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Abstract: The accumulation of volatile fatty acids (VFAs) through the anaerobic fermentation of
organic waste, such as strawberry extrudate, is proposed for this work. A hydrothermal treatment
was carried out, and it was proposed to break the complex matrix of the strawberry extrudate to
favour the hydrolysis stage of the anaerobic digestion process. The production of volatile fatty acids
from treated and untreated strawberry was evaluated by adjusting the pH to 5 and 9. After the
hydrothermal treatment of the strawberry extrudate, an increase in the solubilisation of organic matter,
such as sugars and phenols, was observed. In the production of VFAs by means of anaerobic digestion
of the pretreated strawberry extrudate, a significant increase in the accumulation of volatile fatty
acids was demonstrated at a pH of 9 with respect to the untreated strawberry extrudate. In addition,
the operational pH also had a strong effect on the individual VFA profile. A stream enriched in acetic
acid was obtained at a pH of 9 (around 65% of the VFAs), whereas the operation at a pH of 5 resulted
in a more complex composition with a high percentage of propionic acid (29% of the VFAs).

Keywords: lignocellulosic residue; pretreatment; acetic acid; agrowastes; biorefinery

1. Introduction

The valorisation of organic waste as a substrate for biorefinery processes is part of the
efforts to move from an economy based on fossil fuels to a greener circular economy based
on the use of renewable sources [1]. This allows a paradigm shift in the agricultural sector
where organic waste becomes a potential source of benefits, such as energy or chemicals,
instead of waste to be treated at the lowest possible cost [2,3]. Agricultural waste has
been widely proposed as a substrate for biorefinery processes due to its availability, low
cost, and, in some cases, high content in sugars, which are highly desirable for different
biological processes [2].

Strawberry extrudate (SE) is an organic substrate generated during the extrusion of the
strawberries for the elaboration of a mash destined for the production of strawberry-tasted
products [4,5]. SE is mainly composed of the lignocellulosic fibres and achenes of the
strawberry, retained in the sieves during the extrusion process. Moreover, SE also presents
a high content of valuable compounds, such as sugars and phenolic compounds, which
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would be of high interest for different biorefinery processes [5]. However, the utilisation
of a lignocellulosic material such as SE as a substrate for biorefinery processes would be
limited due to the necessity of hydrolysing the biomass to yield fermentable sugars or the
presence of microbial inhibitors, such as phenolic compounds [6,7].

Previous studies have proposed the use of pH-controlled anaerobic fermentation as a
suitable method for the hydrolysation of organic substrates and their transformation into
valuable building blocks, mainly volatile fatty acids (VFAs) [8–11]. In fact, the economic
value of VFAs is usually much higher than the economic value of the methane, typically
obtained from anaerobic digestion processes [12]. Actually, methane has a market value
of only EUR 16.63–33.27/mt [13], whereas acetic acid and propionic acid have values
of around EUR 499/mt and EUR 3546/mt, respectively [14]. The anaerobic reactor of
the pH-controlled anaerobic fermentation operates at pH values other than 7–8 that is
recommended for methanogenic activity [15], avoiding the conversion of the solubilised
compounds into biogas and, thus, favouring the accumulation of VFAs. Therefore, higher
hydrolysis rates and VFA concentrations could be obtained under acidic or alkaline condi-
tions in comparison with conventional anaerobic fermentation at a neutral pH. For example,
Liu et al. [11] reported a hydrolysis rate of 68.7% for the alkaline fermentation of sewage
sludge at a pH of 10 in a full-scale plant, reaching a VFA yield of 261.32 mg COD/g VSS
(COD, chemical oxygen demand; VSS, volatile suspended solid). However, the hydrolysis
is more limited for substrates with a high content in lignocellulosic fibres. For example,
Cabrera et al. [8] described that the hydrolysis of olive mill solid waste reached values of
50% and 56% at an operational pH of 5 and 9, respectively, whereas the operation at a pH of
7 allowed the biomethanisation of more than 90% of the added substrate. In the same line,
a previous study by Cubero-Cardoso et al. [16] concluded that the lignocellulosic structures
of SE would hamper the action of the hydrolytic enzymes, limiting the solubilisation of the
substrates and the accumulation of VFAs. Indeed, these authors reported hydrolysis rates
of 55% and 50% at an operational pH of 5 and pH of 9, respectively, for the anaerobic fer-
mentation of SE at semibatch conditions. Despite the limitation on the hydrolysis rates, the
operation at an acidic or alkaline pH allowed an effective inhibition of the methanogenesis
and the conversion of most of the soluble organic matter into VFAs [16].

Due to the limited solubilisation reported for SE, it would be interesting to evaluate
a pretreatment method that would facilitate the hydrolysis of the substrate and, thus,
improve the process yield. The implementation of hydrothermal treatments has been widely
proposed for enhancing the hydrolysis of lignocellulosic substrates [6,17]. The application
of high temperature and pressure conditions aims to partially solubilise the cellulose
and hemicellulose and, at the most severe conditions, also affect the lignin structure [17].
Previous studies have studied the solubilisation of SE through hydrothermal treatments at
a wide range of operational conditions [5,18,19]. Rodríguez-Gutiérrez et al. [18] evaluated
the solubilisation of SE at the temperature range from 90 ◦C to 200 ◦C, concluding that the
application of temperatures around 150 ◦C for one hour maximised the solubilisation of the
lignocellulosic fibres into simpler compounds, mainly sugars. The same authors also stated
the necessity of carrying out a purification step before further biological treatment of the
hydrothermally treated substrate for removing the antioxidant and antimicrobial products
that would act as microbial inhibitors [18]. However, the conversion of the solubilised
compounds during the hydrothermal treatments to a constant flow enriched in VFAs is
still required for favouring the valorisation of SE in biorefinery processes.

Therefore, the aim of the present research is the evaluation of a hydrothermal pretreat-
ment to the pH-controlled anaerobic fermentation of SE at a pH of 5 and 9 for maximising
the accumulation of VFAs. For that, the process will be compared with the accumulation of
VFAs of the pH-controlled anaerobic fermentations without the pretreatment stages. The
processes will be evaluated according to the solubilisation capacity for the substrate, as
well as the composition of the accumulated compounds at each operational condition and
the further effect on the microbial activity at the pH-controlled anaerobic fermentations.
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2. Materials and Methods
2.1. Inoculum and Substrates Used during the Experimentation

The inoculum used for seeding the anaerobic reactors was obtained from a full-scale
mesophilic anaerobic reactor located in an urban wastewater treatment plant located in
Seville, Spain. The inoculum presented a total solid (TS) concentration of 21.3 g/kg, a VS/TS
ratio of 0.63, and a pH of 7.12.

The raw substrate for the experimental procedure, i.e., the strawberry extrudate (SE),
was provided by the company Hudisa S.A., located in Lepe, Spain. The SE was kept at
−18 ◦C to avoid undesirable fermentation processes prior to the experimentation. A fraction
of the SE was subjected to a hydrothermal treatment to evaluate a possible enhancement
of the hydrolysis of the substrate. In particular, 12.6 kg of raw SE was subjected to a
hydrothermal treatment (150 ◦C, 60 min, 5 kg/cm2), generating the hydrothermally treated
strawberry extrudate (HTSE) used during the experimentation.

2.2. Experimental Set-Up and Experimental Design

pH-controlled anaerobic fermentations of the SE and the HTSE were evaluated in
triplicate at a pH of 5 and 9. Anaerobic reactors with 1.7 L working volume (2.0 L total
volume) were used. The anaerobic reactors were continuously stirred through a magnetic
bar and kept in a thermostatic chamber at 35 ± 1 ◦C. The operational pH of the reactors
was monitored daily and corrected, if necessary, by adding HCl (12 N) or NaOH (3 N). SE
and HTSE were batch-fed once per week for a total period of 50 days. Biogas production
was monitored daily throughout the experimental time. Samples of the mixing liquor of
each reactor were taken and analysed five times per week to evaluate the pH-controlled
anaerobic fermentations of the SE and the HTSE at both a pH of 5 and 9.

2.3. Analytical Methods

The determinations of the total solids (TSs), total fixed solids (FSs), total volatile solids
(VSs), total chemical oxygen demand (CODtot), and soluble chemical oxygen demand
(CODs) were carried out by following the methodologies established by American Public
Health et al. [20]. For measuring soluble compounds, the samples were filtered by means
of 0.45 µm pore filters. The total and soluble phenolic compound concentrations were
determined through the Folin–Ciocalteu method (more details in [21]). Total and soluble
sugar concentrations were measured through the anthrone colorimetric method [19]. The
concentration of hydroxymethylfurfural was quantified using a Hewlett-Packard 1100 liq-
uid chromatography system. The individual volatile fatty acids (VFAs), i.e., C2–C5, were
determined using a Shimadzu gas chromatograph (GC-2010). Individual VFA concentra-
tions were expressed as mg O2/L. More details of the equipment and analysis conditions
for the determination of the hydroxymethylfurfural and individual VFA can be found in
Serrano et al. [22].

2.4. Calculations

The evaluation of the metabolic activity at each experimental condition was carried
out by the determination of the hydrolysis, acidogenesis, and methanogenesis activities
based on the conversion of the added substrate according to the following expressions
(Equations (1)–(3)):

Hydrolysis =
CODs + CODCH4

CODadded
(1)

Acidogenesis =
CODVFA + CODCH4

CODadded
(2)

Methanogenesis =
CODCH4

CODadded
(3)

where CODs was the concentration of soluble COD in the reactor; CODCH4 was the methane
production expressed as g COD, and CODVFA was the sum of the individual volatile fatty
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acids expressed as g COD. CODadded was the accumulated substrate added to each reactor
at each time and expressed as g COD.

Sigmaplot 11.0 and Microsoft Excel 2016 were used for the calculation of the mean and
standard deviation values of the triplicate data, as well as for the elaboration of the figures.

3. Results
3.1. Effect of the Hydrothermal Treatment in Organic Matter Solubilisation

The implementation of the proposed hydrothermal treatment at 150 ◦C for one hour
had a strong effect on the soluble parameters of hydrothermally treated strawberry extru-
date (HTSE) compared to strawberry extrudate (SE). The soluble sugars and the soluble
phenols in HTSE increased around ten-fold compared to SE (Table 1). Similarly, soluble
chemical oxygen demand (CODs) increased after the pretreatment step, varying from
47 ± 1 g O2/g SE to 61 ± 1 g O2/g SE (Table 1). The solubilisation effect of the proposed
pretreatment can be corroborated by the increase in the CODs/CODtot ratio in HTSE com-
pared to SE, which presented values of 33% and 23%, respectively. The hydrothermal
treatments at temperatures around 150 ◦C applied to lignocellulosic substrates, as the
SE, mainly solubilised the hemicelluloses and, to a lesser extent, part of the lignin struc-
tures [17,23]. In HTSE, a concentration of up to 505 ± 1 mg/kg SE of hydroxymethylfurfural
was detected (Table 1). The formation of hydroxymethylfurfural, a well-known inhibitor
of anaerobic digestion, is a side effect of the application of hydrothermal treatments to
lignocellulosic substrates [24]. However, the concentration of hydroxymethylfurfural in
HTSE was in a range where no obvious negative effects are usually detected according to
different authors [24–26].

Table 1. Analytical characterisation of the strawberry extrudate and the hydrothermally treated
strawberry extrudate.

SE HTSE

pH 3.7 ± 0.1 4.1 ± 0.1
Moisture (%) 85.5 87.0
TSs (g/kg SE) 145 ± 4 130 ±2
FSs (g/kg SE) 5 ± 1 6 ± 2
VSs (g/kg SE) 139 ± 4 124 ± 3
CODtot (g O2/kg SE) 200 ± 6 186 ± 3
CODS (g O2/kg SE) 47 ± 1 61 ± 1
%Ratio (CODS/CODtot) 23 33
Total Phenols (mg gallic acid/kg SE) 2185 ± 64 1751 ± 62
Soluble Phenols (mg gallic acid/kg SE) 103 ± 2 987 ± 34
Total Sugars (mg glucose/kg SE) 29,466 ± 431 26,799 ± 1227
Soluble Sugars (mg glucose/kg VS) 2023 ± 99 19,591 ± 721
Hydroxymethylfurfural (mg/g SE) <D.L. 505 ± 1

SE, strawberry extrudate; HTSE, hydrothermally treated strawberry extrudate; D.L., detection limit; TSs, total
solids; FSs, Fixed solids; VSs, volatile solids; CODtot, total chemical oxygen demand; and CODs, soluble chemical
oxygen demand.

The total organic matter concentration, measured as total volatile solid (VS) and total
chemical oxygen demand (CODtot), indicated that most of the organic matter in the SE
remained in HTSE after the hydrothermal treatment (Table 1). The slight decrease in these
parameters, around 10% of the initial organic matter, would result from the release of
some organic volatile compounds due to steam condensation [27]. On another hand, an
increment in the soluble phenol concentration was observed for HTSE compared to SE
(Table 1), indicating that part of the phenolic compounds presented in the substrate were
solubilised after the hydrothermal treatment.

3.2. Solubilisation of the Substrate and Methane Production

The implementation of the hydrothermal treatment process did not entail a significant
effect at an operational pH of 5, which presented, at the end of the experimental time, CODs
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concentrations for SE and HTSE of 8.9 ± 0.2 g O2/L and 8.4 ± 0.3 g O2/L, respectively
(Figure 1a). These values are close to those reported by Serrano et al. [10], which achieved
a CODs concentration of around 9 g O2/L during the anaerobic fermentation of wasted
berries at a pH of 4. Otherwise, operation at a pH of 9 resulted in a slight decrease
in the CODs for HTSE compared to SE, i.e., 6.4 ± 0.2 g O2/L and 5.8 ± 0.2 g O2/L,
respectively (Figure 1b). Regardless of the difference in the CODs concentration, the
anaerobic fermentation at a pH of 5 and 9 resulted in a similar CODs to added COD ratio,
with values of 47 ± 2% and 45 ± 4%, respectively (Figure 1a,b). The lack of a solubilisation
effect deriving from the hydrothermal treatment is due to the experimental conditions, i.e.,
150 ◦C for one hour, which were not severe enough to allow the degradation of the most
recalcitrant compounds in SE, such as the lignin presented in the achenes [4,17]. Because
the rest of the strawberry fruit is readily biodegradable, the proposed pH values of 5 and 9
were enough for COD solubilisation without the necessity of a previous pretreatment.
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Figure 1. Solubilisation of SE and HTSE organic matter in COD (a) at a pH of 5 and (b) at a pH of 9
with respect to feed.

At a pH of 5, the accumulated methane production was not totally inhibited, reaching
a value of around 1.8 g O2/g VS for both SE and HTSE (Figure 2a). This accumulated
methane production represented around 10% of the added CODtot to the reactors. On the
other hand, the inhibition of the methane production for favouring the volatile fatty acid
(VFA) accumulation was more effective at an operational pH of 9, where the accumulated
methane production was undetectable for both SE and HTSE (Figure 2b). The inhibition
of the methane production at acidic and alkaline pH values was previously described by
several authors [10,28]. This inhibition occurs due to the operation at a pH out of the optimal
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range for the methanogenic activity, i.e., 7.3–7.8, but where the bacteria still have hydrolytic
and acidogenic activities [28,29]. The total inhibition of methane production at a pH of 9
(Figure 2b) is contradictory to the results reported by Serrano et al. [10] for the anaerobic
fermentation of wasted berries as the phenol solubilisation method, which reached a value
of up to 215 ± 10 mL CH4/g VS. The difference in the methane production would be
explained by the lack of correct pH control in Serrano et al. [10], because these authors
reported a drop in the pH to values around 7 while the methane production occurred.
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Figure 2. Accumulated methane production from SE and HTSE (a) at a pH of 5 and (b) at a pH of 9
with respect to feed.

3.3. Accumulation of Volatile Fatty Acids

The sum of the individual VFA concentrations, expressed in grams of COD, were very
similar at a pH of 5 for SE and HTSE at the end of the experimental time, i.e., 6.1 ± 0.4 g
O2/L and 6.5 ± 0.2, respectively. Similarly, the proposed pretreatment stage did not show
any effect in the fermentation at a pH of 9, resulting in VFA concentrations of 5.5 ± 0.5 g
O2/L and 5.6 ± 0.5 for SE and HTSE, respectively. Most of the soluble compounds were
in the form of VFAs according to the VFA/CODs ratio, regardless of the operational pH
and pretreatment (Figure 3a,b). The highest conversion of soluble compounds to VFAs
was achieved at a pH of 5, where the VFA/CODs ratio values were close to 1 throughout
most of the experimental time. It is worth noting that a difference in the VFA/CODs
ratios was observed at a pH of 9 between SE and HTSE after 25 days of operation, HTSE
being markedly higher than SE (Figure 3b). Indeed, HTSE presented a mean VFA/CODs
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ratio of 0.93 ± 0.08, whereas SE resulted in a mean VFA/CODs ratio of 0.80 ± 0.08. This
difference would indicate that the proposed hydrothermal treatment would remove some
recalcitrant compounds that were not possible to convert into VFAs at an operational pH of
9, such as soluble dietary fibres or phenolic glucosides, which can be hard to metabolise by
microorganisms [18,30]. Despite the similar effectiveness in the conversion of the soluble
compounds into VFAs at both operational pH values, the operation at a pH of 9 with and
without pretreatment resulted in a much higher conversion of the added CODtot into VFAs
than the operation at a pH of 5, i.e., 42 ± 1 % and 34 ± 2 %, respectively. These results were
in line with those reported by other authors, which described that the alkaline conditions
would favour the activity of some enzymes involved in the degradation of carbohydrates
and proteins [31,32].
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The operational pH also had a strong effect on the individual VFA profile, with
strong differences between the concentrations of each VFA determined at a pH of 5 and 9
(Figure 4a–d). On the opposite side, the implementation of the hydrothermal treatment did
not result in remarkable differences between SE and HTSE at both an operational pH of 5
(Figure 4a,b) and pH of 9 (Figure 4c,d). Acetic and propionic acids were the predominant
VFAs at a pH of 5, representing around 35% and 29% of the sum of the VFAs, respectively.
Butyric and valeric acids were presented in a lesser, but meaningful percentage, reaching
concentrations around 1200 mg O2/L and percentages of 19% and 17% of the sum of the
VFAs, respectively (Figure 4a,b). The individual VFA profile for SE and HTSE at a pH of
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9 showed that acetic acid was the predominant accumulated VFA, representing around
65% of the sum of the VFAs (Figure 4c,d). The other individual VFA compounds reached
similar low concentration values, around 700 mg O2/L, which represented percentages of
the sum of the VFAs around 10–15%. The higher preponderance of acetic acid at an alkaline
operational pH was previously described by several authors [10,33,34]. The almost total
inhibition of methanogenesis at an alkaline pH would favour the accumulation of acetic
acid, instead of its conversion into methane [33].
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3.4. Concentration of Soluble Sugars and Soluble Phenols

The concentration of soluble sugars at the different operational conditions varied
in a low range below 100 mg glucose/L during most of the experimental time (Table 2).
The avoided accumulation of soluble sugars was in line with the high effectiveness in the
conversion of CODs into VFAs described in the previous Section 3.3. The concentration of
soluble phenolic compounds throughout the experimental time showed that the operation
at a pH of 5 resulted in a higher accumulation of phenolic compounds compared to the
operation at a pH of 9 (Table 2). The concentration of soluble phenols achieved values
around 150 mg gallic acid/L at a pH of 5, whereas a pH of 9 only reached values around
100 mg gallic acid/L. A similar difference was previously described by Serrano et al. [10]
for the evaluation of the fermentation of wasted strawberries as a method for the solubil-
isation of phenols. These authors described that the operation at a pH of 4 favoured the
accumulation of phenolic compounds compared to the operation at a neutral or an alkaline
pH, reaching values between 300 and 400 mg gallic acid/L. Despite the accumulation
of phenolic compounds in the reactors during the anaerobic fermentation, the obtained
values were markedly lower than those determined in the substrate (Table 1), indicating
that phenolic compounds were degraded to simpler compounds during the anaerobic
fermentation process. The anaerobic degradation of the phenolic compounds has been
widely reported as long as the concentrations were far from the inhibition range for these
compounds [34–36].

Table 2. Concentrations of soluble sugars (mg glucose/L) and soluble phenols (mg gallic acid/L) at
different experimental times.

pH 5

Days Soluble Sugars (mg Glucose/L) Soluble Phenols (mg Gallic Acid/L)

SE HTSE SE HTSE

0 48 ± 5 43 ± 7 99 ± 3 90 ± 2
7 41 ± 2 38 ± 5 170 ± 7 152 ± 23
21 19 ± 1 19 ± 2 119 ± 6 112 ± 2
28 66 ± 9 63 ± 3 107 ± 5 101 ± 3
35 59 ± 6 57 ± 4 166 ± 6 162 ± 5
43 49 ± 5 49 ± 2 149 ± 10 141 ± 23
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Table 2. Cont.

pH 9

Days Soluble Sugars (mg Glucose/L) Soluble Phenols (mg Gallic Acid/L)

SE HTSE SE HTSE

0 - - 19 ± 7 23 ± 5
13 157 ± 136 152 ± 142 58 ± 3 53 ± 7
20 51 ± 9 47 ± 5 67 ± 5 65 ± 9
28 57 ± 13 53 ± 2 72 ± 15 69 ± 17
34 63 ± 10 63 ± 4 102 ± 15 100 ± 31
42 62 ± 9 89 ± 2 95 ± 21 86 ± 25
49 65 ± 5 89 ± 7 89 ± 31 106 ± 31

SE, strawberry extrudate; HTSE, hydrothermally treated strawberry extrudate.

3.5. Microbial Metabolic Activity Stages

The hydrolysis and acidogenesis activities showed almost constant values during
the operation at a pH of 5 for both SE and HTSE after the 7-day operation (Figure 5a,b).
Concurrently, the hydrolysis and the acidogenesis presented mean values of 47.5 ± 5.0%
and 44.6 ± 2.8%, respectively, indicating that the conversion of the solubilised compounds
during the hydrolysis were rapidly converted into VFAs. This was an expected behaviour
because hydrolysis is usually defined as the rate-limiting step in the anaerobic degradation
of organic solids [37]. The most significant difference between the reactors treating SE and
HTSE occurred during the first 10 days of operation, where the methanogenic activity for
SE was 17.5 ± 1.3%, whereas for HTSE it was markedly lower, i.e., 5.8 ± 1.5% (Figure 5a,b).
After this initial period, both SE and HTSE presented a similar methanogenic activity
with a mean value of 10.8 ± 1.4% (Figure 5a,b). This methanogenesis activity entailed
that a fraction of the generated VFAs were consumed. Enhancing the accumulation of
VFAs would be interesting in future research on the implementation of more extreme
pH values; e.g., the total inhibition of the methanogenesis has been described at a pH of
4 [10], decreasing the retention time for diminishing the acetogen populations due to their
longer growth time compared to the other involved fermentative bacteria, or varying other
operational parameters, such as the temperature or the organic loading rate [38,39].

At an operational pH of 9, the microbial metabolic activities showed a different trend
compared to that described for the operation at a pH of 5. For SE at a pH of 9, the
hydrolytic activity decreased from values around 80% to a stable value of 48.4 ± 0.3%
at the end of the experimental time (days 42 to 49) (Figure 5c). However, the anaerobic
fermentation of HTSE at a pH of 9 resulted in a lower hydrolytic activity, with values
varying from around 60% at the start of the experiment to a stable value of 36.5 ± 0.4% at
the end of the experimental time (days 42 to 49) (Figure 5d). Despite the differences in the
hydrolysis activity, the anaerobic fermentation at a pH of 9 of SE and HTSE showed similar
acidogenic activity, with mean values of 39.6 ± 4.5% and 34.0 ± 3.3%, respectively, at the
end of the experimental time (days 42 to 49) (Figure 5c,d). The methanogenic activity was
totally inhibited for both SE and HTSE, avoiding the conversion of VFAs into methane and
allowing the accumulation of acetic acid [38]. The stronger inhibition of the methanogenic
activity at alkaline conditions in comparison to acidic conditions was previously described
by different authors [40,41]. At the same time, the lower hydrolysis and acidogenesis
described at a pH of 9 in comparison to a pH of 5 was compensated by the stronger
inhibition of the methanogenic activity, explaining the similar VFA accumulation capacities
for both operational pH values. Therefore, the selection of the operational pH should be
considered in relation to the desirable target VFA compounds to be obtained. Otherwise,
the implementation of hydrothermal treatments could be avoided considering the observed
low effect on the VFA accumulation. Further research would be interesting to evaluate
more severe treatments that would allow the solubilisation of the lignin fraction of the SE,
evaluating if the expected increase in VFAs is enough to compensate for the generation of
potential inhibitors and the higher energy requirements.
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4. Conclusions

This study successfully demonstrated the accumulation of volatile fatty acids (VFAs)
from hydrothermally treated and untreated strawberry extrudate (SE) by anaerobic diges-
tion, showing an increased solubilisation after hydrothermal treatment. Methanogenic
activity was almost inhibited at both evaluated pH values despite the hydrothermal treat-
ment. The extent of VFA accumulation was, however, strongly dependent on the pH
conditions. The total VFA concentrations of 6.5 ± 0.2 and 5.6 ± 0.5 g O2/L were obtained
at a pH of 5 and 9, respectively, after hydrothermal treatment from SE. Furthermore, it was
demonstrated that the relation between the operational pH and the obtained individual
VFA profile obtained a more complex VFA composition at a pH of 5.
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