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Whitening is a critical normalization method to enhance statistical reduction via

reparametrization to unit covariance. This article introduces the notion of whitening

for random functions assumed to reside in a real separable Hilbert space. We

compare the properties of different whitening transformations stemming from the

factorization of a bounded precision operator under a particular geometrical

structure. The practical performance of the estimators is shown in a simulation study,

providing helpful insights into their optimization. Computational algorithms for the

estimation of the proposed whitening transformations in terms of basis expansions

of a functional data set are also provided.
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1 | INTRODUCTION

There are many situations in modern applied sciences where data exhibit intricate structures with patterns difficult to capture using common

reduction methods. Centering and whitening (or sphering) are natural preprocessing steps to facilitate the inspection of latent sources going

beyond second-order correlations. Whitening is a symmetric spheric transformation based on the factorization of inverse covariance matrices that

maps a random variable to orthogonality. Due to the inherent rotational freedom of this transformation, there exist infinitely many possible ways

of sphering. A considerable body of literature has emerged developing optimal whitening techniques and its theoretical properties; early works

include Johnson (1966), Price and Nicewander (1977) and Li and Zhang (1998). Most notably, Eldar and Oppenheim (2003) introduced a proce-

dure using infinite-dimensional features induced by a positive definite kernel to enhance the goodness of fit of the transformation via mean-

squared error evaluation between the sphered and original data. Seghouane and Saad (2014) derived an efficient algorithm for whitening high-

dimensional data with a reduced-rank approximation that uses Lanczos vectors. Furthermore, the constriction of rotational freedom to a measure

of cross-covariance and cross-correlation between the original and sphered data has been developed to asses the degree of resemblance and

compression achieved in the transformation (Garthwaite et al., 2012; Johnson, 1966; Kessy et al., 2018; Price & Nicewander, 1977).

Functional data analysis is a consolidated branch of modern statistics with active research in methodological developments for sampling units

modelled as functions, surfaces, images or other similar objects varying over a continuum; see, for example, Horváth and Kokoszka (2012), Hsing

and Eubank (2015), Aneiros et al. (2019), Cuevas (2014), Goia and Vieu (2016) and Li et al. (2022) for a survey on recent developments in the field.

Here, we develop a natural extension of typical whitening procedures for data in the form of random functions or curves as well as discussing

their optimization. As functional data are inherently infinite-dimensional, generalizations of multivariate objects such as inverses become an issue

that complicates the extension of certain statistical techniques. In that sense, a whitening transformation corresponds to an inverse problem given

that covariance operators are not invertible, thus requiring further regularization or assumptions of finite-dimensional space dependency. As an

alternative, the presented approach recasts the range of the covariance operator into a weaker norm to accommodate the definition of a whiten-

ing operator and exploit its properties in infinite-dimensional spaces.

Received: 29 July 2022 Revised: 17 September 2022 Accepted: 11 October 2022

DOI: 10.1002/sta4.516

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Stat published by John Wiley & Sons Ltd.

Stat. 2023;12:e516. wileyonlinelibrary.com/journal/sta4 1 of 10

https://doi.org/10.1002/sta4.516

 20491573, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.516 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-1084-3242
https://orcid.org/0000-0003-2425-6716
mailto:aaguiler@ugr.es
https://doi.org/10.1002/sta4.516
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/sta4
https://doi.org/10.1002/sta4.516
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsta4.516&domain=pdf&date_stamp=2023-01-15


The motivation behind this article is to discuss the optimization and the use of whitening. The importance of this transformation lies at the

core of invariant coordinate selection (Ilmonen et al., 2012; Tyler et al., 2009) and independent component analysis (Nordhausen & Oja, 2018) as

well as their functional counterparts (Archimbaud et al., 2022; Vidal et al., 2021; Virta et al., 2020). Whitening enforces statistical independence

and allows certain rotational freedom to enhance the estimation of components with non-Gaussian kurtosis or skewness, which are commonly

encountered in economic, neuroscientific and biomechanical data. In the latter case, it has been shown to improve the outcomes of variable selec-

tion in function-on-scalar regression (Chen et al., 2016). Recent developments in machine learning also demonstrate the utility of whitening in

predictive models for image recognition (Chen et al., 2020).

Extending whitening methods to functional settings encompasses exploiting the richness of the topological features of the data

(smoothness, continuity and contiguity) over time or some other domain to obtain more robust whitening representations. Our approach

accommodates functional whitening on a general high-dimensional framework in which we have resorted to basis function systems as a sta-

ple for its computational implementation. Other alternatives such as kernel regressors can certainly be considered. The proposed whitening

procedures might have further potential applications for spatio-temporal functional data when stationary and isotropic assumptions are not

satisfied; see, for example, Mateu and Giraldo (2021) and Blake et al. (2022) for a review of current spherical approaches. A spatio-temporal

stochastic process is a particular case of a functional variable with values in a Hilbert space of three-argument functions defined on

the three-dimensional spatio-temporal domain. Therefore, the theoretical formulation of functional whitening operators is valid in this

context, and the estimation from discrete-time-space observations could be done by projection on to the tensor function space

generated by three bases (one basis for each argument of the spatio-temporal domain) as proposed in Aguilera-Morillo et al. (2016) and

Durbán et al. (2022).

The remainder of the paper is organized as follows: in Sections 2 and 3, we introduce the definition of a whitening transformation in function

spaces and provide particular examples of these class of operators. Section 4 discusses the optimality of these transformations, which is further

proven in a simulation study in Section 6. Computational details are provided in Section 5. To conclude, in Section 7, we briefly discuss some of

the implications of our work and related issues a pre-whitening transformation entails. All technical proofs and additional numerical results are

included in Appendix A and Online Materials.

2 | THE WHITENING OPERATOR

Let H be a separable Hilbert space of functions on a compact interval T�ℝ with inner product ⟨ � , � ⟩ :H�H!ℝ and norm �k k. A functional ran-

dom variable X taking values in H with EkXk2 <∞ has a mean function μ¼EðXÞ and a covariance operator Γ¼ E½ðX�μÞ�ðX�μÞ�, where f�g is

the induced tensor product in H defined by ðg�fÞh¼ ⟨h,g⟩f. Under these assumptions, it is well known that Γ is positive definite, self-adjoint,

trace-class (their eigenvalues are summable) and therefore compact (see, for example, Hsing & Eubank, 2015, § 7.2). Then, Γ admits the spectral

representation

Γ¼
X∞
j¼1

λjðγj�γjÞ¼
X∞
j¼1

λjPγj , ð1Þ

where λ1 ≥ λ2 ≥…≥0 is its set of non-negative eigenvalues converging to zero and fγjg an orthonormal basis of corresponding eigenfunctions. We

employ the notation Pγj ¼ γj�γj for the projection of H on to the one-dimensional eigenspace spanned by γj. Thorough the text, we assume that Γ

has strictly positive eigenvalues; hence, Γ is injective. Furthermore, as Γ is a self-adjoint positive operator, consider there exists the operator Γ1=2

such that ðΓ1=2Þ2 ¼Γ.

Definition 1. The whitening operator Ψ transforms a functional variable X into a new element X¼ΨðX�μÞ with zero mean and

covariance operator being exactly the identity inside H.

We note that there is no convention in how mean-centering should be performed, if before or after the transformation. To ease the notation,

in the sequel, it will be assumed that μ¼0.

A natural way to produce a whitening operator is via factorization of precision operators (the inverse of Γ), which suggests the expression

Ψ ∗Ψ¼Γ�1, where Ψ ∗ is the adjoint of Ψ. A priori, major drawbacks might arise in this context, as the precision operator turns out to be

unbounded and, in general, X does not belong to its domain (see, for example, Mas, 2006, § 2.2). One should therefore proceed with care, as even

considering certain kinds of regularization, ΨðXÞ may not exist in H, that is, jjΨðXÞjj2 ¼∞. We show in the next section how Ψ can also be cor-

rectly validated to lead to a number of whitening operators in the functional setting.
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3 | FUNCTIONAL WHITENING PROCEDURES

A way to make the inverse problem more manageable is to consider the subspace of H induced by the eigenelements of Γ, defined as

M¼ h�H :
X∞
j¼1

⟨h, γj⟩
2

λj
<∞

( )
: ð2Þ

The completion of M is given under the inner product

⟨f, g⟩M ¼
X∞
j¼1

λ�1
j ⟨f, γj⟩⟨g, γj⟩¼ ⟨Γ1=2†f, Γ1=2†g⟩ f, g�M, ð3Þ

where Γ1=2† is the Moore–Penrose inverse of Γ1=2 (Hsing & Eubank, 2015, § 3.5.7). The space M can be seen as a reproducing kernel space, com-

monly encountered in functional data analysis (Kupresanin et al., 2010). Note that, the range of Γ becomes closed under a weaker norm derived

from (3), hence allowing the precision to exist in M. This is admissible while assuming that the decay of the absolute value of the coefficients

⟨h,γj⟩ converges faster to zero relative to the eigenvalues λj, which is known as Picard's criterion (Engl et al., 2000, § 2.2). Then, we can use the

inner product (3) to construct a space of isotropic functions (i.e., their covariance operator satisfies the identity), so that the space ends up having

certain Gaussian appearance in the same sense as a Cameron-Martin space (Bogachev, 1998, p. 44, § 2.4). Recalling Definition 1, “inside” explicitly
refers to the closure of the identity under this framework, as the sample paths of X are then conceived as living at the boundary.

Bearing the above in mind, a whitening operator can be generally defined as a two-step transformation, with representation Γ1=2† :M!M,

restricted to map elements in the range of Γ. Therefore, the other part of the mapping comprises a projection on to the space generated by

fγjg∞j¼1
, so that X becomes entirely determined by the covariance operator Γ before whitening. Unless otherwise stated, in the following sections

we reset X to the range space of Γ, so that the proposed whitening transformations map elements of the kind
P∞

j¼1⟨ � ,γj⟩γj. With this, we hereafter

define the whitening operator Ψγ�γ ¼Γ1=2† whose spectral decomposition can be straightforwardly written as

Ψγ�γ ¼Γ1=2† ¼
X∞
j¼1

λ�1=2
j ðγj�γjÞ: ð4Þ

The above transformation is a direct extension of the popular zero phase component analysis whitening procedure proposed by Bell and

Sejnowski (1997). According to the following Proposition, rotational freedom becomes apparent, leading to a family of whitening operators we

describe bellow.

Proposition 1. The covariance operator of X¼UΨγ�γðXÞ satisfies the identity in M for any unitary transformation U in ranðΓ1=2Þ,
the closure of the range space of Γ1=2.

A slight modification in (4), alternatively produces the non-symmetric whitening operator

Ψγ�e ¼
X∞
j¼1

λ�1=2
j ðγj�ejÞ, ð5Þ

where fejg is a fixed orthonormal basis of H. In fact, here we see the role of operator U as the agent of sending γj to ej. This functional whitening

procedure follows the principles of Friedman (1987), which only considers a single rotation of the covariance matrix eigenvectors.

To further extend the class of whitening operators, one can consider a succinct form of decorrelation by defining the diagonal operator

V ¼diagðΓÞ¼P∞
k¼1PekΓPek , where Pek ¼ðek�ekÞ. The operator V is not unique as it depends on an arbitrary orthonormal basis of H. In other

words, there is no privileged orthonormal basis on H to define V, and for each one of them, different operators can be obtained. This way, the

notion of standardization in multivariate analysis can be extended to the functional case by the operator V1=2†, where V1=2† is the Moore–Penrose

inverse of V1=2. Further usefulness of this operator will become clear in the following sections.

Two whitening procedures with appealing properties were defined in Kessy et al. (2018) by constraining the arbitrariness of the transforma-

tion to inherent autocorrelations. Next, we will suppose that ℛ :M!M defined as ℛ¼V1=2†ΓV1=2† is a compact operator, boundedly invertible,

with associated singular system fρj , φjg∞j¼1
. The operator ℛ closely resembles the usual correlation matrix and its spectral decomposition leads to

an eigenspace that will be of use in combination to V1=2†. Thus, there is no loss of generality in assuming that

Ψφ�φ¼ℛ1=2†V1=2† ¼
X∞
j¼1

ρ�1=2
j ðφj�φjÞ

( )
V1=2†,

VIDAL AND AGUILERA 3 of 10
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or analogously to (5),

Ψφ�e ¼
X∞
j¼1

ρ�1=2
j ðφj�ejÞ

( )
V1=2†

satisfies the usual properties of a whitening transformation in the sense of Definition 1. Both operators decline the span of Γ by its diagonal,

merging it with the spectral decomposition of ℛ, which leads to a non-symmetric operator. In turn, the operator Ψφ�φ is up to permutation or sign

changes but also invariant under unitary transformations within the subspace spanned by the eigenvectors of ℛ. Again, we can write UΨφ�φ,

where U denotes a unitary operator in the range of ℛ1=2†V1=2†
.

Triangular factorization of self-adjoint and positive operators might provide us another whitening procedure closely related to the Cholesky

decomposition of the precision matrix. Due to a result of Krein (see Theorem 3.4.5 in Balakrishnan, 1976), the usual precision operator is factored

as

ðIþΓÞ�1¼ðI�Δ ∗ ÞðI�ΔÞ,

where Δ is a triangular Volterra operator on H¼ L2ðTÞ, Δ ∗ is its adjoint, and I is the identity operator. The factorization in (3) leads to the whiten-

ing operator ΨΔ ¼ðI�ΔÞ. Nevertheless, we will restrict ourselves to a common Cholesky decomposition of the precision operator in the finite

dimensional setting, as shown in Section 5. Optimal whitening with triangular operators presents further technical difficulties requiring a separate

study, in part, because of the great variety of them.

Remark 1. To alleviate numerical instabilities when Picard's condition may not hold, a Tikhonov solution of the kind ΓþαIð Þ1=2† can
be used; see, for example, Berrendero et al. (2020). This regularization acts as a smoothed spectral truncation on the lower order

eigenelements (small eigenvalues), bounding from below the precision by means of the identity operator and a real parameter α. In

this sense, rates of convergence for these transformations could be thought comparable with the ones suggested in Caponera and

Panaretos (2022) for the autocorrelation operator. However, a Tikhonov regularization approach does not assure that Definition 1

holds, making it necessary to seek alternative strategies to solve the problem (or to discard the suitability of whitening). Interest-

ingly, the projection of X�H on to spanðfγjgÞ, j� f1, …, qg, that is, XðqÞ ¼PðqÞγ X, where q is fixed to minimize EjjX�XðqÞjj2, provides
a natural mechanism of regularization by the second-order structure of the variable. This regularization procedure combined with an

additional roughness penalty based on the d-order derivative on γj yields to a bi-smoothed approximation to whitening (Vidal et al.,

2021), which in turn can enhance posterior analyses of low-dimensional structures in high-dimensional settings. Other concomitant

methods to solve ill-posed problems for functional data are reported in Kraus and Stefanucci (2019). See Engl et al. (2000) for a gen-

eral reference on the subject.

4 | OPTIMAL FUNCTIONAL WHITENING

Similarly to the multivariate case, optimality in a functional whitening transformation can be identified in two different ways. The first one corre-

sponds to a problem aiming to find a component wise transformation that is closer to the original curves using some measure of adjustment or

resemblance. The second one is related to the ability of the whitening operator to compress the original functional variable and retain the maxi-

mum information content.

The adjustment between the original projected and the whitened functional variable is usually measured by the minimization of

EkX�Xk2 ¼ trðΓÞ�2trðΓXXÞ þ trðΓXÞ,

where ΓXX ¼ EðX�XÞ is the cross-covariance operator between X and X. As 2trðΓXXÞ is the only dependence between the original and the whit-

ened variable, the minimization problem can be reduced to the maximization of trðΓXXÞ. We implicitly assume that X falls in a space with the usual

inner product.

Proposition 2. The whitening operator Ψγ�γ is the unique transformation that minimizes the quadratic distance EkX�Xk2.

The least-squares problem in Proposition 2, however, is restrictive in the sense that it only allows to quantify the goodness of fit of the whit-

ening transformation without not being further explanatory of correlations or level of compression. For a correlation-based similarity objective, a

scale-invariant measure is usually required. Sangalli et al. (2009) introduced an analogue of Pearson's uncentred correlation coefficient for first

4 of 10 VIDAL AND AGUILERA
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derivatives, which might be useful in this context. The proposed measure is invariant under strictly increasing affine transformations, and thus, it

might serve to evaluate the resemblance in terms of correlations between both variables. Here, we consider a functional extension of the criteria

used in Kessy et al. (2018, § 6� 2), consisting of the minimization of the mean squared error between the standardized functional variable and the

whitened one. The operator V1=2† scales the original variable without removing correlations, allowing to construct a scale invariant measure with-

out being necessary to compute derivatives. The optimality objective is then expressed as

EkV1=2†ðXÞ�Xk2 ¼ trfΓV1=2†ðXÞg�2trfΓV1=2†ðXÞXgþ trðΓXÞ,

which corresponds to the maximization of trfΓV1=2†ðXÞXg.

Proposition 3. The whitening operator Ψφ�φ is the unique transformation that minimizes the quadratic distance EkV1=2†ðXÞ�Xk2.

Robustness in small local changes is not necessarily guaranteed when a whitening transformation is based on minimal least squared adjust-

ment. To measure the degree of compression of a whitening transformation, Kessy et al. (2018) used the row sum of squared cross-covariance

and cross-correlations between the components of the whitened and the original vector. Then, a monotonically decreasing condition on the resul-

tant variance is established to be maximized. As one might suspect, a similar approximation can be developed in the functional data context.

First, note that the operators ΓXX, ΓXX are not self-adjoint, whereas ΓXX is the adjoint of ΓXX . Define then the compound operator ΓXX ∘ΓXX,

which is self-adjoint and compact. Formerly, a straightforward way to measure how the whitening operator effectively compresses the original

functional variable in terms of a cross-covariance relation might be as

σcov ¼ sup
kekk¼1

⟨ek , ΓXX ∘ΓXXðekÞ⟩:

We can similarly proceed for the cross-correlation operator, now defined in the same sense of Kupresanin et al. (2010) as ℛXX ¼Γ1=2†ΓXX~Γ
1=2†

with ~Γ¼ EðX�XÞ. Thus, if the aim is to maximize the compression under a cross-correlation measure, we look for the maximization of the rate

σcorr ¼ sup
kekk¼1

⟨ek , ℛXX ∘ℛXXðekÞ⟩:

In our simulation study, we show that the whitening operators Ψγ�e and Ψφ�e maximize the proposed rates of compression.

5 | FINITE DIMENSIONAL APPROXIMATION

To generalize the practical application of our theoretical precepts, in this section, we show how to estimate whitening transformations from a

sample of functions approximated with any basis system. Let Xi ði¼1, …, nÞ be n independent copies of X not directly observable. The curves Xi

are reconstructed from a vector of measurements collected in a finite set of time points ti0, ti1, …, timi
, contaminated with additive independent

errors, that is, Xik ¼XiðtikÞþϵik , k� f0, …, mig. The observations X1,…,Xn are assumed in a q-dimensional space HðqÞ of L2ðTÞ spanned by a collec-

tion of basis functions ϕ¼ðϕ1,…,ϕqÞ > not necessarily orthonormal in the usual sense. For two functions f¼ϕ > f and g¼ϕ > g, the inner product

is defined by ⟨f, g⟩¼f > Gg where G�ℝq�q is the Gram matrix of inner products between pairs of basis functions. Then, Xi can be expressed as

the vector valued function XðtÞ¼AϕðtÞ where A�ℝn�q is a matrix of coefficients and ϕðtÞ¼ ðϕ1ðtÞ, … ϕqðtÞÞ > .

The q-dimensional sample covariance operator ΓðqÞ is defined for any f �HðqÞ as ΓðqÞðfÞ¼ ⟨CðqÞðs,�Þ,f⟩ where CðqÞ is the covariance kernel func-

tion of X admitting the following matrix representation

CðqÞðs,tÞ ¼n�1XðsÞ > XðtÞ
¼ϕðsÞ > G�1=2ðn�1G1=2A > AG1=2ÞG�1=2ϕðtÞ
¼ϕ̂ðsÞ > Σ

AG1=2 ϕ̂ðtÞ:

Then, the coordinates of CðqÞ can be expressed in terms of an orthonormalized basis ϕ̂ðtÞ¼G�1=2ϕðtÞ as n�1G1=2A> AG1=2 ¼ΣAG1=2 . The matrix

ΣAG1=2 �ℝq�q has the eigendecomposition ΣAG1=2 ¼UΛU > where U are eigenvectors and Λ is a diagonal matrix with entries the eigenvalues of

ΣAG1=2 . The eigenfunctions fγjg are then defined as γðtÞ¼BϕðtÞ with B¼G�1=2U. Further, consider the decomposition ΣAG1=2 ¼D1=2RAG1=2D1=2,

where D¼ diagðΣAG1=2 Þ and RAG1=2 is a matrix capturing the correlations of ΣAG1=2 with eigendecomposition RAG1=2 ¼VΘV > . With this, we next

derive the whitening procedures described in Section 3 for functional data. Normalization is omitted for the sake of clarity.

VIDAL AND AGUILERA 5 of 10
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Proposition 4. Let us consider the orthonormalized basis eðtÞ¼ ϕ̂ðtÞ of HðqÞ. Using the functional representation XðtÞ¼AG1=2ϕ̂jðtÞ,
the coefficients of each functional whitening operator proposed in Section 3 are obtained by their respective multivariate whitening

procedures of the orthonormalized coefficient matrix AG1=2 as follows:

Ψγ�γfXðtÞg ¼ ðAG1=2ÞΣ�1=2

AG1=2 ϕ̂ðtÞ,
Ψγ�efXðtÞg ¼ ðAG1=2ÞUΛ�1=2ϕ̂ðtÞ,
Ψφ�φfXðtÞg ¼ ðAG1=2ÞD�1=2R�1=2

AG1=2 ϕ̂ðtÞ,
Ψφ�efXðtÞg ¼ ðAG1=2ÞD�1=2VΘ�1=2ϕ̂ðtÞ,
ΨΔfXðtÞg ¼ ðAG1=2ÞLϕ̂ðtÞ,

where L is the solution to the Cholesky factorization LL > ¼Σ�1
AG1=2 .

6 | NUMERICAL ANALYSIS

Our simulation study compares, on a simple asset, the performance of all functional whitening procedures discussed in Section 3. Specifically, we

examine the behaviour and optimization of these estimators using a B-spline basis system under different conditions.

The synthetic data were generated from a Gaussian stochastic process with a quadratic covariance function

covðXi , XjÞ¼ expf�ðXi�XjÞ2=2ℓ2g, where the hyperparameter is fixed to ℓ¼15. Namely, we reproduce a set of random curves

Yik , i� f1, …, ng;k� f1,…,mg on a fine grid of m¼50 equally spaced time points in the unit interval and with n¼180,500,1000 observations of

the form

Yik ¼ μðtikÞþXiðtikÞþϵik , ϵik �iid Nð0,0:4Þ,

where the mean is defined as μðtÞ¼ sinð4πt=mÞ. To evaluate accuracy of the resulting estimates, we introduce a measure of interference signal

ratio ISR adapted to the case. Denote the latent process as Y •
ik ¼ μðtikÞþXiðtikÞ, then, assuming that the whitened curves are mean centred, the

proposed ISR objective function minimizes

ISR¼ n�1
Xn
i¼1

Y •
i �fχ iðtikÞþμðtikÞg

� �2
,

where χ i ¼fV1=2†g�1ðXiÞ is a set of rescaled curves. Notice that we use an inverse scaling regardless of invariant rotations, as the aim is to pre-

serve such inferred information on the de-standardized curves. If the inverse mapping Ψ�1ðXiÞ¼Xi provides a return to the original curves, the

proposed method only reverts the whitening transformation to the original data scale. For real data sets, the ISR measure is not applicable as the

profile XiðtÞ is unknown.

These simulations have been repeated 1000 times so that for each iteration, a sample of size n is simulated and the five whitening transfor-

mations are applied to each of the 1000 samples. Then, the mean on the 1000 iterations is computed for each precision measure. The results for

n¼180 are shown in Table 1 and Figure 1. For n¼500 and 1000, results are comparable and can be found in the Online Materials. The suitability

of the five proposed functional whitening procedures is evaluated by all optimization methods discussed in Section 4. The operators Ψγ�γ , Ψφ�φ

TABLE 1 Simulation results for the different whitening transformations using a B-spline basis system of dimension q¼f13,25g and n¼180
(mean values for 1000 iterations)

ISR trðΓXXÞ trfΓV1=2†ðXÞXg σcov σcorr

Operator ϕð13Þ ϕð25Þ ϕð13Þ ϕð25Þ ϕð13Þ ϕð25Þ ϕð13Þ ϕð25Þ ϕð13Þ ϕð25Þ

Ψγ�γ 0.888 1.307 7.108 7.239 3.580 4.977 5.456 2.685 1.159 1.120

Ψγ�e 1.093 1.611 5.322 5.355 2.736 3.746 8.759 8.225 2.214 3.920

Ψφ�φ 0.875 1.279 7.072 7.214 3.606 5.000 5.162 2.540 1.000 1.000

Ψφ�e 1.091 1.615 5.376 5.352 2.760 3.741 8.718 8.168 2.283 3.936

ΨΔ 0.968 1.392 5.335 5.427 2.779 3.807 3.564 3.116 1.768 2.387
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achieve, respectively, maximum cross-covariance and cross-correlation degree of closeness in the mean squared error sense. It is worth mention-

ing that Ψφ�φ attains the ISR minimal fit, supporting the fact that a correlated-based approach can lead to an improved data reduction in terms of

robustness. On the other end, the rate of compression is maximized for the operators Ψγ�e, Ψφ�e according to their respective cross-covariance

and cross-correlation optimization. However, these operators produce low rates for every similarity index and behave as confounding factors that

might harm the robustness of the final results. This has to be carefully considered as the performance of a further analysis may be ill-conditioned

on the initial procedure. Finally, the operator ΨΔ takes a reasonably intermediate position for the proposed optimization objectives. These results

are parallel to those in Kessy et al. (2018).

7 | DISCUSSION

This article introduces a theoretical framework and a practical estimation algorithm for whitening procedures in function spaces. Despite the

extended use of whitening due to, for instance, fast convergence in learning algorithms, some caveats may be worth to comment. In

Rousseeuw and Leroy (1987, pp. 271–273), the authors exemplify the problems a pre-whitening step entails, which often causes spurious

associations of outliers as inliers and vice versa. This raises the question under what circumstances whitening may and may not be indicated.

We do know that whitening enforces statistical independence, an essential property to uncover hidden patterns in the data that are not

directly observable with traditional methods. However, losing the correlatedness property of functional data over time carries some conse-

quences: if one could assume Gaussianity in the original space, then no interesting projections in a non-Gaussian sense would be found and

rather one would obtain white noise with no practical use. The prior application of robust techniques to detect and remove unusual functional

observations with influential behavior (see, for example, Alemán-G�omez et al., 2022; Arribas-Gil & Romo, 2014; Navarro-Esteban & Cuesta-

Albertos, 2021) or a functional principal component data reduction, can eventually enhance the suitability of some statistical techniques based

on a whitening transformation.

Indeed, the superiority of functional whitening lies in the continuity and the inherent smoothness of the data. Smoothing techniques offer

precise control over the noise, which is favorable to presume robust sphericity. Overall, the proposed estimators can improve the applicability of

subsequent reduction techniques under certain conditions. A whitening transformation based on a correlation measure performs notably well

when the aim is to maximize the similarity with the original curves. However, the statistical interpretability of transformations that maximally com-

press the empirical functions is ambiguous, and routinely it may not be a reliable solution unless some high-frequency components of X are aimed

to be preserved. Some preliminary tests show that, in such cases, regularization via penalized estimators might provide great performance in func-

tional classification.
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APPENDIX A: TECHNICAL PROOFS

We operate with random variables in the range of the operator Γ restricted to its null space (the eigenvalues of Γ are then assumed strictly posi-

tive). Under this assumption, we can consider elements of the kind
P∞

i¼1⟨�, γi⟩γi, that can be whitened using the bounded operator Γ1=2†. The nec-

essary and sufficient condition for a whitened functional variable to exist is that

kXk2 ¼
X∞
j¼1

λ�1
j j⟨

X∞
i¼1

⟨X, γi⟩γi, , γj⟩j
2

¼
X∞
j¼1

j⟨X, γj⟩j2
λj

<∞, ðA1Þ

where X¼Γ1=2†ðXÞ and X is a random element in the range space of Γ we denote by HðΓÞ. Note that Condition (A1) cannot be reached when

⟨X,γj⟩
2 ¼ λj , or for cj ! c>0, ⟨X,γj⟩

2 ¼ λjcj (Mas, 2006), nor in more general spaces since in all these cases integrability breaks down. In addition, the

use of certain types of regularization (see Section 7) do not help the proposed definition of functional whitening to be fulfilled. As a result,

condition (A1) sets the groundwork that support our next proof.

Proof of Proposition 1. The covariance operator of the whitened variable X¼Ψγ�γðXÞ can be written as

EðX�XÞ¼ E½Γ1=2†ðXÞ�Γ1=2†ðXÞ�:

By the tensor product properties Γ1=2†E X�Xð ÞΓ1=2† ∗ , and since Γ1=2† ¼Γ1=2† ∗ , then

Γ1=2†ΓΓ1=2† ¼Pran Γ1=2ð Þ,

where Pran Γ1=2ð Þ is the projection operator on to the closure of the range space of Γ. Indeed, the operator Pran Γ1=2ð Þ is compact and it

equals to the identity inside H. As long as Ψγ�γðXÞ has covariance operator the identity it is also invariant under unitary affine trans-

formations. Therefore, for a random element X�HðΓÞ and a location function b�HðΓÞ, if we write

Γ1=2†ðUXþbÞ ¼ E½ðUXþbÞ�ðUXþbÞ�1=2†
¼ E½ðUX�UXÞ�1=2†,

following the same tensor product rule as above, we have that

E½UðX�XÞU ∗ �1=2†¼U1=2†Γ1=2†U1=2† ∗
,

VIDAL AND AGUILERA 9 of 10
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This shows that unitary equivariance holds for the operator Ψγ�γ ¼Γ1=2† in the closure of the range space of Γ1=2. ◻

Proof of Proposition 2. By the tensor product properties, the trace of ΓXX reduces to

trðΓXXÞ ¼ trfEðX�XÞg
¼ trfEðX�XÞðUΨγ�γÞ ∗ g
¼ trfUΓ1=2†Γg
¼ trðUΓ1=2Þ,

since ðUΨγ�γÞ ∗ ¼UΨγ�γ . Then, we need to find a unitary transformation that maximizes trðUΓ1=2Þ. From the Spectral Theorem we

have that UΓ1=2 ¼U P∞
j¼1λ

1=2
j Pγj

� �
. If we write Pγ ¼

P∞
j¼1Pγj , then UPγ continues to converge to the identity for U being an isometry

on ranðΓ1=2Þ. This means that trðUΓ1=2Þ is maximized at U ¼Pγ . Then, the corresponding optimal whitening operator that minimizes

the mean squared error between the original and the whitened functional variable is PγΓ1=2† ¼Ψγ�γ . ◻

Proof of Proposition 3. We can proceed similarly as in Proposition 2 noting that

trfEðV1=2†ðXÞ�XÞg¼ trðUV1=2†Γ1=2Þ, ðA2Þ

Then, from Lee et al. (2016) § 3.1, one can deduce that Γ1=2 ¼ðV1=2ℛV1=2Þ
1=2

and therefore,

UV1=2†Γ1=2 ¼UV1=2†ðV1=2ℛV1=2Þ1=2

¼UðV1=2†V1=2ℛV1=2V1=2†Þ1=2
¼Uℛ1=2:

Similarly as in Proposition 2, it is easy to see that trðUℛ1=2Þ is maximized at U ¼Pφ , where Pφ denotes the projection operator on to

the space spanned by the eigenfunctions of ℛ. Then, the corresponding optimal whitening operator that minimizes the mean

squared error between the original and the standardized functional variable is Pφℛ
1=2†V1=2† ¼Ψφ�φ. ◻

Proof of Proposition 4. Given the basis expansion of the functional sample, XðtÞ¼AϕðtÞ, a general whitened sample admits the basis

expansion XðtÞ¼ ~Aϕ̂ðtÞ, with coefficients matrix ~A¼AG1=2W with WW> ¼W>W¼Σ�1
AG1=2 : Then, the covariance kernel of the whit-

ened sample is

~Cðs,tÞ¼ ϕ̂ðsÞ>W>ΣAG1=2Wϕ̂ðtÞ¼ϕðsÞ>G�1ϕðtÞ:

Note that when the space is approximated with an orthonormal basis, then G¼ Iq. As the covariance kernel is Hermitian and

positive-definite, the uniformly converging spectral expansions are obtained for both the kernel and its associated operator

(Mercer's Theorem). Therefore, from our result, we deduce that the covariance operator of X is exactly the identity in the topology

of the space. That is, ~CðfÞ¼ f,8f �HðqÞ:

Consider the first whitening procedure XðtÞ¼Ψγ�γfXðtÞg¼Γ1=2†fXðtÞg: Taking into account that the covariance operator can

be expressed as ΓfXðtÞg¼AG1=2ΣAG1=2 ϕ̂ðtÞ, we obtain that XðtÞ¼AG1=2Σ�1=2

AG1=2 ϕ̂ðtÞ:
The proof for the second whitening approach XðtÞ¼Ψγ�efXðtÞg is straightforward by considering the orthonormal basis

ejðtÞ¼ ϕ̂jðtÞ, j� f1,…,qg:
The third and fourth whitened samples XðtÞ¼Ψφ�φfXðtÞg and XðtÞ¼Ψφ�efXðtÞg are respectively obtained as the first and sec-

ond ones applied to the standardized functional sample YðtÞ¼V1=2†fXðtÞg¼AG1=2D�1=2ϕ̂ðtÞ:
Finally, the fifth whitening approach is obtained in terms of the Cholesky factorization of the inverse covariance matrix of the

coefficients matrix ΣAG1=2 : ◻

10 of 10 VIDAL AND AGUILERA
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