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Abstract

We introduce the use of the fast multipole method (FMM) to speed up gravitational lensing ray tracing calcula-
tions. The method allows very fast calculation of ray deflections when a large number of deflectors, N*, are
involved, while keeping rigorous control on the errors. In particular, we apply this method, in combination with the
inverse polygon mapping (IPM) technique, to quasar microlensing to generate microlensing magnification maps
with very high workloads (high magnification, large size, and/or high resolution) that require a very large number
of deflectors. Using FMM-IPM, the computation time can be reduced by a factor of ∼105 with respect to
standard inverse ray shooting (IRS), making the use of this algorithm on a personal computer comparable to the
use of standard IRS on GPUs. We also provide a flexible web interface for easy calculation of microlensing
magnification maps using FMM-IPM (see https://gloton.ugr.es/microlensing/). We exemplify the power of
this new method by applying it to some challenging interesting astrophysical scenarios, including clustered
primordial black holes and extremely magnified stars close to the giant arcs of galaxy clusters. We also show the
performance/use of FMM to calculate ray deflection for a halo resulting from cosmological simulations com-
posed of a large number (N 107) of elements.

Unified Astronomy Thesaurus concepts: Quasar microlensing (1318); Gravitational lensing (670)

1. Introduction

Gravitational lensing constitutes at present a standard tool in
astrophysical/cosmological research that allows one to study
several aspects of the universe (e.g., dark matter content/
structure in galaxies/clusters, the abundance of MACHOs, the
structure of active galactic nuclei (AGN), dark energy, etc.) that
are difficult to probe by other means (e.g., Mediavilla et al.
2016). In order to compare the theoretical predictions of dif-
ferent models with real observations, computer simulations are
very often required.

One of the most common tasks in computational gravita-
tional lensing is ray tracing, consisting of the mapping of points
from the lens to the source plane through the lens equation. On
the other hand, it is also common that the mass distribution in
the lens that determines this mapping is composed of many
particles or not known through an analytic expression but
described numerically. Moreover, for some problems, ray tra-
cing may even need to consider the thickness of the lens by
using, for instance, several lens planes with mass distributions
calculated numerically from cosmological simulations (e.g.,
Hilbert et al. 2009; Petkova et al. 2014), so the procedure must
be repeated for each lens plane, making the computational load
heavier. Having algorithms to perform this mapping through
the lens equation in a fast and accurate way is, therefore, very
important to be able to effectively address many problems in
this field (e.g., Plazas 2020).

For simplicity, we start considering here the most usual case
of the so-called “thin lens approximation,” in which the

thickness of the deflecting mass is negligible compared to its
distances to the source and observer. In this case, the problem
can be treated as a 2D problem.5 The lens equation that
describes this mapping for a single (thin) lens system composed
of many (N*) point lenses of mass mi is

6

y x m
x x
x x

, 1
i

N

i
i

i1
2

( )
∣ ∣

( )å= -
-
-=

*

where x and y are the normalized angular coordinates in the
image and source plane, respectively (i.e., in units of the Ein-
stein radius of a reference mass). If we need to calculate the
mapping for Nx points in the image plane, the sum on the right-
hand side of the equation implies O(N*× Nx) operations. For
many applications in gravitational lensing, both Nx and N* can
be very high (e.g., extragalactic microlensing maps of high-
magnification systems or lensing calculations from cosmolo-
gical simulations, which may even include multiplane lensing),
making the computation of this sum very time-consuming. For
example, the calculation of a typical microlensing magnifica-
tion map of 2000× 2000 pixels may require calculating the
above sum for Nx∼ 1010 rays, and, for a map with a size of
Ly∼ 200 Einstein radii and an average magnification of μ∼ 20,
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5 There is no loss of generality, as this treatment can be extended to include a
more general case of 3D lenses by considering it as a collection of multiple thin
lens planes (e.g., Wambsganss 1999).
6 This equation can also be used for a continuous mass distribution described
numerically on a grid and can be adapted for a more general case in which
particles represent groups of particles/pseudoparticles with a different grav-
itational effect. Moreover, the possible effect of a smooth background grav-
itational field characterized by its local convergence κs and shear γ, which are
either constant or smoothly varying in the region of interest, can also be tri-
vially included in this lens equation.
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we may have N*∼ 106 deflectors, resulting in a huge com-
putational effort.

This type of computational problem is indeed very common
in physics. In the field of astrophysics, for example, a similar
sum appears in stellar dynamic N-body simulations to account
for the mutual gravitational interactions. The most common
approach to manage this heavy computational problem is to
provide an approximate estimate of the sum (accurate enough
for the physical problem at hand) instead of the exact calcul-
ation. The approximation is usually addressed by a “divide and
conquer” philosophy. The sum is split into pieces, some of
which can be calculated in an approximate but much faster
way. For this particular problem, an efficient way to achieve
this goal is a spatial division of the computational domain,
followed by a joint approximate treatment of the contribution
of faraway lenses. As the gravitational field (i.e., potential,
deflection angle, etc) varies slowly with the impact parameter
for long distances, this grouping of far lenses is very efficient.
This fact was already noticed and used in the early works of
extragalactic gravitational microlensing (e.g., Schneider &
Weiss 1987). They introduced this division between near and
far lenses to ease the calculation of this sum by grouping the
latter into large groups that can be treated in an approximate
way (by considering only the first terms of the multipolar
expansion). Meanwhile, nearby lenses were treated directly.

A refined version of this approach had already been intro-
duced earlier in the field of stellar dynamics, as it is the basis of
the famous Barnes & Hut (1986) hierarchical treecode (here-
after B-H) algorithm, in which space is hierarchically divided
into progressively finer regions. This is the strategy behind the
well-known gravitational microlensing code of Wambsganss
(1999), who used a hierarchical treecode with multipolar
expansion for the deflection of the far lenses (and also intro-
duced a few additional clever interpolation improvements to
speed up calculations even more). A similar approach is also
used by Metcalf & Petkova (2014) in their state-of-the-art
gravitational lensing software GLAMER. These hierarchical
treecode algorithms are highly optimized, reducing the number
of calculations for the above sum to a complexity
O N Nlogx( )´ * , which is a huge improvement for large values
of N*.

7 Moreover, treecodes are very versatile (e.g., can be
easily applied to adaptive grids and/or parallelized). The acc-
uracy of the approximate part of the calculation is controlled by
a parameter δ∼ 1 (usually named “opening angle” or “accuracy
parameter”) that determines which objects can be treated in a
joint manner and which need to be included individually.
Smaller values of δ provide a better accuracy in the approx-
imation at the price of slower execution times. The compromise
in choosing the right value of δ is a bit of an art, requiring some
trial and error. The highest term in the multipolar expansions of
particle groups, p, could also be used to control the precision of
the calculations, although most often it is kept fixed to a value
sufficiently high for the problem at hand. One major drawback
of these algorithms is, indeed, the lack of a rigorous a priori
control on the error.

There exists, nevertheless, an algorithm that can do this job
in an even more efficient way and with the important property
of keeping strict control on the error at all times. This

algorithm, introduced not much later than the B-H algorithm,
is the fast multipole method (FMM) by Greengard & Rokhlin
(1987), which can reduce the computational effort of the
present problem down to complexity O(Nx+ N*) (although
the involved constants may render this formal limit difficult
to notice in many practical applications).8 The FMM has
already been used extensively in astrophysics, including
state-of-the-art cosmological simulations with trillions of par-
ticles (e.g., PKDGRAV3 by Potter et al. 2017), but surprisingly
enough, and despite the fact that the original Greengard &
Rokhlin (1987) paper describes exactly the same 2D problem
to be addressed in gravitational lensing described by
Equation (1) (albeit in the electrostatic language), the FMM
has (to our knowledge) never been applied in this field. The
present work intends to fill this gap by introducing this pow-
erful algorithm into the toolbox of computational techniques
for the gravitational lensing community. As mentioned
above, the two scenarios that can benefit more from this
algorithm are extragalactic microlensing and lensing calcula-
tions using numerical cosmological simulations. We illustrate
the use of the FMM algorithm here by focusing mainly on the
first of these applications, although we also explore the
performance of FMM in the case of a galaxy lens formed by a
very large number of elements coming from a cosmological
simulation.
The paper is organized as follows. Section 2 describes the

FMM method and its applicability to gravitational lensing. A
specific implementation for the fast calculation of microlensing
magnification maps is included in Section 2.4. Regarding
cosmological applications, an example of ray tracing con-
sidering a numerical lens from cosmological simulations is
briefly addressed in Section 2.5. A few applications of the code
to specific problems of particular scientific interest and high
computational demand that are difficult to address with pre-
vious algorithms/techniques are shown in Section 3. Bench-
marks of the new algorithm and comparisons with some other
preexisting microlensing codes are presented in Section 4.
Section 5 summarizes the final conclusions.

2. The FMM for Gravitational Lensing Applications

2.1. Ray Deflection Using the FMM

The FMM provides a very fast tool to map a large number of
points from the image plane to the source plane with the
required accuracy for cases in which the lens is described by a
large number of mass elements, N*. A brief summary of the
method can be found in the Appendix. The advantages of this
method are as follows.

1. The algorithm allows very fast calculation with optimized
complexity scaling as O N N log 1x 2(( ) ( ))+ ´* , with
Nx being the number of rays, N* the number of deflectors,
and ò the required accuracy.

2. FMM offers rigorous control on the errors. Potential and
deflection angles can be calculated to the desired degree
of accuracy by using the necessary number of terms in the
multipolar expansions, p.

3. Target points on which the deflections are calculated do
not need to be located on a grid and are independent of

7 This is the same degree of optimization achieved by particle-mesh algo-
rithms (Hockney & Eastwood 1988) based on the FFT, which is also com-
monly used in this context, albeit with its own specific problems (see Metcalf &
Petkova 2014).

8 The algorithm is so powerful that it has been included among the top 10
algorithms of the 20th century (see Board & Schulten 2000), together with
codes as famous as the Metropolis algorithm for Monte Carlo simulations or
the FFT.
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the locations of deflectors. This makes the method very
general and well suited for problems needing an adaptive
grid and/or special geometries.

4. As target points are independent of the location of
deflectors, memory use can be easily managed by split-
ting the set of target points in the lens plane to be mapped
back into smaller chunks to suit the memory needs (e.g.,
see Section 2.4 below).

The FMM is indeed a very versatile algorithm for which
parallel versions suitable for graphic processing units (GPUs;
e.g., Cruz et al. 2011) and kernel-independent versions (e.g.,
Wang et al. 2021) have been released. Therefore, any ray tra-
cing calculation through a lens that is described numerically at
many points can, in principle, obtain a great benefit from the
application of the FMM to the deflection calculations. These
most obvious examples are that of gravitational lensing com-
putations using cosmological numerical simulations (e.g.,
GLAMER by Metcalf & Petkova) and the calculation of
extragalactic microlensing magnification maps (e.g., Wambsganss
2006). In the next sections, we introduce the application of the
FMM to both cases, starting from the latter one.

2.2. High-workload Microlensing Magnification Maps

The calculation of extragalactic gravitational microlensing
magnification maps (e.g., Wambsganss 2006), which may
involve a large number of deflectors and needs to map a
huge number of rays, is probably one of the most computa-
tionally demanding examples. Gravitational microlensing of
extragalactic sources allows one to obtain information on
several aspects of lenses and sources that is difficult to obtain
by different means (e.g., the abundance and mass of any
kind of compact objects in the lens; the quasar structure at
several scales, from the large torus (e.g., Popović et al. 2020)
and the broad-line region (BLR; e.g., Fian et al. 2021 and
references therein) down to the innermost regions of the
accretion disk (e.g., Morgan et al. 2010; Jiménez-Vicente
et al. 2012; Mediavilla et al. 2015)). These studies are usually
based on the estimate of the statistical likelihood of the
observed magnification of the source for different values of
the parameters of interest (abundance and mass of the
microlenses, size and temperature profile of the source, etc).
The likelihood is evaluated from microlensing simulations
(typically from microlensing magnification maps; e.g.,
Schneider & Weiss 1987), which can be a very heavy com-
putational task.

We can define the workload of a magnification map as a
quantity that measures the computational effort needed to cal-
culate the map. This workload depends on the map size on the
source plane, its resolution (i.e., the number of pixels of the
map), and the number of deflectors (as the deflection of each
ray is the sum of the deflections produced by each of the
deflectors in the lens plane N*). Due to the distortion intro-
duced by the lens mapping, the area to be considered in the
image plane (and, consequently, the number of rays to be shot)
is also proportional to the average/macro magnification μ, such
that Nrays∝ μ Npix. Ideally, a magnification map should have
enough spatial resolution to sample the source and a size large
enough to include a large number of microlenses9 to avoid

sample variance.10 The workload of a magnification map can
therefore be defined as Ω= μ×Npix× N*, where Npix is the
number of pixels in the map. If the map is calculated in a time
tex, the performance of such a calculation can be measured as
Ω/ tex. A typical magnification map (e.g., Vernardos & Fluke
2013) with magnification μ= 10, number of pixels Npix=
4096× 4096, and number of deflectors N* = 50,000 results in
a map workload of Ω= 1.68× 1013 (with an average execution
time of tex= 7200s, it produces a performance of Ω/
tex= 2.3× 109 s−1).
There are a number of astrophysical scenarios of high

interest that require magnification maps of very high workloads
and, consequently, very long computing times, even with
powerful hardware. For instance, we face this situation in the
case of (i) highly magnified images by factors that can range
from several tens (multiple imaged quasars; e.g., Jiménez-
Vicente et al. 2012, 2015) to several thousand (stars close to
giant arcs in galaxy clusters; e.g., Welch et al. 2022), which
imply both huge regions to be mapped in the image plane and,
consequently, very large numbers of deflectors; (ii) mixed
populations combining deflectors of very different masses (e.g.,
strongly bimodal distributions including massive black holes or
mass functions including a large number of substellar and
planetary mass objects; e.g., Esteban-Gutiérrez et al. 2022a,
2022b), which force a very large number of small-mass parti-
cles to have an statistically significant number of the largest-
mass ones; (iii) clustered/nonuniform lens distributions (e.g.,
clustered primordial black holes, hereafter PBHs, which
imprint on the maps features associated with the individual
particles and with the clusters that act like large-mass pseu-
doparticles and, hence, also force a very large number of
individual particles to preserve the statistics of the clusters
(other kind of bimodality); (iv) simultaneous study of regions
of very different sizes (e.g., from the tiny X-ray-emitting region
and the UV continuum of the accretion disk to the BLR and the
dusty torus in AGN), which imply a large combined effort in
resolution, size, and number of deflectors (markedly pro-
nounced in the case of highly magnified quasars); and (v) time-
variable magnification maps taking into account the motion of
deflectors. In the next section, we review the most frequently
used techniques and strategies followed to compute high-
workload magnification maps.

2.3. Methods and Algorithms to Calculate Microlensing
Magnification Maps

The classical, brute-force method to compute magnification
maps is inverse ray shooting (hereafter IRS), which transports
backward a set of points covering the image plane (rays) to the
source plane through the lens equation (see Kayser et al. 1986;
Schneider & Weiss 1987). The magnification of each source
plane pixel is made proportional to the number of rays that hit
the pixel. Magnification estimates from IRS have an inherent
noise, which is Poissonian for random rays or somewhat
smaller for rays on a grid (Kayser et al. 1986; Mediavilla et al.
2011). In order to reduce that noise, a high number of rays per
element of resolution in the absence of lensing (typically
n0∼ 500) needs to be shot.

9 If a mixture of microlenses with different masses is considered, in order to
have a statistically significant number of the most massive ones, a very large
number of the less massive ones might be necessary.

10 In principle, sample variance can be mitigated by averaging the histograms
of several maps, but cooperative effects at two or more bodies, particularly the
most massive ones, should be present in each realization.
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Alternatively, in the inverse polygon mapping (IPM) tech-
nique (Mediavilla et al. 2006, 2011), the cells/tiles of a regular
tesellation of the image plane are transported backward to the
source plane using inverse lens mapping. The magnification for
a pixel in the source plane of area S* is proportional to the ratio
of the areas of all of its images and the area of the pixel (i.e.,
μ=∑Si/S

*

). The IPM directly uses this definition, and, for
each transported cell in the image plane, Green’s theorem is
used to exactly apportion its area among the source plane pixels
covered by the transformed cell. All cells (or fractions) in the
image plane covering the source plane pixel therefore con-
tribute to the numerator in the sum above. Critical cells (con-
taining a critical curve) can be treated with different degrees of
precision (see Mediavilla et al. 2011), although a naive treat-
ment (as if they were noncritical) produces the correct result for
most applications. A great advantage of this procedure is that,
in the low-magnification regions, which for standard IRS
would need a large number of rays to be shot to reduce the
noise, the IPM provides the correct magnification for very few
rays, as the inverse mapping is a very smooth mapping in these
regions. This allows this method to work with n0 1 while
producing maps with very low noise, comparable to IRS maps
with no∼ 500. As the computational time for calculating a
microlensing magnification map is proportional to the number
of rays shot per unlensed pixel n0, a factor of a few hundred can
therefore be saved by using IPM techniques over plain IRS.

As commented above, another improvement, the separation
of far and near gravitational fields to speed up the calculations,
was introduced quite early (see Schneider & Weiss 1987) and
subsequently refined using the B-H hierarchical treecode con-
cept and some further improvements by Wambsganss (1999;
see also Lewis et al. 1993), resulting in a very strong reduction
of the computational times for a large number of deflectors N*.
An alternate path to address this issue has been using particle-
mesh methods in combination with fast Fourier transform
(FFT) techniques to solve Poisson equations on a grid (e.g.,
Kochanek 2004) to calculate the far field contribution to the
potential and the corresponding deflection field.

Irrespective of the improvements in the algorithm, using
faster hardware like supercomputers (e.g., Garsden & Lewis
2010) or GPUs (e.g., Thompson et al. 2010) that take advan-
tage of the highly parallelizable nature of the microlensing
problem has also been an alternative approach to produce
magnification maps in reasonably short execution times,
allowing the mass production of large data sets of maps (e.g.,
the Gerlumph database by Vernardos et al. 2014). These
databases are a huge asset for addressing some problems, but
many possible interesting models/scenarios are not included in
these simulations (i.e., different mass functions, including
strongly bimodal mixed populations for the deflectors, non-
uniform spatial distributions, extreme magnifications and or
resolutions, etc.).

A logical step to face the computation of high-workload
magnification maps is to combine the performance benefits of
the IPM approach with an efficient algorithm to rapidly eval-
uate the ray deflections produced by systems with a high
number of deflectors. Despite this solution having long been
suggested (e.g., Mediavilla et al. 2011; Jiménez-Vicente 2016),
it has only been carried out recently. Shalyapin et al. (2021)
were the first to follow this path by implementing a Poisson
solver for calculating the ray deflections in an IPM-based code
named Poisson and Inverse Polygon (PIP). The resulting

software is very efficient in generating microlensing magnifi-
cation maps. They also provided a web interface for their code
that can produce magnification maps for reasonably low
magnifications (μ< 50) at moderate resolutions in very short
times, even if a significant number of deflectors is required.
This is without doubt a very significant step forward, but
although using a Poisson solver to calculate the deflection of
rays on a 2D grid is a computationally efficient approach (as it
makes use of the very fast FFT algorithm), particularly for the
case of many deflectors, it carries some inherent inconvenience
that may make this procedure unsuitable for some very
demanding applications, like the ones mentioned above. In
particular, the solution to the Poisson equation has to be cal-
culated simultaneously for a whole regular grid of rays. This
means that the deflections for all of the rays in the image plane
need to be computed at once. This is a rigidity that can easily
overflow the memory of many computers when the number of
rays to be considered is very high either because the image
plane is very large (e.g., due to high magnifications) and/or
because of the need for high spatial resolution. For example,
Shalyapin et al. (2021) considered a case of μ= 2.5 and
Npix= 2000× 2000, resulting in an image plane grid made up
of 7500× 3000= 2.25× 107 rays. On the other hand, con-
sidering a more demanding case, μ= 100 and a map of
Npix= 4000× 4000 pixels, would require one to solve the
Poisson equation on a grid of 600,000× 6000= 3.6× 109

rays, which would require ∼160 times more memory. More-
over, the method may not be easily used if adaptive grids or
very high resolutions are needed.
The current implementation of the PIP uses a rectangular

distribution of the deflectors in the lens plane. This approach
may show only a slight impact in the borders of the maps when
moderate magnification is considered but can produce strong
field distortions (pincushion/barrel) in the magnification maps
for high-magnification cases, particularly for large values of κ*
(e.g., a map of 50 ER with κ= κ* = 1.2, γ= 0.4 shows
obvious distortions). According to the 2D shell theorem, the
deflectors should be distributed in a circular region circum-
scribing the rectangular ray shooting region to prevent these
field distortions. This can be corrected either analytically (see
Zheng et al. 2022) or by explicitly including the circular dis-
tribution of deflectors at the price of extra computational time
(which can be significant for extreme magnifications that
demand very large radii for the circle). The latter option will
largely benefit from the implementation of the FMM.
Another inherent inconvenience of this approach is that in

these particle-mesh methods, lenses should be regridded to the
image plane grid of rays. Shalyapin et al. (2021) chose to use a
standard “cloud-in-cell” method for this step (Hockney &
Eastwood 1988), and they acknowledged that it works rea-
sonably well, but they also mentioned that alternative methods,
as the “triangular shape cloud” produced smoother mass dis-
tributions that generate unrealistically smooth magnification
maps. While the cloud-in-cell method can produce good results
for many cases, it is not completely clear what the effect of this
approximation is in general (e.g., a strongly bimodal mass
spectrum of the microlenses and/or extremely high/low reso-
lutions). There is not much a priori control on the accuracy of
this approximation and its dependence on resolution.
In the next section, we present our proposal to combine IPM

with FMM to avoid these drawbacks.
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2.4. A Fast FMM-IPM Algorithm to Calculate Microlensing
Magnification Maps

Our algorithm uses the FMM for the calculation of the ray
deflections with the desired precision and the IPM to optimize
the number of rays to be shot to produce high-quality maps
with very low noise (comparable to IRS maps with no∼ 500
rays per unlensed pixel).

Although the IPM method can be set to work at a higher
order by making a careful treatment of critical cells for very
high precision maps near caustics (see Mediavilla et al. 2011),
from the practical point of view, this is not necessary for most
applications. We therefore will use here the original first-order
(IRS being the zeroth-order approximation) IPM code as
described by Mediavilla et al. (2006).

In order to keep memory usage under control, and using the
idea described above, a parameter nmaxarg is defined to
control the maximum number of rays to be shot at once.
Moreover, and in order to keep maximum versatility in the
code that calculates the magnification map, we have kept
independent from it the previous task of setting up the dis-
tribution of lenses in the lens plane. The structure of the code is
therefore very simple.

1. Read the input parameters, including macro model para-
meters (κ, γ), mass in the form of compact objects (κ*),
map size in Einstein radii (yl) and pixels (Ny), distribution
of deflectors in the mass plane xi and their masses (mi),
number of rays per unlensed pixel (no), and accuracy of
the FMM (ò).

2. Partition the image plane into nc chunks (ci) each con-
taining at most nmaxarg rays: nc∼ Nrays/nmaxarg.

3. For each chunk ci (i= 1, K, nc), calculate the deflected
rays yk for all rays xk ä ci using FMM. Include the effect
of the background smooth gravitational field.

4. With the mapped polygons formed by deflected rays yk,
use IPM to apportion the corresponding areas to pixels in
the source plane magnification map.

5. Write the magnification map to a file.

For the calculations carried out in this paper, we have set the
parameter nmaxarg= 1.6× 107. This keeps the memory
usage under ∼2 GB for most cases,11 making it suitable for
standard personal computers or cluster nodes with modest
memory capabilities.

For the FMM part of the code, we have made use of avail-
able libraries. As the original IPM code was written in Fortran,
we have made use of two different FMM2D Fortran libraries
with very similar results.12

Although the precision in the deflection calculation can be
adjusted/optimized for the problem at hand, for the calcula-
tions presented in this paper, we have made a very conservative
choice to keep the error fixed to ò= 5× 10−5, which is indeed
a very high accuracy,13 well above what is usually needed for
most cases/applications. With these settings, the execution

time for the calculation of a magnification map involving a
large number of lenses N* 105 can be reduced by a factor of
∼500 with respect to the standard IPM, allowing the calcul-
ation of heavy magnification maps with a standard personal
computer in much shorter execution times (see Section 4
below).
Although the used FMM libraries can benefit from multicore

processors via open multiple processing, we have made at
present no attempt to use multithreading capabilities in our
code, so a single core is used in the presented calculations. In
the present work, all of the simulations have been performed on
a standard desktop personal computer with an Intel Xeon
W-2123 processor at 3.60 GHz.
Shalyapin et al. (2021) provided a web interface for their PIP

algorithm, which allows researchers to easily calculate mag-
nification maps (with some limitations like μ< 50). We have
followed this excellent initiative, and we have created a similar
web interface for our code. In order to prevent the introduction
of just a redundant service, we have intended to overcome
some of the limitations of the PIP code and interface, and we
have tried to make our offer somewhat more flexible for the
users (including, for example, the possibility of uploading their
own lens plane configuration and larger macro magnifications).
This new web service14 should allow interested researchers to
produce magnification maps for a given set of parameters, even
for very high workloads. Researchers interested in using this
code for other specific cases not covered by this interface or the
production of a large number of magnification maps are very
welcome to contact the authors for scientific collaboration.

2.5. FMM Applied to a Numerical Lens from a Cosmological
Simulation

As mentioned before, besides microlensing magnification
maps, other type of lensing calculations can also greatly benefit
from the use of FMM. In this section, we present a simple
example of the use of FMM to a rather general case of ray
deflection by a lens galaxy halo. We have taken the galaxy halo
from the EAGLE cosmological simulation (Schaye et al. 2015).
The galaxy lens has a mass of M200= 1013.09 Me and a size of
R200= 406.32 kpc, and it is located at a redshift z= 0.5. It is
made up of 15.75× 106 particles; 3.76× 106 particles are gas,
10.8× 106 are dark matter, 1.19× 106 are stars, and 128 are
black hole particles.
The left panel of Figure 1 shows (blue dots) the particle

distribution (we have made no distinction between the different
types of particles for clarity). We use the FMM algorithm to
calculate the deflection of a regular grid of 4000× 4000 rays
by this lens galaxy in the innermost region (shown in the right
panel). The calculation is very fast, taking only ∼45 s.
We have calculated the image of a background source

behind this halo using these deflections. The right panel of
Figure 1 shows the inner 1 5. The lens particle distribution is
again shown as blue dots, ray hits in the source plane (tracing
magnification in the source plane) are shown as green dots
(clearly showing the tangential and radial caustics), and the
location of a background (Gaussian) source is shown as a black
plus sign. The four images of this source are overplotted in this
panel.
This is only an example intended to show the potential of

FMM in a more general calculation involving a large number

11 If a very large number of lenses N*  107 is used, memory use may be
dominated by the tree structure.
12 We have used the original FMM2DLIB library by Gimbutas & Greengard
from https://cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html and its updated
version, FMM2D, from the Flatiron Institute at https://github.com/
flatironinstitute/fmm2d with no significant difference in performance.
13 Taking into account that the Einstein radius of the reference mass is the
natural length unit in the source plane and therefore pixels have typical sizes
0.001ER.

14 https://gloton.ugr.es/microlensing/

5

The Astrophysical Journal, 941:80 (14pp), 2022 December 10 Jiménez-Vicente & Mediavilla

https://cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html
https://github.com/flatironinstitute/fmm2d
https://github.com/flatironinstitute/fmm2d
https://gloton.ugr.es/microlensing/


of particles outside the gravitational microlensing field (which
is the main focus of the present work). We are aware of some
specific issues that need to be addressed in this context and,
being beyond the scope of this work, are not dealt with in this
example.

3. Selected Applications

In order to show the capabilities of the microlensing code
described above, we present in this section the results from the
application of the FMM-IPM code to a few selected cases of
current high scientific interest that require a large number of
lenses N* and/or rays and, consequently, have high workloads
Ω 1015. These problems would therefore be difficult to
address with preexisting codes without high-performance/
memory hardware and/or too-long execution times.

3.1. Quasar Structure from the Event Horizon to the Torus:
The Case of the Highly Magnified Image B of Quasar PSJ

0630–1201

Microlensing and millilensing affect the regions in which
AGN and quasars are structured with different strengths
depending on their size, from the smallest scales of the event
horizon and the innermost stable circular orbit (ISCO; see
Mediavilla et al. 2015), through the intermediate scales of the
accretion disk and BLR (e.g., Morgan et al. 2010; Jiménez-
Vicente et al. 2012; Fian et al. 2021), up to the large scale of
the torus of scattered light (see Popović et al. 2020). For single-
epoch microlensing, as the intrinsic brightness of the source is
unknown, a baseline defining zero microlensing is needed to
measure the impact of microlensing magnification (e.g.,
Mediavilla et al. 2009). This reference is usually taken from the
emission coming from a region of the quasar that is large
enough to be insensitive to microlensing (typically the BLR).
Then, we need to simulate microlensing observations covering
large regions of the source plane (to contain several times the
largest considered emitting region) while simultaneously
keeping a high spatial resolution (to be able to probe the
smallest relevant scales), which imposes very demanding
conditions on the magnification maps. To show this, we present

here the case of image B in the highly magnified lensed quasar
PSJ 0630–1201 (Shajib et al. 2019). We have considered a
spatial resolution of 0.475 lt-days, enough to sample the ISCO
in an ∼109Me black hole, and a size of 1900 lt-days, which
covers the torus of scattered light in a typical case (Popović
et al. 2020). The map has κ= 0.49 and γ= 0.52 with a mag-
nification μ=−97 and Npix= 4000× 4000 pixels, which
implies a large number of deflectors (taken to have 0.2 Me)
N* = 1.4× 107. The workload for this map is Ω= 2.15× 1016.
The execution time with the FMM-IPM code was roughly 1 hr
(tex= 3986s). The high number of lenses involved would have
made this map a very heavy task even for GPUs (e.g., see
typical execution times and performances for Gerlumph in
Figures 9 and 10). Even for IPM, the map needs to shoot a huge
amount of Nrays∼ 3.5× 109 rays, which is equivalent to an
array of ∼600,000× 6000 pixels (which would imply very
high memory requirements for a Poisson solver).
In Figure 2, we present the magnification histograms

corresponding to three regions of significantly different sizes,
from the innermost regions traced by emission in X-rays to the
BLR. It is worth noting the low noise in the histograms (due to
the large size of the map). From the histograms, it can be
clearly seen that, while the smallest scales (ISCO and accretion
disk) are strongly magnified, the BLR and the torus of scattered
light are rather insensitive to microlensing and may be used as
baselines for no microlensing. These large high-resolution
maps are necessary to simultaneously study the effect of
microlensing on the different sizes involved in the structure of
quasars.

3.2. Inhomogeneous Spatial Distributions of Deflectors: The
Case of Clustered PBHs

We have so far considered that the deflectors are homo-
geneously distributed (i.e., the statistical properties of the
deflectors’ spatial distribution are similar at every point).
However, studies of the origin of PBHs (an interesting astro-
physical candidate to explain, at least partially, the dark matter)
suggest that they form in clusters (e.g., García-Bellido & Clesse
2018). In addition, clustering introduces two spatial scales in

Figure 1. Lensing by a galaxy halo from the EAGLE simulation with 15.75 × 106 particles. The left panel shows the lens particle distribution in the innermost 40″. A
zoom of the region indicated by the orange square is shown in the right panel. The location of a background source is indicated with a black plus sign. The right panel
shows the innermost 1 5 including lens particles (blue), source location (black plus sign), magnification distribution in the source plane (green), and the multiple
images of the source.

6

The Astrophysical Journal, 941:80 (14pp), 2022 December 10 Jiménez-Vicente & Mediavilla



the problem: the Einstein radius of the black holes and that of
the clusters, which behave as pseudoparticles. While the latter
are homogeneously distributed in the lens plane, the former are
not. The strong inhomogeneity may be a challenge to methods
based on the calculation of the gravitational potential from the
redistribution of the masses in a regular lattice as two physical
scales are now present. Figure 3 shows the magnification map
of image A1 of the system MG 0414+0534, where 20% of the

mass surface density is in the form of clustered PBHs of
30 Me. The simulation contains 1607 clusters with a size of 1
pc, each containing 300 PBHs (for a total of 482,100 PBHs).
The map is 8000× 8000 pixels, for a total workload of
Ω= 4.8× 1014. The right panels show a zoom-in of a region of
the map for the cases including the individual PBHs (upper
panel) and only the clusters as pseudolenses (lower panel). The
comparison clearly shows the difference and the need for

Figure 2. Microlensing magnification histograms for image B of lens system PSJ 0630–1201 (Shajib et al. 2019) for different source sizes. The blue line corresponds
to the X-rays (rs = 1 lt-day), the orange line to the UV continuum (rs = 5 lt-days), and the green line to the BLR (rs = 100 lt-days). The Einstein radius (for
microlenses of 0.2 Me) is RE = 8.5 lt-days.

Figure 3.Magnification map for image A1 of system MG 0414+0534 produced by 20% of the projected mass in the form of clustered PBHs. The right panels show a
zoom-in comparing the full simulation including individual black holes (upper) and considering the clusters as a single object (lower).
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including the individual PBHs, which can produce individual
caustics that may be present in the observed light curves but
would be absent if they were not included in the simulations. In
a forthcoming paper on this issue (Heydenreich et al., private
communication), we perform simulations of this type that, for
large values of the fraction of mass in the form of compact
objects, require a huge number of deflectors up to 8× 107,
which the FMM-IPM code has been able to handle comfortably
in much shorter execution times.

3.3. Extremely Magnified Stars by Galaxy Clusters: The Case
of Earendel

Individual stars of faraway galaxies can fortuitously align
with an intervening cluster of galaxies, resulting in magnifi-
cations by factors of thousands (Kelly et al. 2018; Welch et al.
2022). The images of these stars are prone to microlensing by
deflectors in the intracluster medium, which can induce
microlensing variability. We are going to consider here the case
of Earendel, a z= 6.2 individual star magnified by a cluster at
z= 0.566 discovered by Welch et al. (2022). They interpreted
the observed unresolved source on top of the arc as the sum of
two very close images, each at one side of the arc (two images
of the same brightness of positive and negative parity at the
same distance of the critical curve according to the local
expansion of the potential). The LTM macrolens model con-
sidered by Welch et al. (2022) assigns a magnification of 4200
to each of the images with a ratio of 1500 between the mag-
nifications of both axes. To properly calculate a magnification
map of 4× 4 Einstein radii (equivalent to 0.05 pc for 1 Me
deflectors) needed to track the variability of the star along 60 yr
(at a velocity of 1000 km s–1 according to Welch et al. 2022)
with an angle of 45° with respect to the caustic, a very ana-
morphic rectangular region of 15,000× 10 Einstein radii needs
to be traced backward. If n0= 1 rays per unlensed pixels are
shot, for a resolution of 0.001 Einstein radii per pixel, this
corresponds to an array of 15,000,000× 10,000 rays, which is
unmanageable for a Poisson solver in most computers.
Adopting a projected density of 10 Me pc–2 (Welch et al.
2022), we need to consider nearly two million deflectors
(which we have chosen to be of 0.2 Me) distributed in a
huge circular region with a diameter of at least 15,000
Einstein radii (roughly 200 pc). Finally, a very high spatial
resolution of 0.001 Einstein radii (approximately 500 Re) to
approximately match the source size is also required, pre-
venting an artificial smoothing of the features of the magnifi-
cation map. Thus, our maps have μ=±4200, Npix= 40002

pixels, and N* = 1.8× 106 lenses, resulting in a map perfor-
mance Ω= 1.2× 1017, which took roughly 1 day (tex∼ 77,
500 s) to be computed.

In Figure 4, we present the magnification maps for both
images, which show a structure of clearly resolved stripes
(compressed caustics) with the expected larger regions of low
magnification in the case of the negative parity (saddle point)
image. In Figure 5, we present the light curve of the star (as the
sum of the two images), which shows strong changes in
timescales of years. In the same figure, we also represent a light
curve with a lower resolution of only 8000 Re/0.2 lt-days,
which shows the artificial smoothing induced by the use of an
insufficient resolution in the magnification map. Despite a
reasonable resemblance to the light curve published by Welch
et al. (2022), the light curve in Figure 5 (even at our lowest
resolution) shows more oscillations around the average

magnification, with frequent variations of a factor of ∼3 over
periods of roughly 2 yr, which are not present in their curve
(which remains stable above mean magnification during most
of the 60 yr period). It is nevertheless difficult to judge the
origin of this discrepancy. At the same time, while they claimed
that their small-scale oscillations were due to shot noise in the
ray tracing calculations, the variations at the smallest scale in
Figure 5 are real, with frequent variations of magnification of
∼2 with a timescale of weeks/months (e.g., peaks in the high-
resolution curve around years 25, 26, or 52).
Several algorithms for the calculation of microlensing light

curves particularly well suited for these high-magnification
cases have appeared recently in the literature (Venumadhav
et al. 2017; Diego et al. 2018; Diego 2022; Meena et al. 2022).
For most applications, a statistical analysis containing many
(possibly millions of) random light curves at different orien-
tations is usually needed to compare with observations; there-
fore, the advantage of a single light-curve calculation over full
magnification maps (which can provide many light curves at
once) is arguable. In any case, all of these new procedures
could easily obtain an important performance benefit by using
the FMM in their deflection calculations. Conversely, our code
could easily be adapted to produce a much smaller map at high
resolution of a rectangular region of the source plane contain-
ing the track producing the desired light curve. In Figure 6, we
show the microlensing magnification histograms for Earendel
(sum of the minimum and saddle images) for sources of 500 Re
for stellar densities of 10 and 1Me pc–2 calculated using
1.6× 107 events. We see that extreme magnifications are much
more common in the latter case. For example, in the former
case, only 4% of the cases have magnifications outside the
range 0.5–2 with respect to the average, but this frequency
increases to 28% for the latter case. This histogram is easily
calculated with magnification maps but would need to generate
many thousands of different light curves with different random
orientations to produce a similar result.

4. Benchmarks and Comparisons

In this section, we intend to show the performance of the
introduced microlensing FMM-IPM code for different cases
and its scaling with different parameters (e.g., the number of
lenses and map size). We also find it interesting to show some
brief comparisons with other existing codes. As we are inter-
ested in the comparison of the newly introduced FMM algo-
rithm, we have included here mainly codes that also use IPM
for the magnification maps (as IPM already introduces a large
performance gain with respect to IRS, which we do not want to
influence the comparison). All simulations have been per-
formed with a very conservative accuracy of ò= 5× 10−5 in
the calculation of ray deflections.
The left panel of Figure 7 shows the execution times for a set

of maps with different number of deflectors N*. In order to
provide comparisons with the results published with the PIP
code of Shalyapin et al. (2021), we have calculated maps of the
same type, with 2000× 2000 pixels for the case κ= γ= 0.3
with μ= 2.5, and 100% of the mass in the form of microlenses.
We have calculated maps with sizes between 2 and 8192
Einstein radii, reaching a maximum of 8× 107 lenses. The
execution time for the FMM-IPM code is rather insensitive to
the number of deflectors up to N*∼ 107, where it starts to
increase linearly with N*, as expected. Execution times are
very similar to the ones obtained by the PIP method of
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Figure 4. Magnification maps for the minimum (left) and saddle (right) images corresponding to Earendel. The vertical axes have been expanded for clarity.

Figure 5. Light curve for Earendel for a period of 60 yr for sources of 500 (blue) and 8000 (orange) Re. The bottom panels show a zoom-in of selected regions.
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Shalyapin et al. (2021) and can provide improvements of
several orders of magnitude with respect to plain IPM when a
large number of deflectors is involved. We can also see in
Figure 7 (right) that, as expected, the best performances are
reached for the large number of lenses (N* 106) for which the
algorithm can comfortably produce performances of Ω/
tex∼ 1012 s−1.

Similarly, we have made some simulations to show the
scaling of execution time with the number of pixels in the map.
We again performed simulations with κ= γ= 0.3 with 100%
of the mass in the form of lenses for a map of 256 Einstein radii
with N* = 88,682 lenses. Map sizes range from 500 to 8000
pixels on a side. Figure 8 shows that FMM time scales linearly
with Npix, as expected.

To better show the capabilities of this new algorithm, we
also find it interesting to check the scaling of execution times
and performances with the workload of the maps for this new
code. This comparison is obviously to be taken cautiously, as it
is only an approximate trend, given the strong dependence of
performance on the number of lenses that was mentioned

above. It is nevertheless reasonably valid and interesting for
maps with Npix∼ 10002–80002 and N*∼ 103–108 lenses for
which the trend can provide an a priori rough estimate of the
approximate execution time. The results are shown in Figures 9
and 10. For comparison, we have included as open symbols in
Figures 9 and 10 some data points from the comparison made
by Bate et al. (2010) for the CPU-T and GPU-D codes for
Npix= 20482, as well as typical Gerlumph maps for data
releases GD0 and GD1. It is particularly noticeable how the
FMM-IPM on a standard personal computer can outperform the
calculations of maps made with powerful GPUs.
Although the individual results show a strong dependence on

the number of lenses (which is to be expected, given the fact
that FMM performs best for scenarios involving many lenses),
there is a rough scaling tex∼ 5× 10−5Ω1/2 s, or, equivalently,
Ω/tex∼ 2× 104Ω1/2 s−1. Therefore, execution times for stan-
dard magnification maps of moderate magnification/resolution
with Ω∼ 1012 are of order of 1 minute on a standard personal
computer. High-workload maps of Ω∼ 1015–1016 can be
calculated on timescales of hours. Peak performances of

Figure 6. Microlensing magnification histograms for Earendel for sources of 500 Re for stellar densities of 10 and 1 Me pc–2.

Figure 7. Execution time (left) and performance (right) vs. number of deflectors for the FMM-IPM compared to other algorithms. Maps were made of 2000 × 2000
pixels for κ = γ = 0.3 with μ = 2.5. The straight line indicates linear scaling with the number of deflectors.
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Ω/tex∼ 1013 s−1 can be achieved for systems with many
(∼107) deflectors.

5. Conclusions

Ray tracing is a standard procedure in numerical gravita-
tional lensing that is needed for many purposes (e.g., finding
images, calculating magnifications, time delays, etc). This
procedure may be computationally expensive if many deflec-
tors need to be considered, particularly if the number of rays to
be traced is also high. In this work, we have implemented the
FMM to speed up gravitational lensing ray tracing. The main
results of the present work are as follows.

1. We incorporate into the toolbox of computational grav-
itational lensing a very efficient algorithm (with good
a priori control on the errors) that can greatly ease and
speed up this type of calculation: the FMM of Greengard
& Rokhlin (1987). Using this method, we avoid the
drawbacks inherent to alternative techniques, like the
simultaneous computation of deflections for a whole
regular grid when using a Poisson solver (which imposes
very demanding requirements on computer memory) or
the regridding of the deflectors into the regular lattice of
rays (common to mesh-particle methods) of uncertain
consequences when markedly bimodal mass functions of
deflectors are considered.

2. We develop a new algorithm to calculate extragalactic
microlensing magnification maps in combination with the
already optimized IPM of Mediavilla et al. (2006, 2011).
The new algorithm, suited even for standard personal
computers or cluster nodes of modest memory

capabilities, results in reductions of computing time of
order ∼25,000 with respect to plain IRS or ∼500 with
respect to IPM for large number of deflectors, making it a
very competitive alternative.

3. We also show the power of the FMM algorithm for a
more general lensing application by resolving the inverse
lens equation (i.e., obtaining the images of the source) for
a cosmological simulated lens–halo composed of
1.5× 107 particles.

4. We demonstrate the capabilities of this new algorithm by
calculating very demanding magnification maps for a
small set of cases of high scientific interest that would be
difficult to obtain with previous algorithms. These
examples include microlensing magnification maps for
lensed quasars at high magnifications of large size and
high resolution to allow the simultaneous study of dif-
ferent regions of the emitting quasar; a case of clustered
PBHs, presenting an inhomogeneous distribution of len-
ses; and, finally, a case with high resolution and extreme
magnification for an individual star behind a galaxy
cluster critical curve.

5. We present the benchmarks and performance of the new
code, along with some comparisons with previous
representative algorithms showing that it can achieve
excellent peak performance over 2 orders of magnitude
above previous codes even with very modest hardware.

6. We provide a flexible and user-friendly web interface for
the FMM-IPM code (https://gloton.ugr.es/microlensing/),
which allows researchers to easily calculate magnification
maps of very large workload.

Figure 8. Execution time of the FMM-IPM code vs. map size. Maps were made with κ = γ = 0.3 with μ = 2.5 for a map of L = 256 Einstein radii with N* = 88,682
lenses. The line indicates linear scaling with the number of pixels in the map.
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Figure 9. Execution times vs. workload for selected cases. Filled circles show maps with different numbers of deflectors and pixels. Plus signs and open circles correspond
to the CPU-T and GPU-D cases for Npix = 20482 in Bate et al. (2010). Open triangles show average Gerlumph maps for data releases GD0 (upper) and GD1 (lower). The
pentagon shows the case of clustered PBHs. The square is the case of PSJ 0630–1201 B. The star is the case of Earendel. The straight line corresponds to tex ∝ Ω1/2.

Figure 10. Performance vs. workload. Filled circles show maps with different numbers of deflectors and pixels. Plus signs and open circles correspond to the (best-
performance) CPU-T and GPU-D cases for Npix = 20482 in Bate et al. (2010). Open triangles show average Gerlumph maps for data releases GD0 (lower) and GD1 (upper).
The pentagon shows the case of clustered PBHs. The square is the case of PSJ 0630–1201 B. The star is the case of Earendel. The straight line corresponds to Ω/tex ∝ Ω1/2.
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Appendix
Description of the FMM Algorithm

A detailed description of the FMM algorithm is beyond the
scope of this paper and can be found elsewhere (e.g., Greengard
& Rokhlin 1987; Beatson & Greengard 1997; Martinsson 2015),
but we find it convenient to include here a brief general
description of the main ideas behind it to help the reader to
understand its peculiarities. The FMM is based on four main
ideas (the first two of which are indeed shared with standard
hierarchical treecodes):

1. A hierarchical partition of the spatial computational
domain. In particular, for our 2D problem, space is pro-
gressively divided into smaller cells in a fourfold struc-
ture called a quadtree. Partitioning is carried out up to
level n Nlog4( )~ * .

2. Multipole expansions (also called outer, singular, or S
expansions in the FMM jargon), which are a valid
representation of the field, to the desired approximation,
of a group of lenses at a certain distance.

3. Local expansions (also called inner, regular, or R
expansions), which are approximately valid representa-
tions of the field produced by groups of faraway lenses
within some region.

4. Use of some translation theorems that allow one to move
the center of applicability of a multipole (M2M or S2S)
or local (L2L or R2R) expansion and can convert a
multipole expansion into a local one (M2L or S2R).

It is the clever introduction and extensive use of the latter
two principles that allow the FMM to reduce the computational
complexity with respect to standard treecodes by reducing the
number of times that loops run over all system particles.
Another very important advantage of the FMM is that the error
is at all times under precise control by adjusting the maximum
order of the expansions p. Although the parameters can be
optimized, as a rule of thumb, for a required accuracy ò,
expansions are truncated at order p O log2( ( ))~ - .

For the particular case of the gravitational lensing problem
(which is equivalent to the electrostatic coulombic forces in
2D), the multipole and local expansions have a very simple
analytical form (for both, the potential and the deflection
angle, or higher derivatives) when locations on the plane are
expressed as complex numbers, which is extremely con-
venient. The deflections are therefore calculated directly
from the expansions to the desired accuracy, without the need
of numerical derivatives that can introduce further errors.
There are also kernel-independent versions of the FMM that
can also handle problems in which these expansions are not
known analytically (which could, for example, account
for more complicated, not pointlike, pseudolenses; e.g., Ying
et al. 2004).

The algorithm (as described in Greengard & Rokhlin 1987)
is therefore performed in two passes, one up and one down the
tree, as follows.

1. Initialize. Set refinement level to n Nlog4( )~ * and create
a quadtree structure of the plane up to that level. Set the
maximum order of expansions to p log2( )~ - .

2. Upward pass 1. Loop over boxes at the finest level and
create multipole expansions of order p of the field pro-
duced by particles within that box around the center of
the box.

3. Upward pass 2. Loop over the lower levels. Use M2M
translations of the multipole expansions of child boxes to
build multipole expansions representing the field of all
particles within coarser boxes around their centers.

So far, we have a description of the field produced by
particles in boxes (at different levels of refinement)
around their centers. Now, in the downward pass, we
intend to calculate the field at a certain location by
grouping particles in boxes that are not nearest neighbors
into (progressively larger) boxes.

4. Downward pass 1. Loop over tree levels (except the
finest) l< n− 1. For each level, in an inner loop over the
box’s children, use M2L translations to form a local
expansion about the center of each box at that level,
describing the field due to all particles in the system that
are not contained in the current box or its nearest
neighbors. In a second inner loop over the children, these
local expansions are shifted, with the help of L2L trans-
lations, to the centers of the box’s children, forming the
initial expansion for the boxes at the next level. Only
expansion coefficients are used in this step.

5. Downward pass 2. Compute the interactions at the finest
level n by creating local expansions around the center of
boxes at the finest levels. Use M2L translation for boxes
at this level. These expansions describe the field produced
by particles outside the box and nearest neighbors at the
finest level. Again, only expansion coefficients are used.

We now have a local expansion of order p describing
the far field produced by particles outside a box and its
nearest neighbors at the finest level, and we are ready to
loop over the Nx locations where the field is needed.

6. Evaluate the local expansions of the (far) field at the
required locations.

7. Add the contribution of particles in that box and the
nearest neighbors directly to the far field.

It is important to notice that, thanks to the extensive use
of the translation theorems, a loop over all particles is
only performed once in the upward pass, in step 2. The rest of
the steps only need the coefficients of the expansions (except
for the few nearby particles). This is the origin of the
optimized complexity of the algorithm, scaling as O Nx(( +

N log 12) ( ))´* .
The FMM is usually assumed to be a somewhat intricate

algorithm that is more difficult to code than standard hier-
archical treecodes, and while this may be true, the good news is
that due to its power and broad range of applicability, it is now
in a very mature state; therefore, there are many available FMM
libraries suitable for use out of the box for the particular pro-
blem at hand in gravitational lensing (i.e., for the Laplace
kernel), or they can be easily adapted.
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