̃ ⊆ C. Lemma 3.1 shows that SN satisfies the local coupling condition (Hypothesis 3) 
for ϕ1(ψ(V )) (and hence for ϕ(V ), which is larger), both with any constant A < R/2. 
Since R > 2K/ς we may take A > K/ς, and the hypotheses of Theorem 4.8 are met. 
In order to express the conclusion of Theorem 4.8, we observe that the interpolation 
function ξ in (4.12) can be written more explicitly in the present case where V1 = ψ(V2)
for some function ψ : [1, +∞) → [1, +∞) with ψ(v)/v strictly decreasing. Indeed, in that 
case, the interpolation is equivalent to

ξ(λ) ≥ λf(v) − g(v) for all v ≥ 1, (4.27)

where

f(v) := ψ(v)/v, g(v) := ϕ1(ψ(v))/v.

Substituting v = f−1(z) in (4.27), ξ(λ) must satisfy

ξ(λ) ≥ λz − g(f−1(z)) for all 0 < z ≤ 1,

so we can choose

ξ(λ) := h∗(λ), where h : (0, 1] → R is given by h(z) := g(f−1(z)).

Thus we have ξ∗ = h and we obtain F = Fψ in the conclusion of Theorem 4.8. �
There remains the question of choosing the function ψ which gives an optimal decay 

rate Θ̃ψ. There are two “extreme” choices for ψ: one can take ψ asymptotically like

H(u) :=
u∫ 1
ϕ(v) dv
1
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(so that ψ′(v)ϕ(v) behaves like a constant as v → +∞); or one can take ψ(v) almost 
equal to v (but still strictly concave). These are both useful in different cases, as we show 
now in examples:

Polynomial decay Let us take

ψ(u) := 1 +
u∫

1

m(v)
ϕ(v) dv, u ≥ 1,

for some continuous, nondecreasing m : [1, +∞) → [1, +∞) such that v 	→ m(v)/ϕ(v) is 
strictly decreasing, m(1) = 1, and with

m(v) > R whenever ϕ(v) > 2R.

It is possible to find such m, since one may take

m(v) :=
{
ϕ(v)1−ε if ϕ(v) < 2R,
(2R)1−ε if ϕ(v) ≥ 2R,

for small enough ε > 0. The quantities in Theorem 4.13 can then be bounded as follows:

g(u) = 1
u
ψ′(u)ϕ(u) = m(u)

u
≥ 1

u
.

Fψ(ζ) =
1∫

ζ

1
h(u) du ≤

1∫
ζ

f−1(ξ) dξ.

For example, if ϕ(v) = v1−α, α ∈ (0, 1), we obtain (with C standing for a positive 
constant)

ψ(u) ≤ 1 + Cuα, f(u) = ψ(u)
u

≤ Cuα−1, f−1(ξ) ≤ Cξ
1

α−1 ,

Fψ(ζ) ≤ C(ζ
α

α−1 − 1), F−1
ψ (t) ≤ (1 + Ct)1− 1

α .

As a conclusion, in that case, the rate of convergence (4.25) is

‖Snν‖ ≤ C

n1/α ‖ν‖V for all n ≥ 1, (4.28)

for any ν ∈ NV and some explicitly computable constant C ≥ 1.
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Exponential decay On the other hand, when ϕ(u) := u/(log u)α, α > 0, we take ψ(u) =
uκ, 0 < κ < 1. We next compute

f(v) = vκ−1, g(v) = κvκ−1(log v)−α, h(u) = C1u(log u−1)−α,

for a constant C1 = C1(α, κ) ∈ (0, ∞), and finally

F (v) = C2(log v−1)α+1, F−1(u) = e−C3u
1

α+1
,

for some constants Ci = Ci(α, κ) ∈ (0, ∞). As a conclusion, in that case, the rate of 
convergence (4.25) is

‖Snν‖ ≤ Ce−λn
1

α+1 ‖ν‖V for all n ≥ 1, (4.29)

for any ν ∈ NV and some explicitly computable constants C ≥ 1, λ ∈ (0, ∞).

5. Results for continuous-time semigroups

In this section we again address the speed of relaxation to equilibrium, this time 
in the framework of continuous-time semigroups. The most straightforward results are 
obtained by applying the discrete-time results in the previous sections to any stochastic 
semigroup (St)t≥0 as long as ST satisfies the needed assumptions for some T > 0. We will 
state these results first. Then, in the setting of continuous-time semigroups it is perhaps 
more natural to look for similar Foster-Lyapunov-type conditions on the generator of the 
semigroup instead of conditions on ST for a given T > 0. Our main aim in this section 
is to prove results of this type. We notice that they can be obtained as consequences of 
our discrete-time results both in the geometric and subgeometric cases.

5.1. Geometric convergence

First we state Doeblin’s Theorem 2.1, as applied to a continuous semigroup, with a 
straightforward proof:

Theorem 5.1 (Semigroup version of Doeblin’s theorem). Let (St)t≥0 be a stochastic semi-
group in M. If there exists T > 0 such that ST satisfies the Doeblin condition (2.2) then 
the semigroup (St)t≥0 has a unique equilibrium μ∗ in P, and

‖Stν‖ ≤ 1
1 − α

e−λt‖ν‖, for all t ≥ 0, (5.1)

for all ν ∈ N , where

λ := − log(1 − α)
> 0.
T
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Proof of Theorem 5.1. Theorem 2.1 shows that the operator ST has a unique stationary 
state in P, which we call μ∗. In fact, μ∗ is a stationary state of the whole semigroup 
since, for all s ≥ 0, we have

STSsμ
∗ = SsSTμ

∗ = Ssμ
∗,

which shows that Ssμ
∗ (which is again a probability measure) is also a stationary state 

of ST . Due to uniqueness, we deduce

Ssμ
∗ = μ∗ for all s ≥ 0.

This stationary state is clearly unique in P, since any stationary state of (St)t≥0 is in 
particular a stationary state of ST .

In order to show (5.1), for any ν ∈ N and any t ≥ 0 we write k := �t/T �, where �·�
is the floor function, so that

t

T
− 1 < k ≤ t

T
.

Then,

‖Stν‖ = ‖St−kTSkT ν‖ ≤ ‖SkT ν‖

≤ (1 − α)k‖ν‖ ≤ 1
1 − α

exp
(
t log(1 − α)

T

)
‖ν‖,

which is nothing but (5.1). �
As above, we could write the immediate counterpart of Harris’s Theorem 3.2, as 

applied to a continuous semigroup. We rather present a version more adapted to a 
semigroup setting. Indeed, in the continuous time setting, it is natural to consider Foster-
Lyapunov conditions on the generator Λ of the semigroup (St)t≥0. A natural assumption 
that replaces the operator Lyapunov condition in Hypothesis 1 is

LV ≤ −σV + b, (5.2)

for some constants σ, b > 0 and some continuous weight (Lyapunov) function V : Ω →
[1, +∞), where L is dual to the generator Λ. When (St)t≥0 is of Feller type, we have 
Λ = L∗ and L is the generator of the associated Markov-Feller semigroup (Pt)t≥0 on 
C0(Ω). This faces the technical problem that the generator L may not be defined on the 
particular functions V we wish to consider. However, for 0 ≤ μ ∈ MV , we may compute 
at least formally

d
∫

V Stμ =
∫

LV Stμ ≤
∫

(−σV + b)Stμ. (5.3)

dt



J.A. Cañizo, S. Mischler / Journal of Functional Analysis 284 (2023) 109830 31
After time integration, we thus get (still formally)

∫
V Stμ ≤

∫
V μ +

t∫
0

∫
(−σV + b)Ssμ ds, (5.4)

for all t ≥ 0 and all 0 ≤ μ ∈ MV . Equation (5.4) is a common way to understand the 
generator Lyapunov condition (5.2) and thus to avoid the difficulty of defining LV . Let 
us also notice that this problem has been circumvented in different ways in other works: 
for diffusion semigroups, the generator is a local operator which is naturally defined 
on arbitrary C2 functions V [1]; for general semigroups, one may define (5.2) to mean 
that the process V (Xt) −

∫ t

0 (−σV (Xs) + b) ds is a supermartingale for every starting 
condition x0 (where (Xt)t≥0 is the process associated to the semigroup (St)t≥0), a path 
which is taken for example in Douc et al. [15], Hairer [20]. This probabilistic formulation 
is equivalent to saying that the associated Markov-Feller semigroup (Pt)t≥0 satisfies

PtV ≤ V +
t∫

0

Ps(−σV + b) ds, for t ≥ 0, (5.5)

or equivalently, that the associated stochastic semigroup (St)t≥0 satisfies (5.4). Another 
possible alternative formulation, which we will not use in this work, is to require that 
(5.3) effectively holds for any positive μ which belongs to the domain DV (L) defined by

DV (L) :=
{
μ ∈ MV ; lim

t↘0

∫
Stμ− μ

t
φ exists, for any φ ∈ C(Ω), φ/V bounded

}
,

provided that this one is dense in MV .
One can take this a step further by observing that, again at least formally, one may 

use Gronwall’s lemma on (5.4) in order to deduce the bound

‖Stμ‖V ≤ e−σt‖μ‖V + b

σ
(1 − e−σt)‖μ‖ for all t ≥ 0 and all μ ∈ Mv. (5.6)

In a first result, we choose to avoid these technical problems altogether and state as 
an assumption the specific consequence we need from either (5.2) or (5.5), which is the 
following:

Hypothesis 5 (Semigroup Lyapunov). Let V : Ω → [1, +∞) be a measurable function 
and (St)t≥0 a stochastic semigroup on MV . We say the semigroup (St)t≥0 satisfies the 
semigroup Lyapunov condition with function V when there exist constants σ, b > 0 such 
that (5.6) holds.

We will later give a specific hypothesis on the dual generator L which ensures this 
condition holds (see Hypothesis 6). However, we believe it is useful to state the basic 
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condition in Hypothesis 5, since in concrete applications it may well happen that (5.6)
can be proved in some other way.

Theorem 5.2 (Semigroup version of Harris’s theorem). Let V : Ω → [1, +∞) be a mea-
surable (weight) function and let (St)t≥0 be a stochastic semigroup in MV . Assume that

1. The semigroup (St)t≥0 satisfies the semigroup Lyapunov condition (Hypothesis 5).
2. For some T > 0, ST satisfies the local coupling condition (Hypothesis 3) with b/A <

σ.

Then the semigroup has an invariant probability measure μ∗ ∈ PV which is unique within 
PV , and there exist λ, C > 0 such that

‖Stν‖V ≤ Ce−λt‖ν‖V , for t ≥ 0, (5.7)

for all ν ∈ NV .

Proof of Theorem 5.2. Hypothesis 5 shows that the operator Lyapunov condition (Hy-
pothesis 1) holds for ST , since

‖STμ‖V ≤ e−σT ‖μ‖V + b

σ
(1 − e−σT )‖μ‖,

for all μ ∈ MV . The condition b/A < σ hence ensures ST is in the conditions of Theo-
rem 3.2.

With the same reasoning as in the proof of Theorem 5.1, we see that (St)t≥0 has 
a unique stationary state in PV , which we call μ∗. We know from Theorem 3.2 that 
there exist a new norm | | | · | | |V (defined through (3.5) and a parameter β > 0, which is 
equivalent to the norm ‖ · ‖V ) and 0 < γ < 1 such that

|||ST ν|||V ≤ γ|||ν|||V ,

for all measures ν ∈ NV . In order to show (5.7), we follow a similar reasoning as in the 
proof of Theorem 5.1. Notice first that due to (2.1) and (1.2) we have, for 0 ≤ t ≤ T ,

|||Stμ|||V ≤ CV e
ωV T |||μ|||V , (5.8)

for all measures μ ∈ MV . We conclude that (5.7) holds with

C := CV e
ωV T

γ

1 + β

β
, λ := − log γ

T
> 0,

and γ, β are the constants in Theorem 3.2 as applied to the operator ST . �
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We end this section by noticing that in the case of a Feller-type semigroup, Hypothe-
sis 5 is a consequence of the following condition on the dual generator L of the associated 
Markov-Feller semigroup (Pt)t≥0 on C0(Ω). Hence Theorem 5.2 also holds it (St)t≥0 is 
a Feller-type stochastic semigroup which satisfies the following hypothesis instead of 
Hypothesis 5:

Hypothesis 6 (Generator Lyapunov). Let (St)t≥0 be a Feller-type stochastic semigroup 
on MV . We say the semigroup (St)t≥0 satisfies the generator Lyapunov condition with 
function V when there exist constants σ, b > 0 such that (5.4) holds.

The fact that in the case of a Feller-type stochastic semigroup, Hypothesis 6 implies 
Hypothesis 5 is a straightforward consequence of the following version of Gronwall’s 
lemma:

Lemma 5.3 (Gronwall lemma). Consider (St)t≥0 a Feller-type stochastic semigroup in 
MV which satisfies the generator Lyapunov condition (Hypothesis 6) associated to V and 
some constants σ, b > 0. Then (St)t≥0 satisfies the corresponding semigroup Lyapunov 
condition (Hypothesis 5) with the same function V and constants σ, b > 0.

We observe that the difficulty in proving this result is that there is no reason why 
the function t 	→

∫
μtV should be continuous, which makes it difficult to apply standard 

results on differential inequalities, which usually require a continuous function.

Proof of Lemma 5.3. We fix 0 ≤ μ0 ∈ MV and we set μt := Stμ0. We split the proof 
into four steps.
Step 1. We first observe that the Lyapunov condition (5.4) is equivalent to

∫
μt2V + σ

t2∫
t1

∫
μsV ds ≤

∫
μt1V + b

t2∫
t1

∫
μsds, (5.9)

for any t2 > t1 ≥ 0 and all 0 ≤ μ ∈ MV . The inequality (5.4) is indeed a particular case 
of (5.9) and the reciprocal implication is an immediate consequence of the semigroup 
property of (St)t≥0.
Step 2. We claim that

t 	→
∫

V μt is right-continuous. (5.10)

We recall that because (St)t≥0 is of Feller-type, there holds

t 	→
∫

μtχ ∈ C(R+;R+), (5.11)



34 J.A. Cañizo, S. Mischler / Journal of Functional Analysis 284 (2023) 109830
for any χ ∈ Cc(Ω), and even for any χ ∈ Cb(Ω). On the one hand, as a consequence of 
(5.11), for any χ ∈ Cc(Ω), χ ≤ V , there holds∫

μtχ = lim
s→t

∫
μsχ ≤ lim inf

s→t

∫
μsV.

Choosing χn ↗ V , the monotone convergence theorem implies∫
μtV = lim

n→∞

∫
μtχn ≤ lim inf

s→t

∫
μsV. (5.12)

On the other hand, the semigroup Lyapunov condition (5.9) implies∫
V μs ≤

∫
V μt + b(s− t)

∫
μ0, ∀ s > t.

We deduce that

lim sup
s↘t

∫
V μs ≤ lim

s↘t

{∫
V μt + b(s− t)

∫
μ0

}
=

∫
V μt. (5.13)

Equations (5.12) and (5.13) together imply (5.10).
Step 3. We claim that the Lyapunov condition (5.4) (or equivalently (5.9)) is equivalent 
to the fact that (5.10) holds together with

d
dt

∫
V μt ≤ −σ

∫
V μt + b

∫
μt, (5.14)

in the sense of D′(0, +∞), the space of distributions on (0, +∞). On the one hand, if 
we assume (5.9) holds then (5.10) holds from Step 2. Multiplying equation (5.9) by a 
nonnegative test function ϕ ∈ D(0, +∞), dividing it by t2 − t1, integrating and passing 
to the limit as t2 ↘ t1 (and using (5.10) to do this), we deduce (5.14).

On the other hand, if we assume that both (5.10) and (5.14) hold, in particular this 
means that

∞∫
0

∫
V μsφ

′
s ds + σ

∞∫
0

φs

∫
V μs ds ≤ b

∞∫
0

φs

∫
μs ds, (5.15)

for any 0 ≤ φ ∈ D(0, +∞). For t > 0 and a given function 0 ≤ ρ ∈ D(R+) with 
integral 1 and supp ρ ⊂ (0, 1), define the sequence (φn) by φn(0) := 0 and φ′

n(s) :=
nρ(s/n) −nρ((s − t)/n). We may pass to the limit n → ∞ in (5.15) by taking advantage 
of (5.10), and we conclude (5.4).
Step 4. We introduce a mollifier (ρε) with supp(ρε) ⊂ (−ε, 0) and the function

uε(t) = (‖μ‖V ∗ ρε)(t) =
∫

‖μs‖V ρε(t− s) ds,

R
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which clearly satisfies uε ∈ C1. From (5.14), uε also clearly satisfies

u′
ε ≤ −σuε + K

∫
μ0,

pointwise on (0, ∞). From the classical version of the Gronwall lemma, we deduce that

uε(t2) ≤ e−σ(t2−t1)uε(t1) + K

σ
(1 − e−σ(t2−t1))

∫
μ0,

for any t2 > t1 > 0 and any ε > 0. Observing that uε(t) → ‖μt‖V as ε → 0 for any t ≥ 0
because of (5.10), we obtain that the semigroup Lyapunov condition (5.6) holds for any 
t = t2 > 0, by passing to the limit ε → 0 and next t1 → 0. �
5.2. Subgeometric convergence

As we have just done for the geometric case, one may state analogous results to 
Theorems 4.8 or 4.13 in the case of a continuous semigroup (St)t≥0, as long as the 
conditions of the theorems are satisfied by ST for some time T > 0. However, the 
conditions in Theorems 4.8 and 4.13 are not so natural for a continuous semigroup, since 
they involve estimates for ST and powers of ST .

We will avoid these statements and give more convenient conditions in terms of the 
semigroup, in the spirit of Hypothesis 5, and in terms of the generator of the semigroup, 
in the spirit of Hypothesis 6.

A natural weak counterpart of the Lyapunov condition (5.2) consists in assuming that

LV ≤ −σϕ(V ) + b, (5.16)

for some measurable weight (Lyapunov) function V : Ω → [1, +∞), some concave func-
tion ϕ : [1, +∞) → [1, +∞) and some constants σ, b > 0, where L is adjoint to the 
generator Λ of (St)t≥0. This runs into the same technical problems discussed before 
Hypothesis 5, so we will again use the consequence we would like to extract as an as-
sumption, and leave it to be checked in each specific application. Proceeding similarly 
from (5.16) as for (5.2), we may formally compute

‖Stμ‖V ≤ ‖μ‖V +
t∫

0

(b‖Suμ‖ − σ‖Suμ‖ϕ(V )) du, (5.17)

for any 0 ≤ μ ∈ MV and any t ≥ 0. For a Feller-type semigroup, this condition is 
equivalent to conditions (3.1) or (3.2) in Douc et al. [15]. We can take one more step 
and deduce from (5.17) (still formally) the weak confinement counterpart of (5.6). As we 
will establish for a Feller-type stochastic semigroup (see Corollary 5.8 below), a natural 
consequence is
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‖Stμ‖V + σt‖Stμ‖ϕ(V ) ≤ ‖μ‖V + Kt‖μ‖, (5.18)

for all t ≥ 0 and μ ∈ MV , with Kt := tb(1 + σt/2). We then take this last property as 
the assumption we impose on the semigroup:

Hypothesis 7 (Weak semigroup Lyapunov condition). We say that a stochastic semigroup 
(St)t≥0 satisfies the weak semigroup Lyapunov condition for a weight function V : Ω →
[1, +∞) and a concave function ϕ : [1, +∞) → [1, +∞), ϕ(v) ≤ v for any v ≥ 1, if there 
exist constants b, σ > 0 such that (5.18) holds.

The following continuous-time analogue of Theorem 4.8 is our main result in this 
setting:

Theorem 5.4 (subgeometric Harris, interpolated version). Consider two measurable 
weight functions V1, V2 : Ω → [1, +∞), V1 ≤ V2, and a stochastic semigroup (St)t≥0
on MV2 such that:

1. the weak semigroup Lyapunov condition (Hypothesis 7) holds for both weights V1 and 
V2, with functions and constants ϕ1, b1, σ1 and ϕ2, b2, σ2.

2. For some time T > 0, ST satisfies the local coupling condition (Hypothesis 3) for 
both ϕ1(V1) and ϕ2(V2), with constants A1 > K1/σ1 and A2 > K2/σ2.

3. The interpolation condition (4.12) holds for some ξ.

Then there exists a unique equilibrium μ∗ ∈ Pϕ2(V2), and there exists some C > 0
depending only on the constants in the assumptions such that

‖Stν‖V1 � CΘ(t)‖ν‖V2 , ∀ t ≥ 0,

and

‖Stν‖ � CΘ̃(t)‖ν‖V2 , ∀ t ≥ 0,

for any ν ∈ NV , where

Θ(t) := F−1(t), Θ̃(t) := 1
t
F−1( t2), F (v) :=

1∫
v

1
ξ∗(u) du.

Before coming to the proof of Theorems 5.4, we present a technical result.

Lemma 5.5. Let V : Ω → [1, +∞) be a weight function and ϕ : [1, +∞) → [1, +∞) be a 
continuous and increasing function with ϕ(1) = 1. Let S be a stochastic operator which 
satisfies the following “implicit” Lyapunov-type condition:
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‖Sμ‖V + σ‖Sμ‖ϕ(V ) ≤ ‖μ‖V + K‖μ‖, for all μ ∈ P ∩MV (5.19)

for some K, σ > 0. If we define Ṽ : Ω → [1, +∞) and ϕ̃ : [1, +∞) → [1, +∞) by

Ṽ := 1
1 + σ

(V + σϕ(V )), ϕ̃(Ṽ ) := ϕ(V )

then ϕ̃ is increasing, ϕ̃(1) = 1, and S satisfies a usual weak explicit Lyapunov condition 
for Ṽ and ϕ̃, namely

‖Sμ‖Ṽ + σ

1 + σ
‖μ‖ϕ̃(Ṽ ) ≤ ‖μ‖Ṽ + K

1 + σ
‖μ‖, for all μ ∈ MV . (5.20)

Proof of Lemma 5.5. First, note that ϕ̃ is well defined and ϕ̃(1) = 1, since V 	→ 1
1+σ (V +

σϕ(V )) is a strictly increasing function which takes the value 1 for V = 1. Using (5.19)
and the definition of Ṽ we have, for any μ ∈ MV ,

(1 + σ)‖Sμ‖Ṽ = ‖Sμ‖V + σ‖Sμ‖ϕ(V )

≤ ‖μ‖V + K‖μ‖ = (1 + σ)‖μ‖Ṽ − σ‖μ‖ϕ(V ) + K‖μ‖.

Due to the definition of ϕ̃, this is precisely (5.20). �
Proof of Theorem 5.4. Let us show that the conditions of Theorem 4.8 are met by St0

for a certain t0 > 0. First, for any t0 > 0, we have the following implicit Lyapunov-type 
inequalities by assumption:

‖St0μ‖Vi
+ σit0‖St0μ‖ϕi(Vi) ≤ ‖μ‖Vi

+ Kit0(1 + σit0/2)‖μ‖,

for i = 1, 2 and all μ ∈ P ∩MVi
. We may define

Ṽi := 1
1 + σi

(Vi + σiϕi(Vi)), ϕ̃i(Ṽi) := ϕ(Vi),

and we know from Lemma 5.5 that we also have the weak Lyapunov condition:

‖St0μ‖Ṽi
+ σit0

1 + σit0
‖μ‖ϕ̃i(Ṽi) ≤ ‖μ‖Ṽi

+ Kit0
1 + σit0

(1 + t0/2)‖μ‖. (5.21)

Choose an integer N > 0 and take t0 := T/N . We can choose N large enough so that

Ki

σi
(1 + σit0/2) < Ai, for i = 1, 2, (5.22)

and then all hypotheses of Theorem 4.8 are satisfied by the operator St0 , since

1. St0 satisfies the weak Lyapunov condition (5.21) for Ṽ1, ϕ̃1 and Ṽ2, ϕ̃2.
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2. SN
t0 = ST satisfies the local coupling condition for both ϕ̃1 and ϕ̃2, with constants 

which satisfy the appropriate inequality thanks to (5.22).
3. The interpolation condition (4.12) and the assumption that ϕ1(V1) ≤ V1 show that

λṼ1 = λ

1 + σ1
(V1 + σ1ϕ1(V1)) ≤ λV1 ≤ ϕ1(V1) + ξ(λ)V2 ≤ ϕ̃1(Ṽ1) + (1 + σ2)ξ(λ)Ṽ2.

Hence the interpolation condition is satisfied for ξ̃(λ) := (1 + σ2)ξ(λ).

Applying Theorem 4.8 gives an estimate of the decay of ‖Stμ‖V and ‖Stμ‖ for t = nt0. 
The same technique used before in the proof of Theorem 5.1 allows us to extend the 
decay to the whole semigroup and obtain the result. �

We end this section by specifying Harris’ theorem to the case of a Feller-type semi-
group for which some simplifications occur. In this setting, the relevant confinement 
condition writes:

Hypothesis 8 (Weak generator Lyapunov condition). We say that a Feller-type stochastic 
semigroup (St)t≥0 satisfies the weak generator Lyapunov condition for a weight continu-
ous function V : Ω → [1, +∞) if there exist constants b, σ > 0 and a continuous function 
ϕ : [1, +∞) → [1, +∞) such that (5.17) holds.

In much the same way as in Section 4, using Theorem 5.4 we can prove the following 
result, which is a close relative of the main result in Douc et al. [15]:

Theorem 5.6 (Subgeometric Harris). Consider a Feller-type stochastic semigroup (St)t≥0
on MV which satisfies both the weak generator Lyapunov condition for a continuous 
weight function V (Hypothesis 8) and the Harris irreducibility condition (Hypothesis 2) 
on the set C := {x ∈ Ω | V (x) ≤ R}, for large enough R. Then, there exists a unique 
equilibrium μ∗ ∈ Pϕ(V ), and there exist some constructive constant C > 0 and a decay 
rate function Θ̃ such that

‖Stν‖ ≤ Θ̃(t)‖ν‖V , ∀ t ≥ 0,

for any ν ∈ NV , where Θ̃(t) := CΘψ(rt)/t with the notations of Theorem 4.13.

The proof of Theorem 5.6 is given in the rest of this section.

Lemma 5.7. Let V : Ω → [1, +∞) be a continuous weight function and ϕ : [1, +∞) →
[1, +∞) a concave function with ϕ(1) = 1. If a Feller-type stochastic semigroup (St)
satisfies the weak generator Lyapunov condition (5.16) then it satisfies

Lψ(V ) ≤ −ψ′(V )ϕ(V ) + ψ′(V )b, (5.23)
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for any concave function ψ : [1, +∞) → [1, +∞). Both conditions have to be understood 
when integrated along the semigroup flow and thus L denotes the generator of the asso-
ciated Feller-Markov semigroup (Pt)t≥0 such that St = P ∗

t .

Proof of Lemma 5.7. For the same reason as in the geometric case, we have (5.10). As 
a consequence, we have at least

t 	→
∫

ψ(V )μt is càd,

or even it is continuous when ψ(s)/s → 0 as s → ∞. On the other hand, for any 
0 ≤ μ ∈ MV , we have

∫
μ0

{
Pt2V + σ

t2∫
t1

Psϕ(V )ds
}
≤

∫
μ0

{
Pt1V + b(t2 − t1)

}
,

which is nothing but the dual form of (5.17), so that

Pt2V + σ

t2∫
t1

Psϕ(V )ds ≤ Pt1V + b(t2 − t1). (5.24)

Using Jensen’s inequality (4.9) and (5.24), for any h > 0 we have

Phψ(V ) ≤ ψ(PhV ) ≤ ψ
(
V + bh− σ

h∫
0

Psϕ(V )ds
)

≤ ψ(V ) + ψ′(V )
(
bh− σ

h∫
0

Psϕ(V )ds
)
.

By duality, for any 0 ≤ μ ∈ MV , we deduce

∫
(Shμt)ψ(V ) −

∫
μtψ(V ) ≤ b

h∫
0

∫
(Ss(ψ′(V )μt))ds− σ

h∫
0

∫
(Ss(ψ′(V )μt))ϕ(V )ds,

for any h > 0 and t ≥ 0. Dividing by h > 0 and passing to the limit h → 0, we get

d

dt

∫
μtψ(V ) + σ

∫
μtψ

′(V )ϕ(V ) ≤ b

∫
ψ′(V )μ0,

which is the rigorous definition of the weak generator Lyapunov condition (5.23). �
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Corollary 5.8. If (St) is a Feller-type stochastic semigroup which satisfies the weak gen-
erator Lyapunov condition (5.16) then it satisfies

‖Stμ‖V + σt‖Stμ‖ϕ(V ) ≤ ‖μ‖V + bt(1 + σt/2)‖μ‖. (5.25)

Proof of Corollary 5.8. Because of the weak generator Lyapunov condition (5.16) and 
the non-expansive mappings property (2.1), we have

‖Stμ‖V + σ

t∫
0

‖Suμ‖ϕ(V ) du ≤ ‖μ‖V + bt‖μ‖,

for any t ≥ 0. On the other hand, because of Lemma 5.7 applied to ψ := ϕ, we have

‖Stμ‖ϕ(V ) + σ

t∫
u

‖Suμ‖ϕ′(V )ϕ(V ) du ≤ ‖Suμ‖ϕ(V ) + b(t− u)‖μ‖.

After time integration of that last estimate and throwing away the second term at the 
LHS, we get

t‖Stμ‖ϕ(V ) ≤
t∫

0

‖Suμ‖ϕ(V ) du + b
t2

2 ‖μ‖.

Together with the first inequality, this allows us to conclude. �
Proof of Theorem 5.6. Thanks to Corolary 5.8, we see that the hypotheses of Theo-
rem 5.6 are met for V2 = V and V1 = ψ(V ) for any ψ as in the statement of Theorem 4.13. 
We may then apply Theorem 5.4 and conclude. �

The above result has to be compared with the already known following convergence 
result.

Theorem 5.9 (subgeometric Harris). Consider a Feller type stochastic semigroup (St)t≥0
on MV which satisfies both the generator Lyapunov condition (Hypothesis 6) and the 
Harris irreducibility condition (Hypothesis 2). There holds

‖Stν‖ � 1
H−1(t)‖ν‖V , ∀ t ≥ 0, ∀ ν ∈ NV , (5.26)

where H is defined by H(u) :=
u∫

ds

ϕ(s) . It is worth observing that

1
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1
H−1(t) � t−k/δ when m = 〈x〉k, ϕ(u) = u1−δ/k, 0 < δ < k;

1
H−1(t) � e−λtσ/(σ+δ)

when m = e〈x〉
σ

, ϕ(u) = u

(log u)δ/σ
, δ, σ > 0,

when Ω := Rd and 〈x〉 := (1 + |x|2)1/2.

It is worth emphasizing that the above rates of convergence are precisely the same as 
those obtained by our method for the same two examples presented at the end of the 
Section 4 as made explicit in (4.28) and (4.29).

Theorem 5.9 has been established in Douc et al. [15] and an alternative proof has been 
proposed in Hairer [20]. Both are based on non constructive probabilistic arguments that 
we do not present here. We mention however that the proof of Theorem 5.9 as found in 
Douc et al. [15], Hairer [20] consists in establishing

∞∫
0

ϕ(H−1(s))‖νs‖ ds ≤ C‖ν0‖V ,

for any ν0 ∈ NV (in fact for ν0 = δx− δy). Because s 	→ ‖νs‖ is decreasing and (H−1)′ =
ϕ(H−1), one deduces

H−1(t)‖νt‖ ≤ H−1(t)‖νt‖ −
t∫

0

H−1(s)( d

ds
‖νs‖)ds

= H−1(0)‖ν0‖ +
t∫

0

ϕ(H−1(s))‖νs‖ds

≤ H−1(0)‖ν0‖ + C‖ν0‖V ,

which is nothing but (5.26).
We have not been able to give a constructive deterministic proof of Theorem 5.9. 

However, our analysis makes it possible to recover Theorem 5.9 for some specific but 
common examples, as explained at the very end of Section 4. We obtain constructive 
constants in all our results, which is an improvement in all subgeometric cases.

6. Existence of an equilibrium under a subgeometric Lyapunov condition

We give here a quite general result about existence of an equilibrium for a Feller-type 
stochastic semigroup which is independent of our previous results and in particular does 
not need a coupling or Harris condition.

We thus consider hereafter a Feller type stochastic semigroup (St)t≥0 and we assume 
that the weak generator Lyapunov condition (Hypothesis 7) holds for a weight function 
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V : Ω → [1, +∞), a concave function ϕ : [1, +∞) → [1, +∞), for which we may assume 
ϕ′ ≤ 1 without lost of generality, and some constants b, σ > 0. Introducing the constant 
R := supV ∈ [1, ∞], we furthermore assume that

ϕ(R) > b/ς and {V ≤ ρ} is compact for any ρ ∈ [1, R),

the last condition being fundamental in the present approach which is based on the use 
of the Prokhorov theorem about compactness of tight sequences. More precisely, from 
the last condition and the Prokhorov theorem, we may claim that any sequence (μn) of 
P with uniformly (in n) bounded ϕ(V )-moment is relatively compact in P.

By fixing ρ ∈ [1, R) large enough and ε > 0 small enough such that (ς − ε)ϕ(ρ) ≥ b, 
we deduce that

LV3 ≤ −V2 + b1C ,

where L is the generator of the associated Markov-Feller semigroup (Pt) on C0(Ω), 
V3 := V , V2 := εϕ(V ) and C := {x ∈ Ω | V2(x) ≤ ρ}.

The above Foster-Lyapunov condition provides a sufficient condition for the existence 
of an equilibrium.

Theorem 6.1. Any stochastic semigroup (St) on MV which fulfills the above Lyapunov 
condition has at least one invariant probability measure μ∗ ∈ Mϕ(V ).

Proof of Theorem 6.1. Step 1. We prove that (St) is bounded in the sense of Cesàro in 
MV2 . We define

A := bχ, B := L−A,

with χ ∈ C0(Ω) such that 1C ≤ χ ≤ 1. Since B is a bounded perturbation of L, 
we classically know that B generates a semigroup SB on the same space C0(Ω) and 
furthermore

B ≥ L− b, BV3 ≤ −V2 ≤ 0.

From the first inequality, we have SB(t) ≥ e−btSL(t) ≥ 0 for any t ≥ 0, so that both SB
and S∗

B are positive semigroups. Because of the Duhamel formula

S∗
B = S + S∗

B ∗ (−A)S ≤ S,

and S∗
B is a semigroup of contraction on M. In particular SB ∈ L∞

t (B(M)), where 
here and below, L∞

t (X ) denotes the space of bounded function from R+ into X . From 
the same Duhamel formula, we see that S∗

B is well defined on MV3 and has at least 
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exponential growth rate. We can get a more accurate information. For 0 ≤ μ0 in the 
domain of S∗

B (defined in MV3) and denoting μt := S∗
B(t)μ0, we may compute

d
dt

∫
μt V3 ≤

∫
μt BV3 ≤ −

∫
μt V2,

so that

∫
μt V3 +

t∫
0

∫
μs V2ds ≤

∫
μ0 V3, ∀ t ≥ 0.

We deduce that

S∗
B ∈ L∞

t (B(MV3));
∞∫
0

‖S∗
B(t)μ0‖MV2

dt ≤ ‖μ0‖MV3
, ∀μ0 ∈ MV3 .

We thus obtain S∗
B ∈ L∞

t (B(MV2)), by interpolation together with the previous estimate 
SB ∈ L∞

t (B(M)). Alternatively, we could have used Lemma 5.7, in order to get

Bϕ(V ) ≤ (−ςϕ(V ) + b)ϕ′(V ) − bχϕ(V ) ≤ b(1C − χ) ≤ 0,

next to compute directly

d
dt

∫
(S∗

B(t)μ0)V2 ≤ 0,

for 0 ≤ μ0 in the domain (in MV2) of S∗
B, and finally to deduce that (S∗

B) is a semigroup 
of contractions in MV2 . We next come back the splitting of the semigroup through the 
Duhamel formula

S = S∗
B + S∗

B ∗ AS,

and we introduce the associated Cesàro means

UT := 1
T

T∫
0

S(t) dt, VT := 1
T

T∫
0

S∗
B(t) dt, WT := 1

T

T∫
0

(S∗
B ∗ AS)(t) dt.

We obviously have

‖VT ‖B(MV2 ) ≤
1
T

T∫
0

‖S∗
B(t)‖B(MV2 ) dt ≤ 1.

On the other hand, for 0 ≤ μ0 ∈ MV2 , we have
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S∗
B(τ)

T−τ∫
0

AS(s)μ0 ds ≤ S∗
B(τ)

T∫
0

AS(s)μ0 ds, ∀T > τ > 0,

by positivity of the three operators involved in this integral formula, and then

‖WTμ0‖MV2
=

∥∥∥ 1
T

T∫
0

S∗
B(τ)

T−τ∫
0

AS(s)μ0 dτds
∥∥∥
MV2

≤ 1
T

∞∫
0

∥∥∥S∗
B(τ)

T∫
0

AS(s) dsμ0

∥∥∥
MV2

dτ

≤ 1
T

∥∥∥ T∫
0

AS(s) dsμ0

∥∥∥
MV3

≤ ‖A‖B(M;MV3 )‖μ0‖M,

so that WT is uniformly bounded in L∞
t (B(MV2)). We then deduce that UT = VT +WT

is also uniformly bounded in L∞
t (B(MV2)).

Step 2. Existence of an invariant measure μ∗ ∈ MV2 . We define K := MV2 ∩ P and 
we fix μ0 ∈ K arbitrary. Because of Step 1, the sequence μT = UTμ0 is bounded in K. 
By Prokhorov’s theorem the embedding MV2 ⊂ M is compact, and hence there exists 
a subsequence (μTk

) and μ∗ ∈ K such that μTk
⇀ μ∗ in the weak-∗ sense σ(M, C0) as 

k → ∞. For any fixed s > 0, we observe that

S(s)μ∗ − μ∗ = lim
k→∞

{ 1
Tk

Tk∫
0

S(s)S(t)μ0 −
1
Tk

Tk∫
0

S(t)μ0 dt
}

= lim
k→∞

{ 1
Tk

Tk+s∫
Tk

S(t)μ0 −
1
Tk

s∫
0

S(t)μ0 dt
}

= 0,

so that μ∗ is an invariant measure. �
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