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Abstract: Crop disease management in smart agriculture involves applying and using new technolo-
gies to reduce the impact of diseases on the quality of products. Coffee rust is a disease that factors
such as poor agronomic management activities and climate conditions may favor. Therefore, it is
crucial to identify the relationships between these factors and this disease to learn how to face its
consequences and build intelligent systems to provide appropriate management or help farmers and
experts make decisions accordingly. Nevertheless, there are no studies in the literature that propose
ontologies to model these factors and coffee rust. This paper presents a new ontology called RustOnt
to help experts more accurately model data, expressions, and samples related to coffee rust and apply
it whilst taking into account the geographical location where the ontology is adopted. Consequently,
this ontology is crucial for coffee rust monitoring and management by means of smart agriculture
systems. RustOnt was successfully evaluated considering quality criteria such as clarity, consistency,
modularity, and competence against a set of initial requirements for which it was built.

Keywords: coffee; ontologies; pest and disease management; rust; sensors; smart agriculture;
software applications; weather

1. Introduction

Smart or precision agriculture (PA) represents the application of information and
communication technology (ICT) solutions in agriculture, such as the use of the Internet of
Things (IoT), sensors and actuators, geopositioning systems, big data, unmanned aerial
vehicles or drones, robots, etc. [1,2]. These technologies enable PA to present real potential
for increased sustainability and agricultural productivity, improved economic returns based
on the cost-effective use of inputs while reducing environmental impact, and resource
preservation for the more efficient and accurate use of resources through decision support
tools (DSTs) [3–5].

Smart agriculture also has clear environmental benefits, for example, through more
efficient water use and optimizing the use of phytosanitary treatments for pest and disease
management [6,7]. Coffee rust is caused by the fungus Hemileia vastatrix [8]. A coffee plant
affected by this fungus presents the characteristics of the disease, such as yellow or orange
powder on the underside of the leaves of the coffee plant in the form of spots or dots [9].
This disease causes the defoliation and drying of the branches and limited growth of the
coffee plant, which consequently generates important losses in the production and quality
of coffee [8]. The evolution of this disease can be favored by deficient agronomic man-
agement activities and some climatic conditions such as rain, humidity, temperature and
sunlight. Therefore, the correct identification of these factors is crucial in the management
of this disease.
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A set of measures represent the status or value of meteorological variables in the field
of coffee rust. The heterogeneity of these variables can cause inaccurate values and lead
to misunderstandings in the interpretation of input data for models and systems devel-
oped to control coffee rust. In this regard, ontologies have been proposed to address data
heterogeneity in different application domains [10,11]. Ontologies are a formal representa-
tion of knowledge and can be specified by concepts, taxonomies, functions, axioms, and
instances [12,13]. Concepts are abstract or concrete representations of the real or fictional
of virtually anything. Taxonomies are structures for organizing concepts. Relations are
interactions between concepts. Axioms model statements that are asserted to be true in a
domain. Finally, instances are elements of a domain attached to a specific concept [12,14].

Several research studies have documented the use of ontologies for agricultural control
and monitoring for rice, coffee, and cocoa [15,16]; precision agriculture data [17]; mandarin
crop life cycle [18]; coffee supply chain [19]; horticulture [20]; and smart livestock farm-
ing [21]. Only two of these studies are directly related to coffee cultivation and focus on
modeling available pest and disease data. However, they lack a structure representing the
climatic conditions favorable for coffee rust.

This paper proposes a new ontology, called RustOnt, for modeling favorable climatic
conditions to prevent coffee rust. This ontology groups relevant concepts and instances
of meteorological variables used by coffee rust control systems or models. In addition,
RustOnt supports extensions to more concepts that can be detected later.

RustOnt allows experts to access a set of valid expressions, samples and values for
each meteorological variable of interest in coffee rust, considering more precisely the
geographical region (country) where the ontology can be adopted. This is possible because
RustOnt has been constructed taking into account research studies on coffee rust models in
several countries.

Early warning systems (EWSs) provide a set of articulated capacities, instruments
and procedures for the purpose of monitoring, processing and systematizing information
on foreseeable hazards in a specific area. The main objective is to reduce the loss of life
and environmental damage, contributing to long-term sustainability [22]. The regional
early warning system (SRAT) for rust and other important coffee diseases, developed by
FONTAGRO for Central American and Caribbean countries, is an international cooperation
platform for the development and co-financing of agricultural science and innovation
projects [23]. The early warning and recommendation system (SART) to reduce rust
growth was developed by the Coffee Institute of Costa Rica (ICAFE), which guarantees the
quality and sustainability of coffee, promoting socially and environmentally responsible
schemes [24]. RustOnt can contribute to the major objectives of these institutions, such
as FONTAGRO and ICAFE, for Latin American and Caribbean countries through its
integration into the SRAT and SART projects, helping to minimize the heterogeneous
information used within the different modules that make up these EWSs.

The remainder of the paper is organized as follows. Sections 2 describe the climatic
variables considered after a detailed analysis of related work and the methodology selected
to develop the RustOnt ontology. Sections 3 and 4 respectively describe the RustOnt
ontology, the process followed for its evaluation, and the main results obtained. Finally,
Section 5 presents the main conclusions and future research lines.

2. Materials and Methods

This section presents the knowledge base needed to create our RustOnt ontology,
the set of climatic variables considered after a detailed analysis of related work, and the
methodology selected to develop the ontology.

2.1. Ontological Knowledge Base

An exhaustive study of the literature on the use of variables related to climatic con-
ditions that can facilitate the detection of the incidence of rust in coffee has been carried
out. Following the main steps of the systematic review methodology described in [25],
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the string of terms defined for the bibliographic search was (system OR model) AND
(detection OR prediction) AND (coffee leaf rust OR coffee rust) AND (weather OR climatic)
AND (incidence OR infection). Scopus, IEEE, Elsevier ACM and Springer data repositories
were consulted, in addition to the reports and technical guides published by CENICAFE,
ICAFE, and OIRSA. A total of 85 studies were obtained, 26 studies were selected, and
59 studies were discarded due the fact that they did not consider climatic variables and
were only focused on concepts including the variety, density, main flowering, and initial
infection level.

Table 1 shows the climatic variables considered in this study. The table details the
climatic variables that favor coffee rust in various countries selected from the bibliographic
study, the samples and values considered to develop the computational models, and
the country where the research work was conducted. These primary variables (shadow,
humidity, temperature, precipitation, and wind) have been considered to develop the
knowledge base for the RustOnt ontology. The ontology focuses on the variability of these
variables, scales, and specific values defined to measure the impact of rust coffee. Although
the meteorological condition Altitude was considered in other studies, this work avoids
including it in RustOnt because this condition does not include changes in samples or values
for measurement over time. In the following subsection, we describe the methodology
used to create RustOnt.

Table 1. Climatic variables considered by country and their respective values, scales, and codification.

Climatic
Variable Values, Scales, and Codification Country

Shadow 0 = full sun, 1 = Scattered shadows El Salvador [26], Republic of
Costa Rica [26–28]

Shade percentage Colombia [29,30]
Not shade = 100%, fine shade = 99–70%, medium shade = 69–40%, dense
shade = 39–20% Uganda [31]

Number of shade trees per hectare = shade trees/Ha Uganda [32]

Humidity average daily hours (>90%), average night hours (>90%), sum daily hours
(>90%), sum night hours (>90%) Colombia [30]

Daily average relative humidity Colombia [30,33]
Number night hours (>95%) Uganda [32]
Minimum daily humidity (daily periods 14, 7, 4 and 3), average daily humidity
(daily Periods 14, 7, 4 and 3) Republic of Costa Rica [28]

Amplitude relative humidity daily, leaf wetness time 6am–11am per day,
moisture time in leaves (12am–6pm)/day Republic of Costa Rica [34]

Relative humidity under shade/hour, relative humidity full sun/hour Republic of Costa Rica [27]

Number of wet days/month

Mexico, Belize, Guatemala,
El Salvador, Honduras,
Nicaragua, Republic of
Costa Rica, Panama,
Dominican Republic [35]

Yearly percentage Ethiopia [36]
(>80% monthly or quarterly) , (<80% monthly or quarterly) Colombia [37]
Daily average relative humidity, number days relative humidity (>80%),
number days relative humidity (>90%) Brazil [38]

Monthly average, number hours (>90% monthly) and (>80% monthly), number
days with number hours (≥ 90% and > 6 h/month) and (≥80% and
>6 h/month)

Brazil [39]

Number of hours monthly (>90%) and (>80%), number days with number hours
(≥90% and >6 h/month) and (≥80% and >6 h/month) Brazil [40]
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Table 1. Cont.

Climatic
Variable Values, Scales, and Codification Country

Monthly or quarterly average, average number of hours relative humidity
(>95% monthly or quarterly), average and maximum number night relative
humidity (>95% monthly or quarterly)

Brazil [41]

Average daytime hours (>95%), average and sum night hours (>95%), sum
daylight hours (>95%) Brazil [42]

Number of daytime hours (>95%), number of night hours (>95%) Brazil [43,44]
Average relative humidity last 2 months, relative humidity (>90% last 2 months) Colombia [29]

Temperature Average during day (>90%), average overnight (>90%) Colombia [30]
Daily maximum, daily minimum, daily average Colombia [30,33]

Thermal amplitude

Mexico, Belize, Guatemala,
El Salvador, Honduras,
Nicaragua, Republic of
Costa Rica, Panama,
Dominican Republic [35]

Daily maximum, minimum and average (daily periods of 14, 7, 4 or 3) Republic of Costa Rica [28]
Yearly average Ethiopia [36]
Variation of the temperature last month Colombia [29]
Daily average, night average, daily minimum, daily maximum, daily range,
number of hours (temperature is below dew point at night) Uganda [32]

Daily air temperature: minimum, maximum and thermal amplitude, daily leaf
temperature: minimum, maximum and thermal amplitude Republic of Costa Rica [34]

Thermal amplitude: (semi-annual/quarterly periods) = Temp. Max − Temp.
Min, small (temperatures < 12), large (temperature > 12) Colombia [37]

Monthly: minimum-maximum; annual: minimum average-maximum average Rwanda [45]
Accumulated monthly (maximum, minimum, and average), seasonal period
(accumulated minimum, accumulated maximum, average, monthly variation,
seasonal variation and climatological variation)

Guatemala [46]

Daily minimum, daily maximum Papua New Guinea [47]
Average daily maximum temperature, average daily minimum temperature Brazil [38]
Monthly average, monthly minimum, monthly maximum, average temperature
with relative humidity (>80%), average temperature with relative humidity
(>90%)

Brazil [39]

Monthly average, monthly minimum, monthly maximum Brazil [40]
Average, maximum temperature, average minimum and minimum
temperatures (monthly, quarterly, seasons), average temperature with hours of
relative humidity (>95% monthly, quarterly, seasons), maximum temperature
hours with relative humidity (>95% monthly, quarterly, seasons)

Brazil [41]

Average daily temperature with relative humidity (>95%), average temperature
of daily maximums, average temperature of daily maximums (incubation
period), average daily temperature, average daily temperature (incubation
period), average temperature of daily minimums, average temperature of daily
minimums (incubation period)

Brazil [42]

Average daytime temperature relative humidity (>95%), average night
temperature relative humidity (>95%) Brazil [43,44]

Precipitation Number of days (precipitation > 1mm, daily periods 14, 7, 4 or 3), daily
precipitation (daily periods 14, 7, 4 or 3) Republic of Costa Rica [28]

Number of rainy days last month, accumulated rainfall last 2 months,
accumulated night rainfall last month Colombia [29]

Average daily rainfall, accumulated average daily rainfall Colombia [30]
Annual precipitation Ethiopia [36]
Monthly precipitation Rwanda [45]
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Table 1. Cont.

Climatic
Variable Values, Scales, and Codification Country

Total daily rainfall, duration of daily precipitation Republic of Costa Rica [34]
Rainfall(mm) every hour daily, number of daily hours without precipitation
(<0.1 mm), number of daily hours of precipitation (>0.1 mm) Republic of Costa Rica [27]

Accumulated monthly, accumulated seasonal Guatemala [46]
Total daily (mm), number of days of precipitation (≥1 mm and <9 mm), number
of days of precipitation (>10 mm) Brazil [38]

Monthly total, number of days with precipitation (>1 mm/month), number of
days with precipitation (≥20 mm/month) Brazil [39]

Number of days with precipitation (≥1 mm/month), number of days with
precipitation (≥20 mm/month) Brazil [39,40]

Average accumulated precipitation (monthly, quarterly, seasons), accumulated
precipitation (monthly, quarterly, seasons) Brazil [41]

Number of days with precipitation (≥1 mm), average daily, average of
maximum, accumulated daily Brazil [42]

Wind Average daily speed (m/s) Colombia [30]
Every hour (m/s) Republic of Costa Rica [27]
Average daily speed Hm/h, sum of daily average speed Hm/h Brazil [42]

2.2. Overview of Methodologies to Build Ontologies

We have followed the work proposed in [48] to select the best methodology to develop
the RustOnt ontology. Their work compares six methodologies to build ontologies (Uschold
and Kings [49], Methontology [50], On-To-Knowledge [51], Noy, and McGuinness [52],
Terminae [53], and Termontography [54]) based on the following criteria:

• C1: Intended audience that uses the ontology methodology.
• C2: Level of detail (scale 1–5). The methodology recommends the methods and

techniques to use to perform the different activities.
• C3: Associated software application. The methodology recommends using a software

application to build the ontology.
• C4: Conceptualization phase. The methodology organizes and structures the knowl-

edge, independent from the knowledge representation paradigms and ontology lan-
guages. The representations must be comprehensible by domain experts and ontology
developers through diagrams and tables.

Table 2 shows the previously described methodologies to build ontologies and the
four criteria used for their comparison.

Table 2. Comparison of methodologies to build ontologies; source: [48].

Methodology C1 C2 C3 C4

Uschold and Kings [49] Ontology developers 3 No No
Methontology [50] Ontology engineers and researchers 5 WebODE and Protégé Yes

On-To-Knowledge [51] Ontology developers 4 OntoStudio Yes
Noy and McGuinness [52] Ontology developers 5 Protégé No

Terminae [53] Knowledge engineers and terminologists 4 Terminae Yes

Termontography [54] Ontology builders, terminographers, and
lexicographers 3 Termontography

Workbench No

Based on the results of the comparison shown in Table 2, Methontology accomplishes
the four criteria. This methodology is the most suitable for building ontologies due to
its highly detailed instructions, good representation through charts and tables, and compat-
ibility with popular ontology editors.

Methontology defines five phases or main tasks to be completed: (1) glossary of
terms, (2) concept taxonomies, (3) ad-hoc binary relation diagrams, (4) concept dictionary,
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and (5) rules. The following section describes how RustOnt was created following the
aforementioned phases.

3. The RustOnt Ontology

This section describes the process followed to develop the RustOnt ontology. This
process has involved the selection of the set of terms included in the ontology, the definition
of the taxonomy, ad hoc relationships, the concept dictionary, instances and class attributes,
and rules.

3.1. Glossary of Terms

Table 3 shows the key terms included in RustOnt, as well as their descriptions, in
natural language, and specific types (class, relation or attribute). Where a class represents a
general term that involves similar characteristics for common individuals [55], a relation
represents the association between individuals or classes [56], and the attributes are specific
features associated to a class [57].

Table 3. Description and type (class, relation, or attribute) of the RustOnt terms.

Name Description Type

Mapping Types of transformation that the ontology supports Class
Lexical Subclass of Mapping used to assign numerical scales to variables expressed as text Class

Sample Subclass of Mapping used to show valid values for weather variables depending on a
specific country Class

Country Countries where the coffee rust has been studied Class
Weather conditions Samples of weather variables that affect coffee rust Class
Humidity,
precipitation, shadow,
temperature, wind

Specific class in the set of weather conditions Class

Value This field can contain a specify type or unit (e.g., %, °C) Attribute
Conditions Restrictions of type greater than or less than, equal and if for the values of weather variables Attribute
Expression Mathematical description for the values of weather variables Attribute
IdCountry Alphabetic code associated with an instance of the Country class Attribute
Range Limits for the values of weather variables Attribute
Synonyms Lexical expressions for a value of an weather variable Attribute
Time Timestamp of a value of an weather variable Attribute
Unit Units used to specify the values of an weather variable Attribute
Converts Transformations used for weather variables Relation
Has Indicates the existence of weather variables for a country Relation

3.2. Concepts Taxonomies

A taxonomy formalizes the hierarchical relationships among concepts and specifies the
term to be used to refer to each. It prescribes the structure and terminology of the ontology
and provides a graphical view of concepts. The taxonomy selected for RustOnt employs a
graph with rectangles representing classes, ovals as instances created from these classes,
and lines denoting relationships. To develop the taxonomy, we have elaborated a glossary
of terms verifying that there are not common instances among the concepts. In addition,
we defined three general taxonomies for the following classes: Country, Mapping, and
Weather_conditions.

The Country class presents a taxonomy that contains the countries where RustOnt
can be applied, as Figure 1 shows. The Mapping class represents the set of possible
transformations that can be performed with RustOnt. This class is used to transform textual
values to their corresponding similar or matching values for an weather variable. The
Sample class contains a type of transformation to obtain valid values or samples with
units of time (e.g., day, monthly, seasonal, yearly, etc.), speed wind, temperature, humidity,
or shadow conditions (e.g., percent, mm, Celsius, h/m, etc.) according to the computer
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models for the detection of coffee rust infections in each country. These values are instances
of the weather variables supported by the RustOnt ontology.

Figure 1. Taxonomy for the Country class.

The Lexical class denotes a type of transformation to obtain numerical values according
to the synonym text or unit of time of the weather variables supported by RustOnt. The
taxonomy to mapping is described in Figure 2, where Sample and Lexical have been defined
as subclasses.

Figure 2. Taxonomy for the Mapping class

Figure 3 presents the Weather conditions class, in which there is an inheritance rela-
tionship with the Humidity, Temperature, Shadow, Precipitation, and Wind concepts.

Figure 3. Taxonomy of the Weather conditions concept.

3.3. Ad Hoc Binary Relation Diagrams

The ad hoc binary relation diagrams represent the relationships that connect a set of
root concepts of the same or different taxonomies. Where each relation has a domain and
range that should be assigned to the classes involved avoiding imprecise or over-specification.
Concepts are represented with rectangles, and dotted lines denote their relations.

The complete set of ad hoc relationships between the taxonomic concepts of the
RustOnt ontology were described for this task. Figure 4 represents two existing binary
relationships between the three main classes that were considered in the ontology.

• A country (1..1) has weather conditions (1..*): countryHasWeather
• A mapping (1..1) converts weather conditions (1..*): mappConvertsWeather
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Figure 4. Ad hoc binary relation diagram defined for RustOnt.

In addition, Table 4 presents the inverse relationships of the ad hoc binary relationships
for the RustOnt ontology.

Table 4. Reverse relations of ad hoc binary relations from RustOnt.

Relation Name Inverse Relation

Country has weather conditions Weather conditions of a country
Mapping converts weather conditions Weather conditions are used to apply a mapping

3.4. Concept Dictionary

The concept Dictionary is used to specify the characteristics for each of the classes
defined in RustOnt, as shown in Table 5.

Table 5. Concept dictionary for the Country, Mapping, Sample, Lexical, Weather conditions, Humid-
ity, Temperature, Shadow, Precipitation, and Wind variables

Class Name Class Attributes

Country Name and 3-digit international code that represents the country.
Mapping Class type transformation can be lexical or sample.
Sample, lexical A subclass of mapping that contains the converts relation.
Weather conditions A class type for weather conditions.
Humidity,
temperature,
precipitation, wind

Attributes: scale, sample, conditions, minimum and maximum ranges,
synonyms, units of time and units of the value of the variable.

Shadow Attributes: synonyms, the correspondence value, expressions, and the
units of the value of the variable.

The Country class includes the name and three-digit international code features. The
instances of this class correspond to countries that consider some variables belonging to
the Weather Conditions class, which can be Temperature, Humidity, Shade, Precipitation,
and Wind. The Mapping class is a type of class that denotes a transformation or mapping
and is divided into two subclasses Lexical or Sample that applies the Converts relationship
to transform the instances of the Weather Conditions class. The Weather Conditions
class includes weather variables considered by RustOnt, e.g., the Humidity, Precipitation,
Temperature, and Wind classes. These classes include different characteristics, such as
conditions (greater than, less than), scale (average, minimum, maximum, etc.), minimum
and maximum ranges, synonyms, time expressions (month, quarter, semester, etc.), and
other units used by these variables. In addition, the Shadow class includes the following
characteristics; synonyms, values, and expressions (equations and units).

3.5. Instance and Class Attributes

This task has been used to integrate the RustOnt instances selected from the literature
survey described in Section 2.1. As described above, the main objective of this search was
to obtain the most important climatic conditions used in computer models and technical
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reports to detect the incidence of coffee rust. Table 6 shows the instances of the RustOnt
ontology and the bibliographic references that support their selection.

Table 6. Instances and class attributes for the Country, Sample, Lexical, Humidity, Temperature,
Shadow, Precipitation, and Wind variables.

Class Name Instances

Country 20 instances [26–47]
Sample 142 instances [27–47]
Lexical 32 instances [26–28,31,58–60]

Humidity 42 instances [27–30,32–44]
Temperature 67 instances [28–30,32–47]

Shadow 8 instances [26–32]
Precipitation 37 instances [27–30,33,34,36,38–42,45,46,59]

Wind 17 instances [27,30,42,60]

This task also describes the instance attributes created in RustOnt. Table 7 details the
name of each attribute, corresponding classes, and data types (e.g., string, double, etc.).

Table 7. Attributes for the hasSynonyms, hasScale, maxRange, minRange, hasUnit, hasExpresion instances.

Instance Attributes Class Name Type

hasIdCountry Country xsd:string
getValue Lexical xsd:string
hasExpresion Shadow, Temperature, Humidity xsd:string
hasTime Precipitation, Temperature, Wind, Humidity xsd:string
hasSynonyms, hasScale, hasConditions, hasUnit Precipitation, Shadow, Temperature, Wind, Humidity xsd:string
hasRange (maxRange, minRange) Precipitation, Shadow, Temperature, Wind, Humidity xsd:double

3.6. Rules

Rules define a set of explicit rules to constrain the correct operation of RustOnt. This
section describes the rules that are stored in the ontology, including the natural language
description and the expression that formally describes each of them. To represent the set
of rules, the semantic rules language (SWRL) was used, which allows expressing OWL
concepts (classes, attributes, and instances) combined with RuleML to have a high-level
syntax. Rule expressions follows the structure:

<antecedents or conditions> (body)→< consequence > (head)

where antecedents or conditions are conjunctions of atoms A1 ∧ . . .∧ An and functions
F1(?A1, ?A2) ∧ . . .∧ Fn(?An), variables are represented with the character ‘?′ using the
notation ?An, and the consequence is a single atom.

A total of five rules have been defined for RustOnt. The rule (1) states that a Lexical
class defines only instances that match a ’has’ relation applied:

Lexical(?l) ∧ has(?h, ?l)→ sqwrl : select(?l, ?h) (1)

Rule (2) is used to list Lexical transformations corresponding to each Country instance:

Country(?a) ∧ has(?h, ?a) ∧ Lexical(?l)→ sqwrl : select(?a, ?h, ?l) (2)

Rule (3) lists only instances of Sample type that match a ’has’ relation applied:

Sample(?s) ∧ has(?h, ?s)→ sqwrl : select(?s) (3)

Rule (4) is only used to list instances of Sample type for each of the Country instances:

Country(?a) ∧ has(?a, ?h) ∧ Sample(?s)→ sqwrl : select(?a, ?h, ?s) (4)
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Rule (5) restricts the converts and ’has’ relations on one same instance where they
have been applied:

converts(?c, ?l) ∧ has(?h, ?s)→ swrlb : notEqual(?l, ?s) (5)

3.7. Ontology Editor

RustOnt has been modeled with the Protégé ontology editor. Protégé supports OWL
2, RDF, and XML schemes to create and edit ontologies. This software provides logical
reasoners, such as HermiT and Pallet, to check for inconsistencies and support inference
over the ontologies [61]. Protégé supports two types for ontology modeling: Protégé-
Frames and Protégé-OWL [62]. This editor also provides a graphical user interface with
tabs to model ontologies. The OntoGraf tab allows visualizing classes, instances, attributes
and relationships in a graph. The entities tab allows managing data types, individuals
and properties of annotations, data, classes, and objects. The individuals tab allows
managing the instances of each class declared in the ontology. The DL query tab allows
searching a classified ontology in a simple way using DL queries. The SPARQL tab supports
SPARQL queries that provide a syntax for manipulating RDF graphs. Protégé also provides
other tools that enable visualization and makes ontology maintenance easier.

The RustOnt ontology is publicly available at the following link: https://drive.google.
com/file/d/1IoabvKSYBoVF1rM-P1lxTHh7X9GXbGk4/view?usp=sharing (accessed on 1
December 2022).

4. Evaluation

RustOnt has been evaluated to ensure the correct construction of its contents, definition,
and implementation according to the requirements of the ontology and the competence
issues that demonstrate the conformity between the actual model and the formal model [56].
In addition, we completed the evaluation of the competence and quality requirements that
verify the correct behavior of the ontology with respect to the software environment, the
documentation and reference framework created for its life cycle [63].

4.1. Ontology Competency

The competency of an ontological model denotes its ability to answer a set of ques-
tions [64]. This criterion is one of the most commonly used to evaluate ontologies [65–67]
and to verify whether a model is complete with respect to a set of questions related to
its competence [63].

The evaluation of this criterion is crucial to verify that a representation model is
complete with respect to a set of competency questions [63]. The ontologist engineers
and domain experts establishes the questions to be answered once the ontology has been
implemented [63]. These questions are benchmarks to determine whether the model is
sufficiently complete to represent the questions and solutions [64].

The competency evaluation of an ontology uses description logic (DL) axioms and
SPARQL queries to model and answer an initial set of competency questions. We propose
five competency questions to evaluate RustOnt (Q1–Q5). The evaluation runs on a laptop
Asus S510U, ASUSTek cumputer Inc. Cali, Colombia with an Intel Core i7-8550U processor,
8 GB RAM, and a 64-bit Windows 10, @ 2019 Microsft corporation operating system.

Q1 What types of transformation or mapping are applicable to weather variables in
computational models of coffee rust?
The expected response of the ontology is based on the knowledge obtained through
the bibliographical review of related work, identifying two ways of representing the
values for the different variables [26–47,58–60].
Lexical involves the use of different ranges to determine the value of a weather
variable using a lexical expression or vocabulary [26–28,31,58–60]. Sample refers to
the different samples or measurements that each work uses for each of the weather
variables, in order to obtain the values with which their computational models have
been developed [27–47].

https://drive.google.com/file/d/1IoabvKSYBoVF1rM-P1lxTHh7X9GXbGk4/view?usp=sharing
https://drive.google.com/file/d/1IoabvKSYBoVF1rM-P1lxTHh7X9GXbGk4/view?usp=sharing
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The following DL axiom (Equation (6)) allows describing the ontology’s answer to
the competency question Q1:

TBox = {Mapping ≡ ∃hasName.xsd : string u ∃hasDescription.xsd : string,

Sample ⊆ Mapping, Lexical ⊆ Mapping}
(6)

Figure 5 shows the sample and lexical transformation types supported by the de-
signed ontology. These are subclasses of the Mapping class, which represents the
types of transformation or mapping allowed by the ontology.

Q2 What are the weather variables taken into account in the computational models of
coffee rust?
From the bibliographic review, the weather variables Humidity, Precipitation, Shadow,
Temperature, and Wind were identified as the most important ones for the develop-
ment of computational models for the management of coffee rust [26–47,58–60].
The following DL axiom (Equation (7)) allows describing the response of the ontology
to the competency question Q2:

TBox = {Weather_conditions ≡ ∃hasName.xsd : string u ∃hasDescription.xsd : string,

Humidity ⊆Weather_conditions, Temperature ⊆Weather_conditions,

Precipitation ⊆Weather_conditions, Shadow ⊆Weather_conditions,

Wind ⊆Weather_conditions}

(7)

Using Protégé 5’s Pellet reasoner and executing a DL query (see Figure 6), the weather
variables supported by the evaluated ontology are shown: Humidity, Precipitation,
Shadow, Temperature, and Wind. There are subclasses of the Weather_conditions
class, which groups all the different weather variables supported by the ontology.
To solve the competency questions Q3, Q4, and Q5, a scenario is proposed for each
question. The scenario approach is used to represent the queries in an ontology
and modeled using the SPARQL language [63,67,68]. The solution to the proposed
scenario indirectly answers each competency question.
The following are the competency questions, the scenarios that are used as a tool
to answer, the expected response against the scenario, the SPARQL query that
represents the solution, and the result that is obtained from the ontology.

Q3 What are the meteorological variables considered by each country in the computa-
tional models of coffee rust?
Scenario 1: In the South American country of Colombia, list the meteorological vari-
ables considered in the computational models developed for coffee rust. According
to the bibliographical review, the meteorological variables considered by the com-
putational models of coffee rust in Colombia are Temperature, Shadow, Humidity,
Precipitation, and Wind, which are used in [29,30,33,37]
The following SPARQL query corresponds to the solution for Scenario 1:

PREFIX rdf : <ht tp ://www. w3 . org /1999/02/22− rdf −syntax −ns#>
PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf −schema#>
PREFIX xsd : <http ://www. w3 . org /2001/XMLSchema#>
PREFIX rus tont : <ht tp ://www. semanticweb . org/asuscolombia/o n t o l o g i e s /2021/7/

rustOnto #>

SELECT DISTINCT ? o b j e c t 2
WHERE {
rus tont : Colombia rus tont : has ? o b j e c t 1 .
? o b j e c t 1 rdf : type ? o b j e c t 2 .
FILTER ( ? o b j e c t 2 != owl : NamedIndividual )
}

Table 8 presents the results obtained using RustOnt for the query corresponding to
Scenario 1.
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Scenario 2: In the African region of Uganda, list the weather variables considered in
the computational models developed for coffee rust.
According to the bibliographical review, the weather variables considered by the compu-
tational models of coffee rust in Uganda are Temperature, Shadow, and Humidity [31,32].
The following SPARQL query corresponds to the solution for Scenario 2:

PREFIX rdf : <ht tp ://www. w3 . org /1999/02/22− rdf −syntax −ns#>
PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf −schema#>
PREFIX xsd : <http ://www. w3 . org /2001/XMLSchema#>
PREFIX rus tont : <ht tp ://www. semanticweb . org/asuscolombia/o n t o l o g i e s /2021/7/

rustOnto #>

SELECT DISTINCT ? o b j e c t 2
WHERE {
rus tont : Uganda rus tont : has ? o b j e c t 1 .
? o b j e c t 1 rdf : type ? o b j e c t 2 .
FILTER ( ? o b j e c t 2 != owl : NamedIndividual )
}

Table 9 presents the results obtained for the query corresponding to Scenario 2 in
RustOnt.
Other scenarios can be proposed for countries such as Brazil, Republic of Costa Rica,
Mexico, Belize, Guatemala, El Salvador, Honduras, Nicaragua, Panama, Dominican
Republic, Ethiopia, Rwanda, and Papua New Guinea. These countries are also
considered in RustOnt so that the proposed scenarios for these countries also find a
response that satisfies competency question Q3.

Q4 Given a weather variable, what are the allowed values?
Scenario 3: A user needs to know all the values supported by the ontology for the
environment variable shade.
According to the literature review, the allowed values for the environment variable
shade are shade level, number of trees, no shade, thin shade, medium shade, dense
shade, full sun, and scattered shadows [26–32]. The following SPARQL query
corresponds to the solution of Scenario 3:

PREFIX rdf : <ht tp ://www. w3 . org /1999/02/22− rdf −syntax −ns#>
PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf −schema#>
PREFIX xsd : <http ://www. w3 . org /2001/XMLSchema#>
PREFIX rus tont : <ht tp ://www. semanticweb . org/asuscolombia/o n t o l o g i e s /2021/7/

rustOnto #>

SELECT ? value ? wheather
WHERE {
? sample rus tont : converts ? value .
? value rdf : type ? wheather .
FILTER ( ? wheather = rus tont : Shadow )
}

Table 10 shows the result of executing in RustOnt the query corresponding to
Scenario 3.
In addition, for the supported values of the Shadow variable, the attributes of each
of the values can also be obtained through a SPARQL query as presented in Figure 7.
For example, the attributes for the Fine_Shadow value that have properties such
as hasUnit, maxRange, minRange that indicate attributes such as the supported
unit which is “Percentage”, the minimum range “70” and the maximum range “99”
supported for the Fine_Shadow value of the Shadow environment variable.
Figure 7 shows how the attributes of each of the values supported by the Shadow
variable can be obtained through a SPARQL query. For instance, the attributes for the
Fine_Shadow value having properties such as hasUnit (e.g., “Percentage”) , maxRange
(e.g., 99), and minRange (e.g., 70).
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New scenarios can be constructed to query any of the weather variables (Tempera-
ture, Shadow, Precipitation, Wind, and Humidity). These scenarios can be evaluated
using SPARQL queries that adequately satisfy the competency question Q4.

Q5 Given a value for an environment variable, what are the corresponding values it can
take depending on the selected region?
Scenario 4: A user in the African country of Uganda using RustOnt needs to know
what values are allowed for the weather variable temperature.
The values reported in the bibliographical review for the weather variable Tempera-
ture in Uganda are: daily mean, night mean, daily minimum, daily maximum, daily
range, and number of hours when the temperature is below the dew point.
The following query in SPARQL corresponds to the solution for Scenario 4:

PREFIX rdf : <ht tp ://www. w3 . org /1999/02/22− rdf −syntax −ns#>
PREFIX owl : <http ://www. w3 . org /2002/07/owl#>
PREFIX r d f s : <ht tp ://www. w3 . org /2000/01/ rdf −schema#>
PREFIX xsd : <http ://www. w3 . org /2001/XMLSchema#>
PREFIX rus tont : <ht tp ://www. semanticweb . org/asuscolombia/o n t o l o g i e s /2021/7/

rustOnto #>

SELECT DISTINCT ? sample ? environmental
WHERE {
rus tont : Uganda rus tont : has ? sample .
? converts rus tont : converts ? sample .
? sample rdf : type ? enviromental .
FILTER ( ? envirommental = rus tont : Temperature )
}

Table 11 shows the result obtained after executing the query corresponding to Sce-
nario 4 in the RustOnt ontology.
In addition, Figure 8 shows the SPARQL query with the attributes for the valid
samples corresponding to Uganda. For instance, the example Dew_Point shows
the hasUnit property with the value “Degrees Centigrade”, hasTime with the value
“Night”, and hasConditions with value “Temperature < Dew Point”.
As Scenario 4 was designed, it is possible to construct similar scenarios for other coun-
tries included in RustOnt by indicating the corresponding values for the weather vari-
ables (Temperature, Wind, Shade, Precipitation, and Humidity) on which SPARQL
queries are desired. The results for similar scenarios show the details of the valid sam-
ples, as previously described for scenario 4. This allows satisfying the competence
question Q5.
As demonstrated for each of the initial competency questions, which have been
solved through DL modeling or SPARQL queries and their respective answers, it
is possible to conclude that RustOnt satisfies the competency requirement, as it
provides a solution to a set of questions for which it developed.
The results obtained demonstrate the effectiveness of each of the queries in satisfying
the competency questions. Very fast response times ranging from 25 ms to 194 ms
were obtained for the competency questions Q1, Q2, Q3, and Q4 and 264 ms for the
competency question Q5, due to the number of instances supported by the ontology.
As the number of instances increases, these times will surely change, however, this
would be beyond the scope of the studies reviewed to date to create the instances
for RustOnt.

4.2. Quality Requirement

The quality assessment of an ontology can be based on several principles for ontology
design [69–71]. These principles include specific criteria and guidelines for designing and
evaluating ontologies. Thanks to these principles, it is possible to determine the quality of
an ontology based on the degree to which it meets the design criteria established from its
design [63]. The criteria considered for the quality assessment of RustOnt are elaborated
upon below.
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Figure 5. Execution of the DL mapping query using the Protégé editor and corresponding result,
execution time was 25 ms.

Figure 6. Weather conditions query using the Protégé editor and corresponding result, execution
time was 40 ms.

Table 8. Query result for scenario 1, using Protégé 5’s Pellet reasoner, execution time was 33 ms.

Object2

Temperature
Shadow

Humidity
Precipitation

Wind
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Table 9. Query result for scenario 2, using Protégé 5’s Pellet reasoner, execution time was 38 ms.

Object2

Temperature
Shadow

Humidity

Table 10. Query result for Scenario 3 using Protégé., Weather indicates the name of the class and
Value denotes the allowed values for the class, execution time was 74 ms.

Weather Value

Shadow Number trees
Shadow Dense shadow
Shadow Full sun
Shadow Shadow level
Shadow Sparse shadows
Shadow No shadow
Shadow Media shadow
Shadow Fine shadow

Figure 7. Query in SPARQL detailing the attributes of the supported values for the Shadow variable
(Protégé 5’s Pellet reasoner, execution time was 194 ms).

Table 11. Result of the query for Scenario 4. Each sample line shows the values accepted for the
weather variable Temperature (Protégé 5’s Pellet reasoner, execution time was 110 ms).

Sample Weather

Minimum Temperature
Mean Temperature

Dew_point Temperature
Range Temperature

Maximum Temperature

4.2.1. Clarity

According to [56,71], conceptual clarity can be defined as the capability of the ontology
for the effective communication of the intended meaning of defined terms. For this purpose,
formal axioms are defined that can be complete (necessary and sufficient conditions) or
partial (necessary or sufficient conditions).
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Figure 8. Query details the attributes of the valid samples for the query in Scenario 4 (Protégé 5’s
Pellet reasoner, execution time was 264 ms).

To satisfy this quality criterion, the ontology was first modeled by defining the formal
axioms that were then implemented. Hierarchies were identified, data and object properties
were designed and formally declared using a descriptive logic notation. Then, the main
concepts of the ontology were defined. Lexical is a type of transformation that can be
applied to some variables used by computational models for rust management in each
country. It is defined with the pattern “Entity has name and description”. Lexical has the
Precipitation, Wind, Temperature, and Shadow subclasses (Equation (8)).

TBox = {Lexical ≡ ∃hasName.xsd : string u ∃hasDescription.xsd : string,

Precipitation ⊆ Lexical, Temperature ⊆ Lexical, Wind ⊆ Lexical, Shadow ⊆ Lexical}
(8)

Sample describes the different measures or values used by each country for the
variables of the computational models for the management of coffee rust Sample is also
defined as “Entity has name and description”. sample has the Precipitation, Temperature,
Wind, Humidity, and Shadow subclasses (Equation (9)).

TBox = {Sample ≡ ∃hasName.xsd : string u ∃hasDescription.xsd : string,

Precipitation ⊆ Lexical, Temperature ⊆ Lexical, Wind ⊆ Lexical, Shadow ⊆ Lexical}
(9)

Precipitation denotes the amount of rainfall that affects the coffee crop in a given period.
It is defined as a subclass of Weather_conditions and has the name, description, synonyms,
scale, maximum range, minimum range, time, and units properties (Equation (10)).

TBox = {Precipitation ≡ ∃hasName.xsd : string ≡ ∃hasDescription.xsd : string u ∃
hasSynonyms.xsd : string u ∃hasScale.xsd : string u ∃

maxRange.xsd : f loat u ∃minRange.xsd : f loat u ∃
hasTime.xsd : string u ∃hasUnit.xsd : string, Precipitation ⊆Weather_conditions}

(10)

Temperature denotes the hot or cold conditions that affect the coffee crop in a given
period. It is defined as a subclass of Weather_conditions and has the name, description,
synonyms, scale, minimum range, maximum range, time, units, and expression properties
as (Equation (11)).
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TBox = {Temperature ≡ ∃hasName.xsd : string u ∃hasDescription.xsd : string u ∃
hasSynonyms.xsd : string u ∃hasScale.xsd : string u ∃

maxRange.xsd : f loat u ∃minRange.xsd : f loat u ∃
hasTime.xsd : string u ∃hasUnit.xsd : string u ∃

hasExpresion.xsd : string, Temperature ⊆Weather_conditions}

(11)

Wind denotes the amount of wind that affects the coffee crop in a given period. It
is defined as a subclass of Weather_conditions and has the name, description, synonyms,
scale, minimum range, maximum range, time, and units properties (Equation (12)).

TBox = {Wind ≡ ∃hasName.xsd : string u ∃hasDescription.xsd : string u ∃
hasSynonyms.xsd : string u ∃hasScale.xsd : string u ∃

maxRange.xsd : f loat u ∃minRange.xsd : f loat u ∃
hasTime.xsd : string u ∃hasUnit.xsd : string, Wind ⊆Weather_conditions}

(12)

Humidity denotes the water vapor content in the air during a given period of coffee
cultivation. It is defined as a subclass of Weather_conditions and has the name, description,
synonyms, scale, minimum range, maximum range, time, units, and expression properties
(Equation (13)).

TBox = {Humidity ≡ ∃hasName.xsd : string u ∃hasDescription.xsd : string u ∃
hasSynonyms.xsd : string u ∃hasScale.xsd : string u ∃

maxRange.xsd : f loat u ∃minRange.xsd : f loat u ∃
hasTime.xsd : string u ∃hasUnit.xsd : string u ∃

hasExpresion.xsd : string, Humidity ⊆Weatherconditions}

(13)

Shadow denotes the amount of shadow that the coffee crop has. It is defined as a
subclass of Weather_conditions and has name, description, synonyms, scale, minimum
range, maximum range, time, units, and expression properties (Equation (14)).

TBox = {Shadow ≡ ∃hasName.xsd : string u ∃hasDescription.xsd : string u ∃
hasSynonyms.xsd : string u ∃hasScale.xsd : string u ∃

maxRange.xsd : f loat u ∃minRange.xsd : f loat u ∃
hasUnit.xsd : string u ∃hasExpresion.xsd : string, Shadow ⊆Weather_conditions}

(14)

Complete definitions were made for the main classes Country, lexical, and sample.
Figure 9 shows the concepts defined in the ontology and the complete definition for the
concept Country.

4.2.2. Coherence

Coherence or consistency of an ontology denotes that inferred statements should
be correct [58,63]. At the very least, the defining axioms should be logically consistent.
In addition, the natural language documentation should be coherent with the formal
statements. Figure 10 shows the use of the Protégé’s Pellet reasoner to assess the coherence
of the RustOnt ontology. Using this tool, we verified that it is a consistent ontology
model according to class hierarchy, object property hierarchy, data property hierarchy, and
class assertions.

4.2.3. Modularity

The modularity consists of decomposing an ontology into independent taxonomies [58,72].
This is a key factor for an ontology, since it allows its reusability and facilitates its mainte-
nance and extension [72]. The modularity of RustOnt has been assessed by splitting the
ontology model into two independent ontologies that can be applied in other domains.
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Figure 9. Complete definition for the country class (Protégé editor).

Figure 10. Use of Pellet reasoner to assess RustOnt’s coherence (the Protégé editor).

Figure 11 shows the first ontology defined for Mapping. It supports new types of
transformation that can be additionally incorporated to the Weather_conditions instances.

Figure 11. First ontology defined for the Mapping module (Protégé editor).

The second ontology has been defined for Weather_conditions (Figure 12). It supports
adding new weather conditions corresponding to additional countries and adding new
instances in mapping that can provide additional relationships.

Once the evaluation was completed, it was possible to verify that the competence
criteria and quality requirements were successfully. This was performed using tools such
as Protégé as well as DL queries through modeling scenarios with SPARQL queries and
running the Pallet to Protégé reasoner inconsistency check, which was successful for the
evaluated ontology. Therefore, it can be affirmed that the evaluated RustOnt ontology
complies with the competence and quality requirements established in this work.
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Figure 12. Second ontology defined for the Weather_conditions module (Protégé editor).

With the evaluation presented in this section, it has been possible to verify that the
competence criteria and quality requirements were satisfactorily met by RustOnt. For this
purpose, the tests described for each criterion have been completed using Protégé, DL
queries, modeling scenarios with SPARQL queries, and inconsistency tests using the Pallet
reasoner. From the results obtained, we can conclude that the RustOnt ontology meets the
competence and quality requirements established for this work.

5. Conclusions and Future Work

Smart agriculture involves using information and communication technologies such as
big data analytical techniques, data mining, cloud services, the Internet of Things, natural
language processing (NLP), artificial intelligence (AI), and other strategies in agriculture
and livestock farming. In this context, smart agriculture helps farmers optimize product
quality, preserve natural resources and more effectively protect the environment.

Nevertheless, smart agriculture has created new challenges mainly related to using
and exploiting the knowledge that these technologies have acquired and produced from
crops and farmers. This knowledge needs to be collected, extracted, analyzed, and stored
using mechanisms that allow farmers, experts, and machines to share common knowledge
ground to address heterogeneous formats and data types.

Various methods have been developed for knowledge representation, including first-
order logic, formal logic, semantic networks, frame-based systems, and ontologies. From
these, ontologies are the most popular due to their ability to effectively analyze entities,
usability, reusability, and maintainability.

In this paper, we proposed RustOnt, the first ontology with knowledge obtained
from a literature review on the most critical weather variables in coffee cultivation and
rust detection in Latin American and African countries. This ontology allows experts to
build interoperable systems that exploit knowledge about the relationships between rust
and critical weather variables to provide farmers with the information needed to address
potential risks, reduce damage due to this disease and improve crop conditions, whilst
keeping in mind that weather conditions that may favor its growth.

In addition, RustOnt allows experts to perform different transformations using the
weather variables based on their specific values, units, and common expressions. The
lexical transformation returns numerical values according to text values that farmers use to
describe weather conditions (e.g., hot, cold, tempered, very cold, very hot, etc.) in different
regions. The sample transformation provides the samples or valid values for each weather
variable according to the selected region. These values and samples were obtained from
related studies about computational models for coffee rust [26–28,31,59,60].

The evaluation of RustOnt was conducted on a question-based assessment focused
on competency and quality requirements. The ontology successfully solved competency
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queries defined in DL. More complex queries required the definition of scenarios im-
plemented using SPARQL queries. The quality assessment of RustOnt consisted of three
criteria: clarity, consistency, and modularity. We defined formal axioms on the main classes
to assess clarity, which allowed us to define the terms used and the hierarchy between
them. The consistency was related to the clarity of each concept defined in the RustOnt
ontology and its validation using the Pallet reasoner of the Protégé tool to infer knowledge
about the elements of the ontology (classes, object property, data property and individu-
als) without contradictions. Furthermore, modularity was achieved by splitting RustOnt
into two different modules (weather conditions and mapping), where each module is a
representation ontology that can be used as an independent ontology for other domains.

Finally, RustOnt can help the process of data collection, integration, and knowledge
exploitation in the field of coffee rust as an asset to create recommendation systems or
predictive models that help farmers and experts in decision-making processes avoid adverse
scenarios related to coffee rust.

The next step to improve RustOnt is to expand its information basis to include other
coffee-producing countries that have not been considered due to the lack of previous
studies. This objective can be achieved through initiatives such as the Regional Cooperative
Program for the Technological Development and Modernization of Coffee (PROMECAFE)
for Latin America and the Uganda Coffee Development Authority (UCDA).

We also want to integrate RustOnt as part of a case-based reasoning (CBR) system
widely used in agriculture for crop management [3], traceability [73], yield estimation [74],
and pest and disease protection [75–77]. RustOnt can improve the retrieval process of a
CBR by making the input data less heterogeneous and thus more accurate, so that the
search for the most similar case can be more precise according to the system requirements.
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EWSs Early Warning Systems
FONTAGRO Regional Agricultural Technology Fund
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OIRSA International Regional Organization for Animal and Plant Health
NLP Natural Language Processing
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